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ABSTRACT

Space sharing services like vacation rentals are being equipped with
smart devices. However, sharing of such devices has privacy and
security problems due to no or unclear control transfer between
owners and users. In this paper, we propose Spacelord, a system to
time-share smart devices contained in a shared space privately and
securely while allowing users to configure them. When a user stays
at a space, Spacelord ensures that the smart devices contained
in it run code and configurations the user trusts while removing
pre-installed code and configurations. When the user leaves the
space, Spacelord reverts any changes the user has introduced to
the smart devices to delete remaining private data and let the owner
take back control over the devices. We evaluate Spacelord for two
realistic space-sharing cases—smart home and coworking meeting
room—and observe reasonable provisioning delay and runtime
overhead.
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• Security and privacy → Embedded systems security; Oper-
ating systems security.
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1 INTRODUCTION

The spaces around us are becoming more intelligent. Spaces such as
residences [47], offices [107], and hospitals [48] are being equipped
with smart devices, such as smart door locks, light bulbs, cameras,
and speakers, to increase space efficiency, user convenience, and
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security. Smart homes were a $78 billion industry in 2020, projected
to double by 2025 [65]. The smart office market is projected to grow
to $57 billion by 2025 [46].

This trend extends to space sharing, e.g., vacation rentals [10, 106]
and hotel rooms [4, 50], whose control is transferred to short-term
users (i.e., tenants or guests). Owners install smart devices in their
spaces and allow users to control them to use the spaces conve-
niently and efficiently. Also, coworking spaces feature hybrid meet-
ing rooms with arrangements of intelligent cameras and micro-
phones for both in-person and remote participants [40, 105, 115].

However, the integration of space sharing and smart devices
extensively affects privacy, security, and usability. In a shared space
setting, owners choose which devices to install in their spaces and
preconfigure them. They typically retain administrative privilege
of the devices due to security concerns [26]. This setup introduces
security and privacy concerns for users because they have no op-
tion but to trust owners and devices they did not choose. Recent
studies [26, 64, 118] show that Airbnb users value the convenience
of smart devices but are concerned about privacy and security prob-
lems. Also, users cannot enjoy the full potential of smart devices
with user-specific configuration and personalization due to a lack
of permission, privacy concerns, or both. Some mechanisms such
as stateless devices [4, 5] or user-driven data control [122] partially
mitigate, but do not fully address, these problems. In particular,
smart space sharing introduces the following three challenges.
Privacy. Smart devices managed by an owner might capture a
wealth of privacy-sensitive information that are beyond user con-
trol. For example, apartment rental companies might use smart door
locks to surveil tenants [82, 91]. Voice-controlled speakers in vaca-
tion rentals can reveal the user’s browsing history or preferences
which might be used for user-profiling [26, 64, 118].
Security. Lack of control over smart devices threatens both users
and owners. For example, adversarial settings of smart devices such
as carbon monoxide detectors or garage door openers can affect
users. Adversarial access to audio or video streams from corporate
meetings could result in secret leakage ranging from product plans
to financial statements. Also, malicious users might tamper with
smart devices (e.g., install persistent malware).
Configurability. Lack of control over smart devices prevents users
from personalizing them. Even if owners transfer control to users,
it is unclear whether short-term (e.g., hours or days) users can
efficiently configure smart devices. For example, users might want
to configure a smart door lock to recognize their faces during their
stay and erase them immediately at check-out. However, manually
configuring individual smart devices is time-consuming and does
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not scale [109]. Also, any solution to the configurability challenge
is complicated by incompatibility between smart devices [29, 42].

In this paper, we present Spacelord, allowing a user to exclu-
sively time-share smart devices in a shared space while addressing
the three challenges. A user can verify whether each shared device
in a space is compliant with Spacelord and runs code they trust
with configurations they provide during their stay. Pre-installed
code and configurations, which are beyond their control, are re-
moved at check-in. Spacelord reverts all modifications the user has
made during their stay at check-out to remove any private data and
return control to the owner. Spacelord only requires minor hard-
ware and firmware changes (§4), minimizing its Trusted Computing
Base (TCB) as well as maximizing its potential adoption.

Spacelord currently focuses on hub-based smart spaces [14, 20,
29, 42, 56, 60, 123] and it enables a user to control such a smart
space in two steps. First, Spacelord allows the user to take full
control of the hub except for firmware. The user can deploy an
entire software stack (including an operating system) they trust on
the hub while eliminating old ones which might be under the con-
trol of the owner or malicious users. The hub only maintains tiny,
trusted firmware (i.e., a bootloader) that realizes this provisioning.
The trusted bootloader enables secure boot of the provisioned soft-
ware stack and attests it to the user. Also, Spacelord separates the
device- and user-specific parts from the rest of the software stack
and makes them replaceable across different hubs and spaces to
overcome hardware incompatibility. The user-specific part, which
contains private configuration, data, and automation rules, becomes
accessible to the hub only if it has been attested.

Next, Spacelord allows the user to take control of smart devices
paired to the hub through the provisioned hub software. The hub
and smart devices perform authenticated binding to mutually verify
their validity based on attestation and secure device identity, and
to establish secure channels. Devices with successful bindings are
ready to accept commands from the hub over secure channels. Every
Spacelord device has a certified type, so the hub can securely
associate it with user-specific configurations and rules.

Our prototype shows the effectiveness of Spacelord for two
example cases: smart home sharing and meeting room sharing. They
function as expected and their configurations (including automation
rules) are securely migrated across two different smart rooms and
two different meeting rooms with a reasonable provisioning delay
of ∼81 s. Our performance evaluation of Spacelord hubs featuring
remote encrypted storage in the public cloud shows an average
overhead of 12% on the Phoronix Test Suite [81].

In summary, this paper makes the following contributions:

• Spacelord is the first system that realizes secure and privacy-
preserving smart space sharing with configurability. Users can
securely use and move across time-shared smart spaces with
their preferred configurations.

• Spacelord lets a user take control of the hub and paired smart
devices in a shared space. Spacelord realizes it using (a) full
provisioning of an entire hub software stack which is separated
and replaceable, and (b) authenticated binding between the hub
software and smart devices.

2 MOTIVATING EXAMPLES

In this section, we describe two space sharing examples suffering
from privacy, security, and configurability problems.
Smart home sharing. Space sharing services (e.g., Airbnb, Hilton
Connected Room) [4, 10, 50, 90, 106] are featuring smart devices
such as smart door locks and smart light bulbs for convenient usage.
While worrying about the devices’ privacy and security implication,
users would like to customize the devices [26, 64]. This customiza-
tion includes running automation rules (e.g., turn on the light if it
is dark, and the user is inside the room) and having personalized
services (e.g., recommendation and calendar). However, creating
these rules is too tedious and time-consuming for users to manually
configure the system every time they arrive at a new hotel room or
rental while suffering from a privacy-usability trade-off.
Meeting room sharing. Meeting rooms in coworking spaces (e.g.,
WeWork [111]) feature multiple devices to support hybrid meetings,
a mix of an in-person and remote meeting [40, 97, 115]. Such de-
vices include a hub for management, screens for presentation, and
intelligent cameras, microphones, and speakers for individualized
conferencing. Remote meeting software (e.g., Teams and Zoom) run-
ning on the hub controls the devices to record and stream a meeting.
Also, users would configure presentation or other office software
(e.g., Impress and PowerPoint) on the hub to access their sensitive
meeting materials. The security and privacy of a hybrid meeting
are important as it deals with business-sensitive information while
being managed and monitored by numerous devices.

3 MODEL AND GOALS

In this section, we explain the system and threatmodel of Spacelord
and its design goals.

3.1 System and Threat Model

We consider time-sharing of a smart space which is modeled as a
location managed by a hub and smart devices. The hub connects
to and controls all shared devices contained in the space and runs
various applications that use them. The devices are controlled only
through the hub. This hub-based model follows recent academic
and industry smart space systems [14, 20, 29, 42, 56, 60, 123] with
enhanced access control, management, and compatibility.

Three participants govern the security and functionality of smart
space sharing: manufacturer, owner, and user.
Manufacturer. Amanufacturer develops the hardware and firmware
of hubs or devices which are compliant with Spacelord. It also
provides security services such as hardware certification and revo-
cation. In our model, every participant trusts the manufacturer’s
hardware, firmware, and certification. Any attacks from it (e.g.,
built-in backdoor) and against its hardware and firmware (e.g.,
physical attacks) are beyond this paper’s scope §9.
Owner. An owner prepares a smart space by purchasing a hub and
smart devices from manufacturers and placing them in the space.
The owner lends a user the space and lets them control the hub and
devices during their stay. However, the owner does not fully trust
them because they might refuse to return control over the hub and
devices even after they leave the space (e.g., install malware on the
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hub or pair devices with different hubs). The owner aims to revert
any modification users have made after they leave.
User. A user exclusively leases a smart space and the hub and
smart devices contained within it from an owner for a time. The
user does not trust convoluted software and configurations already
installed on the hub and devices because they might still be under
the control of the owner or other users. Thus, users aim to remove
the existing software and configurations and install the ones they
trust and that are compatible with Spacelord.
Out of scope.We do not model the following general threats. First,
the owner or other users might place hidden devices, which are not
for sharing, in a space. Technologies to detect such devices have
been proposed [16, 61, 87, 88, 92], and Spacelord could rely on
them. Second, attackers might be able to compromise the hub or
devices by exploiting vulnerabilities in their hardware, firmware, or
installed user software. Numerous researchers propose hardening
mechanisms for them and Spacelord can leverage such mecha-
nisms. In addition, we do not consider external attackers as they
are weaker than the three participants. Finally, we do not model
management problems such as how to agree on the length of stay
and cost and how to permit and revoke space entry.

3.2 Design Goals

G1. User privacy and security: Spacelord protects a user’s
privacy and security when and after they use a space from the
owner and other users.

Requirements. First, the hub only runs code verified by the user
or manufacturer (i.e., the user’s TCB). Second, every shared smart
device in the space is either under the user’s control or disabled.
Third, the hub and devices will not be able to access private user
code and data after the user leaves the space.
G2. Secure configuration migration: Spacelord enables a
user to move across different spaces without configuration and
compatibility concerns.

Requirements. First, a user needs an abstract smart space rep-
resentation to create a universally applicable configuration. Sec-
ond, the configuration as well as user code and data are securely
deployed to the space where the user arrives. Third, during the
deployment, some of the user’s software stack will be securely
replaced to accommodate heterogeneous hardware.
G3. Space recoverability: Spacelord allows the owner to
recover control of a smart space and restore its configuration.

Requirements. Both hub and smart devices have methods to
allow the owner to revert any control and configuration changes
regardless of prior user actions.

4 DESIGN

In this section, we describe the design of Spacelord, including the
hub, smart devices, and other components (Figure 1).

4.1 Primitives

We outline the primitives Spacelord relies on.
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Figure 1: Overall flow of Spacelord. A user resets the hub ➊ to

provision a software stack to it ➋ and attest this provisioning ➌. The

hub connects to the smart devices to control them ➍. The user lets

the hub access their data after a successful attestation ➎.

Secure boot. Secure boot checks the integrity of the multilayered
boot [7, 114]. Before the next software layer is executed, the current
layer computes the next layer’s identity (e.g., a hash over the binary
code) and decides whether it is authorized to run (e.g., by checking
whether the hash is in an allow list and whether it is signed by a
trusted key). If this check fails, the code is not executed.
Authenticated boot. Authenticated boot also makes each layer
compute the identity of the next software layer [35]. However,
unlike secure boot, authenticated boot does not prevent code from
running. The computed identities are simply recorded (e.g., in a
Trusted Platform Module (TPM) [103]) and are used in attestation
and sealed storage to gate access to resources.
Remote attestation. Remote attestation allows one principal (i.e.,
attestor) to provide signed, verifiable claims (e.g., this computer has
booted Linux version X with a measurement value Y) to another
principal (i.e., verifier) [71]. The TPM [103] and Device Identifier
Composition Engine (DICE) [101] are well known examples of it.
Secure device identity. A hardware device requires an unforge-
able unique identity [52] to be attested to a remote principal. This
hardware identity does not depend on the software state of the
device and is often implemented through attestation mechanisms.
Attested authenticated key exchange. Authenticated Key Ex-
change (AKE) [28] lets two parties exchange a cryptographic session
key such that each party can authenticate the identity of the other.
Transport Layer Security (TLS) [86] is a widely deployed AKE pro-
tocol. AKE can be augmented with attestation claims [44, 58]. Our
attestor generates X.509 certificates with additional fields contain-
ing attestation claims which are checked as part of a TLS handshake.
Proximity verification. Proximity verification confirms whether
two parties are physically close to each other. This verification
ensures that the user interacts with the hub in the same space (and
vice versa), mitigating relay attacks like Cuckoo [80]. Spacelord
can use any verification mechanism, such as distance bounding [12,
27, 85] and biometrics-based presence attestation [23, 124].

4.2 User Token

Spacelord uses attestation, AKE, and proximity verification to
prove to the user (i.e., verifier) that the system is in a trustworthy
state. It requires the user to have a trusted device (or token) that
can participate in these protocols on their behalf. All of them can
be implemented as a smartphone app. The token is configured with
the public keys of all manufacturers or other entities the user trusts.
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4.3 Hub Device

We explain hardware requirements and setup for the Spacelord
hub and essential software components running on it.
Hardware. The hub supports secure boot, attestation, and prox-
imity verification. The manufacturer provisions every hub device
with a unique public-private key pair (𝑝𝑘ℎ, 𝑠𝑘ℎ). The private key
𝑠𝑘ℎ is protected based on the attestation or secure device identity
technology employed (e.g., TPM). The manufacturer certifies the
hub public key 𝑝𝑘ℎ with its private key 𝑠𝑘𝑚 .
Bootloader. The manufacturer equips the hub with a trusted
bootloader akin to existing ones [25, 100]. This bootloader installs
and loads the user’s software stack with attestation.

As a first step, the bootloader orchestrates the acquisition and
installation of this software. It begins with the user (e.g., a newly
arrived guest) instructing the hub to install their software stack
by pressing a dedicated button on the hub to ensure local presence.
This button resets the hub and leaves one bit of information for the
bootloader to start the software acquisition and installation.

The bootloader adapts the hub to a new user by booting into
the hub manager—a small operating system with enough driver
support to access the network and local storage. The hub manager
first obtains the software stack chosen by the user—typically by
copying it from the local cache (for popular public software stacks)
or removable storage (e.g., the user token or USB drive) or by down-
loading it. Then, the hub manager installs the chosen image on the
hub’s storage device and finally resets the hub. The hub manager is
only a networking and storage conduit and not part of the TCB.

After the reset, the bootloader performs an authenticated boot of
the user’s image by measuring the image, extending the attestation
chain with it, and transferring control to it.
User software stack. Spacelord allows the user to run a software
stack they select while addressing three key challenges. First, the
software stack must support different hubs with diverse hardware
configurations. It involves deploying and attesting compatible de-
vice drivers. Second, the user’s smart space configuration and data
(e.g., hub apps, ML models, automation rules) must be secure and
portable to the new space. Third, the user must be able to verify the
software stack running on the hub. This involves establishing trust
in all software components and verifying that they are running on
the hub in front of them. §4.4 and §4.5 describe this in detail.

4.4 Software Stack Customization

We explain how Spacelord securely and efficiently customizes
software stacks for different hub hardware while supporting various
peripherals and smart devices as well as how it enables users to
access their code and data consistently and securely across hubs.
Software stack layers. Spacelord partitions the user’s software
stack into four layers: (a) hardware layer, (b) system layer, (c) con-
figuration layer, and (d) user layer.

The hardware layer contains hardware-specific files such as
device drivers. There is a different hardware layer for each hub
type based on its Instruction Set Architecture (ISA) and built-in
peripherals (e.g., GPU, Embedded Multi-Media Card (eMMC), and
Ethernet). This layer is typically provided by the hub manufacturer.

The system layer contains essential system files (e.g., system
utilities and libraries) that are independent of hardware (i.e., periph-
erals). In the case of Linux, it contains the root filesystem except
for device drivers relocated to the hardware layer. Spacelord uses
a common system layer for various hub models with the same ISA.
This layer typically comes from an operating system vendor.

The configuration layer specifies peripherals and smart devices
that the owner has placed in the smart space in the form of a
space manifest §4.6. The hub connects to them via USB, Ethernet,
Bluetooth, or other methods. In addition, the configuration layer
contains drivers and device-specific software necessary for the hub
to interact with these devices. This software generally originates
with the manufacturers of the devices and not with the owner.

The user layer contains modifications the user has made on top
of the clean operating system installation (i.e., the system layer). It
includes the user’s programs and files, and hub applications [51, 78]
with customization and automation rules which the user wants to
apply to the smart spaces they visit.
Layer management. Spacelord manages the four layers with
two different deployment and security policies based on their se-
curity and functionality requirements. The system, hardware, and
configuration layers make up the device-specific part of the soft-
ware stack. This part is read-only and small (e.g., typically around
a gigabyte when compressed). The bootloader fully acquires and
installs this part via the hub manager §4.3. Spacelord individually
hashes these three layers and attests them for verification.

In contrast, the user layer (or user-specific part) is both readable
and writable, and private. It maintains the user’s private data and
has to be protected from disclosure. Moreover, it can be large (e.g.,
tens of gigabytes of security camera video streams or slides and
demo videos) with only a portion accessed during typical usage.
Thus, fully populating this part during hub provisioning could lead
to an excessive and unnecessary delay. In addition, any data written
in this part while the software stack is running on a hub must be
accessible from other hubs the user may use in the future.
Encrypted storage. Spacelord integrates hub-side storage en-
cryption with remote storage (e.g., third-party cloud storage) or
portable storage using a union filesystem to ensure the security
and functionality of the user-specific part. The user token provides
the hub with the access credentials (e.g., login information, storage
decryption keys) only if it has verified the hub’s software stack §4.5.
Storage caching. Remote user storage for the Spacelord hub
might be slow due to high network latency, low bandwidth, or both.
Spacelord can optionally use a portion of the local storage as a
transparent cache. Spacelord places this cache between the remote
encrypted storage and the in-memory decryption logic, so the local
storage does not store any plaintext blocks.

4.5 Hub Attestation

Since the user layer contains private data, Spacelord allows the
hub to access it only if a valid device-specific part is installed, booted,
and running on the hub. Spacelord uses attestation in combination
with AKE to do so §4.1. The token verifies the manufacturer cer-
tificate to decide whether to trust the hub. It also decides whether
to trust the software running on the hub, identified by the attested
hashes of the hardware, system, and configuration layers.
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The user token must know the expected hashes against which to
compare the hashes from the attestation statement. The hardware
layer is typically authored or endorsed by themanufacturer who can
securely publish the signed hash (e.g., via a trusted Content Delivery
Network (CDN)) such that the token can find and download it. The
system layer is authored by either an operating system vendor or
the hub manufacturer, and the token can obtain its hash similarly.

Obtaining the expected hash of the configuration layer is chal-
lenging because it consists of different components from various
sources. The owner, who composes this layer, publishes a spec-
ification of its components that the token will verify §4.6. The
specification lists all binaries and their sources (i.e., the device or
software vendors). The token will download the hash or signature
for each binary from its source, and canonically combine these
component hashes into the expected hash.

On the hub side, a small agent application that is part of the
system layer establishes a connection to the user token (e.g., over
Wi-Fi or Bluetooth) and implements the AKE protocol (e.g., TLS)
including obtaining attestation claims. A similar program imple-
ments the AKE protocol on the token side. In parallel, they can do
proximity verification §4.1 to mitigate Cuckoo attacks [80].

If all checks succeed, the agent and the token establish a secure
channel, and the token sends the credentials for the user layer to the
agent. At this point, the user has assurance that their full software
stack is running on the local hub. The next step is to allow the hub
to control the devices throughout the smart space.

4.6 Peripherals and Connected Devices

Space manifest and abstraction. Spacelord requires the owner
to specify a space manifest consisting of the cryptographic hardware
identifier of the hub and the information of every device placed
in the smart space (i.e., an extended listing description [2]). For
each device 𝑑𝑖 , the manifest lists its information including certified
public key 𝑝𝑘𝑑𝑖 , type, and location in the smart space and how to
discover or address it. The latter consists of the bus or protocol
through which the device can be reached (e.g., Wi-Fi, Bluetooth,
Z-Wave) and a protocol-specific way to identify the device such as
an auto-discovery mechanism [20, 70, 77] or a special address.

The type and location of each device in a space manifest must
follow an abstraction model [22, 29, 42, 56, 60, 78] specified by
Spacelord. This allows the hub to associate devices with corre-
sponding user rules through the space manifest to control or disable
them (e.g., LivingRoomLight instead of Light#2 or Device#5).
Hardware and firmware. Spacelord requires attestation and
secure boot support for all smart devices. Many low-cost micro-
controllers [17, 93, 94] already provide this or functionally similar
features. Each device has a local presence button (or other physical
control such as power control [116]) to configure it.

The manufacturer provisions each device𝑑𝑖 with a unique public-
private key pair (𝑝𝑘𝑑𝑖 , 𝑠𝑘𝑑𝑖 ) during manufacturing. The manufac-
turer certifies 𝑝𝑘𝑑𝑖 with its private key 𝑠𝑘𝑚 , thereby asserting that
the device is legitimate. The manufacturer includes the principal
device properties in this certificate, such as device model and type
(e.g., camera, door lock), device manufacturer, and URLs to obtain
any required device-specific software (e.g., drivers).

In contrast to the hub, the devices are fixed-function sensors or
actuators. They do not run arbitrary user code, but adhere to their
specifications. Secure boot ensures that the device firmware can
only be updated by the manufacturer.
Device pairing. The device communicates with and accepts com-
mands only from the single local hub, identified by its cryptographic
hardware identifier. This requires a pairing step in which the hub’s
public key 𝑝𝑘ℎ is stored in the device. The challenge is to perform
the pairing without trusting the owner or burdening the user.

Every Spacelord device exposes a command SetPairingKey
which allows the hub to provision the device with 𝑝𝑘ℎ . This com-
mand is available only if the device’s local presence button is pressed
like Wi-Fi Protected Setup (WPS) [113]. It allows the owner to man-
ually pair the devices in the space with the hub by instructing the
hub to send the SetPairingKey command while pressing the local
presence button on each of the devices. Typically, the owner would
complete the pairing for all devices only once, when the smart space
is originally set up, obviating the need for any further manual pair-
ing steps. Although the owner is not trusted and may pair a device
with a different hub, the user can detect it as described below.
Authenticated binding and reset. The hub can request a device
to reset and establish a new binding. It typically happens when a
user arrives at the space or leaves it. After installing user software,
the hub reconnects to every device listed in the space manifest. The
hub calls the device’s ResetAndBind command, which resets the
device to effectively erase the device state including the binding,
conducts secure boot, and goes through an attested AKE protocol
with the hub, making use of the key pairs and attestation capabilities
on either side. The device accepts a binding only if the originator’s
public key matches 𝑝𝑘ℎ stored in it during the pairing. Similarly,
the hub accepts the binding only if the device’s public key and
attestation information is listed in the space manifest. In a simple
case, both hub and device could use X.509 certificates generated by
the TPM’s TPM2_CertifyX509 command to establish a TLS session.

This mechanism provides confidentiality and integrity for all
subsequent communications between the hub and the device. All
further device commands and their associated communications are
protected by this cryptographic channel.
Device inventory and usage control. The hub inventories avail-
able devices and shares the list with the user, which consists of
successfully bound devices and their properties extracted from the
corresponding device certificates. The hub alerts the user of any
mismatch between device properties in the space manifest and
device certificates (likely a corrupt space manifest) and any failed
bindings (likely compromised or turned-off devices).

A smart space and its manifest might contain types of devices
that a user has never used before or does not trust (e.g., device types
or manufacturers which are suspicious or unknown). To deal with
such devices, the hub disallows communication with all devices by
default even if it has established bindings to them. The hub permits
communication with devices only if it finds corresponding rules
from the user layer or corresponding public keys from the user
token, or the user explicitly authorizes them (and writes new rules
or downloads certificates for them). In addition, users can terminate
bindings to some devices if they decide not to use them.
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Component ROCKPro64 iMX8MQ

SoC RK3399 i.MX 8M
CPU 2 × Cortex A72@1.8GHz 4 × Cortex A53@1.5GHz

4 × Cortex A53@1.4GHz
RAM 4GiB 3GiB
Storage PCIe Gen 2 SSD 250GB USB 3.0 SSD 250GB

eMMC 32GB eMMC 16GB

Table 1: Hardware characteristics of hub devices.

4.7 Space Reset

Spacelord wipes all user information from a smart space if a user
requests it (i.e., resets the hub) typically when they leave the space.
On every hub power cycle or reboot, the Spacelord bootloader san-
itizes the whole RAM. This step is not required for storage devices
which are encrypted. All external smart devices are subsequently re-
set when the restarted hub initiates the authenticated binding (§4.6).
Owners also use the same reset mechanism to take back control
over the smart space. In addition to the reset button, the hub can be
configured with an authenticated timer [102, 117], enabling remote
reset which is not suppressible by a malicious software stack.

5 IMPLEMENTATION

In this section, we explain a reference implementation of Spacelord.
We introduce two different hub configurations alongwith their boot-
loader and software stackmodifications. Then, we prototype several
smart devices satisfying Spacelord’s security requirements. Also,
we explain implementations of the external components. Finally,
we describe complete smart home and meeting room instantiations.

5.1 Hub Hardware

We implement Spacelord hubs on two Single-Board Computers
(SBCs): PINE64 ROCKPro64 (ROCKPro64) and NXP iMX8MQ-EVK
(iMX8MQ) with different performance and security characteristics.
Both SBCs support an open-source bootloader, U-Boot [25], that
our bootloader is based on §5.2.
ROCKPro64. Our ROCKPro64’s characteristics are shown in Ta-
ble 1. We use eMMC power-on write protection to write-protect
blocks containing the bootloader and the hub manager, respectively.
This protection stays in place until the next device reset.

We attach a TPM [53] to the ROCKPro64 for attestation. During
hub provisioning, we use the TPM’s own procedure to create an
Attestation Identity Key (AIK) pair [103] using the manufacturer as
a Certificate Authority (CA), and treat its public and private parts
as 𝑝𝑘ℎ and 𝑠𝑘ℎ . The TPM does not reveal 𝑠𝑘ℎ to the outside and all
operations with 𝑠𝑘ℎ (e.g., signing) are performed inside it.
iMX8MQ. Our iMX8MQ’s characteristics are shown in Table 1.
Instead of requiring additional hardware (i.e., TPM), we imple-
ment DICE [101] using secure storage that the iMX8MQ already
provides via its Cryptographic Acceleration and Assurance Mod-
ule (CAAM) [76]. During provisioning, we encapsulate 𝑠𝑘ℎ in an
encrypted and integrity-protected blob and store it in a write-
protected eMMCblock. Since DICE delegates signing to higher-level
software, we augment DICE with a monotonic counter which is
maintained by the bootloader and checked by the devices.

5.2 Hub Bootloader

Our bootloader is based on U-Boot [25]. In total, we add 995 and 753
lines of C code to the ROCKPro64 (with TPM) and iMX8MQ (with
CAAM) bootloaders, respectively, asmeasured by SLOCCount [112].
We extend U-Boot’s MMC driver to activate eMMC power-on write
protection and include the RIoTCrypt library [68] in it for cryp-
tographic operations. We use SHA-256 for measurement and the
Elliptic Curve Digital Signature Algorithm (ECDSA) with the NIST
P-256 curve and SHA-256 for signing and validation. The mea-
surement is computed over the GUID Partition Table (GPT) of the
storage and the boot partition.
ROCKPro64. We modify U-Boot (v2020.01) customized for this
board [104] to support the TPM.
iMX8MQ. Wemodify U-Boot (v2020.04) customized for this board [75]
to enable the NXP-specific caam command for secret storage. After
every reset, the bootloader loads the capsulated blob containing 𝑠𝑘ℎ
from eMMC, decapsulates it, and sets the PRIBLOB bits to disable
further access until the next reset. The bootloader uses 𝑠𝑘ℎ to certify
a public-private key pair it generates for later software.
On-demand hashing. Spacelord uses a runtime integrity protec-
tion mechanism (e.g., dm-verity [98]) for the software stack image
(i.e., the device-specific part). The bootloader only hashes a small
part of the image that is needed to enforce the runtime protection.

5.3 Hub Manager

We use initramfs-tools [24] to build the hub manager. We write
hooks to specify programs (e.g., wget and lz4) and drivers (e.g.,
Ethernet) to include in the hub manager.

5.4 Software Stack Generation

We build a common system layer for our SBCs and their respective
hardware layers. The system layer includes all files in the RK3399
Debian 9 Desktop image [83] except for the kernel binary, modules,
and drivers. We also install programs for Spacelord operations
to the system layer, i.e., OpenHAB [78] and WireGuard [31]. For
the hardware layers, we build Linux kernels, modules, and drivers
for the SBCs (versions 5.6.0 and 5.4.47, respectively) [75, 104]. We
run veritysetup on the system and hardware layers, respectively,
to compute dm-verity root hashes and hash devices [98]. Each of
our images has (a) a boot partition containing the kernel, initramfs,
Device Tree Blob (DTB), and root hash, (b) a system partition con-
taining the system layer, (c) a device partition containing the re-
spective hardware layer, and (d) additional partitions containing
hash devices. We measure the GPT and boot partition of each image
and sign the resulting hash with 𝑠𝑘𝑚 .

5.5 Storage Server and Device Counterpart

We prototype a remote storage server running Internet Small Com-
puter Systems Interface (iSCSI) via WireGuard [31]. We create a
Linux Unified Key Setup (LUKS) [41] image with a passphrase, for-
mat it with ext4, and upload it to the server. We also generate a
WireGuard key pair and store it with the LUKS passphrase in the
user token while uploading the WireGuard public key to the server.

We create initramfs to allow the user software stack to access a
LUKS image in the storage server via iSCSI with WireGuard. The
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Device Sensor/Actuator REST APIs

IP camera Camera [37] /api/camera

Door lock Solenoid lock [18] /api/lock

Light bulb LED [37] /api/led

Sensor Motion [84], light [36] /api/motion, /api/light

Table 2: Our smart device implementation with ESP32.

initramfs obtains the WireGuard private key and LUKS passphrase
from the user token via the agent only if the hub attestation is
successful. It uses dm-cache [99] to configure a portion of the local
storage as a cache for LUKS-encrypted iSCSI blocks. It also uses
overlayfs [13] to overlay the above storage on top of any other
partitions to capture and store any new file writing with encryption.

If a user uses portable storage instead of remote storage, they
only need to ensure a LUKS passphrase is stored in the user token.

5.6 User Token and Agent

We develop the user token and agent as Linux applications. The
user token connects to the agent running on the hub (i.e., the hub
manager or a user software stack) via TLS. They consist of 421 and
376 lines of Rust code, respectively.

5.7 Peripherals and Connected Devices

We prototype smart devices with ESP32 boards with built-in cam-
era and light sensor [36, 37] and with external motion sensor and
actuator [18, 84] using the Espressif IoT Development Framework
(ESP-IDF) [38]. The four devices we prototype are listed in Table 2.
Each smart device exposes REST APIs to control the sensor or ac-
tuator or to retrieve the sensor data. For example, a hub can make
the IP camera take a picture and download the captured image by
sending a GET request to /api/camera and waiting for a response.

We revise the HTTPS server component and Mbed TLS [39] to
support the authenticated binding §4.6. The HTTPS server running
on a smart device accepts a TLS handshake only if a client (i.e., hub)
certificate is attested. The device restarts itself before binding to
wipe out previous user data.

5.8 Smart Home Instantiation

We equip two rooms representing two separate vacation rental
apartments or hotel rooms each with a hub and a small collection
of smart devices. They enable smart entry and lighting as two
compelling functions. Our prototype is based on OpenHAB [78] to
abstract and manage the smart home and contained devices.
Hub software customization. We modify OpenHAB’s HTTP
binding [55] for the authenticated binding §4.6. As a client, it
establishes two-way TLS sessions with the HTTPS servers run-
ning on the smart devices §5.7. We configure the HTTP binding’s
HttpClient [32, 34] with SSLContextFactory.Client [33] and spec-
ify a KeyStore for the private key derived by TPM or DICE and
TrustStores for the certificates of smart devices contained in the
configuration layer §4.4. This binding controls the smart devices
via their REST APIs §5.7.
Device deployment. We deploy an IP camera and a smart door
lock to support smart entry and a smart light bulb and a motion and
a light sensor for smart lighting. To demonstrate migration across

different smart homes, we implement two versions of each of the de-
vice types §5.7 and deploy them to the two rooms. The two devices
of the same type expose slightly different interfaces (i.e., different
REST API endpoints, such as /api/camera versus /api/v2/photo)
to test migration. In room A, we deploy the ROCKPro64 hub and
version A of the four devices. In room B, we deploy version B of
the devices and the iMX8MQ hub.
Configuration. The owner prepares configuration layers (or space
manifests) for the two rooms, specifying which devices exist and
how to interact with them. A configuration layer based on Open-
HAB contains two different specification files: .things and .items
files. A .things file specifies each device by its name, address (e.g.,
IP address), location (e.g., bathroom or living room), and Open-
HAB binding (e.g., HTTP and MQTT). A .items file abstracts de-
vices [22, 29, 42, 56, 60, 78] to associate them with user rules. For
example, we expose a living room light irrespective of its model as
an OpenHAB item called LivingRoomLight. This abstraction allows
users to travel with their universal automation rules (.rules files).
User state. We prepare user state to demonstrate face-recognition
entry and smart lighting. In the former, the hub coordinates the
IP camera and smart door lock with face-recognition software to
unlock the door if the user is in front of the camera. In the latter
case, the user’s automation rules running on the hub control the
smart light bulb based on inputs from the light and/or motion sen-
sor. In particular, we configure the Face service of Azure Cognitive
Services [69] with user images (i.e., one of the authors). We use a
Python script to connect to the service, upload an image from the
camera, and retrieve the recognition result. We add an automation
rule to OpenHAB to unlock the door if the user’s face is recognized.
Also, we write automation rules to turn the light on and off depend-
ing on the reading on the light sensor and the time of day. All these
rules, scripts, and credentials are included in the user state.

5.9 Meeting Room Instantiation

We instantiate two meeting rooms managed by the two hub devices
explained in §5.1. Unlike the smart home example, this instance
uses Commercial Off-The-Shelf (COTS) peripherals and software
for video conference and presentation.
Device deployment. We prepare two USB webcams with built-in
microphones [62, 108], monitors, and speakers, and attach them to
the two hubs. We also attach USB keyboards and mice to the two
hubs to let users control video conferences and presentations. These
two sets of devices make up meeting rooms A and B, respectively.
Configuration. We create configuration layers for the two differ-
ent meeting rooms including device drivers and the secure identi-
fiers of individual smart devices.
User state. We prepare a common user state image for meeting
rooms. We install the Firefox browser into the user state image to
use the Teams and Zoom web applications. We also install LibreOf-
fice’s Impress as a presentation program. In addition, we prepare
.odp files in the user state image to open them using Impress.

6 EVALUATION

We evaluate Spacelord by answering the following questions:
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• RQ1. Case satisfaction: Does Spacelord satisfy the example
cases mentioned in §2? (§6.2)

• RQ2. Provisioning latency: How long does a user have to wait
for a Spacelord smart space to be ready? (§6.3)

• RQ3. Performance overhead: How much performance over-
head does Spacelord introduce on the hub? (§6.4, §6.5)

6.1 Environment

Server. We deploy the storage server in Microsoft Azure. We use
a Standard D2s v3 instance consisting of two vCPUs running at
2.6 GHz, 8 GiB of RAM, 30GiB of Premium SSD storage for the oper-
ating system (Ubuntu Server 18.04). The storage server additionally
has 128GiB of Standard SSD storage to store LUKS images and runs
an iSCSI server with a block size of 4 KiB via WireGuard.
Hub and network. We evaluate Spacelord with the two hub
devices §5.1 and external devices §5.7. We measure the network
bandwidth between the hub devices and the Azure Virtual Ma-
chine (VM) using iperf3 [72]. The average download and upload
bandwidths are 49.5MiB/s and 48.8MiB/s.
Device. We use ESP32 boards §5.7 to implement smart light bulb,
camera, door lock, and sensor. We connect them to Wi-Fi while
assigning static private IP addresses.
User token. We run the token application on a Linux laptop. The
token has a negligible effect on provisioning latency and does not
affect hub performance.
Software image and LUKS image. We use the RK3399 Debian
9 Desktop image mentioned in §5.4 to generate software stacks
for evaluation. The sizes of the lz4-compressed software stack im-
ages we generate for the ROCKPro64 and the iMX8MQ are 1.4 GiB
and 1.6 GiB (2.9 GiB and 3.4 GiB before compression). We config-
ure them to have a 100MiB boot partition, sufficient to store the
kernel, initramfs, and other files. We format each partition storing
files (boot, system, and device) with ext4. These compressed images
are cached and write-protected on the hub’s eMMC device.

To install and run the Phoronix Test Suite [81], we create a LUKS
image (40GiB), format it with ext4, and upload it to the storage
server while storing themobile user statementioned in §5.8 and §5.9.
We use AES-XTS mode with a 256-bit key for the LUKS image. All
benchmarking software §6.5 is installed in the LUKS image. On each
hub device, we reserve a 40GiB area of the local storage to cache
the LUKS image blocks accessed via iSCSI. In general, Spacelord
does not require such a large amount of storage space. For example,
if a user only needs a few OpenHAB plugins and configurations,
the user storage size can be smaller than 10s of MiB.

6.2 Case Satisfaction

Smart home sharing. We demonstrate how Spacelord satisfies
the smart home sharing case §2. In room A, we initialize the ROCK-
Pro64 hub with the user’s software stack including OpenHAB and
the modified HTTP binding §5.8. We use OpenHAB’s web interface
to verify that all devices are recognized and configured correctly.
We test our automation rules for the smart light and confirm they
work correctly. We test smart entry by having the user step in front
of the camera and observing that the lock opens. Finally, we reset
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Figure 2: Hub provisioning time (81 s on average).

the hub to erase all user data. We repeat the experiment in room B
and observe everything to work correctly.
Meeting room sharing. We evaluate whether Spacelord satisfies
themeeting room sharing casementioned in §2.We confirm that the
twomeeting roomsmanaged by the ROCKPro64 and iMX8MQ hubs
support both video conferencing (i.e., Teams and Zoom via Firefox)
and presentation (i.e., Impress). We also validate hub migration by
joining the same Zoom meeting and opening the same Impress
slides from the storage server in the two meeting rooms in order
without overlap (i.e., reset and reprovision hubs).

6.3 Provisioning Latency

We measure (a) how long it takes to provision a user software stack
to the hub and attest it; and (b) how long it takes to create an authen-
ticated binding between the hub and each smart device. We repeat
these measurements 10 times for each smart space configuration.
The standard deviation is less than 10% in all cases.
Hub provisioning. The average provisioning time for a user
software stack is 84.5 s for ROCKPro64 and 77.5 s for iMX8MQ
(Figure 2). We break down this time: (a) copy and decompress an
image; (b) reboot and initialize the device; (c) sanitize memory; (d)
measure the boot partition; (e) load the kernel and initramfs; (f)
initialize the network and do attestation; (g) configure the network
storage; and (h) initialize the software stack’s remaining part. The
most time-consuming stage is (a), 18.6 s on ROCKPro64 and 21.5 s
on iMX8MQ, which can be skipped if a user simply reboots the
hub while still using the space. Memory sanitization on iMX8MQ
is faster than on ROCKPro64 because it has less RAM (3GiB versus
4GiB) and its memory write throughput is higher than that of
ROCKPro64 (512MiB/s versus 341.3MiB/s) on U-Boot.

A provisioning time of <1.5min is reasonable for both smart
home and meeting room. The provisioning time is negligible for
smart home users who typically rent the space for at least a day. It
is also far shorter than the time that would be required to manually
configure smart devices or to set up a machine and external devices
or prepare meeting materials in a meeting room.
Authenticated binding. We measure the elapsed time to estab-
lish an authenticated binding between a hub and a smart device.
This binding can be conducted in parallel with network storage
configuration (g) and software stack initialization (h). In total, it
takes ∼9.4 s consisting of device reset (∼3 s) and two-way TLS hand-
shakes before and after the device reset (∼3.2 s each). The hub can
initiate multiple bindings in parallel. Thus, the total delay is largely
independent of the number of smart devices it manages. It adds up
to the OpenHAB startup time that takes ∼14.9 s (mostly due to Java
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Figure 3: fio benchmark results on our two hub devices (S: SSD, L:

LUKS, I: iSCSI, W: WireGuard, C: dm-cache, O: overlayfs).

VM initialization). The differences in device binding and OpenHAB
startup times between ROCKPro64 and iMX8MQ are negligible.

6.4 Microbenchmark

A Spacelord hub uses encrypted storage, which is backed by re-
mote storage, to securely store any data generated or collected
when a user stays at a smart space. This encryption and network
overhead affects the hub’s overall storage performance. We use a
microbenchmark program, fio 2.16 [11], to evaluate storage perfor-
mance in terms of sequential read/write and random read/write
throughput. For comparison, we selectively enable Spacelord’s
security and performance-enhancement features, including storage
encryption, network encryption, and local cache.

The seven configurations are SSD (S); SSD with LUKS (SL); iSCSI
(I); iSCSI with WireGuard (IW); iSCSI with WireGuard and LUKS
(IWL); iSCSI with WireGuard, LUKS, and dm-cache (IWLC); and
iSCSI with WireGuard, LUKS, dm-cache, and overlayfs (IWLCO,
Spacelord’s configuration). Configuration (SL) resembles the best
case for Spacelord: all encrypted data are cached locally. In con-
trast, configuration (IWL) resembles the worst case for Spacelord:
all data have to be fetched from remote storage via an encrypted
channel. We configure fio to read and write a 2GiB file with asyn-
chronous I/O depth 32 and access block size 1MiB. We iterate fio
10 times to obtain the average values. The standard deviation is
less than 6% in all cases.

Spacelord outperforms bare iSCSI and is comparable to SSD
with LUKS (Figure 3). On the ROCKPro64, Spacelord’s storage
throughputs are 368.5MiB/s (sequential write), 364.2MiB/s (ran-
dom write), 273.8MiB/s (sequential read), and 131.4MiB/s (random
read). They outperform iSCSI by 3.3×, 3.7×, 2.6×, and 1.5×, and un-
derperform SSD with LUKS by 6.6%, 7.1%, 9.7%, and 23.9% (Fig-
ure 3a). On the iMX8MQ, the throughputs are 272.7MiB/s (se-
quential write), 268.2MiB/s (random write), 199.7MiB/s (sequential
read), and 86.6MiB/s (random read). They outperform iSCSI by
2.5×, 2.8×, 1.9×, and 1.1×, and underperform SSD with LUKS by
4.9%, 4.7%, 14.8%, and 12.9% (Figure 3b). The iMX8MQ’s lower stor-
age performance hides Spacelord’s overhead.

Consequently, Spacelord introduces negligible overhead (4.7%–
7.1%) to storage write performance and low overhead (9.7%–23.9%)
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Figure 4: Phoronix benchmark results. The average runtime perfor-

mance overhead of Spacelord is moderate (12% on average).

to storage read performance. Thus, it does not affect data generation
and collection. In contrast, it slows down read operations (e.g.,
reading configuration files or meeting materials), but such files are
typically small and would be cached in memory in most cases.

6.5 Runtime Overhead

Spacelord’s state separation and remote encrypted storage affect
hub performance. We carefully select 20 tests from the Phoronix
Test Suite v10.2.0 (which has more than 450 tests) [81] related to
the hub’s core functionality or users’ general expectations, includ-
ing browser, data compression, cryptography, database, machine
learning, and multimedia processing. First, the hub can run various
web-based applications (e.g., OpenHAB, Zoom). Second, the hub
needs to compress data collected by smart devices to effectively
store them. Third, the hub runs cryptographic algorithms to secure
communications between itself and smart devices as well as the
external services. Fourth, the hub can run database programs to
store the structured configuration and data of smart devices. Fifth,
the hub can run machine learning algorithms for object recognition
or face detection. Finally, the hub can run multimedia processing
programs to handle audio, image, and video collected by devices.

We compare Spacelord to a baseline of Debian 9 with local stor-
age but without LUKS encryption with results shown in Figure 4.
Phoronix ensures that the standard deviation is at most 3.5% by
increasing the number of runs as necessary [59]. On average (geo-
metric mean), Spacelord’s runtime overhead is 13.5% (ROCKPro64)
and 9.5% (iMX8MQ). The higher overhead on the ROCKPro64 is
due to a faster baselinewith native storage connected over PCIe as
compared to the USB 3.0 connection of the iMX8MQ. We think that
these overheads are moderate (considering that Spacelord uses
encrypted storage LUKS over iSCSI and WireGuard) and would
be acceptable to most users. A PostgreSQL benchmarking tool, pg-
bench (with 50 clients), introduces the highest overhead (∼200%)
because it is sensitive to I/O latency and throughput. However,
Spacelord targets a smart space, and a database service simultane-
ously serving 50 clients is not a likely workload for it. The average
overhead of Spacelord without pgbench is 6%.

7 SECURITY ANALYSIS

We explain how Spacelord satisfies its security goals of §3.2.

7.1 User Privacy and Security (G1)

Spacelord protects the privacy and security of users from the
owner and other users by (a) deploying a full software stack that
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users selected to the hub, (b) allowing users to verify whether the
software they chose is loaded on the hub, (c) ensuring the smart
devices only interact with the software securely running on the
hub, and (d) sanitizing the hub memory. All this relies on the hub
bootloader and device firmware written by trusted vendors and
secured by trusted hardware.
Bare-metal provisioning. Spacelord allows users to provision a
full software stack they choose to the hub except for the bootloader
and the hub manager, which are write protected. This provisioning
effectively removes any unwanted code and data—potentially under
the control of the owner or other users—from the hub. The untrusted
hub manager cannot violate user privacy and security because it
does not run concurrently with the software stack and cannot
secretly modify the software stack due to authenticated boot.
Authenticated boot. The hub bootloader in conjunction with the
hub hardware measures and attests the software stack. The user
token compares this measurement value to an expected value to
verify whether the user’s software stack is running on the hub. This
procedure protects users from malicious owners and other users
who may try to install arbitrary software via the hub manager.
Authenticated binding. Spacelord devices only interact with
the software stack currently running on the hub. A binding request
contains the secure device identifier of the hub and is certified by
the hub private key whose public key has been placed in the device
during provisioning. A Spacelord device will accept a binding
request only if the originator’s identifier corresponds to the hub
public key. The device resets itself before accepting a valid binding
request, destroying any binding and data of a previous user.
Memory sanitization. The hub bootloader sanitizes the entire
memory after every reset and some portions of it before loading the
hub manager or a user software stack. The former wipes out any
sensitive user data kept in memory. The latter deletes secret data
which is critical to Spacelord operations, such as private keys.

7.2 Secure Configuration Migration (G2)

Spacelord uses encrypted remote or portable storage to securely
maintain configuration and data and deploy them to different spaces.
A hub can access the encrypted storage only if the user verifies
that the hub is running the software stack they have chosen via
their token. Also, Spacelord securely customizes the configura-
tion and the software stack’s device-specific part to accommodate
heterogeneous hardware by checking a canonical combination of
component hashes.

7.3 Space Recoverability (G3)

Spacelord ensures the owner can take back control over a smart
space. The hub bootloader and the hub manager are write protected
while the user software stack is running. Thus, the latter cannot
delete or corrupt them. The owner can force a reset into a software
stack of their choice by asserting local presence (i.e., by pressing the
hub’s reset button). If desired, remote administration can be enabled
by equipping the hub hardwarewith a remote reset mechanism [102,
117]. Lastly, the hub manager conducts authenticated bindings with
all devices in the space to take control over them. It will inform the
owner of any binding failures to resolve their problems.

8 DISCUSSION AND LIMITATION

We discuss alternative designs and limitations of Spacelord.

8.1 Alternative Design

Provisioning. Instead of bare-metal provisioning, Spacelord
could use virtualization or container technologies to reduce hub
provisioning time [1, 30, 63]. However, these designs have two dis-
advantages. First, their TCB is significantly larger than a bootloader.
Second, peripheral and external device support is restricted. Using
Trusted Execution Environments (TEEs) [8, 9, 19, 57] can avoid the
TCB size problem, but it also has limited device support.
Decentralization. Spacelord’s centralized design might suffer
from a single point of failure problem and be incompatible with
standalone smart devices. In general, decentralized smart devices
are powerful enough [6, 122], so Spacelord could use bare-metal
provisioning and configuration migration for every smart device
to realize decentralized control as it provisions each hub.

8.2 Limitations

Devices under the physical control of an adversary are subject
to physical attacks, and Spacelord is no exception. One way to
mitigate this threat is using tamper-proof or tamper-evident hard-
ware [15, 67, 74, 95, 110], as has been done in other systems such
as video game consoles and Blu-ray players. Further, in contrast
to remote attacks and physical attacks against devices in a public
space (e.g., a kiosk), physical attackers in our two examples (i.e., the
owner or previous guests) are not anonymous. Thus, investigators
can (eventually) identify and penalize them legally or financially.

9 RELATEDWORK

Smart home systems. Researchers propose multi-user smart
home systems [3, 6, 43, 49, 66, 89, 119–121]. They consider how to
assign different access control rights to different people according to
their roles (e.g., owner, guest). Unlike them, Spacelord focuses on
exclusive time-sharing of spaces [26, 64, 118] with configurability.
Some commercial systems [4, 5, 45] pledge exclusive control of
smart devices contained in hotel rooms or vacation rentals while
preventing owners from accessing and controlling them. However,
in these systems, smart devices are stateless and both users and
owners are not allowed to customize the devices. A concurrent
study, TEO [122], focuses on cryptographic exclusive control of
data collected and generated when a user stays at a smart space,
but it fully trusts devices and does not consider configurability.
Bare-metal provisioning. Existing bare-metal provisioning [21,
54, 73, 79] considers cloud servers rather than end-user devices.
Bolted [73] relies on a bootloader to provision user images with
attestation. However, given the homogeneity of cloud servers gov-
erned by the same provider and lack of diverse peripherals, Bolted
does not consider critical challenges Spacelord overcomes, such as
supporting heterogeneous peripherals and smart devices, verifying
smart devices, and detecting user presence. In addition, RO-IoT [96]
considers bare-metal provisioning for IoT devices. However, it does
not support heterogeneous devices, control external peripherals, or
provide state continuity.
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10 CONCLUSION

Spacelord allows a user to time-share spaces and their contained
smart devices in a privacy-preserving and secure manner. Users
can freely and securely install a software stack of their choice via
bare-metal provisioning. Spacelord gives users complete control
of the smart space while customizing it with the user’s mobile state.
Spacelord supports two realistic example cases, smart home and
meeting room sharing, with low performance overhead.
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11 APPENDIX

11.1 Key Pair Terminology

Term Meaning

𝑝𝑘𝑚, 𝑠𝑘𝑚 Public-private key pair of a device manufacturer
𝑝𝑘ℎ, 𝑠𝑘ℎ Public-private key pair of a hub (bootloader)
𝑝𝑘𝑑𝑖 , 𝑠𝑘𝑑𝑖 Public-private key pair of an external device 𝑑𝑖

Table 3: Key pairs used in Spacelord.

11.2 Compatibility with Existing Ecosystem

Spacelord assumes that a smart space’s hub and devices are com-
pliant with the Spacelord specification. A Spacelord hub can
potentially work with non-Spacelord devices, but this interac-
tion should require user authorization. For example, Spacelord
presents a user with a list of non-Spacelord devices in a room to
let them decide which devices they use or turn off. Unlike existing
systems, Spacelord prevents multiple hubs or external apps from
managing devices. However, they can interact with the main hub to
indirectly control the devices, so its usability concern is marginal.


	Abstract
	1 Introduction
	2 Motivating Examples
	3 Model and Goals
	3.1 System and Threat Model
	3.2 Design Goals

	4 Design
	4.1 Primitives
	4.2 User Token
	4.3 Hub Device
	4.4 Software Stack Customization
	4.5 Hub Attestation
	4.6 Peripherals and Connected Devices
	4.7 Space Reset

	5 Implementation
	5.1 Hub Hardware
	5.2 Hub Bootloader
	5.3 Hub Manager
	5.4 Software Stack Generation
	5.5 Storage Server and Device Counterpart
	5.6 User Token and Agent
	5.7 Peripherals and Connected Devices
	5.8 Smart Home Instantiation
	5.9 Meeting Room Instantiation

	6 Evaluation
	6.1 Environment
	6.2 Case Satisfaction
	6.3 Provisioning Latency
	6.4 Microbenchmark
	6.5 Runtime Overhead

	7 Security Analysis
	7.1 User Privacy and Security (G1)
	7.2 Secure Configuration Migration (G2)
	7.3 Space Recoverability (G3)

	8 Discussion and Limitation
	8.1 Alternative Design
	8.2 Limitations

	9 Related Work
	10 Conclusion
	References
	11 Appendix
	11.1 Key Pair Terminology
	11.2 Compatibility with Existing Ecosystem


