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In recent years, research on collaborative interaction has relied onmanual coding of rich audio/video recordings.

The �ne-grained analysis of such material is extremely time-consuming and labor-intensive. This is not only

di�cult to scale, but, as a result, might also limit the quality and completeness of coding due to fatigue, inherent

human biases, (accidental or intentional), and inter-rater inconsistencies. In this paper, we explore how recent

advances in machine learning may reduce manual e�ort and loss of information while retaining the value

of human intelligence in the coding process. We present ACACIA (AI Chain for Augmented Collaborative

Interaction Analysis), an AI video data analysis application which combines a range of advances in machine

perception of video material for the analysis of collaborative interaction. We evaluate ACACIA’s abilities, show

how far we can already get, and which challenges remain. Our contribution lies in establishing a combined

machine and human analysis pipeline that may be generalized to di�erent collaborative settings and guide

future research.
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1 INTRODUCTION

Many of the advances in Computer-Supported Cooperative Work (CSCW) and Human-Computer
Interaction (HCI) come from studying the intricacies of techno-social collaboration phenomena
such as territorial functioning [41], collaborative coupling [16, 32, 42], awareness and collaborative
work [43], and multi-device collaboration [6]. Such �ne-grained analyses typically require extensive
audio/video recordings of both people’s activities in space and with devices, as well as recordings
of what is happening on device screens. Even for small groups and short term use, the analysis and
interpretation of such rich data has signi�cant costs in terms of human time and e�ort. Researchers
report that the observation and analysis of group interaction is “labour-intensive” [7], and “tedious
and time consuming” [21]. The e�ort is considered necessary to obtain valid empirical �ndings,
but its cost is so great that it creates a scaling problem [15] which e�ectively prohibits studies of
large numbers of groups and/or longitudinal studies.
Systematic procedures for capturing group interaction behavior based on observational data

collected in �eld studies have existed since at least the 1930s (see, e.g., [34, 45] as described in detail
by Kau�eld & Meinecke [21]). In early studies, activities had to be captured in coding schemes
immediately during observations, often by multiple parallel observers, which in turn led to �rst
considerations around inter-rater reliability. Reliability has also been raised as a question because
many coding schemes are quite idiosyncratic, based on dubious foundations, or leading to overly
strong claims. Birdwhistell’s kinegraphics was accused of all of the three problems, and despite his
in�uence on more well-known researchers such as Hall, Kendon, Go�man, and Knapp, his coding
schemes and theories have largely fallen out of favour [19].

Advances in audio and video recording capabilities in the 1960s and 1970s [22] made it possible
to partially replace other data gathering approaches such as observations or interviews [26].
Accordingly, the cognitive load placed on researchers by simultaneous observation and coding was
alleviated at least to the extent that the recorded material could be thoroughly analyzed at a later
time. In some instances, this gave rise to new �elds of research, such as Conversation Analysis
(CA). CA researchers coalesced around Je�erson’s [17] basic principles of audio transcription. In
subsequent decades, CA researchers have added a range of elements for the system to cover a
wide range of human multi-modal activity such as “grammar, lexicon, prosody, gesture, gaze, body
postures, movements, manipulations of artifacts, etc.” [28]. However, these additions have not
propagated evenly across the research community, and may in some instances be either too detailed
or not detailed enough, so individual researchers often create their own idiosyncratic transcription
methods to capture the phenomena that they are exploring. The huge potential of such detailed
coding approaches is in direct contrast to the immense and ever-increasing manual coding e�ort
involved – and it takes considerable training just to learn [13]. According to Mondada [28], several
days of a posteriori work are necessary to code a single one-hour video with all the detail above.
Taken together, these issues of e�ort and reliability lead to an urgent need for methods, techniques,
and technologies that help to reduce the amount of human e�ort involved in the process.

One approach in this direction is the introduction of tools such as the act4teams coding scheme
[20] which is supplemented by customizable software and a speci�cally designed coding keyboard
(see Figure 1). Another example is EagleView [7], a system for user studies of proxemics (the
position of people and objects) that visualizes spatial interactions. Such approaches “enable more
straightforward data analysis and e�cient pattern tracking” [22] and can help reduce researchers’
workload by taking over or simplifying the handling of routine tasks in the manual coding process
and guiding researchers’ coding decisions by standardized schemes. However, many of the funda-
mental challenges related to manual coding cannot be solved just by improving the manual coding
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Fig. 1. Example of specialized hardware [1] (le�) and so�ware [27] (right) to help with manual coding of
audio-video data; annotations are in German.

process. These challenges include the amount of human e�ort, fatigue, inconsistent inter-rater
reliability, and (intentional or accidental) human biases that might a�ect coding outcomes.
Our approach to these challenges is rooted in the idea of bringing machine perception into the

analysis process of collaborative interaction (a "machine-in-the-loop" inversion of the "human-in-
the-loop" concept). In this paper, we introduce a semi-automated research pipeline which uses
multiple recent Arti�cial Intelligence (AI) technologies combined into a research toolset. We call
this system ACACIA (AI Chain for Augmented Collaborative Interaction Analysis). In ACACIA,
machine perception takes a �rst pass at time-consuming steps in the coding process that are easy
for machines to solve but hard for people to do reliably over a large data set (e.g., identi�cation of
people, objects and regions in a video image including computation of proxemics or identi�cation
of interaction in certain regions or territories). This presents researchers with a range of searchable
visualizations which may then be used to analyse collaborative activity starting from the same
baseline of observable facts. As a proof-of-concept, we present an illustration and evaluation
of a collaborative interaction scenario analyzable with the help of the ACACIA infrastructure
interwoven with human endeavor. We hope that our exploration inspires other researchers to
apply a similarly structured research process. Further, our insights into the use of di�erent AI
technologies applied to the analysis of collaborative interaction provide useful starting points for
researchers to consider how to move the needle on new approaches to scaling empirical analysis.
In summary, the contributions of our paper can be outlined as follows. Foremost, we have

(i) developed a framework that combines machine- and human-related e�orts into a consistent
research pipeline for collaborative contexts (which can be generalized and guide future related
studies). Our approach further has the potential to (ii) free resources of tedious manual work (which
might also reduce bias and inconsistencies), (iii) improve scaling issues in research endeavors (e.g.,
allowing for the analysis of user studies with more overall participants, longitudinal studies, or
replication studies), and (iv) facilitate the analysis of larger volumes of data (e.g., a vast amount of
video recordings).

2 RELATED WORK

Our overview of related literature is twofold. First, we describe exemplarymanual coding approaches
in the domains of HCI and CSCW, some of which will be later discussed for their potential to be
(partially) automated with ACACIA. Second, we give an overview of related automation approaches
that utilize AI in di�erent domains.
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2.1 Manual Coding Approaches in HCI and CSCW

A wealth of di�erent coding approaches is described in The Cambridge Handbook of Group Interac-

tion Analysis [5]. As noted above, the act4teams coding scheme aims to “measure the �ne-grained
problem-solving dynamics that occur in groups and teams” [20]. It focuses on verbal group com-
munication and distinguishes four di�erent categories of statements: problem-focused, procedural,
socio-emotional, and action-oriented. With the addition of nearly 40 subcategories, the coding
scheme has considerable descriptive power in analyzing collaborative settings such as “team meet-
ings, group problem-solving conversations, and group creativity interactions”. The authors estimate
a time factor of about 1:8-15 for coding, which means that 1 minute of audio-video material to be
coded results in 8 to 15 minutes of coding time. Additionally, the time required for training the
coders is assumed to be approximately 200 hours. Further estimates of the e�ort of di�erent coding
schemes amount to factors up to 1:30 [38] or even 1:50 [39]. This leads to the aforementioned situa-
tion where one hour of audio-video material results in several days of coding—even by experienced
coders.
Although not a coding scheme per se, Scott et al. [41] conducted extensive manual coding to

shed light on territorial functioning in co-located collaboration at conventional table surfaces. In
an initial study, they coded exactly where on a round table the participants interacted with their
hands (see Figure 2) in conjunction with their other behaviour:

“Sessions were videotaped and audiotaped, and �eld notes were recorded. We collected
29, 43, and 38 minutes of data from Groups 1-3, respectively.
In order to analyze the participants’ spatial interactions, their tabletop activity was
transcribed from the video data. Transcripts included all tabletop actions, the initiator
of each action, the location of each action, the location of each participant, and any
conversation related to the tabletop actions. To facilitate our analysis, the tabletop
workspace was divided into 16 directional zones [...], and 4 radial zones [...]”

Fig. 2. Example of territorial codes manually assigned to interactions by Sco� et al. [41].

The sheer amount of information that had to be manually extracted from the audiovisual
recording gives an idea of how much e�ort must have been necessary to obtain the �ndings. Our
vision is to enable future researchers to more easily conduct such endeavors—either with fully or
partially automated support—reducing tedious coding activities and, consequently, stirring greater
interest in investigating group interaction scenarios.

Another interesting example, this time involving a relatively high level of human interpretation,
is the coding of collaborative coupling. First introduced by Tang et al. [42] this framework of
analysis allows a �ne-grained categorization of the closeness of collaboration among several
persons into several so-called coupling styles. Tang et al.’s coupling styles were later extended
by Isenberg et al. [16] with a revised list of eight coupling styles to �t their study setting. Their
de�nitions of the coupling styles can be regarded as pointers towards how researchers interpreted
and coded each collaborative interaction between participants as one of their eight coupling styles.
For example, Isenberg et al.’s “Sharing of the same view” is de�ned to involve “[p]articipants either
look at the same document reader or the same search result list together at the same time”. One

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 571. Publication date: December 2022.



Semi-automated Analysis of Collaborative Interaction: Are We There Yet? 571:5

further extension of the concept of collaborative coupling is described in Neumayr et al. [32], who
introduced the possibility of several coupling styles being in existence in parallel for multiple
subgroups. We estimate that this task of deciding which coupling style is currently in place (which
is also far from trivial for human coders) for which persons will also be the most challenging part
of any automated approaches.
In essence, most coding activities (be it for act4teams, territoriality, or collaborative coupling)

in this context consider collaborative settings with their entities and how relationships between
those entities unfold over time. The entities can be either active (such as humans, intelligent user
interfaces, or robots) or passive (such as objects like devices, tools, screens, artifacts, regions or
territories). People as actors are mostly considered behaviorally by human coders through their
implicit and explicit actions, which can be expressed through touching, looking at, pointing to,
talking and gesturing, or moving around. These actions—while possible for isolated individuals (as
active entities)—are of interest in collaborative settings mainly when conducted in relation to other
(both active and passive) entities. The core of our vision, therefore, is to use AI to recognize all
related entities and establish meaningful relationships between them.

2.2 Automation Approaches

Fig. 3. Illustration of the overall automation approach of Gonzáles & Evans taken from [12]. Our general
approach and system architecture is loosely inspired by their suggestions.

In the domain of biomedical research, Gonzáles & Evans [12] suggested a research pipeline for
automated image processing of dark-�eld microscopy images. As in our proposed approach, they
also expect “streamlining the path from experiment to conclusions”. They suggest a number of
technologies that could be used to achieve such a pipeline and present an overview of common cloud
storage and computing providers. In particular, their contribution to present “a data processing
pipeline based on AI to automatically process imaging data” (see Figure 3) is related to and inspired
our approach. We also agree with them that the move “to full automation removes the burden
of step-by-step manual data analysis and frees the scientist to focus on experiment design, data
acquisition, and interpretation.” In their “automated data processing pipeline for microscopy” they
extract certain “regions of interest” and further information and this is then prepared as tabular data
(to be later analyzed in a software such as R). Furthermore, they state that automated results need to
be quality controlled by a human which is certainly even more important in a �eld that provides the
basis of decision-making in medicine. A similar approach for the automated analysis of microscopy
data is described by Kraus et al. [24] who present the application of a deep convolutional neural
network to analyze such image data.
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Hoey et al. [15] share our general motivation and idea of using AI to address the drawbacks
concerning human coding e�ort of group interaction data. In their approach, they use machine
learning to evaluate hundreds of randomly selected GitHub pull request comments and categorize
them according to Bales’ interaction process analysis [2] coding categories and several additional
emotion words (such as “cautious”, “happy”, or “nervous”). In their preliminary results they achieved
some poor F1-scores (de�ned as “evenly weighted precision and recall” [15]) which give an im-
pression how reliably a category could be distinguished from all other categories. Yet, for some
aggregated measures the F1-scores were much more promising, which encouraged us to combine
several (partly experimental) services to achieve better results with aggregates.
Another prominent example of an automated approach using computer vision is the ASSESS

MS project [30], which measures the motor skills of Multiple Sclerosis patients. The software and
hardware system is designed for real-world clinical use and automatically interprets visual data
(e.g., of diagnostic tasks such as the �nger-to-nose test) with machine learning based on depth
information provided by the Kinect sensor [8].
In research on verbal information, Ullmann [44] used several machine learning algorithms to

automatically assess the quality of re�ective writing in education according to several categories
such as the depth of the text, personal belief, or perspective. He showed that most of the categories
can be automatically assessed with “substantial or almost perfect reliability”. Similarly, Portno� et
al. [35] used Natural Language Processing to extract the type, product, and price information of
cybercriminal underground forum posts in an approach of automated analysis. They were successful
in extracting and automatically classifying the information across as well as within several related
forums.

Another approach for annotating data is Label Studio1. Here, video, audio, text, or images can be
labeled both manually and in an automated way. For automation, it is possible to integrate own
algorithms as plugins which then return annotated data. Our approach also gives researchers the
opportunity to manually annotate data, but we support researchers with a toolset that can be used
out of the box and is tailored speci�cally to the domain of analyzing collaborative interaction, as
opposed to the more general orientation of Label Studio. Moreover, we also use data from Azure
Kinect and synchronize several data streams with the help of \psi, which both Label Studio cannot
easily process.

Further approaches that employ (semi-)automated analysis with the help of AI and aim at reducing
e�ort or interobserver variability (or issues with inter-rater reliability) have been conducted and
discussed in di�erent disciplines such as medicine (only few of a wealth of examples are [18],
[31], [25], [36], and [40]), astronomy [14], product con�guration [3], management [22], or ecology
[11]. While many of the approaches are aimed at automated analysis of still image data (mainly in
medicine), some are based on digital text (mainly in CSCW) but to the best of our knowledge, there
are no approaches that combine di�erent sources (e.g., several images from a video recording taking
into account the history, proximity, or gaze detection) for the analysis of collaborative interaction.
As we have shown in the related literature, manual approaches to coding are instrumental

and prevalent but associated with a great deal of e�ort (potentially leading to various problems
discussed above). While there are multiple approaches to automate part of these e�orts and we can
resort to their general strategies, none of them are usable in the domain of collaborative interaction
out of the box. As a �rst step to close this gap, we designed, implemented, and evaluated ACACIA
to answer the question how far we can get by introducing currently available AI services into the
research process.

1https://labelstud.io, last access May 4th, 2022
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3 DESIGN AND DEVELOPMENT OF ACACIA

We have two goals. First, we aim to reduce the tedious manual work usually associated with the
analysis of audiovisual material obtained in the context of user studies on collaborative interaction.
This should also help improve the scaling of research, facilitating the analysis of a larger amount
of recordings. Second, we aim to prevent possible accidental or intentional biases or inter-rater
inconsistencies in the analysis. In the following section, we present our conceptual architecture as
well as a high-level overview of our prototype.

3.1 Conceptual Architecture

To analyze collaborative interaction our central premise is that it is essential to �nd out who (i.e.,
which active entity) was interacting with what (i.e., which passive entity) or whom (i.e., which
other active entity) at which point in time, thus, establishing a relationship between entities. Our
goal is to gather rich information about how people collaborate or interact with each other or
with other tools and items (e.g., detecting the closeness of collaboration, use of territories, or
regions of interest). Conceptually and behaviorally, such a relationship of “interacting with” can be
understood in a variety of ways, often combining aspects of “looking at,” “touching,” “being close
to,” or “talking to” someone or something. A number of external APIs and AI services can be used
to semi-automatically detect these aspects (cf. Figure 7 for an overview). For instance, to identify
the passive and active actors, we can make use of automated face detection and identi�cation
mechanisms. To �nd out which objects (or regions) they interacted with, these objects �rst need to
be recognized or manually annotated. To �nd out who was looking at someone, gaze tracking can
help. Semi-automatic recognition of these entities and their relationships to each other enables
later analysis of study data using established models and frameworks, as discussed in more detail
in Section 5.

Most of the aforementioned questions can be answered on a per-frame basis (e.g., who is currently
visible or looking at something). However, there are also questions which cannot be answered
(with corresponding certainty and probability) based on a single frame but require the analysis of
several frames depicting di�erent points in time. One such question is: Where does a person move
to (it is necessary to track the person in cases where the person is currently facing away from the
camera or the face is currently covered)?
The other important aspect of the system is to track the relationship between objects and

people. In a pre-processing step, entities (such as objects, regions, or people) are recognized and
contextualized by the automated analysis. In this step, face detection and computer vision services
are used to determine which persons, regions, or objects are visible in each frame and where they
are located. The intention behind the pre-processing step is to allow for later advanced and
con�gurable post-processing functions, such as creating relationships between the detected

entities, without needing to repeatedly process all the data. Researchers can con�gure and start
real-time post-processing to establish relationships between the entities, answering the question
who focuses on what or whom.

3.2 ACACIA in a Nutshell

Our research prototype ACACIA (AI Chain for Augmented Collaborative Interaction Analysis)
is a desktop application developed with Windows Presentation Foundation (WPF) to explore the
current capabilities of readily available as well as experimental AI services for the analysis of
collaborative interaction (cf. Figure 4). Our underlying aims were twofold. First, we strove to
combine all the di�erent services by integrating them in a plug & play-style manner as they all
deliver JSON data, which is mainly a technical matter (and contribution). Second, we aimed at
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developing a prototoype well usable for interested researchers to aid the research process. The latter
is a more general contribution to the �eld of HCI, a domain which is strongly characterized by the
conduct of user studies. Please note that ACACIA is not intended as a consumer-style application
concerning usability and user experience yet. In the following, we describe ACACIA, highlighting
its capabilities from (i) a technical and (ii) an HCI perspective.

Streams

Database

MP4 

Objects
---------------------------------
MS CS Computer Vision

People
---------------------------------

MS CS Face 

Single frame analysis

Multi-frame analysis

Editor

Person tracking Object tracking

Region of interest
tracking

Pointing to
object/person

tracking

Viewer
Export statistics

Preprocessing

Postprocessing

Time related analysis

Export annotated
images

Gaze detection
---------------------------------

MS Project Tokyo

Body Tracking
---------------------------------

Azure Kinect

Audio Detection
---------------------------------

Resemblyzer/pyBK + Google
STT

Lip detection
---------------------------------

Dlib 

\psi

Fig. 4. High level depiction of ACACIA’s research pipeline. (Pointing currently is in an experimental state and
was not evaluated, yet).

Technical Perspective. ACACIA can handle two kinds of video formats: (i) the standard audio-
visual container format mp4 and (ii) an Azure Kinect stream with additional information including
depth information as input data. The depth information increases the accuracy of capturing a
collaborative scenario (e.g., gaze estimation).The uniqueness of our approach stems from being
able to combine multiple machine perception services (such as Microsoft’s Project Tokyo2, or
Microsoft Azure Cognitive Services) with data sources (2D as well as 3D image information). We
use a combination of built-in components and additional external services in order to detect the
aspects we are interested in – in this case for analyzing collaborative interaction, but di�erent
components could be used for di�erent phenomena.
The central component of our system is the Microsoft open-source Platform for Situated Intel-

ligence (\psi), [4]. In general, \psi allows for performing di�erent actions on data by connecting
existing and self-developed components to process data. \psi is designed to write small components
and connect them through a pipeline (or chain) which executes di�erent actions (in parallel) in a
prede�ned order. Furthermore, the framework provides various input sources such as real-time
camera input, video �les, or Azure Kinect sensors. We use \psi for recording videos and storing
the data as streams. These streams contain all data (including images, depth images, etc.) which
can later on be processed by our system. Since the data is stored, we can again read it and perform
various analyses at a later point in time.

We also use \psi to perform di�erent actions with di�erent frame rates. For example, for tracking
gestures one must use a higher frame rate since limbs are usually moving relatively fast. Instead,
object detection does not necessarily have to be performed in such a high frame rate (many objects
are comparatively stationary), thus, preventing unnecessary costs and processing time.

2https://www.microsoft.com/en-us/research/project/project-tokyo/, last access: February 28th, 2022
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HCI Perspective. Based on our experiences with previous collaboration analysis and their
according pain points (as outlined in Section 1), in an iterative design process we integrated
solutions into ACACIA’s frontend to tackle these requirements. Besides providing developers the
opportunity to integrate additional services into the research pipeline in the backend (either in the
pre or post-processing phases), ACACIA’s frontend allows researchers to adjust and approve which
information is automatically detected. Researchers are able to add, edit, and delete objects, regions,
and people, using a dedicated editor. Editing the pre-processing phase to include combinations
of automatically-detected and manually edited elements can be done without a�ecting the post-
processing algorithm. For example, regions of interests can be added, or a supervisor of a study
present during the study procedure can be removed (i.e., excluded from the analysis).

Finally, the results of the analysis can be viewed via ACACIA’s GUI and exported as compressed
data including di�erent kinds of annotated images (see, e.g., Figure 5) and statistical information
(see, e.g., Tables 1 and 2, which are discussed in more detail in Section 3.3). The annotations are
drawn based on information received from the respective APIs. For example the position and size
of rectangles around the faces originate from Face API’s FaceRectangle class, the ones around
objects from Computer Vision as properties x, y, w, and h (but all rectangles can be modi�ed a

posteriori in ACACIA’s editor). The �nal analysis results are then stored in a local database for
future usage. It is also possible to share the �ndings with remote researchers over a cloud database.
To wrap up, the main purpose of ACACIA is to record who is interacting with what or whom

and tell us the respective location of these entities. This is usually the core of what researchers are
interested in and manually searching for when analyzing collaborative interaction (as set out in
Sections 1 and 2.1). Concerning customizability, our approach is to support researchers with a tool
that is capable of answering these core questions out of the box without the need for training data
or building own models. Our motivation is to allow researchers without a technical background to
use ACACIA. To tackle cognitive load, visualizations can be selectively displayed (see Figure 5) and
the export is categorized to prevent overwhelming numbers of columns in worksheets, accordingly.
Apart from the possibility of focusing on the most interesting subset of the overall functionality, we
did not include further customization from users’ perspective (while developers can readily include
other external services or data streams), as most questions of collaboration research manual coders
would extract from images can be consequently answered, as we will further exemplify in Sections
5.3 and 5.4.

3.3 AI Services in ACACIA

ACACIA uses several readily available as well as more experimental services which are registered
as components via \psi. An overview of these external services is provided in Figure 7. We now turn

Table 1. Simplified example of the tool’s export
about identified entities.

Frame # Persons Objects Regions
Location of 

all Entities

41 John, James, 

Jeannie

TV, Desk, 

Blackboard

Todo-List,

Area on Desk

Locations 

[John=>102, 

203, ...]

42 John, James, 

Jeannie

TV, Desk, 

Blackboard 

Todo-List,

Area on Desk

Locations 

[John=>112, 

200, ...]

43 John, James TV, Desk, 

Blackboard,

Smartphone,

Whiteboard

Todo-List,

Area on Desk

Locations 

[John=>125, 

205, ...]

Table 2. Simplified example of the tool’s export
about relations between entities.

Frame # Person Gazes at Points to Interacts With

41 John James James, Jeannie, TV

41 James John TV John, Jeannie, TV

41 Jeannie TV John, James, TV
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Fig. 5. Le�: main area of ACACIA’s viewer. Right: call-out of frame control bar (top) and visualization options
(bo�om). (a) marks the visualization pane showing the selected visualizations on the current frame, (b) the
frame control bar allows navigating the video frames, and (c) shows a list of visualization options to choose
from. Please note that some options (e.g., Speaking or Workgroups) are experimental and have not been
evaluated, yet.

Fig. 6. Automatically generated example image (frame #41 from Table 1 and Table 2) with object detection,
person identification, and gaze paths. With depth information, it is possible to intersect gaze paths with
people, objects, or regions in the 3-dimensional room.

to discussing the AI services used to answer typical questions during the coding of collaborative
scenarios.

3.3.1 Entity Recognition. In this section, we describe the procedures conducted with the aim of
detecting and contextualizing entities such as regions, objects, and people in video frames. Most of
these activities happen during the pre-processing phase. Questions: Who or what is there, and

where are they?

Person Detection and Identi�cation (Recognition). Question: Are there people, where are they,

and who are they? For the analysis of collaborative interaction, one of the most important pieces
of information is the identi�cation of the people participating in such a setting. Furthermore, we
would like to detect if a person is interacting with any other people, regions, or objects in order to
characterize the overall collaboration. Our approach mainly consists of three steps and employs
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Fig. 7. Overview of external services used in our approach. Please note that Lip and Speech detection have
not been systematically evaluated, yet, and should be seen as a suggestion for future work.

Microsoft Azure Cognitive Services3, which is “a set of RESTful services capable of recognizing,
understanding, and interpreting the content of pictures, speeches, live videos, written text, and
much more, with a natural language description” [10].
First, all the participants must be registered in ACACIA via a name and a pro�le image, which

is needed to detect people and to correctly assign a face to a person name (i.e., identi�cation). In
our tests, we usually took these pro�le images directly from the recorded RGB frames. From our
experiences, the requirements on pro�le image picture quality in terms of resolution are rather low.
In our system evaluation described in Section 4, we recorded RGB with a resolution of 1080p (i.e.,
1920 x 1080 pixels) but took smaller segments of the images which depicted people’s faces (mostly
around 200 x 200 pixels). However, we achieved best results with front-facing imagery. Cognitive
Services Face API’s documentation provides some further guidelines and hints concerning the
quality needed to detect4 and recognize5 faces. For example, for detecting faces the resolution
must be between 36 x 36 and 4096 x 4096 pixels (depending also on the proportion between face
resolution and overall image resolution). For recognition (i.e., identi�cation), some limiting factors,
such as “Extreme facial expressions” or “Obstructions that block one or both eyes” are also raised
there.
After the pro�le images are registered in ACACIA, we perform face detection on individual

frames of the video. After successfully detecting people, the �nal step is to identify them by using
their pro�le image. Both tasks use Cognitive Services: we use the Face API for face detection and
face recognition and receive the location and size of the identi�ed faces from this service. The
results are then visualized in ACACIA’s Viewer, as can be seen in Figure 6 (left, rectangles around
people with name printed below), as well as exported as annotated images and table data (see
Table 1 in columns people and Location of all Entities).

Region and Object Detection. Question: Which objects and regions are there and where

are they? In addition to the identi�cation of the participating people, the recognition of objects
and the consideration of regions are also central aspects in the analysis of collaboration. Object
detection can be accomplished in either an automated manner with computer vision, or through

3https://azure.microsoft.com/en-us/services/cognitive-services/, last access February 28th, 2022
4https://docs.microsoft.com/en-us/azure/cognitive-services/face/concepts/face-detection, last access May 13th, 2022
5https://docs.microsoft.com/en-us/azure/cognitive-services/face/concepts/face-recognition, last access May 13th, 2022
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Fig. 8. Visualization of person detection and identification in ACACIA. Identified people receive a frame
holding their name. Regions of interest also receive a frame and their name. The frame denoted with “remote”
is such a region and marks the area where the camera image of the remotes can be seen. Color coding conveys
where the individual people are currently focusing, that is, where their gaze is apparently directed (not
visualized here). In this case, both co-located people focus on the remote participant, e�ectively gathering all
participants’ a�ention in the person space [9].

manually adding objects or regions to the database that was established in the pre-processing step
(see Figure 4).

In the automated variant, each frame of a video is analyzed in ACACIA by the Computer Vision
service of Azure Cognitive Services. ACACIA sends the images to the service, which returns a
list with all detected objects with a corresponding name and position. After automatic detection,
researchers can adapt detection of objects and introduce regions manually if necessary. Regions
are objects or areas in frames which are of particular interest to the observers. Regions—although
technically identical—are conceptually di�erent from objects such as a table, a chair, or a laptop. In
general, it is not possible to automatically detect regions because they are individual and speci�c to
a collaboration scenario. For example, people may be sorting items on a segment of a table, while
the rest of the table is reserved for other use. Another example can be seen in Figure 8, where the
local participants are currently focusing on the particular area of a wall-sized display (which is
also detected but not visualized in this example) showing the remote collaborators’ camera image.
Figure 6 (left) and Figure 9 further show examples of automatically detected objects (e.g., the TV
screen).
To facilitate �exibility and individualization, users can manually annotate images with regions

in ACACIA’s editor (see Figure 4 and Figure 9). Since regions are typically more stationary than
objects, this should usually only take a few minutes of researchers’ time. Additionally, it is possible
to add other kinds of objects and adjust objects that have already been detected automatically.
Objects and regions can be set active for a speci�c set of frames (between one and all frames
of a video). All adjustments are stored in the local database and used for later post-processing,
visualization (see, e.g., Figure 6 (left, rectangle around the TV)) as well as the statistics export
function (see Table 1 in columns Objects, Regions, and Location of all Entities).

3.3.2 Establishing Relationships between Entities. As soon as all related objects, regions, and people
have been detected and located, relationships between the entities can be sought. Most of the
activities required for this establishment of relationships rely on our own algorithms and are
conducted in the post-processing phase. Questions:Who is looking at someone or something?
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Person Tracking. Question: Is the person in this frame the same as the person in that

frame? Under most conditions, we are able to detect and recognize people reliably. However, since
people can move around, potentially leading to the situation that a person’s face is not visible
for the camera at a certain point in time, or a second person is temporarily covering the �rst
one, we decided to track people over time to alleviate tracking losses (and therefore establishing
relationships between potentially unidenti�ed people across di�erent frames). Thus, the results
collected for each frame are used to track people over time to prevent losing potentially important
information. More concretely, our algorithm tries to bind identi�ed faces to the according bodies
(which are also detected in pre-processing). Should a face be suddenly not detected anymore (e.g.,
because they are currently facing away), ACACIA takes a look at nearby frames and searches for
exactly this face and body combination. If such a combination is found, and the di�erence between
the physical locations is below a con�gurable threshold per frame, we can �ll in the detection
gaps. The location di�erence is considered in order to disambiguate the face-to-body connections,
because it is not plausible for humans to move faster than a certain threshold speed (we used
a slow walking speed of around 1m/s which should be appropriate in most lab study settings).
Accordingly, when neither face nor body are detected, the algorithm fails to track people.

Gaze Detection. Question: Who or what is a person currently looking at? In addition to
identifying persons and keeping track of their position, it is also fundamental to identify where a
person is looking at. For the analysis of collaboration, we planned to detect if a person is currently
looking at another person, region (e.g., the task space where the main collaborative work is
happening, or the remote person space where we look at when talking to the remotes [9]), or object
(e.g., a tablet, or monitor)—and if so—at which person, region, or object. This is essential since we
can derive where the di�erent people’s focus is in each frame. To detect the gaze direction of people
we use a model from Microsoft’s Project Tokyo6’s framework (short: Tokyo), which is an endeavor
to support blind or low-vision people by �nding out “how [...] agent technologies [can] amplify
existing skills and abilities to help people do more”. Among many other results, the project led to the
creation of an AI framework particularly capable of inferring pose and gaze from two-dimensional
imagery [29]. We use Tokyo for such gaze and pose detection as an external service, embedded into

6https://www.microsoft.com/en-us/research/project/project-tokyo/, last access June 17th, 2021

Fig. 9. ACACIA’s editor giving researchers control over the results of the automated detection process. Objects,
regions, and faces (for person identification) can be manually added, moved, and deleted for inclusion in the
subsequent analyses. First, a frame is selected (le�), then the changes can be done (right) as in this example,
where a new region was added by drawing a rectangle (red rectangle with red arrow).
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a \psi component. Tokyo not only gives us information about the gaze direction, it also gives us
information about the poses of people in a video. This information helps us to perform simple body
tracking in videos without depth information as a fallback solution. Moreover, the information
of the pose is used to assign gaze to the correct person. Since it is already possible to detect and
identify the faces of the people by the aforementioned algorithms, we can assign the results which
we receive from Tokyo to the correct person. With the information of gaze, we can detect where a
person is looking. Therefore, we applied di�erent algorithms to estimate which object, region, or
person the person might look at. Since the detection of where a person is looking at in a simple video
�le can be ambiguous without 3D information and may lead to inaccurate results, we extended our
algorithms, insofar as in cases where the 3D information (recorded by Azure Kinect) is available,
we combine this information with the gaze, to be more precise when detecting where the person
is looking at in the room. The gaze vector is generally determined with Tokyo using the pose of
a person. This vector is then extended in the 3D depth image and an attempt is made to check
whether an intersection with the point cloud of the depth image is found in the direction of the
gaze. If such an intersection is found, the gaze beam ends in the 3D space and the nearest entities
(objects, persons, or regions) can be considered possible candidates as gaze targets. This leads to
better results, especially if multiple target areas are arranged one after another or if people, regions,
and objects are located side by side. However, using an Azure Kinect for recording a video including
depth information–although recommended–is not a precondition to using ACACIA–we only use
this information if it is available. However, when no 3D information is available, all gaze paths
do not end inside the image, leading to potentially several gaze target sequential candidates and
consequential ambiguity. Again, gaze paths are visualized in the Viewer and can be exported as
annotated images (see, e.g., Figure 6, left, John’s gaze is visualized with a purple line intersecting
and stopping at James in the 3-dimensional room, Jeannie’s gaze with a brown line stopping at
the TV). Furthermore, the information is present in the exported spreadsheet data (see Table 2 in
columns Person and Gazes at).

4 EVALUATION OF ACACIA

After earlier tests with our system in a fabricated setting (see, e.g., Figure 10) which yielded rather
promising results, we wanted to evaluate ACACIA in a less controlled (i.e., a more realistic) study
setting in a small-scale system evaluation involving users in a realistic collaboration scenario. Our
goal was to assess the current performance of the system and its components and �nd out situations
in which recognition works reliably and where further improvements are needed. Generally
speaking, the aim was to answer our research question if we are there yet already, when it comes
to (partly) automating analysis of collaborative interaction with o�-the-shelf (or at least currently
available) services. A second aim was to uncover current services’ potential to be integrated into
the research pipeline as a "machine-in-the-loop" inversion of the "human-in-the-loop" concept. In
terms of experimental design, the capability of ACACIA to correctly detect and recognize entities
and their relationships can be seen as our dependent variable. It is measured by comparing the
system output concerning certain collaborative interaction situations to the impression of human
coders. We regard mainly two independent variables as decisive: the quality of the recorded data
(i.e., RGB imagery and depth information as well as perspectives, angles, etc.) and performance of
the external services (which were used in combination).

4.1 Participants & Apparatus

For this purpose, we recruited �ve participants among our university sta�, who were not among
the authors (two professors and three research associates, 3f, 2m, mean age 33.6 years, SD=6.98,
min=25, max=41). They gave informed consent, contributed voluntarily, and were not compensated
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with extrinsic incentives for their time. We gathered two participants in one room and connected
them with the remaining three participants in another room by an audio-video link on two identical
Microsoft Surface Hub 2S devices. To re�ect a minimal possible study setup, each roomwas equipped
with one Azure Kinect device. For reporting, the participants’ names were changed to Alice and
Holly (room 1) as well as Bob, Clark, and Mary (room 2). They were asked to solve several logic
puzzle tasks7 and could make use of an interactive whiteboard application.

4.2 Procedure

To allow for person identi�cation, we registered all �ve participants in ACACIA’s user pro�les
using pictures taken directly from the study material. For pre and post processing, ACACIA’s
computation time was around ten minutes for a one-minute video segment with one of our current
PCs (Windows 10 64 bit, Intel Core i7-8850H CPU @ 2.60GHz with 64GB of RAM; main frame
rate of 1 frame per second). Please note that bandwidth as well as throughput of external services
a�ects the processing time. Currently, Face API allows 30,000 calls and Computer Vision 5,000 calls
for free per month. Per single frame, ACACIA in our study performed 1 Computer Vision and 5-6
Face API calls (which is dependent on the number of people depicted in the frames).

Overall, we gathered around 60 minutes of collaborative interaction data (30 minutes per room)
and discussed in a team of researchers which situations are most representative for illustrating
ACACIA’s current performance. Furthermore, after processing the data in ACACIA, two of the
authors spent around 90 minutes to collaboratively judge the results in a �rst pass and manually
added around 20 faces in total to the complete material with ACACIA’s editor. This was necessary
because of the extended periods of time some participants were completely hidden and our tracking
algorithm was only able to �ll in the gaps in such extreme cases with a little manual assistance.
Then we evaluated the results and compared ACACIA’s output to a human coder’s impression.
We followed an approach suggested by Saldaña [37] (combining advantages of “coding solo” and
“team coding”) with one researcher mainly responsible for the judgments who discussed ambiguous
cases in several sessions with the remaining team of researchers in order to arrive at a shared
understanding of what human coders would most probably have coded for each frame. The �ndings
are presented below.

Fig. 10. Example of one scenario recorded with Azure Kinect (RGB and depth information). The pointing
gesture of John’s right hand at the TV is marked with a purple line. Please note that the line stops in the 3D
space where the (object or region) “TV” is situated.

7https://logic.puzzlebaron.com, last access February 9th, 2022
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4.3 Recognizing Entities

First we discuss to which extent we can already answer the following questions:

(1) Which people are in a room, and where are they?
(2) Which objects are in the room, and where are they?
(3) With manual annotation we can determine (according to the current research interest): Which

regions of interest are in the room, and where are they?

Fig. 11. Person identification: Two illustrative examples of our small-scale evaluation. Le�: All co-located
participants (Holly & Alice) are recognized and identified, one of two remotes is identified (Bob). Right: Only
one co-located is identified (the other, Alice, is hidden behind Holly), both currently visible remotes (Clark &
Bob) are identified.

Which people are in a room, and where are they? In our �rst example, we evaluated a 3.5 minute
segment of one of our puzzle tasks in the room with the interacting dyad, starting from the task’s
beginning to mid-way of solving the puzzle. During the initial 40 seconds (1 fps) both co-located
participants (Holly & Alice) were recognized correctly. Then, in frame #41, Alice is hidden behind
Holly and she is not recognized anymore (see Figure 11, right). As this happened quite frequently in
our setup, Alice is only recognized on 93 of the 211 frames (44.08%), while Holly in the foreground
(i.e., without obstacles between the camera and her) is recognized in all 211 frames (100%). This
leads to the rather disillusioning percentage of 44% for the question if all participants in the room
were captured and identi�ed correctly. However, we also saw several positive aspects.

Firstly, although Holly was mostly facing away from the camera, she was identi�ed all the time
thanks to our tracking algorithm discussed in Section 3.3.2. We could be so bold to say that as
long as the camera had clear sight of the participants, the recognition and identi�cation rate was
near 100%. For (partly) hidden participants, our tracking algorithm tries to �ll in the gaps but
some manual �ne tuning (i.e., occasionally adding missing entities in ACACIA’s editor) might be
necessary for persons who are hidden for an extended period of time.
Secondly, also the remotes were recognized to some extent which might be very interesting

for future enhancements concerning targeted audio, etc. Therefore, we evaluated how often all
participants—both co-located and remote—were correctly recognized and identi�ed by ACACIA,
as long as their head was visible (but not necessarily their face). The rationale behind this is that
a human coder presented with a still image could in most situations identify remote depictions
by seeing their head. Furthermore, they are likely unable to estimate where currently invisible
persons are located with certainty or they can at least not be sure what they are currently doing
(e.g., focusing on something)—unless they see (a larger part of) their head or face.

On each of the 211 frames, either 3, 4, or 5 persons (i.e., their faces or heads) are currently
visible (see Table 3). We judged how many of them the system correctly identi�ed. For instance, in
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Table 3. Identification (implying recognition) rate of both in-room and remote persons in one representative
example 3.5 minute video segment. Overall, 61.47% of the (co-located and remote) participants were success-
fully identified.

# of Identi�ed Persons # of Frames Identi�cation Percentage Product

1 of 4 1 25.00% 0.25
1 of 5 17 20.00% 3.4
2 of 3 6 66.67% 4
2 of 4 27 50.00% 13.5
2 of 5 33 40.00% 13.2
3 of 3 3 100.00% 3
3 of 4 53 75.00% 39.75
3 of 5 42 60.00% 25.2
4 of 4 21 100.00% 21
4 of 5 8 80.00% 6.4

Sum: 211 129.7

Fig. 12. Object recognition: On the le�, currently three objects have been recognized, two chairs (brown) and
one table (yellow). On the right, the portion of the Surface Hub’s screen showing the remote participants was
additionally recognized as a “display”.

Figure 11 left, currently 3 out of 4 people are correctly identi�ed (remote Mary is facing away and
currently not recognized). On the right, currently 3 out of 3 are correctly identi�ed (because we
only see one ghost arm of Alice but not her face which is, however, instrumental for identi�cation).
Consequently, all frames received a percentage rating (e.g., 75% if 3 out of 4 were recognized, 60% if
3 out of 5 were recognized and so on). We added all of these percentages and found out that 61.47%
of all participants, whether remote or co-located, were recognized and identi�ed correctly as long
as their faces were visible. So just by using one camera headed towards the screen depicting the
remotes, we know for more than 60% who is there and where they (i.e., their virtual representations)
are. As for the remotes our algorithm could only rarely resort to pinning the faces to their bodies
(bodies were visible only occasionally), we deem this result as a good starting point for future
continuous improvements.

Which objects are in the room, and where are they? The detection of objects in our evaluation
showed two main issues. Firstly, the recognized objects were mostly too broad (e.g., a whole table
area instead of sheets or pens on that table) and unspeci�c (e.g., ‘display‘) to be used as targets
of interest out of the box. This makes human intervention necessary in most cases. Secondly,
recognition was too volatile to be used reliably for establishing relationships between entities (e.g.,
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the question which person focuses on which object). Still, we do not see these as major issues,
because regions of interest can be manually added to the frames which is possible quickly (usually
a matter of minutes)–solving both issues. Moreover, this allows a more focused approach towards
the present research interest instead of relying on generic objects. To illustrate how well object
recognition performs, we took a representative 2-minute sample (1 fps resulting in 120 frames) of our
study in the room with the triad, because more potential objects were visible there (see Figure 12).
However, only the two chairs to the left and to the right of the participants were recognized with
100% accuracy. The table in the front was either recognized as a “table” (52) or “dining table” (29)
in 81 of the frames (67.5%). The area of the video call was recognized as either “television” (19)
or “display” (18) in 37 of the frames (30.8%). Furthermore, there was not one coherent block of 81
or 37 frames in which these objects were recognized but there were many interruptions instead.
Sporadically, other objects were recognized, for example the “chair” between the two outer chairs
on 3 separate frames plus one frame as “seating” and the trousers of one participant on one frame
(as “jeans”).

Which regions of interest are in the room, and where are they? This question is of course a bit
misleading, because regions are added through manual annotation. In Section 4.4 we address how
regions can be integrated into the research process. Taken together with persons’ localization which
is a byproduct of detection and identi�cation, we can, therefore, say for each identi�ed person
where they currently were, relative to manually added regions (or zones) and other identi�ed
people. For example, this allows conclusions about proxemics (and could as a generalization help
with the analysis of team sports, or military and police operations). We did not separately evaluate
this because our �ndings about identi�cation rate in combination with e�orts of manual annotation
can answer how well this works.

4.4 Establishing Relationships

As we expected, the questions requiring more reasoning are relatively more di�cult to answer for
our system:

(1) Is the person in this frame the same as the person in that frame?
(2) Who or what is a person currently looking at?

Regarding the �rst question, we already showed above that ACACIA can achieve up to 100% of
correct person tracking as long as their face was once visible and then the person is not completely
hidden again (as ACACIA tries to bind identi�ed faces to their body). In our tests wemostly lost track
of persons only when they were currently not visible (see Figure 13, (d)). The only exceptions are
four (1.9%) misrecognitions of Alice although she or her face were somewhat visible (see Figure 13,
(b) and (c)). Please note that in Figure 13, (b), Alice is wrongly recognized as Holly, although Holly
is already recognized in this frame. Because one person cannot be in a frame multiple times, our
system should instead report Alice as ‘Unknown’ (but a plausibility check was missing because in
our previous tests such a case never occurred). Recognition worked reliably in cases where persons
were currently not facing the camera and only the back of their head was visible (exempli�ed by
Holly’s recognition rate of 100%, also see Figure 13). In our evaluation, we only used one camera.
Therefore, it can be assumed that in typical study situations, rooms do not need to be equipped
with dozens of cameras from all angles, or participants need to stay within arti�cially de�ned
boundaries, but rather they can move naturally and freely around the room. However, we suggest
using two or three cameras per room as this would prevent people occluding other people which
typically results in tracking losses. To further illustrate the problems which can arise when a person
is (partly) hidden, please refer to Figure 13.
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(a) Alice is recognized although here face is currently

hidden.

(b) Alice is wrongly recognized as Holly (this only

happened on 1 of 211 frames).

(c) Alice is wrongly recognized as an unknown

person while she is partly visible (this only happened

on 3 of 211 frames).

(d) Alice is not recognized because she is hidden (this

happened frequently in our setup: in 114 of 211

frames).

Fig. 13. Di�erent issues and their frequentness concerning person identification arising from a camera’s
blocked line of sight in one example 3.5 minute situation of our evaluation.

Summing up, we can say that as long as a camera has clear sight to a person which was identi�ed
before, we have a reliable identi�cation, even when the person is presently facing away or partly
hidden. Still, our current tracking algorithm may fail when a person is hidden too long (then it
might be necessary to manually add a few faces in the editor).

To evaluate our question two about gaze, we again resorted to the example we used for person
detection and identi�cation (2 persons in one room, 211 frames). Again, we manually judged if
each person actually looked at the area the system thought they looked at. As shown above, object
recognition was too volatile to be used for the target areas of the gaze, so we invested a few minutes
to add several regions of interest: a printed-out worksheet, the area of the Surface Hub showing
the whiteboard application, and the area of the Surface Hub showing the remote participants (see
Figure 14). Besides the regions of interest, the list of possible gaze targets included persons and
blank spaces that were neither regions nor persons.

Above, we have shown that Alice was correctly identi�ed on 93 frames, while Holly was identi�ed
on all 211 frames. Out of the 93 frames, Alice’s calculated gaze was presumably on the correct
region (or person) on 56 of the 93 frames she was recognized in (60.2%). Holly’s gaze target was
correct on 71 frames (33.7%). The number for Holly is so low, because she mostly faced away and
so the estimate for her gaze was less precise. Although Alice was often not detected because she
was hidden behind Holly, at least she was more often headed towards the camera. Furthermore,
we analyzed if the system-suggested target area was simply wrong or if only the �rst priority (i.e.,
the one area considered as most probable) was incorrect, while the correct target area was farther
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Fig. 14. The manually annotated regions of interest: a mobile worksheet, and two stationary areas on the
Surface Hub. Further visualization of automatically detected persons, estimated gaze path, and list of possible
gaze target areas. In this frame, Holly’s gaze is estimated to target Alice, although she actually looks at the
region “Remote” (which is at least in the list of candidates). Meanwhile, Alice’s gaze is estimated su�iciently
well to pin it to the worksheet.

Fig. 15. Estimated gazes of the participants. On the le�, only Clark’s (person in the center) gaze can be
located in the 3D space. In the center image, all three can be located (not necessarily correctly). On the right,
we see a typical example when participants are hidden or facing away.

down the list of possible candidates (see Figure 14). The number of frames where the correct area
is anywhere in the list of possible areas is 60 for Alice (64.5%) and 124 for Holly (58.8%).

Summary. The accuracy of gaze estimation is arguably not su�ciently reliable to be used right
away but in our impression shows that there is real potential. During our evaluation, there was a
serious issue that often we did not receive a calculated end point of the gaze beam in the 3D space
(see Figure 15). However, we need such an end point to determine which of potentially several
sequential target candidates is the most probable. Presently, our algorithm considers the �rst target
a gaze beam crosses as the ‘most probable‘ one in such cases without an end point. We identi�ed
a number of possible reasons why the percentage of non-3D-gaze in our evaluation was so high:
either i) Azure Kinect was unable to detect the point cloud, ii) Tokyo did not recognize the eyes,
iii) Tokyo miscalculated the eye direction (or z direction), or iv) ACACIA failed to map Tokyo’s
information to the Azure 3D space. Our analysis into this showed that reasons i) through iii) are
the most likely ones because without changes to ACACIA, on one frame (e.g., the center image in
Figure 15) we have gaze beams’ end points but not so on another (e.g., the left image in Figure 15).

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ISS, Article 571. Publication date: December 2022.



Semi-automated Analysis of Collaborative Interaction: Are We There Yet? 571:21

Fig. 16. Example image taken from an earlier user study, only 2D images without depth information were
used as data source.

However, we would like to hold that all components are powerful tools but are certainly dependent
on the material they receive.

5 DISCUSSION

In this section, we �rst discuss the performance of ACACIA and then go on to describe how we
envision our automatically extracted data may assist with the analysis of study data using example
models and frameworks from prior research (also see Section 2.1). There, we focus on the analysis
of collaborative interaction but would like to hold that—from a generalization standpoint—any
form of analysis that is interested in (identi�ed) entities’ location and/or relations to other entities
could also pro�t from a system like ACACIA.

5.1 System Performance

Overall, both the recognition and identi�cation of persons worked remarkably well as long as
the camera had clear sight of the persons. Object identi�cation proved to be too unspeci�c and
volatile to be used for establishing connections between entities which is why we used the manual
annotation of regions as a fallback solution—which, however, is usually possible within minutes. For
such frames, where persons were correctly identi�ed and not facing away from the camera, gaze
estimation also worked to some extent (between approx. 33.7% if face orientation was suboptimal
and 60.2% for persons more often—but still not permanently—facing the camera). We learned that
an introduction of a second or maybe third camera is likely to improve the result by far. However,
a synchronization mechanism still has to be developed to decide which camera’s input should be
considered based on estimates of the probability that an inference is correct or not (i.e., a robust
con�dence rating).
Although using Azure Kinect is optional in ACACIA, we strongly recommend it to improve

gaze estimation. However, we discovered that the model from Project Tokyo can infer reasonable
pose and gaze information from 2-dimensional video footage even with rather low resolution. For
example, on video footage of an earlier study, the image of remote collaborators is visible on a
display on an area of approximately 150 by 150 pixels in our video. Still, the Project Tokyo model
was able to infer a gaze path, which even looked reasonably directed (see Figure 16, red gaze cone).
Of course, this gaze path is not totally accurate because of o�sets between the camera position
and where the picture is presented but, nevertheless, led us to further considerations around
future workspace awareness support mechanisms based on remotes’ gaze (cf. [46]). Overall, our
impression is that Project Tokyo was created with continuously updating pose and gaze information
in mind, decreasing the requirements for precision in a single isolated frame because of this constant
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approximation. When applied to images taken from a video with a frame rate of one frame per
second, the requirements for precision are relatively high, and smoothing algorithms often lack a
higher number of interpolation points. For the future, we expect that ambiguities in gaze detection
will decrease as external services improve their precision (several updates already lead to notable
improvements during our development period) and increased computation power allows for more
rapid processing of higher frame rate recordings. In summary, we think a combination of high-
resolution 2D imagery, depth information, and a front-facing camera angle is best for reliable gaze
estimation.

5.2 Privacy

ACACIA is capable of not only identifying persons but also inferring what they are currently doing
and with whom they are interacting. Kranzberg’s �rst law states that “Technology is neither good
nor bad; nor is it neutral.” [23]. In consequence, it will always be a combination of the two poles
and media coverage about misuses of technology such as facial recognition—be it by authoritarian
governments or encroaching enterprises—is widespread8. Concerning the future of such technology,
we have to seriously pay attention to enable people to use such systems responsibly. Even if such
technology is not abused, simply by the fact that images are uploaded to external services there
are several dangers and risks involved. One suggestion we propose is to never use a person’s real
name—just as we did—when using pro�le images for the identi�cation in ACACIA. Commercial
providers of AI services could furthermore monitor the fair use of their services and a community-
driven rating approach could further act as a safeguard. Finally, it is essential that we aim for
voluntariness, properly inform participants about the procedures and ask if they consent. We do
not see the future of our approach in the analysis of everyday collaborative work settings (which
would imply an even more extensive number of critical privacy challenges) but exclusively for the
analysis of scienti�c studies in the HCI environment.

5.3 Proxemics

Proxemics is an aspect of collaboration that is indicative of many other more concrete forms and
elements of interaction, such as the ones we will discuss in the following Section 5.4. For instance,
information on proxemics can help to identify presence/activity in a certain territory (see Section
5.4) or provide information on closeness of collaboration. For example, EagleView suggested by
Brudy et al. [7] specializes on proxemics and provides exhaustive tools to support an entire research
process in this regard (while our scope is more general). EagleView uses a Kinect v2 device to track
people (“�xed objects” can be manually created) and we use an Azure Kinect but also use its RGB
images to detect people, regions, and objects, and identify people. Analysis of proxemics in our
system, conceptually similar to what has been suggested by Brudy et al. [7] but with a less complex
setup works with relatively high reliability in ACACIA.

Current Status: High recognition and identi�cation rate of persons when they are in clear sight
of the camera (up to 100%). Regions can be annotated in a matter of minutes. Related cues can be
derived from identi�cation and localization of people and regions. Object detection was not as
reliable as we hoped for. High precision of the detected entities’ location in a frame.

Process suggestion in ACACIA: (i) Manually add regions of interest or missing objects in the
editor if necessary, and (ii) run post-processing to obtain proximity information.

8https://www.theguardian.com/technology/facial-recognition, last access May 4th, 2022
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5.4 Territoriality & Media Spaces

Broadly speaking, analyzing for territoriality and media spaces means that we are interested
in who interacts in which territories or spaces. We envision that investigating this will be quite
straightforward with ACACIA. Regions of interest can be manually created in our editor to represent
the di�erent personal, group, and storage territories on the one hand, or task, person, and reference
space on the other hand present in a collaborative setting. As some areas (e.g., storage territory,
person space) are more mobile than other ones (e.g., group territories) [41, p. 300], a slightly
higher e�ort might be necessary to set up all regions of interest and keep track of their movement
over the duration of the videos. We showed an example of how this is possible by creating a
mobile “Worksheet” region during our evaluation (see Figure 14). Additionally, areas in proximity
to participants are likely to be used as their personal territories [41, p. 301]. ACACIA may facilitate
larger-scale user studies with a quantitative focus on who interacts in what kind of territories

or media spaces over time.
Current status: Analyzing for territoriality or media spaces makes it necessary that relationships

between entities are established. So far, we evaluated gaze as a possible way to estimate such
relationships. Depending on camera angles of the depth camera, gaze can be estimated correctly in
between one third and two thirds of the cases. This can on the higher end serve as a �rst rough
estimate but needs further improvement.

Process suggestion inACACIA: (i)Manually add regions as either territories or media spaces in
the editor, (ii) run post-processing to obtain gaze, proximity, and touching (to be added) information,
and (iii) evaluate quantitative distribution based on the statistics exports or qualitative insights in
the Viewer.

6 CONCLUSION AND FUTURE WORK

In this paper, we suggested a process and approach to integrate semi-automated analysis of collab-
orative interaction into the research pipeline. We believe that semi-automated analysis steps have
great potential to enhance and support HCI and CSCW research processes (with a speci�c focus on
analysis of collaborative behavior and interaction) for several reasons (also see Section 1). First,
systematic manual coding of collaborative interaction (which is, however, necessary if �ne-grained
insights in the nature of collaboration should be gained), is exceptionally time-consuming and
labor-intensive for the researchers involved. Second, this might lead to consequential problems
potentially critical for the quality of the coding result, such as loss of information and reliability
due to human fatigue or inter-rater inconsistencies.

To answer our question, if we have already arrived at automating (parts of) the analysis process,
judging from our systematic evaluation, we estimate that we are half-way there. Our evaluation
showed that the biggest remaining issue is how to achieve optimal camera perspectives. Firstly, the
tracking of hidden persons is frequently lost, albeit all attempts to alleviate this by pinning faces
(which are identi�ed) to bodies. Secondly, there is the dilemma that gaze estimation works best
when persons are facing the camera which in turn limits a single camera’s capabilities of judging
the target area the gaze lands at. For example, a vertical display is best captured from behind a
person operating it which is of course worst for gaze estimation. One solution is to use multiple
cameras and we suggest future endeavors to create synchronization mechanisms for this which
require robust con�dence ratings for each instance.
These considerations also show that controlled lab studies are a more favorable �rst candidate

for real-world application of such a system as opposed to �eld studies in classrooms or museums
where larger crowds can be expected.
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When we will arrive at this point in the near future, we do not, however, suggest to completely
replace the human e�orts involved in collaboration analysis processes by intelligent systems. On
the one hand, this might seem to be a logical consequence of the above arguments, but on the other
hand, it might also introduce further and potentially highly critical problems, e.g., due to biases
built into these systems [33]. Further, many cases of collaboration might be rare or even unique
and thus di�cult or impossible to interpret correctly by data-driven arti�cial intelligence. Thus, we
argue for interweaving human as well as machine e�orts in the research process related to analysis
of collaborative interaction.

The main contributions of our work are, on the one hand, the establishment of a semi-automated
research pipeline, and on the other, the introduction and evaluation of our prototype system
ACACIA, which provides a proof-of-concept for the underlying ideas. The speci�c results and
lessons presented in this paper should, thus, be understood as exemplars which are highly dependent
on the quality of the integrated hardware and software technology and services (e.g., the quality of
semi-automatic analysis of video imagery depends on the quality of the camera which provided
the recordings as well as the continuous visibility of entities to this camera). However, we believe
that our �ndings can provide a good perspective and guideline to other researchers struggling with
the known issues related to purely manual coding.
Future work is oriented alongside two di�erent streams. The �rst stream will deal with syn-

chronizing several capturing devices in the same room (to improve recognition rate by optimizing
camera angles), as well as in di�erent rooms (to facilitate automated capturing of remote and hybrid
settings). Afterwards, in the second stream we plan to explore the system performance further in
upcoming larger-scale user studies in di�erent settings in the HCI domain: with varying participant
numbers, di�erent tasks and camera setups.

Besides gaze for establishing relationships between entities, we also investigated pointing which
could be used in parallel for further disambiguation. Speech detection and speaker diarization are
planned to further classify persons’ activities or infer topics. All of this is, however, not mature
enough to be systematically evaluated and needs improvements �rst.

With respect to the technological (and conceptual) achievements associated with ACACIA, there
are also some general limitations in addition to the concrete (and partly technology-dependent)
ones discussed in Sections 4 and 5.1. First, at the moment we cannot reliably detect and distinguish
between �ne-grained elements of a collaboration such as coupling styles (see Section 2.1). This
requires either collecting and providing a huge amount of training data to feed to a classi�cation
algorithm or establishing a large set of partly interrelated rules that can be used as a basis for the
distinction. Second, we found that calibration of the hardware setup is of immense importance.
When recording earlier test material, the 3D space sensitive to interaction (which can later be
analyzed in form of a point cloud) was not identical to the 2D image stream recorded by the same
camera. Thus, some frames lack 3D information about part of the involved people (see Figure 17).
We thus plan to provide a systematic setup and calibration guide for future studies. For instance, it
might be helpful to add visible markers to the room indicating where in this setup detailed analysis
will be possible.

In conclusion, we believe that the work presented in this paper represents an important step
towards the facilitation and enhancement of the research process in the domain of collaborative
interaction. There is additional potential to utilize our semi-automated analysis approach not only
for the post-hoc analysis of collaboration, but also in the future to visualize certain aspects of a
collaboration on the �y, to facilitate focused and individualized support of teams or sub-teams in
potentially critical situations.
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Fig. 17. In one of our earlier tests, we set the Azure Kinect to be more sensitive in the depth of the image
which led to a narrower field of view (top) than the device’s RGB camera (bo�om) would record.
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