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Deep Learning, specifically Deep Neural Networks (DNNs), is stress-

ing storage systems in new ways, moving the training bottleneck to the data

pipeline (fetching, pre-processing data, and writing checkpoints), rather than

computation at the GPUs; this leaves the expensive accelerator devices stalled

for data. While prior research has explored different ways of accelerating DNN

training time, the impact of storage systems, specifically the data pipeline, on

ML training has been relatively unexplored. In this dissertation, we study the

role of data pipeline in various training scenarios, and based on the insights

from our study, we present the design and evaluation of systems that accelerate

training.

We first present a comprehensive analysis of how the storage subsys-

tem affects the training of the widely used DNN models by building a tool,

x



DS-Analyzer. Our study reveals that in many cases, DNN training time is

dominated by data stalls : time spent waiting for data to be fetched from

(or written to) storage and pre-processed. We then describe CoorDL, a user-

space data loading library to address data stalls in dedicated single-user servers

with fixed resource capacities. Next, we design and evaluate Synergy, a work-

load aware scheduler for shared GPU clusters that mitigates data stalls by

allocating auxiliary resources like CPU and memory cognizant of workload

requirements. Finally, we present CheckFreq, a framework that frequently

writes model state to storage (checkpoint) for fault-tolerance, thereby reduc-

ing wasted GPU work on job interruptions, while also minimizing stalls due

to checkpointing.

Our dissertation shows that data stalls squander away the improved

performance of faster GPUs. Our dissertation further demonstrates that an

efficient data pipeline is critical to speeding up end-to-end training, by building

and evaluating systems that mitigate data stalls in several training scenarios.
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Chapter 1

Introduction

Deep learning is a branch of machine learning that uses large amounts of

data and computation to solve complex tasks such as image classification. The

advent of deep learning has led to significant breakthroughs in the recent times

in several domains. Deep learning architectures such as Deep Neural Networks

(DNNs) have allowed us to tackle problems that were previously intractable

in fields like computer vision [117, 189, 91], speech recognition [86], natural

language processing [204, 208], and even predictive health-care [193].

The rising success of DNNs can be attributed to the advancement in

neural architectures [169, 211, 117, 161, 181, 97, 219, 195], construction of

large-scale labeled datasets [179, 67, 80, 66, 39], and growing GPU compute

speeds [93, 112, 162, 148, 155, 75]. Modern DNNs for tasks like image clas-

sification, object detection, and speech recognition are data intensive; they

deal with multimedia data like images, videos, and audio, and have complex

pre-processing pipeline involving online data transformations. Further, GPU

compute speeds today are growing at an unprecedented rate. For instance,

the total computational power in top-of-the-line GPUs increased by 32× over

the last five years [186] and the latest NVIDIA A100’s tensor cores provide
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up to 20× higher performance over the prior generation [162]. Finally, open-

source datasets are exploding in size; for example, in contrast to the popular

140GB ImageNet-1K dataset, the youtube-8M dataset used in video models is

about 1.53 TB for just frame-level features [40], while the Google OpenImages

dataset is about 18 TB [80]. While these trends are a boon for DNN training,

it also emphasises the need for efficient training infrastructure to utilize them.

What matters at the end is if we can bring in data for the GPUs

to compute on, at a fast rate. While prior research focused on accelerating

DNN training by reducing communication overhead [128, 217, 90, 104, 151],

GPU memory optimizations [178, 54, 103], and compiler-based operator opti-

mizations [202, 53, 108], the impact of storage subsystem (DRAM, CPU, and

persistent storage), on DNN training has been relatively unexplored.

Dissertation Question. Does the storage subsystem and the efficiency of

the data pipeline have an impact on DNN training time? If so, how can we

accelerate training by efficiently utilizing available resources, without additional

hardware upgrades?

1.1 Dissertation Statement

In many data-intensive DNNs, training time is dominated by data

stalls: time spent waiting for data to be fetched and pre-processed. An efficient
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data pipeline is can speed up end-to-end training significantly without addi-

tional hardware resources. Our dissertation demonstrates this by analyzing,

building and evaluating systems that mitigate data stalls in several training

scenarios.

1.2 Dissertation Contributions

• The first comprehensive analysis of data stalls in DNN training and show

that data stalls squander away the benefits of fast GPUs for several data-

intensive DNNs using a new tool, DS-Analyzer (§3)

• The design and implementation of a new data loading library, CoorDL

that accelerates DNN training by minimizing data stalls, without requir-

ing additional hardware (§4)

• A resource-sensitivity aware scheduler, Synergy for multi-tenant, shared

GPU clusters that profiles the resource sensitivity of jobs and performs

multi-resource workload-aware assignments across a set of jobs using a

new near-optimal online algorithm (§5)

• An automated, fine-grained checkpointing framework, CheckFreq that

algorithmically determines the checkpointing frequency at iteration gran-

ularity, while pipelining checkpointing with computation to reduce check-

point stalls (§6)

The rest of this chapter provides a brief overview of each of the thrusts

mentioned above.

3



1.2.1 Analyzing the Impact of the Data Pipeline

During DNN training, the input data pipeline works as follows. Data

items are first fetched from storage and then pre-processed at the CPU. For

example, for many important and widely-used classes of DNNs that work on

images, audio, or video, there are several pre-processing steps: the data is first

decompressed, and then random perturbations such as cropping the image or

rotating it are performed to improve the model’s accuracy [167]. Once pre-

processed, the data items are sent to the GPUs for processing, where the model

weights are updated by performing computations on the data. We describe this

data pipeline with an example in §3.1.1. This data fetch and pre-processing is

normally pipelined with the GPU computation.

Data Stalls. Ideally, the data pipeline should keep the GPUs continuously

busy processing data; we term this GPU-bound. Unfortunately, DNN training

is often IO-bound, bottlenecked by fetching the data from storage, or CPU-

bound, bottlenecked by pre-processing data in memory. Collectively, we term

these bottlenecks data stalls and differentiate between prep stalls (time spent

pre-processing), and fetch stalls (time spent on read IO).

Analyzing Data Stalls. We present the first comprehensive analysis of data

stalls in DNN training across different models and tasks with large datasets,

measured in a production cluster at Microsoft [146, 145]. Our analysis yields

several interesting insights. First, our analysis shows that data stalls are promi-

nent in popular computer vision and audio DNNs, as opposed to text-based
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NLP models. We find that data stalls squander away the improved perfor-

mance of faster GPUs, even on ML optimized servers like the DGX-2 [22].

Second, there is a large amount of redundant work done by the data pipeline

during hyperparameter search and distributed training where the same data

items are fetched and pre-processed by multiple jobs or multiple nodes. Third,

relying on OS abstractions (like Page Cache) is inefficient for DNN workloads.

Finally, these data stalls occur across frameworks such as PyTorch and Ten-

sorFlow.

Predictive What-If Analysis of Data Stalls. We develop a tool, DS-

Analyzer, that uses differential analysis between runs (e.g., comparing a run

where data is completely cached vs when data needs to be fetched from storage)

to identify data-stall bottlenecks. Using the measured data stalls, it answers

what-if questions to help practitioners predict and analyze data stalls (e.g.,

What would be the impact on data stalls if DRAM capacity increased by 2×?).

Mitigating Data Stalls. Our data stall analysis reveals several key insights

with respect to the need for efficient data pipeline for DNN training. We build

upon the insights gained from our analysis to design systems that mitigate

data stalls in various DNN training scenarios described below.

1.2.2 Mitigating Data Stalls in Single-User Scenarios

One of the most common DNN training scenarios is to use exclusive

on-premise servers, or cloud GPU VMs. In this scenario, a single training job

runs on either (1) a single GPU, (2) across multiple GPUs in a server, or (3)
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across multiple servers. Further, multiple instances of the job (hyperparame-

ter search) could be launched in a server. We present CoorDL, a data loading

library that an individual DNN job can use to accelerate training by mini-

mizing data stalls. CoorDL does not impact accuracy; training can sample as

usual from the entire dataset, regardless of what is cached. CoorDL does not

require additional hardware, running over commodity networking and storage

hardware.

CoorDL introduces three techniques to overcome data stall overheads.

First, it introduces MinIO, a software cache that is specialized for DNN train-

ing. Second, a partitioned caching technique to coordinate the MinIO caches of

servers involved in distributed training over commodity network stack. Third,

a coordinated prep technique to carefully eliminate redundancy in data prep

among concurrent hyperparameter search jobs in a server. CoorDL addresses

both fetch and prep stalls and accelerates several common training scenarios:

hyperparameter search (by upto 5.7×), single-server DNN training (by upto

2×), and multi-server DNN training (by upto 15×).

1.2.3 Mitigating Data Stalls in Multi-Tenant Clusters

Collocating ML training workloads in a shared, multi-tenant cluster

is a very common setup in several large organizations, for both research and

production [105, 210]. Existing schedulers for DNN training consider GPU as

the dominant resource, and allocate other resources such as CPU and memory

proportional to the number of GPUs requested by the job (GPU-proportional)
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[153, 209, 133, 87, 121, 166, 50, 203, 49]. Unfortunately, these schedulers do not

consider the impact of a job’s sensitivity to allocation of CPU, memory, and

storage resources. Contrary to practice, our data stall analysis reveals that dif-

ferent models require different allocations of memory and CPU to mask data

stalls. Based on this observation, we describe Synergy, a resource-sensitive

scheduler for shared GPU clusters. The key insight behind Synergy is that,

it is possible to exploit the heterogeneity in resource sensitivity across DNNs

to allow disproportionate allocation of resources rather than using traditional

GPU-proportional allocation to improve the overall cluster utilization and effi-

ciency. While doing so, Synergy ensures a job gets less than GPU-proportional

auxiliary resources only if such an allocation does not degrade the job through-

put compared to a GPU-proportional allocation.

To achieve this, Synergy introduces a new optimistic profiling tech-

nique to infer the sensitivity of DNNs to different resources; it only empirically

profiles the job throughput for varying CPU allocations, assuming maximum

memory allocation. It then analytically estimates the job throughput for all

combinations of CPU and memory along with the respective storage band-

width requirement for each allocation. Synergy then performs multi-resource

workload-aware assignments across a set of jobs using a new near-optimal on-

line algorithm.

Our experiments show that across various scheduling policies like LAS,

SRTF, FIFO, etc, the resource sensitive scheduling mechanisms used by Syn-

ergy can improve cluster objectives such as average job completion time (JCT)
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by up to 1.5× on a physical cluster of 32 GPUs. On a large simulated cluster

of 128 GPUs, Synergy improves average JCT by up to 3.4× when compared

to the respective GPU-proportional scheduling policy.

1.2.4 Mitigating Checkpoint Stalls during Interruptions

Interruptions to DNN training jobs are common. Be it dedicated enter-

prise clusters or cloud instances, failures due to software and hardware errors

are inevitable [134, 88, 79, 43, 138, 152]. When interruptions occur, the long

running, stateful, DNN job terminates abruptly, wiping out the model param-

eters in-memory; resulting in the loss of several hours of GPU work. To tackle

this, the model weights and optimizer state (collectively, model state) are occa-

sionally written to persistent storage, for fault tolerance. This is termed check-

pointing. Traditionally, models are checkpointed at epoch boundaries [140].

Training has to briefly pause to accurately checkpoint the current state; the

GPU (or any accelerator) remains idle until checkpoint completes, introducing

checkpoint stalls in training.

With the trend in growing dataset sizes [36, 39, 119], and larger, com-

plex model architectures [41, 161, 48], DNN epoch time and overall training

time is also increasing. Therefore, it is important to frequently checkpoint

training progress, at a finer granularity than epochs i.e., at iteration level,

while minimizing training overhead due to checkpoint stalls.

To achieve these goals, we introduce CheckFreq, a fine-grained check-

pointing framework for DNN training. CheckFreq strikes a balance between
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ensuring a low runtime overhead and providing a high checkpointing frequency,

so that there is minimal loss of GPU time in the event of job interruptions

or failures by performing iteration-level checkpointing. CheckFreq has two

major components; a checkpointing mechanism that performs correct, low-

cost checkpointing, and a checkpointing policy that automatically determines

when to checkpoint. To this end, we build upon a set of techniques from the

High Performance Computing (HPC) and storage community, alongside novel

DNN-specific optimizations such as pipelined in-memory snapshots, utilizing

spare GPU capabilities for fast snapshot, and a DNN-aware systematic pro-

filing for dynamic tuning of checkpointing frequency. Our evaluation across a

variety of models, GPUs, and storage types confirms that CheckFreq reduces

the wasted GPU time from order of hours to just under a minute, while incur-

ring less than 3.5% runtime overhead, as compared to the existing epoch-based

checkpointing schemes.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews

background concepts and relevant literature in the field; DNN training sce-

narios, its data pipeline, and its checkpointing strategies. Chapter 3 discusses

the comprehensive analysis of data stalls in DNN training and shows that

data stalls squander away the improved performance of faster accelerators.

Chapter 4 introduces a coordinated data loading library CoorDL that uses the

insights from our analysis to mitigate stalls in isolated, single-user training sce-
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narios. Chapter 5 discusses how to mitigate data stalls in shared multi-tenant

clusters using resource-sensitivity aware scheduling in Synergy. Chapter 6 in-

troduces CheckFreq, an automated checkpointing framework that minimizes

both lost GPU work and checkpoint stalls in training environments with fre-

quent interruptions. Chapter 7 discusses prior work related to the techniques

and systems introduced in this dissertation. Chapter 8 presents the summary

and concluding remarks, along with new research problems this dissertation

opens up.
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Chapter 2

Background

In this chapter, we present the background required for various parts

of this dissertation and explain different ML terms used in this thesis. We

start by describing what DNNs are (§2.1), and how they are trained, along

with various terms used throughout this dissertation (§2.2) . We next discuss

the data pipeline in DNN training (§2.3). Finally, we describe different train-

ing scenarios such as distributed training, multi-tenant clusters (§2.4), and

training with interruptions using checkpoints (§2.5).

2.1 Deep Neural Networks

Deep Learning is a branch of machine learning that is inspired and

modeled based on how the human brain works. It allows machines to solve

relatively complex problems. Deep Learning architectures such as Deep Neural

Networks (DNNs) emulate the learning approach that the human brain uses

to gain certain knowledge. Similar to the neurons in the brain, DNNs contain

artificial neurons (nodes) that can transmit signals among one another. These

nodes are connected as layers, where each layer performs a specific transfor-

mation on the input data and passes it downstream to the next layer. Signals
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Figure 2.1: Deep Neural Network (DNN).

travel from the first layer (input), to the last layer (output), traversing through

multiple intermediate hidden layers as shown in Fig 2.1. When the inputs are

transmitted between nodes, weights are applied to the inputs along with the

bias. Weight decides how much influence the input will have on the output,

while bias is a constant that is an additional input to the subsequent layer.

2.2 How DNNs are Trained

Training a DNN is the process of teaching it how to perform a task like

image classification, or language translation. It is the process of determining

the set of weights and bias in the network, collectively called the learnable

parameters. During the training process, labelled data (also called training

dataset) is fed to the DNN, and the DNN makes a prediction about what the

data represents. Using the pre-calculated label associated with the data, any

error in the prediction made by the model is used to update the weights. As

the training process continues, the weights are further adjusted until the model
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makes predictions with sufficient accuracy.

Training a DNN model to reach a given accuracy consists of two steps:

(i) finding the optimal set of hyperparameters for the learning process, and

(ii) running the learning algorithm until the desired accuracy is reached.

2.2.1 Hyperparameter Search

There are many parameters for the learning algorithm that must be

provided before the start of training; for e.g., learning rate, its decay, dropout,

and momentum. These hyperparameters influence the speed and quality of

learning. During the search process, we start several training jobs; each

job trains the model with different hyperparameters, on each available GPU

(or a distributed job across several GPUs); progress is checked after a few

epochs and the worst-performing candidates are killed and replaced by new

jobs with different hyperparameters that are chosen using algorithms like Ran-

dom Search [47], Population Based Training [102], Median Stopping Rule [78],

or Hyperband [123]. Tuning hyperparameters is crucial for generating DNN

models that have high accuracy [171].

2.2.2 Train to Accuracy

Once the hyperparameters have been decided, the second step is to

obtain models with high accuracy by training it with input data.

The training process. The DNN is trained over multiple rounds termed

epochs. Each epoch processes all items in the dataset exactly once, and consists
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of multiple iterations ; each iteration processes a random, disjoint subset of the

data termed a minibatch.

During the training process, every iteration performs the following steps

in order.

• Data Fetch. Fetches a minibatch of data from storage and optionally

caches it in memory (DRAM) for faster subsequent accesses.

• Data augmentation (pre-processing / prep). Applies a set of ran-

dom pre-processing operations on the fetched minibatch in memory.

For e.g., in popular image classification models like the ResNets, pre-

processing includes randomly cropping the input image, resizing, rotat-

ing, and flipping it.

• Forward pass. In the forward pass, a model function is applied on

the minibatch of data to obtain the prediction. Input data from the

minibatch is fed to the first layer of the model. Each subsequent hidden

layer accepts the input data from the prior layer, processes it based on

an activation function and transmits it to the next layer. An activation

function defines how the weighted sum of the input is transformed into

an output from a node or nodes in a layer of the network. In other

words, this function helps the network prune the irrelevant data points

and only use the vital information. The output of the last layer is called

the prediction.

14



• Backpropagation. Based on the model’s predicted label and the actual

label of each image present in the labelled training dataset, the output

layer uses a loss function to determine how much the prediction deviates

from the correct answer; each layer in the DNN then computes a gradient

of the loss in a backward pass.

• Weight update. Using the gradients computed in the backward pass,

the learnable model parameters are updated.

The DNN is trained until a target accuracy is reached; this is typically

for a fixed, large number of epochs. The final learned parameters are then

saved to persistent storage for inference. To perform inference on the model,

the DNN is initialized with the learned parameters and the output is predicted

on a set of data that the model has not seen before during training.

2.3 DNN Data Pipeline

We now describe the role of storage subsystem, the steps involved in

the data pipeline of DNN training, and its ETL requirements.

2.3.1 Storage Subsystem

The storage subsystem refers to the collection of hardware resources

in a machine that aid data storage and access. This includes the following

: (1) Persistent storage device such as Solid State Drives (SSDs), Hard Disk

Drives (HDDs) or new fast storage technologies like NVMe SSDs, and Persis-

15



Figure 2.2: Storage subsystem in DNN Training. DNN training uses all
the resources in a server from storage and CPU for fetching and pre-processing
the dataset to the GPUs that perform computation on the transformed data.

tent Memory (PM). (2) Memory or DRAM to used to cache data for faster

subsequent accesses, and also to provide a working space for process memory

requirements. (3) Finally, the CPUs (typically multi-core, and multi-threaded,

that is required to fetch data from storage as well as perform any in-memory

processing operations on the fetched data.

In the context of this dissertation, we collectively refer to these three

hardware components typically involved in any data ingestion process as the

storage subsystem. In this dissertation, we explore the role of the storage

subsystem in DNN training, and find ways to build software systems that

efficiently utilize the storage subsystem to accelerate end-to-end DNN training.

2.3.2 The Data Pipeline

Training data typically resides on remote storage like AWS S3, Azure

blob, or cluster filesystems like HDFS or GFS. When data resides remotely,

the first epoch of training fetches data over the network and stores it locally

for subsequent use. Remote data is downloaded on to local SSD when it is first

accessed in epoch one, and mimics local training from the second epoch on-
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wards. This training data is also cached in the Operating System’s Page Cache

to speed up subsequent accesses. It is then pre-processed at the CPUs before

copying over to the GPUs for processing as shown in Figure 2.2. Additionally,

there is an output data pipeline, where the model state and learned param-

eters are written to persistent storage periodically (checkpoints), typically at

the end of an epoch. We discuss more about this in §2.5.

To summarize, there are three phases in every training iteration.

1. Fetch. First, a minibatch of data is fetched either from persistent storage

or from cache. We call this the fetch.

2. Prep. Next, the fetched minibatch is pre-processed at the CPU. For

example, for image classification models, common prep operations are

decoding the image file, applying a random crop, flip etc.

3. GPU Compute. Once pre-processed, this batch is ready to be consumed

at the GPU and is copied over to the GPU for processing. This comprises

the forward and backward passes discussed in §2.1.

The fetch and prep phases are collectively called the data loading phase

for a given minibatch. In most training frameworks, including PyTorch, data

loading and the GPU compute phase execute in a pipelined fashion; i.e.,

subsequent minibatches are prefetched and pre-processed by data preparation

threads, using multiple CPU cores on the machine, as the GPU computes on
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the current minibatch of data. Such pipelining ensures that the expensive ac-

celerator devices are constantly fed with data and do not stall waiting for the

next minibatch.

2.3.3 The DNN ETL Requirements

In every epoch of training, the input dataset is subjected to a ETL

(extract-transform-load) before being processed at the GPU (or any other ac-

celerator). The ETL process in the data pipeline of popular image-based DNN

training imposes several unique data ordering constraints to ensure model con-

vergence and achieve state-of-the-art accuracy.

• Ordering invariant. The dataset must be shuffled every epoch to ensure

the order in which data items are accessed are random in each epoch

• Frequency invariant. An epoch must use all data items in the dataset

exactly once

• Transformation invariant. In every epoch, the data transformations(pre-

processing) must be random; the same transformed item should not be

used across epochs.

Prior work has theoretically and empirically demonstrated that relaxing

these constraints will affect the convergence rate of SGD [135, 59, 126, 167].

While some NLP and recommendation models may not require random pre-

processing and data shuffling every epoch, the focus of our work is computer
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vision and audio models where random data augmentation and shuffling is the

default and common practice [140, 176]. Therefore, in this dissertation, all our

experiments abide by the aforementioned ETL requirements.

2.3.4 DALI : Fast Data Pipelining

State-of-the-art data loading and pre-processing libraries like DALI can

be used as a drop in replacement for the default dataloaders in frameworks

like PyTorch, TensorFlow, or MxNet. DALI can accelerate data pre-processing

operations on Nvidia GPUs using the NVJpeg image decoding library, and by

GPU-accelerated data augmentation operations [23, 21]. DALI also prefetches

and pipelines the data fetch and pre-processing with the GPU compute, similar

to the default dataloader in PyTorch.

2.4 DNN Training Scenarios

DNN training can happen in a variety of scenarios. It could be a single-

GPU training on a machine, or in parallel across GPUs in a single machine, or

distributed across several machines. This can happen on isolated, single-user

machines that are either part of a larger cluster, or rented on the cloud [5, 6],

or in shared multi-tenant clusters managed by a scheduler like YARN [203],

or other custom schedulers. We provide more background on multi-tenant

training in §2.4.3.
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2.4.1 Single-GPU Training

Training a model using a single GPU on a server is the most straightfor-

ward training strategy. A GPU is assigned to the training job until completion

and no network or communication overhead is incurred.

2.4.2 Distributed training

In many cases, models need to be trained across several GPUs as they

need high computational power to train faster. In distributed training, learning

is performed on multiple workers (GPUs). These workers can be either in

one machine or across multiple machines. The common distributed training

paradigms are data parallelism [115], and model parallelism .

Data Parallelism. Data parallel training uses the same model on each

worker, but feeds it with different parts of the dataset. At regular synchroniza-

tion points (typically after each iteration), the workers publish their resultant

gradients to other workers (or to a parameter server from where all workers

pull updates). Finally, each worker updates its own model taking into account

the combined knowledge learned by all of the models. For the distributed

training experiments in this dissertation, we consider data parallelism as it

is the most commonly used technique. We also roll over the communication

time between GPUs as the GPU compute time. Optimizing the communica-

tion time is not the focus of this dissertation; prior work has looked at this

optimization [151, 212, 99, 19].
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Model Parallelism. Model parallelism splits the model among the GPU

workers and uses the same data for every worker. It splits the weights of the

network equally among the workers and each worker computes on a single

minibatch. The generated output is then synchronized after each layer to

provide the input to the next layer.

2.4.3 Training in Multi-Tenant Clusters

The widespread popularity of DNNs makes training such models an im-

portant workload in both enterprises and cloud data centers. Enterprises typ-

ically setup large multi-tenant clusters, with expensive hardware accelerators

like GPUs, to be shared by several users and production groups [105, 210]. In

addition to the model-specific parameters and scripts, jobs specify their GPU

demand before being scheduled to run on available servers. These jobs are

scheduled and managed either using traditional big-data schedulers, such as

Kubernetes [49] or YARN [203], or using modern schedulers that exploit DNN

job characteristics for better performance and utilization [153, 209, 133, 87,

121, 166, 50]. These DNN schedulers decide how to allocate GPU resources to

many jobs while implementing complex cluster-wide scheduling policies to op-

timize for objectives such as average job completion times (JCT), makespan,

or user-level fairness.

Note that in the scope of this dissertation, we do not consider co-

scheduling jobs on the same GPU concurrently; i.e., two jobs do not space

share the GPU. Collocated jobs on the same machine, run on different GPUs
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in the machine.

Scheduling policy and mechanism. When jobs are submitted to a sched-

uler, a scheduling policy such as First In, First Out (FIFO), Shortest Remain-

ing Time First (SRTF), or Least Attained Service (LAS) decides the next

job (J) to be run on the cluster. A scheduling mechanism then identifies

where job J should be run, and how much resources to allocate to the job.

In this dissertation, we do not propose a new scheduling policy; we propose a

scheduling mechanism that appropriately allocates resources, and maps jobs

onto available servers.

Cluster Metrics. The efficacy of a scheduling policy is evaluated based on

performance metrics such as average job completion time (JCT), makespan,

and fairness metrics measured across a set of jobs in a loaded cluster.

We define a loaded cluster as the point in time, when the cluster load

(sum of GPU demand across all runnable jobs at the moment) is higher than

the available cluster resources. We now describe each cluster metric.

• Average JCT. JCT of a job is the time elapsed between its arrival and

termination (including any queuing delays). Average JCT is the mean

of JCT across the set of jobs evaluated in a loaded cluster. Lower the

average JCT, better the cluster efficiency; i.e., on average, jobs com-

plete faster. Typically this is the performance metric for a cluster with

dynamic job arrivals; i.e., jobs arrive continuously.
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• Makespan. Makespan is the time to complete execution of all the jobs

in the cluster. It is the time between the arrival of the first job to

the completion of the last job. Lower the makespan, better the overall

cluster performance. Makespan is typically used as a performance metric

for static job traces; one where all jobs arrive at the beginning of the

workload.

• Fairness. Fairness is a metric used to ensure multiple users get a fair

share of resources to run their jobs. A fair policy assigns resources to

jobs such that all jobs on average get an equal share of resources over

time.

GPU-proportional allocation. Users can request jobs to be scheduled on

the cluster, specifying the number of GPUs required by the job, in addition to

the model-specific parameters and scripts. Apart from the GPU (user-given),

each DNN job requires CPU to pre-process the dataset, and memory to cache

the dataset during training. Existing DNN schedulers in literature [209, 153,

133, 51, 87, 121], and those used in real-world GPU clusters [18], allocate

CPU and memory resources to a job using a GPU-proportional allocation.

They allocate auxiliary resources like memory and CPU, proportional to the

number of GPUs allocated to the job. For instance, consider a server with 4

GPUs, 12 CPUs and 200 GB memory. The GPU-proportional allocation for

1 GPU-job is 3 CPUs and 50GB memory. If a job is allocated 2 GPUs on this

server, then it is given 6 CPUs and 100GB memory.
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Figure 2.3: Recovery time across models. The amount of GPU work lost
and has to be redone on recovery is termed the recovery time.

2.5 DNN Checkpointing

The long-running DNN training jobs could be interrupted for a variety

of reasons; server crash, process failure, job migration, job or VM preemptions,

etc. When interrupted, all the model state learned so far in GPU memory is

wiped out, resulting in the loss of several hours of GPU work. To overcome this,

the model state is typically written to persistent storage at regular intervals -

typically at epoch boundaries. This process is called checkpointing.

2.5.1 Checkpointing strategy

Checkpointing is typically done at epoch boundaries so as to minimize

complexities due to violating the data invariant of training ( §2.3.3). This

state is typically a few hundred MBs to a few hundred GBs in size [163]. This

checkpoint can then be loaded when the training job resumes to ensure that

progress is not entirely lost.
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2.5.2 Recovery Time

When a DNN training job is interrupted, it rolls back to the last com-

pleted epoch that was checkpointed and persisted on disk as shown in Fig-

ure 6.1. Note that, all the GPU work performed between the last checkpoint

and the point of interruption is lost and has to be redone when training re-

sumes. The amount of GPU time lost due to an interruption is termed the

recovery time. In other words, this is the time spent to bring the model to the

same state as it was prior to the interruption.

2.6 DNN Training Frameworks

Today there exists a myriad of frameworks like PyTorch [29], Tensor-

Flow [38], MxNet [52], CNTK [185], etc which provide clean abstractions that

can be used to easily build, train, and deploy complex DNNs at scale. Each

framework is built in a different manner for different purposes.

PyTorch. Facebook’s PyTorch is one of the most popular frameworks known

for its simplicity, ease of use, and dynamic computational graphs. Owing to

its ease of use, PyTorch is a widely used framework in academia and research.

TensorFlow. Google’s TensorFlow is a framework widely used by compa-

nies, and businesses develop new systems. Its reputation traces back to its

robustness, scalable production and deployment support. The core of Ten-

sorflow is built in C++ with Python bindings to simplify model creation and

deployment. However, the underlying complexity of the framework can make
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debugging challenging.

MxNet. Apache MXNet is a computationally efficient framework used in

business as well as in academia. It supports a wide range of languages like

JavaScript, Python, and C++. However, unlike TensorFlow, it has a smaller

open-source community.

While the above and several other open-source frameworks aid model

development, debugging, and deployment, in this dissertation, we identify root

causes of problems that are not specific to training frameworks; we show in our

analysis that the problems we identify exist across different frameworks. How-

ever, PyTorch is the primary development framework used in this dissertation

for both analysis and evaluation of the systems we introduce.

2.7 Summary

In this chapter, we presented background material necessary for this

dissertation. We discussed what DNNs are, and how they are trained. We

introduced the role of storage subsystem in DNN training and explained the

DNN data pipeline. We then provide background on different scenarios of DNN

training such as distributed training and training in multi-tenant clusters. We

then described how DNNs are checkpointed, and their recovery time in the

event of job interruption; Finally, we discussed various DNN training platforms

available to end-user today.
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Chapter 3

DS-Analyzer: Analyzing Data Stalls

Chapter 2 introduced the importance of the data pipeline in DNN

training. In this chapter, we introduce the concept of data stalls in DNN

training, and its categorization into fetch and prep stalls. We then try to

answer the question, Do data stalls commonly exist in DNN training, and if

so, what are the fundamental reasons they occur?

To answer this, we perform a comprehensive analysis of data stalls on

several DNNs by varying a number of factors, such as the number of GPUs,

GPU generation, the size of the DRAM cache, the number of CPU threads

etc. We further introduce a new tool, DS-Analyzer to precisely measure data

stalls in the highly concurrent DNN training jobs, as well as preform predictive

what-if analysis with respect to data stalls1.

In the rest of this chapter, we first introduce data stalls in §3.1. We

next present our analysis methodology in §3.2, describe how DS-Analyzer

measures data stalls in §3.3, and present our major findings in §3.4. Finally,

we discuss how DS-Analyzer can be used for predictive analysis in §3.5.

1This Chapter is based on the work, Analyzing and Mitigating Data Stalls, published in
VLDB 21 [146]
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Figure 3.1: Data Stall. Data stalls occur when the data pipeline cannot keep
up with the speed of GPU compute, leaving the GPUs stalled for the next
minibatch of data

3.1 Data Stalls

Training a DNN model to its target accuracy involves the following

steps in each iteration of an epoch: 1) A minibatch of data items is fetched from

storage. 2) The data items are pre-processed: e.g., in image classification, data

items are decompressed, and then randomly cropped, resized, and flipped. 3)

The minibatch is then processed at the GPU to obtain the model’s prediction

in a forward pass. 4) A loss function is used to determine how much the

prediction deviates from the right answer; both weight and activation gradients

are computed across the different layers of the DNN. 5) Weights in the model’s

layers are updated using gradients computed in the backward pass.

Ideally, most of the time in each epoch should be spent on Steps 3–

5 (which we collectively term the GPU compute time), i.e., training is GPU

bound. When performing multi-GPU training, individual GPUs (workers) ex-

change weight gradients with other workers before performing weight update.

In this dissertation work, we roll the communication time for gradient exchange
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during multi-GPU training into computation time.

As shown in Figure 3.1, if the GPU is waiting for Steps 1–2 (data load)

to complete, we term it a data stall. Specifically, if training is blocked on fetch,

we call it a fetch stall; the training is I/O bound in this case. Training blocked

due to prep is termed prep stall; this causes the training to be CPU bound.

Data stalls cause the GPU to be idle, and must be minimized to increase GPU

utilization.

The rate at which data items can be fetched from storage depends

primarily on the storage media. The rate at which data items can be pre-

processed depends upon the pre-processing operations and the number of CPU

cores available for pre-processing.

3.1.1 Example of data stalls in ResNet18 training

Let us examine the data pipeline for the ResNet18 model. Figure 3.2

shows the data fetching and pre-processing pipeline for ResNet18, along with

the throughput of various components in the pipeline. This experiment is run

on a machine with eight V100 GPUs, and 24 CPU cores, a typical configuration

for training machine-learning models. The raw data can be fetched from hard

drives at 15 MB/s or from solid state drives at 530 MB/s. If we assume that

35% of the dataset is cached in DRAM, then the effective throughput from the

storage stack (assuming 35% of dataset fetched at memory bandwidth, and

65% fetched at disk bandwidth) is 802 MB/s. Pre-processing with 24 CPUs

provides an overall throughput of 735 MB/s using DALI (or 1062MB/s if some
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Figure 3.2: Data Pipeline for ResNet18. This figure shows the data
pipeline with DALI for the ResNet18 model along with the throughput of
each component in the pipeline. On a server with 8 V100 GPUs and 24 phys-
ical CPU cores, the overall throughput of the data pipeline is lower than the
expected ingestion rate at the GPU, resulting in data stalls.

pre-processing is offloaded to the GPU), far short of the 2283 MB/s required

by the GPUs. As a result, the GPUs stall waiting for data to be fetched and

pre-processed.

In general, if we prefetch data at rate F , pre-process it at rate P and

perform GPU computation on it at rate G, then data stalls appear if G >

min(F, P ), i.e., GPU processes data at a rate faster than it can be prefetched

or pre-processed. The fetch and prep stalls reported in this work are unmasked

stall time; i.e., the stall time that shows up in the critical path, inspite of being

pipelined with compute. From now on, we call data prefetching simply fetch,

and pre-processing prep.

3.2 Methodology

We now describe our analysis methodology. We describe the models

and datasets used in our analysis, our training environment, parameters used

for the models, and metrics we evaluate the models on.
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Task Model Dataset (Size)

Image
Classification

Shufflenetv2 [219]

AlexNet [117] ImageNet-22k [17]

Resnet18 [91] (1.3TB)

SqueezeNet [100] OpenImages-Extended

MobileNetv2 [181] [119, 182] (645GB)

ResNet50 [91] Imagenet-1k [180]

VGG11 [189] (146GB)

Obj Detection SSD+Res18 [130] OpenImages [119] (561GB)

Audio Classify M5 [62] Free Music [66] (950GB)

Table 3.1: Models and datasets used in this analysis.

3.2.1 Models and Datasets

We analyze nine state-of-the-art DNN models across three different

tasks and four different datasets as shown in Table 3.1. This section focuses

on the smaller ImageNet-1K dataset for image classification models. Evalu-

ation with large datasets like ImageNet-22k and OpenImages is presented in

Chapter 4 (§4.3). The image and audio classification models are taken from

TorchVision [34] and TorchAudio [33] respectively; for object detection, we

use NVIDIA’s official release of SSD300 v1.1 [24]. For all DNNs, we use the

same pre-processing as in the original papers. Additionally, we evaluated data

stalls on two language models; Bert-Large [69] on Wikipedia & BookCorpus

dataset [222] for language modeling and GNMT [208] on WMT16 [37] (EN-

De) dataset for translation. These models are GPU compute heavy and do

not exhibit data stalls in our training environment (hence, results excluded

from analysis). But, if compact representations for these models with lower
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GPU GPU Storage Rand Read

Config Mem(GB) Media (MBps)

SSD-V100 8xV100 32 SSD 530

HDD-1080Ti 8x1080Ti 11 HDD 15 – 50

Table 3.2: Server configurations used in this analysis. We use two
representative ML optimized server SKUs; each server has 24 CPU cores,
500GiB DRAM, and 8 GPUs

computational requirements show up, or if compute speed increases due to

newer generations of GPUs, data stalls may show up in these models as well.

3.2.2 Training environment

All experiments are performed on PyTorch 1.1.0 using the state-of-the-

art NVIDIA data loading pipeline, DALI. We have empirically verified that

DALI’s performance is strictly better than PyTorch’s default data loader. We

use two distinct server configurations for our analysis as shown in Table 3.2.

Config-SSD-V100 has configuration closest to AWS p3.16xlarge [6] with gp2

storage [13], while Config-HDD-1080Ti is closest to AWS p2.8xlarge [5] with

st1 storage [13]. Both our servers have 500GB DRAM, 24 physical CPU cores,

and 8 GPUs per server. Both these server types are a part of internal clus-

ters at a large cloud provider; they resemble publicly available cloud GPU

SKUs [6, 5] as well as publicly available information on typical production

cluster SKUs [18, 106].
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3.2.3 Training parameters

For experiments on Config-SSD-V100, we use a batch size of 512 per

GPU for all image classification models, 128 per GPU for SSD-Res18, 16 per

GPU for M5 and perform weak scaling for distributed training (while ensuring

that the global batch size is consistent with those widely used in the ML

community). Since V100 GPUs have tensor cores, we use Apex mixed precision

training with LARC (Layer-wise Adaptive Rate Clipping), and state-of-the

art learning rate warmup schedules [82]. On Config-HDD-1080Ti, we use the

maximum batch size that fits the GPU memory (less than 256 for all models)

and perform full-precision training.

3.2.4 Training metrics

We run all the experiments presented here for three epochs, and report

the average epoch time (or throughput in samples per second), ignoring the

first epoch. Since we start with a cold cache in our experiments, first epoch

is used for warmup. Measuring data stall time does not require training to

accuracy; per-epoch time remains stable.

3.3 Measuring data stalls using DS-Analyzer

We develop a standalone tool, DS-Analyzer that profiles data stalls in

DNN training. Frameworks like PyTorch and TensorFlow provide an approxi-

mate time spent on data loading and pre-processing per minibatch, by simply

placing timers in the training script. This is insufficient and inaccurate for
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two reasons. First, this technique cannot accurately provide the split up of

time spent in data fetch (from disk or cache) and pre-processing operations.

To understand if the training is bottlnecked on I/O or CPU, it is important to

know this split. Second, frameworks like PyTorch and libraries like DALI use

several concurrent processes (or threads) to fetch and pre-process data; for a

multi-GPU data parallel training job, a data stall in one of the data loading

processes may reflect as GPU compute time for the other processes, because

all GPU processes wait to synchronize weight updates at batch boundaries.

Naively adding timers around data path does not provide accurate timing in-

formation. Therefore, DS-Analyzer uses a differential approach. DS-Analyzer

runs in three phases;

1. Measure ingestion rate. First, DS-Analyzer pre-populates synthetic

data at the GPUs and runs the job for a fixed number of epochs. This

identifies the max data ingestion rate at the GPUs, with no fetch or prep

stalls.

2. Measure prep stalls. Next, DS-Analyzer executes the training script

with the given dataset by ensuring that the subset of data used is cached

in memory, using all available CPU cores, and estimates the training

speed. Since this run eliminates fetch stalls, any drop in throughput

compared to (1) is due to prep stalls.

3. Measure fetch stalls. Finally, DS-Analyzer runs the training script

by clearing all caches, and setting maximum cache size to a user-given

limit, to account for fetch stalls. The difference between (2) and (3) is
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the impact of fetch stalls.

Additionally, DS-Analyzer collects low level metrics such as the through-

put of the storage device, memory and network bandwidth, cache size, and

memory utilization.

In all experiments presented in §3.4, we use DS-Analyzer to run the

training script for each model for a total of 3 epochs. To accurately measure

fetch stalls, we consider the first epoch as warmup (as we start from a cold

cache), and report the average metrics (§3.2) of the two subsequent epochs.

3.4 Data Stalls in DNN Training

Our analysis aims to answer the following important questions:

Fetch Stalls
(Remote)

Is remote storage a bottleneck for training? §3.4.1

Fetch Stalls
(Local)

When does the local storage device (SSD/HDD)
become a bottleneck for DNN training?

§3.4.2

Prep Stalls
When does data prep at the CPU become a bot-
tleneck for DNN training?

§3.4.3

Generality
Do fetch and prep stalls exist in other training
platforms like TensorFlow?

§3.4.4

3.4.1 When dataset resides on remote storage

Datasets used for training DNNs could reside locally on the persistent

storage of a server, or on shared remote storage such as distributed file systems

(HDFS, GlusterFS - GFS), or object stores (S3, Azure blobs). We analyze the

impact of two kinds of remote backends; a distributed file system, GlusterFS
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(GFS) and the Azure blob object store accessed via blobfuse.

When data resides remotely, the first epoch of training fetches data over

the network and stores it locally for subsequent use. Cluster file systems like

GFS use the OS Page Cache to speed up subsequent accesses. Blobfuse down-

loads the dataset on to local SSD, and mimics local training from the second

epoch. Figure 3.3 compares the epoch time for ResNet18 on Config-SSD-V100

using GFS, blobfuse, and local SSD for the first epoch with cold cache, and a

stable-state epoch with warmed up cache.

The data stall overhead of BlobFuse is especially high in the first epoch

when it downloads the entire dataset to local storage, and can result in 20×

higher training time as compared to GFS due to blocking IO. Unsurprisingly,

during the steady state epochs, data stall overheads when using the local SSD

and BlobFuse are similar (as the blob data is cached on the local SSD); GFS

results in more data stalls as it validates metadata of cached data items over

the network every time a data item is accessed. Blobfuse does not incur any

network cost beyond first epoch, if the dataset fits on local SSD.

As shown in Figure 3.4, for the ImageNet1K dataset, for BlobFuse, the

cost of downloading the entire dataset in the first epoch is amortized as we

train for a longer number of epochs, making the remote blob store a better fit

compared to GFS when models are trained to accuracy for over 60 epochs.

Although datasets are growing in size, large datasets that are publicly

available fit entirely on local storage (but not in memory) [36, 39, 119, 66, 17,
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Figure 3.3: Fetch cost with remote stores. The initial fetch cost is high
with blobs, but it provides local-disk performance for subsequent epochs; GFS
on the other hand has higher than local-disk fetch cost in stable state.

Figure 3.4: Training with remote stores. The high download cost of blob
is amortized over training for a large number of epochs

180]. Therefore, a common training scenario is to pay a one-time download

cost for the dataset, and reap benefits of local-SSD accesses thereafter (default

and recommended mode in the Microsoft clusters). Therefore, in the rest of

the work, we analyze fetch stalls in scenarios where dataset is present locally

on a server, but is not entirely cached in memory.
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Figure 3.5: Fetch stalls. Several DNNs experience significant stalls waiting
for I/O, when training on Config-SSD-V100 with 35% of their dataset cached.

3.4.2 When datasets cannot be fully cached

Datasets used for training DNNs are growing in size [36, 39, 119]. Even

the ML-optimized cloud servers with 500GB DRAM can only cache 35% of

ImageNet-22K, or 45% of the FMA dataset, or 65% of the OpenImages dataset.

Popular datasets like ImageNet-1K cannot be fully cached on commonly used

cloud SKUs like AWS p3.2xlarge, which has 61 GiB DRAM. When datasets

don’t fit in memory, and the fetch rate(F ) < compute rate (min(P,G)), fetch

stalls occur.

Fetch stalls are common if the dataset is not fully cached in memory.

Figure 3.5 shows the percentage of per epoch time spent on I/O for nine

different DNNs when 35% of their respective datasets can be cached in memory

on Config-SSD-V100. DNNs spend 10 –70% of their epoch time on blocking

I/O, despite pipelining and prefetching, simply because the compute rate is

higher than fetch rate.
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Figure 3.6: ResNet18 with varying cache. This stacked bar chart splits
epoch time into time spent in compute, ideal fetch stalls, and the additional
fetch stall due to thrashing.

OS Page Cache is inefficient for DNN training. DNN training platforms

like PyTorch, TensorFlow and libraries like DALI, rely on the operating sys-

tem’s Page Cache to cache raw training data in memory. Unfortunately, the

OS Page Cache leads to thrashing as it is not efficient for DNN training. If

35% of the data can be cached, then an effective cache should provide 35%

hits; instead, the Page Cache provides a lower hit rate. For a 146 GiB data set,

each epoch should see only 65% of the dataset, or 95GiB, fetched from storage.

Instead, we observe 85% of the dataset fetched from storage every epoch; the

20% difference is due to thrashing. Figure 3.6 shows the fetch stalls, including

those due to thrashing, when using PyTorch with DALI. An effective cache for

DNN training must eliminate thrashing to reduce fetch stalls to the minimum

shown in Figure 3.6.

Lack of coordination among caches leads to redundant I/O in dis-
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# Jobs 1x8GPU 2x4GPU 4x2GPU 8x1GPU

Storage I/O (GB) 125 258 467 884

Read amplification 1× 2× 3.7× 7×

Table 3.3: Storage I/O in HP search. This table shows the redundant
storage IO incurred during HP search.

tributed training. In distributed training jobs, the data to be fetched and

processed is divided randomly among servers. The division is random and

changes every epoch. As a result, each server often has to fetch data from

storage every epoch; this is done even if the required data item is cached in

an another server that is a part of the distributed training job. This lack

of coordination among caches makes distributed training storage I/O-bound.

When training Resnet50 on ImageNet-1K (146GiB) across two servers having

a total cache size of 150GiB, each server fetches 45GiB from storage in each

epoch (despite the fact that the other server might have this data item in its

cache). On Config-HDD-1080Ti, this leaves ResNet50 stalled on I/O for 75%

of its epoch time.

Lack of coordination in HP search results in redundant I/O. HP

search is performed by launching several parallel jobs with different HP on all

available GPUs in a server [125]. All HP jobs access the same dataset in a

random order in each epoch, resulting in cache thrashing and read amplifica-

tion at the storage device. Table 3.3 shows the total storage I/O for different

configurations of HP search jobs on Config-SSD-V100. When 8 single-GPU

jobs are run in a server (35% cache), there is 7× read amplification per epoch
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Figure 3.7: Impact of CPU cores on training. DNNs need between 3 –
24 cores per GPU to mask prep stalls.

(884 GiB read off storage compared to 125 GiB for one job), which slows down

HP search on ResNet18 by 2× on Config-SSD-V100.

3.4.3 When datasets fit in memory

We now analyze the impact of CPU pre-processing on DNN training

in the scenario where the entire dataset is cached in memory, thus eliminating

fetch stalls due to storage I/O.

DNNs need 3–24 CPU cores per GPU for pre-processing. Figure 3.7

shows how DNN training throughput changes as we vary the number of CPU

pre-processing threads (per V100 GPU) for four models. For computationally

complex models like ResNet50, 3 – 4 CPU cores per GPU is enough to prevent

prep stalls; for computationally lighter models like ResNet18 or AlexNet, as

many as 12 – 24 CPUs per GPU are needed to mask prep stalls. Since prep

is CPU-intensive, using more threads (vCPUs) than the number of physical
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Figure 3.8: Impact of CPU on data prep. This graph plots the epoch time
for ResNet18 on a server with 64 vCPUs and 8 V100 GPUs as we vary the
number of vCPUs per GPU. ResNet18 incurs about 37% prep stalls. With
the GPU-prep of DALI, we do not increase threads beyond 5 per GPU as it
results in GPU OOM.

CPU cores does not help much; For a 8-GPU V100 server with 32 CPU cores

(64 vCPUs), ResNet18 spends 37% of the epoch time on prep stalls as shown

in Figure 3.8. Note that this is the same server configuration as that of AWS

P3 (p3.16xlarge) [6]. Even on NVIDIA’s AI-optimized DGX-2, there are only

three CPU cores per GPU; many models will have prep stalls on the DGX-2.

DALI is able to reduce, but not eliminate prep stalls. DALI uses the

GPU for pre-processing operations, and is thus able to reduce prep stalls, as

shown in Figure 3.9 (a). The effectiveness of DALI depends on the GPU speed;

for example, on the slower 1080Ti, DALI is able to eliminate prep stalls using

three CPU threads and the GPU. On the faster V100 though, DALI still results

in 50% prep stalls when using three CPU threads and the GPU. Figure 3.10

shows that our observations hold across different DNNs when training with
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Figure 3.9: 8-GPU ResNet18 training. Even with DALI, faster GPUs like
V100 have upto 50% prep stalls.

Figure 3.10: Prep stall across DNNs. This graph plots prep stall as a
percentage of the epoch time, when training various DNNs across 8-GPUs on
Config-SSD-V100. DNNs spend 5 – 65% of their epoch time on blocking prep.

eight GPUs each with 3 CPUs.

Decoding is very expensive! To understand what makes prep expensive,

we run a microbenchmark to breakdown the cost of different stages in a typical

prep pipeline for image classification tasks. An input image is first loaded into

memory, decoded, and then randomly transformed (crop, flip), and finally
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Figure 3.11: Breakdown of prep overhead. This graph shows the split
up of time spent on each phase of prep for a image classification workload on
ImageNet-1k. GPU-based prep is significantly faster than CPU-based, at the
expense of additional GPU memory usage. Decoding images takes the most
time in the pipeline.

copied over to the GPU as a tensor that can be processed. Fig 3.11 shows

the time taken for each operation when prep is done on CPU and GPU by

DALI. In the GPU-based prep, decode operation is partly done on CPU and

then offloaded to GPU. All subsequent operations are performed at the GPU.

There are two main takeaways from this graph. First, we see that offloading

prep to the GPU provides significant speedup at the expense of GPU memory

usage (+5GB!). This increased memory consumption adversely affects the

maximum batch size that a model can use for training. Furthermore, for

models that are already GPU-intensive, offloading the prep pipeline interferes

with training and results in reduced throughput (ResNet50, VGG). Second, a

majority of time during prep is spent in decoding images.
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Figure 3.12: Impact of batch size on prep. This graph plots the epoch time
for MobileNetv2 on Config-SSD-V100 with 8-GPUs as we vary the per-GPU
batch size. Epoch time does not improve because training is bottlenecked by
data prep.

Impact of batch size. The impact of batch size on GPU computational

efficiency is well studied [191, 95]; larger batch sizes utilize the massive GPU

parallelism better, and also reduce the number of weight updates (inter-GPU

communication) per epoch, resulting in faster training. Figure 3.12 shows

the impact of varying the batch size on epoch time and the percentage of

epoch time spent on prep stalls for MobileNetv2. As computational efficiency

increases with larger batches, training becomes CPU bound due to data prep.

Note that, although the required GPU compute time dropped with a larger

batch size, per epoch time remained same due to prep stalls. This graph makes

an important point; as compute gets faster (either due to large batch sizes, or

the GPU getting faster), data stalls squander the benefits due to fast compute.

Redundant pre-processing in HP search results in high prep stalls.
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Speed (samples/s)

Config ShN AN RN18 SqN MN RN50 V11

3-CPU 1731 1702 1242 927 824 726 778

24-CPU 3387 4437 2283 1461 1157 782 801

Table 3.4: HP search with 8 jobs. (ShN-ShuffleNet, AN-AlexNet, RN18-

Resnet18, SqN-SqueezeNet, MN-MobileNet, RN50-ResNet50, V11-VGG11)

During HP search, concurrent jobs process the same data. Currently, there

is no coordination; if there are 8 HP jobs, the same data item is processed

eight times. This is made worse by the fact that all HP jobs share the same

set of CPU threads, leading to fewer CPU threads per GPU, and higher prep

stalls. When 8 single-GPU ResNet18 HP jobs run on Config-SSD-V100, each

job gets 3 CPU for prep and incurs a 50% prep stall as shown in Figure 3.10.

Coordinating these HP search jobs on a single server can potentially eliminate

prep stalls, as all available CPU (24 cores) can be used to prep the dataset

exactly once per epoch and reused across jobs. Table 3.4 shows the difference

in overall training throughput for different models when using 3 and 24 CPU

per GPU respectively.

3.4.4 Data stalls exist across training frameworks

To generalize our findings on data stalls across different training plat-

forms and data formats, we analyze the prep and fetch stalls in TensorFlow

using the binary TFRecord format. Unlike PyTorch, TensorFlow does not

store training data as small individual raw files. Instead, it shuffles the small

46



(a) 100% Cache

% cached 8-GPU job 8-job HP

(Sz:146GB) Cache Miss I/O (GB) Read amp

50% 91% 860 6.14×
35% 94% 1010 7.21×
25% 97% 1019 7.28×

(b) Varying cache (TensorFlow)

Figure 3.13: Data stalls across frameworks. The plot shows that data
stalls exist in other training frameworks like MxNet and TensorFlow in various
training scenarios.

random files, serializes them, and stores them as a set of files (100-200MB

each) called TFRecords. TFRecords make reads more sequential. Training

platforms like MXNet also use a similar serializing technique for data called

RecordIO [137].

Figure 3.13a shows that both native TF and MxNet spend 65% and 50%

of the epoch time on prep stall for a 8-GPU ResNet18 training job when the

dataset is entirely cached in memory. Next, Table 3.13b shows the percentage

of misses in the Page Cache for a 8-GPU training job and the I/O amplification

due to lack of coordination in HP search for varying cache sizes in TensorFlow.

Similar to PyTorch, TF can also use DALI’s GPU based pre-processing and

exhibit prep stalls similar to PyTorch. TFRecord format results in 40% higher

cache misses than the ideal because, the sequential access nature of TFRecords

(and RecordIO) is at odds with LRU cache replacement policy of the Page

Cache, resulting in a pathological case for LRU. The lack of co-ordination in
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Finding Insights

OS Page Cache is inefficient for
DNN training due to thrashing

DNN-aware caching can eliminate thrashing
across epochs

DNNs need anywhere between 3 –
24 CPU cores per GPU for data

pre-processing

If hardware is upgraded to overcome
workload bottlenecks, it must be done
carefully with an eye towards designing

balanced server SKUs.

DNNs spend upto 65% of the
epoch time in data pre-processing,
primarily on redundant decoding

Decoded data can be cached (as opposed to
caching encoded data), if space amplification

due to decoding can be addressed

Lack of coordination among local
caches lead to redundant I/O in

distributed training across servers

To overcome local storage I/O bottlenecks,
local in-memory caches of servers allocated
to a job can be coordinated to fetch data

from distributed in-memory caches

Hyperparameter search workloads
perform redundant I/O & prep

Hyperparameter search jobs must coordinate
data fetch & prep to mitigate data stalls

Table 3.5: Key findings and implications of our analysis of data stalls.

HP jobs results in upto 7.2× read amplification; although all jobs read the

same 140 GiB dataset, the total disk I/O was 1.1 TB.

3.4.5 Analysis summary

Table 3.5 summarizes our key findings pertaining to data stalls across

DNN training frameworks, models, and hardware configurations. Our analysis

also highlights that data stalls are a consistent problem across different training

platforms.
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3.5 DS-Analyzer: Predictive analysis

While all the experiments that vary cache size, and the number of

CPU cores in §3.4 are run on physical servers, we extend DS-Analyzer to

help a user simulate these experiments without having to run all different

configurations on physical servers. While there exists prior work that predict

the performance of a DNN, they focus on profiling the layer-wise performance

of DNN [9, 27], low level perf counters for accelerators [25, 101], or finding

optimization opportunities at the neural network layer level [220]. In contrast,

DS-Analyzer analyzes the implication of CPU, memory, and storage on the

performance of a DNN and answers what-if questions.

This is a powerful means of analyzing whether throwing more hardware

at the problem will solve the issue of data stalls. For instance, if training is

dominated by fetch stalls (bottlenecked on disk bandwidth), then increasing

the number of CPU cores on the machine has no benefit; either DRAM capacity

has to be increased, or the disk must be replaced with a higher bandwidth one.

Similarly, if the training job is bottlenecked on prep, then increasing DRAM

has no effect on training time. DS-Analyzer is useful in scenarios like this, to

predict the performance of a model as we scale up CPU, memory, or storage.

However, DS-Analyzer needs to be run atleast once for every new GPU and

DNN architecture to collect the required information, and predicts the impact

of varying auxiliary resources like CPU, memory, or storage on data stalls.

Estimating data stalls. Consider the different components involved in a
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typical DNN data pipeline as in Figure 3.2; data is fetched from cache (and

store) with an effective prefetch rate F , pre-processed at the CPU at a rate P

and processed at the GPU at a rate G. To perform predictive analysis, DS-

Analyzer measures several metrics related to the data pipeline of the model;

the maximum ingestion rate at the GPU (G), the rate of CPU prep (P ), the

rate of cache fetch (C), and the rate of storage fetch (S), by training for a fixed

number of iterations (default:100) using the differential technique discussed in

§3.3. Using these metrics, DS-Analyzer models the training iteration to answer

what-if questions such as, how much DRAM cache is required for this model

to eliminate fetch stalls?

DS-Analyzer collects these metrics for a model as follows.

(i) Measure ingestion rate (G). To find the maximum possible speed at

which the DNN can train, DS-Analyzer first runs the job script for a fixed

number iterations (default:100) with synthetic data that is pre-populated at

the GPUs. It then calculates G as,

G =
Total samples processed in (i)

Time for (i)
(3.1)

Samples processed = #iterations× global batch size (3.2)

(ii) Measure prep rate (P ). Next, DS-Analyzer executes the training script

with the given dataset by ensuring that the subset of data used is cached in

memory, using all available CPU cores. Additionally, the GPU computation

is disabled to only run the data loader. This is required because, if P ≥ G,
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Figure 3.14: Estimating optimal cache size with DS-Analyzer.

then we cannot measure P using the knowledge of runs (i) and (ii), as prep

will be pipelined with GPU compute. Therefore, DS-Analyzer disables GPU

computation and estimates P in the same way as Eq (3.1).

(iii) Measure storage fetch rate (S). Storage fetch rate is the maximum

random read throughput of the storage device. To measure this, DS-Analyzer

runs the data loader (with a cold cache, disabling both pre-processing and

GPU compute), with all CPU cores.

(iv) Measure cache fetch rate (C). To measure the rate at which data

can be fetched from cache, DS-Analyzer uses a microbenchmark to measure

memory bandwidth and uses it as an approximation for C. Note that run (ii)

actually includes the time to fetch cached items as well; however we see that

the cache fetch rate is very high (few tens of GBps), and does not add noise

to the measurement of prep rate.
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3.5.1 Example : Predicting optimal cache size

We now describe an example of what-if analysis with DS-Analyzer. We

show how DS-Analyzer answers the question : how much DRAM cache does

the DNN need to eliminate fetch stalls? To predict the implication of cache

size, DS-Analyzer calculates the effective prefectch rate (F ) for a given cache

size (x % of the dataset). Here, we assume that the cache implements an

efficient policy like MinIO; i.e., a cache of size x items has atleast x hits per

epoch. F is computed as follows. Say the size of the dataset is D samples,

and cache is x% of the dataset. Therefore, in an epoch, the total time to read

the dataset is given by

Tf =
D × x
C

+
D × (1− x)

S
(3.3)

The fetch rate is then calculated as,

F =
D

Tf
=

D
D×x
C

+ D×(1−x)
S

(3.4)

Since C >> S, F ∝ 1
1−x , i.e, the effective fetch rate increases, as the

number of uncached items per epoch decreases. Since DS-Analyzer has already

estimated values of D, C, and S, given a cache percentage x, DS-Analyzer can

predict the fetch rate using Eq (3.4).

To evaluate how accurately DS-Analyzer can answer this question, we

run the actual experiment by varying cache size on a physical server (em-

pirical), and comparing it to the predictions of DS-Analyzer for AlexNet on

Config-SSD-V100 with Imagenet-1K. Figure 3.14 plots the predicted values

52



of F , P , and G, alongside empirical speed while varying cache size. First, we

observe that the predicted training speed (min(F, P,G)) is a maximum of 4%

off the empirical results. Second, using these predictions, DS-Analyzer can

estimate the optimal cache size for the model by comparing it with prep rate

(P) and GPU ingestion rate (G). To eliminate fetch stalls, F > min(P,G)

as shown by the intersection in Figure 3.14. At lower cache sizes, training

is I/O bound, however, a cache that is 50% of the dataset size is sufficient

to eliminate fetch stalls; larger cache (more DRAM) is not beneficial beyond

this point, as training becomes CPU-bound. A comprehensive list of data

pipeline rates (G,P, F ) for several models, datasets, and configurations is in

the Appendix of the extended version of our paper on analyzing data stalls

[145].

3.6 Limitations and Discussion

In the scope of our data stall analysis, we do not tease out the over-

head due to communication (network) between GPUs in a machine, or across

machines. We instead roll this over as GPU compute time. Our analysis

environment had high-bandwidth network interconnects; this eliminated any

possible network overheads. However, in scenarios where network bandwidth

may be a bottleneck, a future direction is to analyze network stalls.
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3.7 Summary

In summary, in this chapter, we presented a comprehensive analysis of

data stalls in DNN training. We built a tool DS-Analyzer, using which we

measured data stalls by varying factors like amount of memory allocated to

the job, number of CPU cores used for pre-processing, GPU generation .

Our analysis yields several interesting insights. First, a large number

of DNN models have data stalls. Second, these data stalls occur across frame-

works such as PyTorch and TensorFlow. Third, there is a large amount of

redundant work done by the data pipeline during HP search and distributed

training where the same data items are fetched and pre-processed by multiple

jobs or multiple servers. Finally, when the dataset is larger than available

memory, current caching policies used by DNN training frameworks are in-

efficient, resulting in high disk I/O with unwanted evictions in the OS Page

Cache.

Our study has directly guided the design of systems that mitigate data

stalls. We discuss these in detail in the subsequent chapters. We also believe

our study opens doors to several interesting research directions with respect

to mitigating data stalls, which we discuss in Chapter 8.
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Chapter 4

CoorDL: Mitigating Data Stalls in Single-User

Scenarios

In the previous chapter, we presented an analysis of data stalls in DNN

training and identified why data stalls occur. Our analysis reveals three key

insights with respect to the causes for data stalls when models are trained in

isolation. First, our analysis corroborates that relying on OS abstractions (like

Page Cache) is inefficient for DNN workloads. Second, lack of coordination

among caches leads to redundant I/O in distributed training. Finally, lack

of coordination in HP search results in redundant I/O and data prep among

concurrently running jobs.

In this chapter, we exploit these insights to design and build CoorDL,

a new data loading library that accelerates DNN training by minimizing data

stalls1. In the rest of this chapter, we first present the overall architecture of

CoorDL (§4.2). We then introduce the three techniques that CoorDL intro-

duces to mitigate data stalls; the new MinIO software cache that is specialized

for DNN training (§4.2.2), a partitioned caching technique to co-ordinate local

1This Chapter is based on the work, Analyzing and Mitigating Data Stalls, published in
VLDB 21 [146]
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MinIO caches in distributed training (§4.2.3), and coordinated prep, which co-

ordinates data fetch and pre-processing among concurrent HP search. Fnally,

we evaluate CoorDL on hyperparameter tuning, single-server, and multi-server

distributed training scenarios ( §4.3).

4.1 Motivation

Consider a cluster of ML-optimized cloud servers with V100 GPUs and

500 GiB of memory [6]; 400GiB is allocated to cache the input dataset. We

would like to train ResNet50 [91] using the 645 GiB OpenImages [119, 182]

dataset in PyTorch with DALI. When we perform HP Search for this model

with eight jobs on a single server, a staggering 1.7 TiB of data (2.8× the size

of the entire dataset) is fetched from storage during each epoch because the

data pipeline of each of the eight jobs fetches and pre-processes the dataset

independently. After determining the hyperparameters, when we perform dis-

tributed training on 16 GPUs across two servers, in each epoch of training

both servers process a random disjoint half of the dataset (so that they col-

lectively process the entire dataset once per epoch). Despite enough memory

across two servers (800 GiB) to cache the entire dataset, each server fetches

119 GiB (from storage) per epoch when training, as the random data items

being requested may not be cached locally at each server. If the server uses

hard drives for storage, training incurs fetch stalls. If we instead train the

model on a single server, then 65% of the dataset can be cached in the OS

Page Cache. So, we expect 35% of the dataset to be accessed from storage
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Finding CoorDL Insights

OS Page Cache is inefficient for DNN
training due to thrashing

Optimize DNN cache to eliminate thrashing
across epochs (MinIO §4.2.2)

Lack of coordination among local
caches lead to redundant I/O in dis-
tributed training across servers

Local caches of servers can be coordinated
to fetch data from the remote cache to over-
come storage I/O bottlenecks (Partitioned
Cache §4.2.3)

No coordination in HP search leads
to redundant I/O & prep

HP search jobs must coordinate data fetch
& prep (Coordinated Prep §4.2.4)

Table 4.1: Key findings and implications of data stall analysis.

in every subsequent epoch; however, we noticed 53 – 87% of dataset accesses

per epoch in two different data access modes of DALI. Such increased disk IO

results in fetch stalls in training.

Table 4.1 summarizes these key findings pertaining to data stalls and

the insight we exploit to design a corresponding technique to mitigate it in

CoorDL.

CoorDL introduces three techniques to overcome data stall overheads.

First, CoorDL introduces the novel MinIO software cache that is specialized

for DNN training. MinIO exploits the unique data access pattern in DNN

training to minimize the amount of data fetched from storage for training on a

single server. Next, CoorDL introduces partitioned caching, where the dataset

is partitioned and cached among the servers involved in distributed training for

each job. On a local MinIO cache miss, data is fetched from the memory of a

remote server (over the commodity TCP stack) rather than from local storage.

The dataset is thus fetched from storage exactly once for the entire distributed
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training job. Finally, it introduces coordinated prep, which coordinates data

fetch and pre-processing among concurrent HP search jobs. Coordinated prep

takes advantage of the fact that all HP jobs are operating on the same data;

all concurrent jobs can share one epoch’s worth of pre-processed data. In each

epoch, data is fetched and pre-processed exactly once for all concurrent HP

jobs, eliminating a significant amount of redundant work.

4.1.1 Assumptions and Goals

CoorDL is designed to be a user-space data loading library usable by

individual DNN training jobs on cloud GPU VMs, or dedicated servers in a

cluster. The focus of CoorDL is to accelerate different training scenarios such

as single-server training, distributed training, and hyperparameter search, by

utilizing available hardware resources efficiently.

CoorDL does not impact accuracy; training can sample as usual from

the entire dataset, regardless of what is cached. does not alter the randomness

of DNN data access pattern and does not tweak the learning algorithm in any

way. CoorDL does not require specialized hardware, and runs over commodity

networking and storage hardware.

4.2 CoorDL

CoorDL coordinates fetching data from storage, pre-processing data,

and creating minibatches for DNN training. Using insights from our analysis,

CoorDL minimizes fetch and prep stalls using three core techniques enumer-
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Technique Impact Benefits

MinIO Cache
DNN-aware caching to minimize IO by

reducing cache misses per epoch ( §4.2.2)
Single-server

training

Partitioned
MinIO Cache

Eliminate redundant fetch by
coordinating remote MinIO caches

( §4.2.3)

Distributed
training

Coordinated
Prep

Eliminates redundant fetch and prep
across jobs ( §4.2.4)

Single-server
training

Table 4.2: Overview of techniques.

ated in Table 4.2. First, CoorDL uses the novel MinIO software cache that

exploits the data-access pattern of DNN training workloads to eliminate cache

thrashing. Second, CoorDL coordinates the local MinIO caches of individual

servers during distributed training; if there is a cache miss in a server’s MinIO

cache, CoorDL fetches data preferentially from a remote MinIO cache rather

than local storage. Finally, CoorDL introduces the novel coordinated-prep

technique, that coordinates fetch and prep of data items across all concurrent

jobs in a server, if they operate on the same dataset (such as in HP search).

4.2.1 Overall Architecture

The overall architecture of CoorDL is shown in Figure 4.1. The train-

ing dataset resides on a local storage device like SSD or HDD. If the data

resides on a remote storage service, the data is cached in local storage when it

is first accessed [118]. For all later epochs, the data is fetched from local stor-

age. In each training iteration, a minibatch of data must be fetched from disk
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Data

minIO Cache
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Cross-job Staging
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GPU GPU
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cache

Pre-process
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prep

SERVER  1 SERVER  2

CPU CPU 
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Figure 4.1: Architecture of CoorDL. Raw data items from the local storage
are cached in the MinIO cache. Multiple CPU threads fetch items from the
local (or remote) MinIO cache, pre-process and create minibatches, which are
then staged for sharing across jobs, if there are multiple jobs.

(or cache), pre-processed to apply random transformations and collated to a

tensor that can be copied over to the GPU for DNN computation. CoorDL

manages its own MinIO cache of the raw data items (before any stochastic pre-

processing transformations are applied). The data sampling and randomiza-

tion is unmodified; in each epoch, every minibatch is sampled randomly from

the dataset. Every data item is then subjected to the random pre-processing

pipeline specified in the training workload. The prepared minibatch is then

placed in a cross-job staging area for consumption by the GPU. If a single

data-parallel job is running across multiple GPUs in a server, then the mini-

batches in the staging are used exactly once per epoch and discarded; if there
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are concurrent HP jobs on a server, then the staging area retains minibatches

until each concurrent job has used it exactly once in the current epoch. Any

minibatch that satisfies this criteria is evicted from the staging area to make

way for newer batches.

We now discuss CoorDL’s three core techniques in detail.

4.2.2 The MinIO cache

DNNs suffer from fetch stalls if the dataset cannot be fully cached

in memory and has to be fetched from the storage during training (§3.4).

Recall from Fig 3.2 that fetch stalls occur when the rate of data fetch is lower

than the rate of compute (despite prefetching and pipelining data fetch with

compute). When fetch stalls occur, training proceeds at the rate at which

uncached data items can be fetched from storage; therefore it is important

to minimize the amount of data fetched from storage in each epoch. MinIO

tackles this problem by ensuring that every item in the cache is used effectively

in each epoch; thereby minimizing the amount of disk IO per epoch to the ideal

minimum.

DNN training has a unique data access pattern: it is repetitive across

epochs and random within an epoch. Training is split into epochs: each epoch

accesses all the data items in the dataset exactly once in a random order.

Currently, DNN training platforms rely on the OS Page Cache to cache

training data. Every data item read from the storage device is cached in the

Page Cache to speed up future accesses. When the Page Cache reaches its

61



C  B C  A

B C A D C B D A

D  A D  C B  C B  D A  D

Page Cache 
+ LRU

minIO Cache

Access Pattern

C  B C  A D  A D  C B  C B  DD  BD  BD  B

D  B D  B D  B D  B D  B D  B D  B D  B D  B

Add the missed  item to cache

Figure 4.2: Cache hits with MinIO. Cache activity for two “epochs” of
training for page cache and MinIO.

capacity, a cache replacement policy decides which of the existing items to

evict to make space for the new one. Linux uses a variant of Least Recently

Used (LRU) for cache replacement [81].

However, we make a key observation about the DNN access pattern

that is at odds with such cache replacement policies. All data items in the

dataset have equal probability of access in an epoch. Therefore, it is not

important which data item is cached. Instead, it is crucial that cached items

are not replaced before they are used, to minimize storage I/O per epoch.

Therefore, MinIO recommends a simple and unintuitive solution; items,

once cached, are never replaced in the DNN cache. MinIO works as follows.

In the first epoch of the training job, MinIO caches random data items as they

are fetched from storage, to populate the cache. Once the cache capacity is

reached, MinIO will not evict any items in the cache; instead, the requests to

other data items default to storage accesses. The items in the MinIO cache

survive across epochs until the end of the training job. Every epoch beyond

62



the first gets exactly as many hits as the number of items in the cache; this

reduces the per-epoch disk I/O to the difference in the size of dataset and the

cache.

Figure 4.2 contrasts the caching policy of the OS Page Cache and

MinIO. Consider a dataset of size 4 (with items A – D) and a cache of size

2 (50% cache). Let’s say after warmup, the cache has two items D and B.

Figure 4.2 shows the state of the cache for two training epochs. MinIO only

incurs capacity misses per epoch (here 2); the Page Cache on the other hand,

can result in anywhere between 2-4 misses per epoch because of thrashing. For

instance, in the first epoch, D is in the cache to begin with, but kicked out

to make way for a new item C, and later in the same epoch it is requested

again (thrashing). We empirically verified this using large datasets and vary-

ing cache sizes (§6.3) and found that Page Cache results in close to 20% more

misses than MinIO due to thrashing.

MinIO’s no replacement policy simplifies the design of the cache as we

do not need bookkeeping about the access time or frequency of data items; if

we were to implement a replacement policy, such metadata needs to be tracked.

The strength of MinIO thus lies in its simplicity and effectiveness.

4.2.3 Partitioned Caching

MinIO reduces the amount of disk I/O (fetch stalls) in single-server

training. In distributed training, the dataset is partitioned and processed by

a group of servers. Each server operates on a random shard of the dataset per
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epoch.

The MinIO cache is not efficient in this setting. For example, consider

a distributed training job across two servers, each of which can cache 50% of

the dataset. In every epoch, each server has to process a random 50% partition

of the dataset, some of which may be hits in the local MinIO cache but the

misses result in storage I/O, which is expensive and results in fetch stalls.

We observe that the cross-node network bandwidth in publicly available

cloud GPU instances and our clusters(10-40 Gbps) is upto 4× higher than

the read bandwidth of local SATA SSDs (530 MBps). Data transfer over

commodity TCP stack is much faster than fetching a data item from its local

storage, on a cache miss. Therefore, CoorDL introduces partitioned caching

across the DRAM of all servers in the distributed job. While MinIO ensures

that each epoch gets maximum hits in the cache, partitioned cache further

reduces fetch stalls by increasing the rate at which uncached data items are

fetched.

Partitioned caching works as follows. In the first epoch, the dataset is

sharded across all servers, and each server populates it’s local MinIO cache

with data items in the shard assigned to it. At the end of the first epoch,

CoorDL collectively caches a part of the dataset of size equal to the sum of

capacities of individual MinIO caches. To route data fetch requests to the

appropriate server, CoorDL maintains metadata about data items present in

each server’s cache. Whenever a local cache miss happens in the subsequent

epoch at any server, the item is first looked up in the metadata; if present, it
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is fetched from the respective server over TCP, else from its local storage.

If the aggregate memory on the participating servers is large enough

to cache the entire dataset, then partitioned caching ensures that there is no

storage I/O on any server beyond the first epoch; the entire dataset is fetched

exactly once from disk in the duration of distributed training.

In settings where the local MinIO cache has capacity larger than the

shard assigned to it, CoorDL first caches the entire shard and fills up any

available spots in the background with supplementary items that are not in

the assigned shard. Note that while this introduces redundancy in the global

cache, supplementary items are not added to the metadata used by partitioned

cache; they are only meant to maximize local cache hits. This helps balance

the load of data fetch requests on each server.

4.2.4 Coordinated Prep

Hyperparameter (HP) search for a model involves running several con-

current training jobs, each with a different value for the HP and picking the

best performing one. Our analysis shows that co-locating HP search jobs on

the same server results in both fetch and prep stalls (Chapter 3) due to lack

of coordination in data fetch and prep among these jobs.

CoorDL introduces coordinated prep to address this issue. Each job in

the HP search operates on the same data; hence, instead of accessing data

items independently for each job, they can be coordinated to fetch and prep

the dataset exactly once per epoch. Each epoch is completed in a synchronized
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fashion by all HP jobs; as a result, pre-processed minibatches created by one

job can be reused by all concurrent jobs.

Coordinating HP search jobs must be done carefully to ensure this

invariant holds: each job processes the entire dataset exactly once per epoch.

A naive way of doing this is to pre-process the dataset once and reuse across

all HP jobs and all epochs. This approach will not work for two reasons. First,

reusing pre-processed data across epochs may result in lower accuracy, as the

random transformations are crucial for learning. Second, the pre-processed

items are 5–7× larger in size when compared to the raw data items. Caching

pre-processed items will overflow the system memory capacity quickly. If we

store them on storage, we may incur fetch stalls.

Coordinated prep addresses these challenges by staging pre-processed

minibatches in memory for a short duration within an epoch. Since each job

has identical per-minibatch processing time, the minibatch is short lived in

the staging area. Coordinated prep works as follows.

Each HP search job on a server receives a random shard of the dataset

when they start. Each job fetches and pre-processes the assigned shard, cre-

ating minibatches as they would normally do. When ready, these minibatches

are exposed to the other jobs in the cross-job staging area. This is a memory

region that is accessible to all running jobs on the server. Additionally, each

minibatch has a unique ID and an associated atomic counter that tracks how

many jobs have used this minibatch so far in the current epoch. When a job

needs a minibatch for GPU processing, it retrieves it from the staging area
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and updates its usage counter. A minibatch is deleted from the staging area

when it is used exactly once by all running jobs, as we want to ensure that it

is not used across epochs. We empirically show in §6.3 that the addition of

cross-job staging area does not introduce additional memory overhead.

Thus, coordinated prep ensures one sweep over the dataset per epoch

for both data fetch and pre-processing, eliminating redundant work. Note

that coordinated prep allows addition or removal of jobs only at epoch bound-

aries; this is not an issue because popular HP search algorithms evaluate the

objective function (for e.g., accuracy), and make decisions on terminating or

continuing the job at epoch boundaries [102, 123]

Handling job failures and terminations. The progress of each HP search

job in CoorDL is dependent on the progress of all other running jobs, because

each job is responsible for pre-processing a shard of the dataset. Therefore, if

one of the jobs is killed by the user in the middle of an epoch, or terminates

abruptly, all other jobs may stall waiting for minibatches that the job was

responsible for preparing. To address this, CoorDL uses a failure detection

module to monitor the status of running jobs.

Every prepared minibatch fetched from the staging area has an associ-

ated timeout. We empirically set this timeout to be equal to the duration of

processing 10 minibatches, because it was sufficient to mask the discrepancies

in data loading time of individual jobs. If any job times out waiting for a

minibatch in the staging area, it notifies the driver process of a possible fail-

ure. Note that, the global sequence of data items seen by each job is identical;
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therefore, all the jobs can deterministically identify which job failed to popu-

late the batch it is waiting on. CoorDL’s failure detection module verifies if

the reported job is alive or dead; if alive, it issues a broadcast to all the jobs

to retry fetching the minibatch from staging area, else it spawns a new process

to resume data loading for the shard that failed.

4.2.5 Implementation

We implement CoorDL by adding 1.5K lines of C++ code to DALI.

Cross-batch staging is implemented as a binding between DALI and PyTorch

in 935 lines of Python code. We implement DS-Analyzer in Python with 1.1K

LOC. We have also implemented our techniques in the native PyTorch data

loader (Py-CoordDL- details and evaluation are presented in the extended

version of our data stalls paper [145]). Since DALI is an optimized data pre-

processing library for DNN training and performs strictly better than default

PyTorch, it is a stronger baseline to compare against. DALI (on PyTorch),

and the native PyTorch dataloader.

MinIO implementation. MinIO is implemented as a software cache using

file-backed shared memory. Each data item is stored as a byte stream in a

shared memory file in /dev/shm. To check if an item is present in cache, the

data worker first tries to attach to the shared memory segment indexed by the

name of the data item. If it fails, a disk access is incurred. If cached, it reads

the raw byte stream from the attached shared memory segment and performs

the pre-processing steps. This design (1) eliminates the need for serialization
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and pickling which is typically incurred if we use Python’s shared memory

data structures and (2) allows multiple processes to access the cached data

items for concurrent reads.

MinIO is completely in user-space, making it easy to use in scenarios

where the user has no root privileges to modify the kernel (e.g., in production

clusters, users can run their training code in a docker container with the fixed

CPU and memory allocated to them, but not a VM with a custom kernel). This

calls for a flexible user-space library rather than in-kernel changes. Therefore,

we chose to avoid kernel modifications such as changing the Linux page cache

eviction algorithm.

MinIO can be alternately implemented using primitives such as madvise()

and mlock() to prevent data items from being paged by locking the process’s

virtual address space in memory for the cached entries [177, 129]. However,

since data workers and the training on each GPU (for multi-GPU jobs) are

implemented as individual processes in PyTorch, we choose to use file-backed

shared memory to enable cache sharing across all processes spawned by the

training job.

Partitioned cache implementation. An instance of MinIO cache server

runs on each node across which the training is distributed. Partitioned caching

coordinates the MinIO caches at each server to preferentially fetch data from

remote DRAM using TCP connections. To eliminate frequent TCP connec-

tion overheads, each server pre-establishes as many connections as the number

of data fetch threads on the nodes. This connection is kept active for the
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lifetime of the job. Each server participating in the distributed training main-

tains metadata of MinIO cache contents at other servers to redirect data fetch

requests to remote servers.

Coordinated prep. The cross-job staging area is implemented using Python’s

multiprocessing hashmap. Each data worker inserts the pre-processed mini-

batch into the shared hashmap in parallel. Minibatches in this hashmap are

serialized and returned to each DNN job via sockets. CoorDL additionally

maintains a counter for each inserted minibatch that tracks the number of

DNN jobs that have used this batch; when a batch has been consumed by all

live HP search jobs, the minibatch is deleted from the staging area. The job

failure detection module uses an initial timeout that is 10 times the duration

of an iteration(batch). Empirically, for all models we tested on, this duration

was sufficient to mask the minor differences in the per-batch duration across

jobs.

CoorDL can be used as a drop-in replacement to either native PyTorch

dataloader, or DALI, with no modifications to the training script. Using DS-

Analyzer requires about 10 – 15 lines of additions to the DNN training script.

4.3 Evaluation

We now evaluate the efficacy of CoorDL on three different aspects of

the training process: hyperparameter tuning, multi-GPU training on a sin-

gle server, and distributed training across multiple servers. We evaluate our

70



techniques on nine models, performing three different ML tasks (image clas-

sification, object detection and audio classification) on four different datasets,

each over 500GB as shown in Table 3.1. Since DALI strictly outperforms Py-

Torch DL, we use DALI (best of CPU or GPU based prep) as the baseline in

our experiments.

Experimental setup. We evaluate CoorDL on two representative server con-

figurations (Tbl 3.2) each with 500 GiB DRAM, 24 CPU cores, 40 Gbps Eth-

ernet, eight GPUs, and 1.8 TiB of storage space. Config-SSD-V100 uses V100

GPUs and a SATA SSD, while Config-HDD-1080Ti uses 1080Ti GPUs and a

magnetic hard drive. Config-SSD-V100 is similar to the AWS p3.16xlarge

instance [6], while Config-HDD-1080Ti is similar to the AWS p2.8xlarge in-

stance [5]. We use the same training methodology we used for analysis (§3.2).

We seek to answer the following questions:

• How does the MinIO cache affect multi-GPU training on a single server

? (§4.3.1)

• How does partitioned caching improve training time for jobs distributed

across multiple servers? (§4.3.2)

• How does coordinated prep benefit HP search? (§4.3.3)

• Does CoorDL affect end-to-end DNN training accuracy? (§4.3.4)

• Does CoorDL enable better resource utilization compared to DALI?

(§4.3.5)
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Figure 4.3: Single server training. This graph compares DALI against
CoorDL for single server training. CoorDL significantly accelerates training
by efficiency utilizing available memory with MinIO

• Does CoorDL mitigate data stalls in state-of-the-art ML optimized servers

like the DGX-2? (§4.3.6)

4.3.1 Single-server Multi-GPU training

CoorDL speeds up a single-server training job by reducing fetch misses

using the MinIO cache. Figure 4.3 plots the relative speedup with respect

to DALI while training the image classification and object detection models

on the OpenImages dataset, and audio classification on FMA dataset. We

evaluate MinIO against two modes of DALI. DALI’s default mode is DALI-seq,

where it reads data sequentially off storage and shuffles them in memory [11].

DALI-shuffle accesses the dataset in a randomized order (doing random reads,

similar to the native dataloader of PyTorch).

MinIO results in upto 1.8× higher training speed compared to DALI-seq

by eliminating thrashing on Config-SSD-V100. When the image classification
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DALI-seq DALI-shuffle CoorDL

Cache miss 66% 53% 35%

Disk IO (GB) 422 340 225

Table 4.3: Impact on fetch misses and disk IO. When training ResNet18
on OpenImages (645GB), CoorDL reduces cache misses from 66% to 35%.
Config-SSD-V100 caches 65% of the dataset, so this is the minimum miss
rate.

models are trained with ImageNet-22k dataset, CoorDL results in up to 1.5×

speedup. On Config-HDD-1080Ti, CoorDL accelerates ResNet50 training on

OpenImages by 2.1× compared to DALI-seq and 1.53× compared to DALI-

shuffle respectively.

Reduction in cache misses. We measure the disk I/O and number of cache

misses when training ShuffleNet on OpenImages dataset on Config-SSD-V100.

This server can cache 65% of the dataset. CoorDL reduces misses to the

minimum number of 35%, resulting in 225 GB of I/O. In contrast, DALI-Seq

results in 66% cache misses, increasing I/O by 87% to 422 GB; DALI-shuffle

results in 53% cache misses, increasing I/O by 50% compared to CoorDL to

340 GB.

Note that, when the whole dataset does not fit in memory, DALI-shuffle

performs better than DALI-seq (because sequential access is a pathological case

for the Linux LRU page cache). Therefore, our evaluation in the rest of this

section compares CoorDL to the stronger baseline, DALI-shuffle.
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Figure 4.4: Distributed training across servers. This graph compares
DALI against CoorDL for multi-server training. CoorDL significantly acceler-
ates training by optimizing remote MinIO fetches

4.3.2 Multi-Server Distributed Training

We now evaluate CoorDL on a distributed training scenario. The lack

of cache co-ordination between the participating servers results in fetch misses

that lead to disk I/O. CoorDL uses partitioned caching to avoid redundant

I/O.

Figure 4.4 shows that CoorDL improves the throughput of distributed

training jobs by upto 15× (AlexNet on OpenImages) when trained across two

Config-HDD-1080Ti servers (16 GPUs). On Config-HDD-1080Ti servers, 65%

of the OpenImages dataset can be cached on a single server; and it can be fully

cached in the aggregated memory of two servers. Therefore, CoorDL moves

the training job from being I/O bound to GPU bound.

When trained across two servers on Config-SSD-V100, CoorDL accel-

erates ShuffleNet on ImageNet-22k by 1.3×, and Audio-M5 on FMA by 2.9×.
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(a) Distributed training

Nodes Disk
IO(GB)

1 342
2 119
3 70
4 50

(b) Disk IO

Figure 4.5: Distributed training with CoorDL. The plot compares DALI
with CoorDL when training ResNet50 across upto 4 nodes. Even when each
node can cache 65% of the dataset, DALI results in I/O bound training due
to disk fetch, while CoorDL results in zero disk accesses beyond first epoch.

The relative gains are lower on Config-SSD-V100 because the cost of a fetch

miss is lower on SSDs due to its high random read throughput, as compared

to HDDs on Config-HDD-1080Ti.

Scalability of partitioned caching. When we distribute training to a large

number of servers, such that their aggregate memory is higher than the total

dataset size, CoorDL continues to outperform DALI as shown in Figure 4.5a.

In this experiment, we train ResNet50 on OpenImages on Config-HDD-1080Ti,

where each server can cache 65% of the dataset. When training extends to

24 GPUs(3 servers), or 32 GPUs(4 servers), the throughput with CoorDL

increases because, training is not bottlenecked on I/O and more GPUs for

training naturally results in faster training due to increase in GPU parallelism.

With DALI, although the throughput increases, it is still I/O bound; the

increase in throughput is due to the reduced disk I/O per server when training
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Figure 4.6: Hyperparameter search. This graph compares DALI against
CoorDL for HP search. CoorDL significantly accelerates training using coor-
dinated prep

is distributed as shown in Table 4.5b. Although the I/O per server decreases

with DALI as we distribute training across more servers, note that the GPU

parallelism is also proportionately increasing; the GPU compute rate (G) and

prefetch rate (F ), are proportionately increasing, leaving the performance gap

the same. CoorDL however, masks this gap by eliminating storage I/O by

exploiting the high bandwidth Ethernet between servers.

4.3.3 Hyperparameter Search

Figure 4.6 plots the relative increase in throughput of individual jobs

across several models when eight concurrent HP search jobs are run on a

Config-SSD-V100 server. On less computationally complex models like AlexNet

and ShuffleNet, CoorDL increases training speed by 3×, because these models

are originally CPU bound due to prep.

For the audio model, CoorDL increases the training speed by 5.6×.

CoorDL reduces the total disk IO from 3.5TB to 550GB, moving the job from

being I/O bound to GPU bound. The reduced I/O results from CoorDL avoid-
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Figure 4.7: Breakdown of benefits due to coordinated prep. This graph
shows the split of speedup due to coordinated fetch alone, and CoorDL (coor-
dinated fetch and prep)

ing cache thrashing using coordinated prep. Similarly, on Config-HDD-1080Ti,

CoorDL results in 5.3× faster training on the audio model, and 4.5× faster

training on ResNet50.

On Config-HDD-1080Ti, CoorDL results in 5.3× faster training on the

audio model, and 4.5× faster training on ResNet50 by coordinating data fetch

and prep.

Split of coordinated prep benefits. Next, we show the breakdown of

speedup due to coordination of data fetch and prep during HP search. When

fetch is coordinated, concurrent jobs use data fetched by other jobs; but each

job performs its own data prep. CoorDL coordinates both; eliminating redun-

dant fetch and prep. Figure 4.7 plots the results on Config-SSD-V100. In this

case, data stall is dominated by prep, which CoorDL mitigates unlike prior

work like Quiver [118] that only coordinates fetch.
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Figure 4.8: Varying number of HP jobs. This graph compares DALI
against CoorDL as we vary the number of concurrent HP jobs. The benefit
with CoorDL is higher as the number of concurrent jobs increases.

Multi-GPU HP search jobs. Figure 4.8 evaluates the efficacy of CoorDL

for different configurations of HP search jobs on a machine; 8 1-GPU jobs, 4

2-GPU jobs, 2 4-GPU jobs, or 1 8-GPU job for AlexNet on OpenImages. For

a single job case, the benefit is due to the MinIO cache; in other configura-

tions, it is due to coordinated prep. When there are a lot of concurrent jobs,

pre-processing becomes the bottleneck; coordinated prep is able to improve

performance significantly.

HP search with fully cached dataset. CoorDL’s ability to speed up HP

search jobs comes from coordinating pre-processing to overcome the imbalance

in the ratio of CPU cores to GPU. We perform HP search with 8 jobs on

Config-SSD-V100 with ImageNet-1k dataset that fits entirely in memory. As

shown in Table 4.4, CoorDL sped up HP search by 1.9× on AlexNet and and

1.2× on ResNet50 by eliminating redundant prep.

HP search on servers with more CPU cores. Config-SSD-V100 has
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Per job speed (Samples/s)

Model DALI CoorDL

ShuffleNet 1441 1.81×
AlexNet 1399 1.87×
ResNet18 1056 1.53×
SqueezeNet 835 1.50×
MobileNet 752 1.35×
ResNet50 569 1.21×
VGG11 552 1.22×

Table 4.4: HP search with CoorDL on a fully cached dataset. On
Config-SSD-V100, when training with the small ImageNet-1k dataset that fits
in memory, CoorDL provides upto 1.87× speedup by eliminating redundant
pre-processing

3 CPU cores per V100 GPU. To understand if servers like AWS p3.16xlarge

with more CPU cores exhibit data stalls due to lack of co-ordination in pre-

processing, we perform HP search with 8 1-GPU jobs on a server with 64

vCPUs and 8 V100s. Our experiment considers a fully-cached dataset to elim-

inate any I/O stalls. When training ResNet18 with OpenImages, CoorDL’s

co-ordinated prep accelerated training by 2× even when a total of 64vCPUs

are used (8 vCPUs per GPU).

4.3.4 Training to Accuracy with CoorDL

CoorDL does not change the randomness of data augmentation tech-

niques involved. Its techniques do not affect the learning algorithm. To

demonstrate this, we train ResNet50 to accuracy on ImageNet-1K using 16
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Figure 4.9: Top-1 validation accuracy during training. In training
ResNet50 with ImageNet-1K on 16x 1080Tis across 2 servers, CoorDL re-
duces the time to accuracy by 4× by coordinating the caches across the job’s
individual servers.

GPUs across two Config-HDD-1080Ti servers, where each server is capable of

caching 50% of the dataset. Figure 4.9 shows that CoorDL reduces the time

to target accuracy (75.9%) from two days to just 12 hours (4× better), due to

partitioned caching.

4.3.5 Resource Utilization

MinIO results in lower disk I/O and better CPU utilization. Fig-

ure 4.10 shows the I/O for two epochs of training ResNet18 on OpenImages

on Config-SSD-V100. The I/O behavior is similar across models and server

configurations.

DALI observes cache hits at the beginning of the epoch, but soon be-

comes I/O bound (disk bandwidth: 530 MB/s). Since MinIO is caching a

random subset of the dataset, cache hits are uniformly distributed across the
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Figure 4.10: Disk I/O pattern with MinIO (ResNet18 on OpenIm-
ages). DALI gets cache hits at the start of every epoch; however due to
thrashing, all requests result in storage access beyond a point. CoorDL results
in a more uniform I/O pattern and faster training.

epoch in CoorDL. This results in a predictable I/O access pattern and faster

training (epochs end earlier in Figure 4.10).

Profiling the CPU during training shows in Figure 4.11 that the pre-

processing threads in DALI are often stalled waiting for I/O. Since MinIO

reduces the total disk I/O, CoorDL is able to better utilize the CPU threads for

pre-processing. The combination of lower disk I/O and better CPU utilization

leads to shorter training times when using CoorDL.

CoorDL uses a fraction of available network bandwidth. CoorDL

shards the dataset equally among all servers in distributed training to ensure

load balancing. We track the network activity during the distributed training

for ResNet50 on OpenImages across two, three, and four servers with DALI

and CoorDL. CoorDL used 5.7 Gbps per server of network bandwidth (14%
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Figure 4.11: CPU utilization with MinIO. This plot shows the CPU uti-
lization over time for DALI and CoorDL when training ResNet18 on Open-
Images. CoorDL uses cache effectively to reduce disk I/O, therefore utilizing
CPU on useful pre-processing rather than waiting on I/O

of the 40 Gbps available). DALI used 1.18 Gbps of network bandwidth per

server. CoorDL used 4.8× higher network bandwidth to train 4.3× faster than

DALI.

Co-ordinated prep has low memory overhead. By design, co-ordinated

prep has the same memory requirements as DALI. To experimentally validate
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Figure 4.12: Memory utilization of coordinated prep. This plot shows
the memory utilization for two epochs of HP search using AlexNet on Open-
Images, with 8 concurrent jobs. CoorDL uses 5GB of extra process memory;
resulting in 5GB lower cache space. Total memory utilization at the node is
constant.

this, we track the memory utilization of running hyperparameter search on

AlexNet on OpenImages on a Config-SSD-V100 server using eight concurrent

jobs. Figure 4.12 plots the memory utilization over time for both the process

working memory, and the cache. CoorDL uses 5 GB of extra process memory

to store prepared mini-batches in memory until all hyperparameter jobs con-

sume it. We reduce the cache space given to CoorDL by 5 GB (keeping the

total memory consumption same for CoorDL and DALI). Despite the lower

cache space, CoorDL still accelerated training by 2.9×.

4.3.6 CoorDL on DGX-2

We now compare CoorDL against DALI on the bleeding-edge ML opti-

mized server DGX-2 while performing HP search across 16 GPUs using Open-
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Figure 4.13: Evaluation of CoorDL on DGX-2. This graph compares
DALI against CoorDL for HP search using 16 GPUs on the state-of-the-art
ML optimized server DGX-2. CoorDL outperforms the best GPU-based prep
mode of DALI which uses 5GB of GPU memory for pre-processing. CoorDL
allows training larger batch sizes, while providing better performance than
DALI.

Images dataset. Since this dataset can be fully cached in the memory of

DGX-2 (1.5TB DRAM), we observe no stalls due to data fetch beyond the

first epoch. However, the imbalance in the ratio of CPU-GPU results in prep

stalls which CoorDL mitigates by coordinating pre-processing. CoorDL ac-

celerates HP search by 1.5×– 2.5× over DALI by eliminating redundant data

prep, enabling efficient usage of CPU to mask prep stalls as shown in Fig-

ure 4.13.

4.4 Limitations and Discussion

CoorDL mitigates data stalls in a user-space library to better utilize

the computational capabilities of GPUs and thereby accelerate training. In

this section, we discuss some limitations and scope for future work.
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Trade-off between convergence rate and epoch time for other SGD

variants. In this dissertation, we focus on the most common case of mini-

batch SGD with a random shuffling of the data in every epoch which is the

default for the models we analyzed. However, for performance, practitioners

choose to shuffle datasets once very few epochs, or not perform cross-machine

shuffling in case of multi-machine training. A future direction is to understand

the impact of relaxing the ETL requirements assumed in this thesis (such as

random prep and shuffling every epoch) on epoch time and model convergence.

Although relaxing these constraints may reduce data stalls and hence epoch

time, it may prolong convergence, or affect the accuracy of some models. It is

worth investigating this behavior theoretically and empirically.

Remote Data Fetches. CoorDL assumes that the local storage on the ma-

chine is large enough to store the training dataset. In cases where the dataset

size exceeds the size of local storage device, stalls may occur due to remote

data fetches. We assume that this is not a common occurrence. We have

consistently found that most important DNN training models that provide

state-of-the-art results, across tasks (image classification, object detection,

language models, etc.), use publicly available datasets that entirely fit on a

single SSD - ImageNet-1K [179], ImageNet-22K [17], OpenImages-600 [80], or

music datasets [66].
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4.5 Summary

In summary, we present the design of CoorDL, a coordinated caching

and pre-processing library for DNN training. We evaluate CoorDL against the

state-of-the-art data pipeline DALI, on PyTorch using three different tasks

(image classification, object detection and audio classification) on two rep-

resentative server configurations and four large datasets. CoorDL provides

significant training speedups of upto 5.7× for HP search, 2.1× for multi-GPU

training on a single server, and upto 15× for multi-server distributed training.

The techniques behind CoorDL are simple and intuitive, easing adoption in

production systems.
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Chapter 5

Synergy: Mitigating Data Stalls in

Multi-Tenant Clusters

This chapter discusses how to mitigate data stalls in multi-tenant GPU

clusters. Enterprises typically setup large multi-tenant clusters, with expensive

hardware accelerators like GPUs, to be shared by several users and production

groups [105, 210]. Users can request jobs to be scheduled on the cluster,

specifying the number of GPUs required by the job.

These jobs are scheduled and managed either using traditional big-

data schedulers, such as Kubernetes [49] or YARN [203], or using modern

schedulers that exploit DNN job characteristics for better performance and

utilization [153, 209, 133, 87, 121, 166, 50]. These DNN schedulers decide

how to allocate GPU resources to many jobs while implementing complex

cluster-wide scheduling policies to optimize for objectives such as average job

completion times (JCT), makespan, or user-level fairness.

In this chapter 1, we exploit one of the main observations from our

data stall analysis : different DNNs exhibit different levels of sensitivity to the

1This Chapter is based on the arXiv preprint, Synergy: Resource Sensitive DNN Schedul-
ing in Multi-Tenant Clusters [144]
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amount of CPU, memory, and storage bandwidth available to the job. There-

fore, when such DNNs are co-scheduled, it is possible to improve the overall

cluster utilization and efficiency by performing resource-aware allocations us-

ing a new scheduler, Synergy.

The rest of this chapter is organized as follows. We first motivate the

need for resource-sensitivity aware scheduling in Section §5.1. We then present

Synergy, a resource-sensitivity aware scheduler that optimistically profiles the

DNN’s sensitivity to resources and makes disproportionate allocations, ensur-

ing no job achieves lower than GPU-proportional throughput in Section §6.2.

We present a heuristic scheduling mechanism Synergy-Tune that maps the al-

locations calculated by the profiler onto the cluster, while better utilizing the

resources compared to a GPU-proportional allocation in Section §5.3. Finally,

we show via extensive experimentation on physical and simulated clusters that

Synergy’s techniques improve average JCT by up to 3.4×, allowing a higher

input load in Section §6.3.

5.1 Motivation

Insight. The main insight that motivates our work is that DNNs co-scheduled

on a cluster exhibit different levels of sensitivity to CPU and memory al-

locations during training. Therefore, it is possible to improve the overall

cluster utilization and efficiency by performing resource-aware allocations in-

stead of the state-of-the-art GPU-proportional allocation without any hard-

ware changes. Prior work on characterization study of jobs in Microsoft’s
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Figure 5.1: CPU sensitivity. Since the server has 8 GPUs and 24 CPUs in
total, a GPU-proportional share is 3 CPUs. Some jobs such as Transformers
need as few as 1 CPU to achieve maximum training speed; others like AlexNet
need more than 12 CPUs per GPU.

Philly cluster [107] shows that CPU cycles are under-utilized in multi-tenant

clusters; we use this as motivation to show that we can exploit the disparity
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in resource requirements across jobs to improve overall cluster utilization

without hardware upgrades (storage, CPU, or memory).

Figure 5.1 plots the per-epoch time for various DNNs when trained

on 1 GPU (in isolation, one job at a time) by varying the number of CPUs

allocated to the job (ensuring that the dataset is fully cached for each job). It

is trained on a server whose GPU-proportional allocation per GPU is 3 CPUs

and 62GB of memory.

Figure 5.1a shows that most image and speech models are sensitive to

CPU allocations; smaller models like ShuffleNet and ResNet18 require 9–24

CPU cores per GPU to pre-process data items. Increasing the CPU allocation

from the GPU-proportional share 3 to 12 results in 3.1× faster training for

AlexNet, and increasing it to 9 results in 2.3× faster training for ResNet18.

On the other hand, most language models are insensitive to CPU allocations

as shown in Figure 5.1b. This is because they have light-weight input data pre-

processing. Transformer models for instance pre-processes the entire dataset

before training begins, unlike image classification models which perform several

unique data augmentation operations in every epoch [146].

Takeaway. When two jobs have to be scheduled on the same server, it is pos-

sible to co-locate a CPU-sensitive job with a CPU-insensitive one. This allows

CPU allocation to be performed in a resource-sensitive manner rather than

GPU-proportional allocation. We can thus give more CPUs to the sensitive

job and fewer to the insensitive one without hurting its throughput.
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Next, to understand the importance of memory allocations, we train

two models; an image classification model - ResNet18 on OpenImages [80]

and a language model GNMT on WMT, with varying memory allocations on

a server whose GPU-proportional share of memory per GPU is 62GB. We

observe that GNMT is insensitive to memory allocation; even if only 20GB

memory is allocated (which is the required process memory for training), the

training throughput is unaffected. However, increasing the memory from 62GB

to 500GB for ResNet18 speeds up training by almost 2×. This is because, lan-

guage models like GNMT, and transformers are GPU compute bound. There-

fore, fetching data items from storage if they are not available in memory does

not affect training throughput. On the other hand, image and speech models

benefit from larger DRAM caches. If a data item is not cached, the cost of

fetching it from the storage device can introduce fetch stalls in training [146].

Takeaway. When co-locating two jobs on a server, it is always beneficial to

pack a memory-sensitive job with an insensitive one, allowing a dispropor-

tionate resource-sensitive share of memory to improve the aggregate cluster

throughput.

5.1.1 Example

We now show how resource-sensitivity aware scheduling can improve

cluster efficiency using a small example. Consider two servers each with 8

GPUs, 24 CPUs and 500GB DRAM. Let’s say we have 4 jobs in the scheduling

queue, each requesting 4 GPUs as shown in Table 5.1. We schedule these jobs
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Job Model

J1 ResNet18

J2 Audio-M5

J3 Transformer

J4 GNMT

Table 5.1: Example jobs

Server Job GPU CPU Mem

S1
J1 4 12 250

J2 4 12 250

S2
J3 4 12 250

J4 4 12 250

Table 5.2: GPU-proportional allocation

Server Job GPU CPU Mem

S1
J1 4 23 400

J3 4 1 100

S2
J2 4 12 450

J4 4 12 50

Table 5.3: Resource-sensitive allocation

using FIFO scheduling policy.

We consider two different schedules; (1) GPU-proportional allocation

and (2) resource-sensitivity aware allocation. The results of these schedules are

shown in Table 5.2 and Table 5.3. Figure 5.2 compares the epoch time of each

of these jobs in the two scenarios. The increased resource allocation to CPU
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Figure 5.2: Resource sensitive scheduling. We compare the runtime of the
jobs with two different schedules; GPU-proportional and resource-sensitive.
By allocating resources disproportionately, CPU and memory sensitive jobs
see increased throughputs which reduces the average JCT by 1.5×.

and memory sensitive jobs in Schedule 2 speeds up J1 J2 significantly, while

leaving the runtimes of J3 and J4 unaffected. The average job completion time

in the cluster thus drops by 1.5× by performing resource-aware allocations.

5.1.2 Assumptions and Goals

Collocating ML training workloads in a shared, multi-tenant cluster

is a very common setup in several large organizations, for both research and

production [106, 51, 209, 153, 87, 133]. Synergy targets state-of-the-art multi-

tenant clusters similar to the ones published by prior large-scale studies by

organizations like Microsoft [106] and Alibaba [210]. These clusters use on-

premise servers or cloud VMs with pre-defined GPU, CPU, and memory re-

sources. The cluster itself is shared by multiple users and jobs, and each server

can host more than one job each with varying resource usage (some heavy on

CPU side pre-processing, while others heavy on GPU computation). For ex-
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ample, a server with 8 GPUs can host 8 single GPU jobs from different users.

Since the jobs that run on these clusters have varied resource profiles, Synergy

shows that it is possible to improve the overall cluster utilization and effi-

ciency by performing resource-aware allocations instead of the state-of-the-art

GPU-proportional allocation without any hardware changes. The techniques

introduced in Synergy can be used behind-the-scenes for cloud GPU VMs as

well by building a virtualization infrastructure to perform resource allocations

as per job needs instead of using fixed VM SKUs.

Synergy assumes that the GPU cluster is homogeneous; it currently

does not exploit performance heterogeneity across accelerators. Synergy also

assumes that the dataset is present locally at each server and ignores data

locality-awareness in its placement decisions as discussed further in §5.5. Syn-

ergy performs resource-aware allocations; it does not introduce a new schedul-

ing policy. One of the major advantages of Synergy is that, rather than con-

straining to a particular scheduling policy like LAS, or FTF, Synergy improves

a wide range of scheduling policies. Synergy’s innovation lies in identifying and

solving the resource disparity across co-located jobs in a cluster, and coming

up with an allocation that best utilizes all the cluster resources while improv-

ing individual job throughputs and using the existing scheduling policy chosen

by the cluster administrator.

Efficiently exploiting the heterogeneity in resource sensitivity among

DNN jobs raises two important problems which have not been tackled by

prior work:
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1. What is the ideal resource requirement for each job (with fixed GPU

demand) and how can this be determined quickly?

2. How should we pack these jobs onto servers along multiple resource di-

mensions efficiently, especially when we can tune the job’s demand for

these resources?

5.2 Synergy: Design

Synergy is a round-based scheduler for GPU clusters that arbitrates

multi-dimensional resources(GPU, CPU, and memory) in a homogeneous clus-

ter among the set of runnable jobs in every round, which is decided based on

an existing scheduling policy like SRTF, FTF, FIFO etc. Synergy does not in-

troduce a new scheduling policy; it imparts and augments resource sensitivity

awareness to the existing scheduling policies. Synergy accomplishes this in two

steps. First, it identifies the job’s best-case CPU and memory requirements

using an optimistic profiling technique (§5.2.1). Synergy then identifies a set

of runnable jobs for the given round using an existing scheduling policy such

that their collective GPU demand is less than or equal to the GPUs available

in the cluster. Then, using the profiled job resource requirements, Synergy

packs these jobs on to the available servers along multiple resource dimensions

using a close-to-optimal heuristic mechanism ( §5.3). At the end of a round,

the set of runnable jobs are updated using the scheduling policy, and their

placement decisions are recomputed.
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We now discuss both the components of Synergy in detail.

5.2.1 Optimistic Profiling

A DNN job is profiled for its resource sensitivity once per lifetime of

the job, i.e. on job arrival. Each incoming job is profiled by varying the CPU

and memory allocated to the job. A resource sensitivity matrix is then con-

structed for discrete combinations of CPU and memory allocations as shown in

Figure 5.3. Since DNN training has a highly predictable structure, empirically

evaluating training throughput for a few iterations gives a fair estimate of the

actual job throughput [209, 146].

It is easy to see that naively profiling different combinations of CPU

and memory can be very expensive. For instance, if the cost of profiling one

combination of CPU, and memory for a job is 1 minute, then to profile all

discrete combinations of CPU and memory (assuming allocation in units of

50GB) on a server with 24 CPUs and 500GB DRAM takes about 24*10 = 240

minutes (4 hours)!

To tackle this problem, Synergy introduces an optimistic profiling tech-

nique that exploits the predictability in the relationship between job through-

put and memory allocation. We observe that, with DNN-specific caches like

MinIO [146], it is easy to model the job throughput behaviour as wevary the

amount of memory allocated to a job at fixes CPU allocation. This is because,

MinIO ensures that a job gets x% cache hits in every epoch if the memory

allocated to the job holds x% of the dataset. For a given CPU allocation that
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Figure 5.3: Optimistic profiling. We empirically evaluate the sensitivity
of a model to varying # CPUs assuming a fully cached dataset. Rest of the
matrix is completed using estimation

determines the CPU pre-processing speed, and a known storage bandwidth,

it is easy to analytically model the job throughput or varying memory alloca-

tion. Therefore, we only need to empirically profile the job for varying CPU

values at full memory allocation, as indicated by the last row of the matrix in

Figure 5.3. All the other entries can be estimated using the above technique.

This leads to a 10× reduction in profiling time, bringing it down to 24 minutes!

We experimentally validate this in Figure 5.4a. For a 8-GPU Resnet18 job, we

compare the modeled job throughput using Synergy to the empirical results

obtained by training the job for 2 epochs with varying memory allocations.

As we see in Figure 5.4a, Synergy’s estimations are within 3% of the empirical

results, without having to actually run the model.

To further optimize profiling time, we observe that we do not require

exact throughput values for a job with varying CPU allocations. We instead

need a curve depicting the empirical job throughput. Therefore, instead of
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(a) Memory Validation

(b) CPU validation

Figure 5.4: Validating Synergy’s optimistic profiling strategy. The
graphs compare the profiling results to empirical runs for CPU and memory
demands in ResNet18

profiling the job for all possible CPU values, we pick discrete points for CPU

profiling using the following algorithm. We start with the maximum CPU allo-

cation and do a binary search on the CPU values to estimate job throughput.
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If the profiled point resulted in a throughput improvement that is less than a

fixed threshold (say 10%), then we continue binary search on the lower half of

CPU values, else we profile more points on the upper half. The idea here is to

empirically profile CPU regions that show significant difference in job through-

put, while skip those regions with little to no improvement in throughput. We

experimentally show the efficacy of our CPU profiling technique in Fig 5.4b

for a 1-GPU ResNet18 job. We compare the normalized job runtime (wrt 1

CPU) using empirical results averaged over 2 epochs of the job and Synergy’s

optimistic profiling averaged over 50 iterations (approximately, a minute per

profile). Synergy is able to mimic the empirical job performance very closely,

in under 8 minutes (using just 8 CPU profile points instead of 24). We believe

that this is a reasonable overhead as it is incurred only once per lifetime of the

job, which typically runs for hours.

After profiling a job on arrival, the job along with its resource sen-

sitivity matrix is enqueued into the main scheduling queue, from which the

scheduling policy picks a set of runnable jobs every round. When the job

is scheduled and run on the cluster, its performance is monitored by a local

agent in the cluster, which then updates the empirical performance for a given

CPU-memory allocation combination online, if it deviates from the value in

the sensitivity matrix.
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5.2.2 Scheduling mechanism

Synergy performs round-based scheduling. At the beginning of each

scheduling round (a pre-defined time interval, say 15 minutes), Synergy iden-

tifies a set of runnable jobs from the scheduling queue that can be packed on

the cluster in the current round duration. The set of runnable jobs is iden-

tified using a known scheduling policy such as FIFO, SRTF, LAS, or FTF.

Using the resource sensitivity matrix, each of these jobs are packed onto the

available servers in the cluster while satisfying the multi-dimensional resource

constraints as opposed to simply performing a GPU-proportional allocation of

CPU and memory resources.

Job demand vector. To pack the jobs onto servers, we first construct a

job demand ector that indicates the GPU demand, and best-case CPU and

memory requirements for the job. We identify the best-case values using the

resource sensitivity matrix. We pick the minimum value of CPU and memory

that saturates the job throughput.

Packing a job with multi-dimensional resource demands is analogous

to multi-dimensional bin packing problem which is NP hard [207]. Therefore,

we first evaluate the efficacy of a naive greedy scheduling mechanism as an

approximation to tackle the multi-dimensional resource allocation problem.

5.2.3 Synergy-Greedy: Greedy Scheduling

A naive greedy multi-resource packing algorithm translates to a first-fit

approximation of the multi-dimensional bin packing problem [74]. Given a job
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demand vector populated as described in §5.2.2, the greedy algorithm picks

the next runnable job decided by the objective function (or the scheduling

policy), and places it on the server that can satisfy the jobs demands in all

dimensions. If no such server exists, the job is skipped over for this round

and the next available job is scheduled. This greedy approach has two main

drawbacks

• This scheme can result in CPU and memory resources being exhausted by

jobs, while leaving GPU resources underutilized. This results in GPU frag-

mentation in the cluster. We experimentally show that GPU fragmentation

in Synergy-Greedy severely degrades cluster objectives such as average

job completion times (5.4.5). GPUs being the most expensive resource in a

GPU-cluster, thus have to be utilized efficiently to run DNN jobs.

• This scheme also hurts the fairness of the scheduling policy as some jobs can

be skipped over for a long time if their resource demands cannot be satisfied

in the cluster.

Synergy-Greedy thus introduces two major problems in the cluster -

fragmentation and violation of scheduling fairness. The challenge ahead of us

is to design a scheduling mechanism that eliminates GPU under-utilization due

to fragmentation, and upholds the fairness properties of the given scheduling

policy, while performing multi-dimensional resource allocation.

However, any greedy heuristic solution we come up with, is not opti-

mal in our problem setting as greedy solutions do not make global repacking
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decisions when new jobs arrive; it is quite expensive to do so. Therefore, one

pertinent question is to understand how good is the allocation produced by

our heuristic when compared to an optimal solution

To this end, we first formulate a theoretical upper bound on the op-

timal throughput achieved by the cluster given a set of runnable jobs and

their resource sensitivity profiles. We then discuss the challenges associated

with materializing the optimal allocation on a physical cluster and introduce

Synergy-Tune, an empirically close-to-optimal heuristic solution.

5.3 Scheduling Mechanism

We first present our formulation of an optimal allocation that provides

an upper bound on the achievable cluster throughput. This provides a solid

basis for us to empirically evaluate how close to optimal the heuristic solution

we design gets.

5.3.1 Synergy-Opt

Problem Definition. Our goal is to allocate CPU and memory to each job

so as to maximize the throughput, while guaranteeing that each job makes

at least as much progress as it would do if we allocate its GPU-proportional

share.

Notation

• s: The number of machines or servers.
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• For each machine i ∈ [s], we denote Gi, Ci,Mi as the total GPU, CPU,

and memory available on machine i.

• We denote the total GPU available across all machines by G. That is,

G =
∑

iGi. Similarly, we denote C,M as the total CPU and Memory

capacity across all machines.

• We denote jobs by indices j. The GPU requirement of job j is denoted

by gj.

• For each machine i ∈ [s], we denote Cg,Mg as the GPU-proportional

allocation of CPU and memory. That is, Cg = Ci/Gi ∗ gj and Mg =

Mi/Gi ∗ gj.

• Jt: The set of jobs that needs to be scheduled in each round. Jt is the

set of runnable jobs for this round, identified by the scheduling policy

such that the total GPU requirements of jobs in Jt is at most the total

GPU capacity of the cluster. In notation,
∑

j∈Jt gj ≤ G.

• n: We denote the number of jobs in the set Jt by n. In notation, n = |Jt|.

• Wj: We assume that resource sensitivity matrix for each job j is given as

input. Wj[c, r] denote the amount of progress made on job j per round

if c units of CPU and r units of (RAM) memory are allocated to job j.

• With a baseline GPU-proportional allocation strategy the progress a job

makes in each round is equal to W [Cg,Mg].
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5.3.1.1 A Upperbound on Throughput in an Optimal Solution

It is not hard to show that our problem is NP-hard. So, we resort

to finding approximate solutions. Towards that we first find an upperbound

on the throughput achievable by an optimal solution. We achieve that by

formulating our problem as a linear program (LP). Moreover, we assume an

idealized setting: We assume that all the CPU and memory available across

all the machines is present in one (super) machine. That is, there is only

one machine with C units of CPU and M units of memory. Note that in

reality C units of CPU and M units of memory are spread across s machines.

This means that in our throughput allocation, we do not take into account the

effect of network when resources are allocated to jobs across multiple machines.

Therefore, the true optimal solution of our problem can only do worse than

the idealized allocation.

5.3.1.2 An LP formulation

We get an upperbound on the optimal allocation via an LP formulation.

The variables of our LP are denoted by y{c,m,j}, which should be interpreted as

follows. If for a job j ∈ Jt, y{c,m,j} = 1, then it means that in the LP solution

c units of CPU and m units of memory are allocated. We further note that for

every job j, there is a variable y{c,m,j} for for every possible allocation of CPU

and memory. We consider these variables in the discrete space as identified by

our resource sensitivity matrix.

• Our objective function is to maximize the throughput. We formulate it
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as follows using our LP variables.

Maximize
∑
j∈Jt

∑
[c,m]

Wj[c,m] · y{c,m,j} (5.1)

Now, we enforce constraints such that LP solution is feasible in the

idealized setting we talked about.

• First constraint we enforce is that the total CPU allocated to jobs is no

more than the total capacity available:

∑
j∈Jt

∑
[c,m]

c · y{c,m,j} ≤ C (5.2)

• Similarly, we make sure that the total memory allocated to jobs is no

more than the total capacity available:

∑
j∈Jt

∑
[c,m]

m · y{c,m,j} ≤M (5.3)

• We want LP to allocate only one configuration of CPU and memory to

each job.

For each job j ∈ Jt:
∑
[c,m]

y{c,m,j} = 1 (5.4)

• Finally, we want LP solution to be as good as the fair allocation.

For each job j ∈ Jt:
∑
[c,m]

Wj[c,m] · y{c,m,j} ≥ Wj[Cg,Mg] (5.5)
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It is easy to verify that the optimal solution for our problem defines

a feasible solution to our LP. On the other hand, as the LP solution can be

fractional, in the sense y{c,m,j} variables can take fractional values, the optimum

solution for LP can be no smaller than the true optimum solution, and thus

always an upper bound on the throughput one can achieve for our problem.

By enforcing the integrality constraints on y{c,m,j} variables one can getting

a tighter upper bound. Indeed, in our experiments we solve this as a Integer

Linear Program (ILP) where y{c,m,j} takes boolean values. For every job, we

define the total CPU (c∗j) and memory (m∗j) allocated by the optimal ILP

solution as follows.

For each job j, define c∗j := c if y{c,m,j}==1. (5.6)

and m∗j := m if y{c,m,j}==1. (5.7)

5.3.1.3 Feasible Allocation on Multiple Machines

Recall that in the LP(1-5), we assumed that all the resources are present

on a single machine. However, in reality these resources are spread across

multiple machines. So, now we need to make an allocation taking into account

this fact. We achieve that by solving another linear program.

Now our goal is the following:

• For each job j ∈ Jt, allocate gj units GPU, c∗j units of CPU, and r∗j units
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of memory across s machines such that each job is fully scheduled on a

single machine. We call (gj, c
∗
j , r
∗
j ) as the demand vector of job j.

Again, the above problem is an instance of multi-dimensional bin pack-

ing problem, so it is NP-hard. Instead, we try to reduce the number of jobs

that get fragmented. So, our new goal is:

• For each job j ∈ Jt, allocate gj units GPU, c∗j units of CPU, and r∗j

units of memory across s machines such that the number of jobs that

get fragmented is minimized.

A Feasible Allocation via Second LP

The variables of the second LP are denoted by xi,j. Here index i denotes

the machine and j denotes the job. The variables xi,j are interpreted as follows:

if xi,j = 1, it means that resources of job j (that gj units of GPU, c∗j units of

CPU, and r∗j units of memory) are allocated on machine i.

Now we are ready to find a feasible allocation minimizing the number

of fragmented jobs.

• First constraint we enforce is that the total GPU allocated to jobs is no

more than the total capacity available on the machine:

For each machine i in [s]:
∑
j∈Jt

gj · xi,j ≤ Gi (5.8)
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• Next, we make sure that the total CPU allocated is no more than the

total capacity available on the machine:

For each machine i in [s]:
∑
j∈Jt

∑
[c,m]

c∗j · xi,j ≤ Ci (5.9)

• Similarly, we make sure that the total memory allocated is no more than

the total capacity available on the machine:

For each machine j in [s]:
∑
j∈Jt

∑
[c,m]

r∗j · xi,j ≤Mi (5.10)

• We make sure that every job is allocated all the resources it demands:

For each job j ∈ Jt
∑
i∈[s]

xi,j ≥ 1 (5.11)

• Finally, We make sure that variables are positive.

For each job j ∈ Jt and i ∈ [s] xi,j > 0 (5.12)

Using linear programming theory, we now prove a structural property

about our LP that states that most of the variables are integral.

Theorem 5.3.1. Suppose we assume that no job demands more CPU, GPU

or memory available on a single machine. Then, the total number of jobs that

get fragmented in the LP (8-12) is at most 3s.
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Proof. Let {x∗i,j}i,j denote an optimal solution to the LP(8-12). We know from

linear programming theory that for every LP, there is an optimal solution

which is a vertex of the polytope. Let P denote the set of positive variables

in the LP solution. That is set of xi,j such that xi,j > 0. A vertex solution is

defined by a linearly independent family of tight constraints. A tight constraint

means that in the LP solution a constraint is satisfied with an equality (=). A

tight constraint of the form xi,j = 0, only leads to variables not in P. Therefore,

we only we need to consider tight constraints of the form (8), (9), (10), and

(11). Therefore, number of variables taking positive values in P is bounded

by

|P | ≤ 3s+ n (5.13)

The above equation is true because there is only 1 constraint of the

type (8), (9), and (10) for each machine and there are s machines. Further

more there is one constraint of type (10) and there are n jobs.

Now let N1 denote the number of jobs that got fragmented in the LP

(8-12) solution. Now each such job contributes at least 2 variables to P . This

implies,

2N1 + (n−N1) ≤ |P | ≤ 3s+ n (5.14)

Therefore, N1 ≤ 3s, and it concludes the proof.
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5.3.1.4 Challenges with operationalizing Synergy-Opt

While the allocations identified by Synergy-Opt provides an upper

bound on the optimal cluster throughput, it is challenging to operationalize

these allocations in the real world due to two main reasons;

1. Solving two LPs per scheduling round is a computationally expensive

task. As cluster size and the number of jobs per round increases, the

time to find an optimal allocation exponentially increases (§5.4.6)

2. The allocation matrix obtained with the second LP can result in frac-

tional GPU allocations when jobs are split across servers; for instance,

a valid allocation might assign 3.3 GPUs on server 1 and 2.7 GPUs on

server 2 for a 6 GPU job. Realizing such an allocation requires a heuristic

rounding off strategy to ensure non-fractional GPU allocations, as GPU

time or space sharing, and its impact on job performance is considered

beyond the scope of our work.

5.3.2 Synergy-Tune

We now describe Synergy-Tune, our heuristic scheduling mechanism.

Goal. Our goal is to design a scheduling mechanism that allocates multi-

resource demand job onto available servers in the cluster each round. In doing

so, we want to ensure that (1) We do not affect the fairness properties of the

scheduling policy used. (2) The expensive GPU resources are not fragmented

and underutilized.
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Allocation Requirements. Synergy-Tune’s allocation must satisfy the fol-

lowing requirements.

• The GPU, CPU, and memory resources requested by a single-GPU job must

all be allocated on the same server.

• A multi-GPU job can either be consolidated on one server, or split across

multiple servers. In the latter case, the CPU and memory allocations must

be proportional across servers. For instance, if the job demands (2GPU, 12

CPU, 300GB DRAM), then while splitting it across two servers, we need

to ensure that each server gets (1GPU, 6CPU, 150GB DRAM). This is

because, multi-GPU jobs train on a separate process on each GPU, and

synchronize at regular intervals, i.e., after one or many iterations. The job

performance will vary across processes if each GPU does not get the same

ratio of resources, and will eventually proceed at the speed of the process

with the lowest allocation of CPU and memory.

In a shared cluster where users share the available resources across

their jobs, it is import to enforce fairness in terms of throughput achieved by

individual jobs. We need to ensure that no job runs at a throughput lower than

what it would have achieved if we allocated a GPU-proportional share of CPU

and memory resources. Additionally, we need to respect the priority order

of jobs identified by the scheduling policy. For instance, a FIFO scheduling

policy can be implemented using a priority queue sorted by job arrival times.

Our mechanisms must schedule the top n jobs from this priority queue in

every round that fit the cluster. Understanding the term fit is important.
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As we mentioned, a DNN job can run as long as the requested number of

GPUs are available; irrespective of the amount of memory and CPU available.

Therefore, Synergy-Tune identifies a set of runnable jobs as the top n jobs

from the scheduling queue, whose GPU demands can be exactly satisfied by

the available servers in the cluster. Synergy-Tune picks this runable job set

irrespective of the job’s other resource demands - which are fungible. Note

that, unlike Synergy-Greedy, we do not skip over any jobs unless it cannot

be scheduled (GPU demand cannot be met). Therefore, we never underutilize

the GPUs when the cluster is at full load.

Next, Synergy-Tune greedily packs each of these runnable jobs along

multiple resource dimensions on one of the available servers, with the objective

to minimize fragmentation. To achieve this, Synergy-Tune sorts the runnable

jobs by their GPU demands, followed by CPU, and memory demand. For each

job j in order,

Synergy-Tune picks the server with the least amount of free resources

just enough to fit the demand vector of j. If it is a multi-GPU job, then we

find a minimum set of servers with sufficient GPU availability that can fit the

job’s demands in entirety. However, it is possible that the job cannot fit in the

cluster along all dimensions. In such a case,

1. We check if the job’s demand vector is greater than proportional share of

resources, In this case, we switch the job’s demand to GPU-proportional

share and retry allocation.
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2. If the job still does not fit the cluster, or if the job’s demand vector was

less than or same as GPU proportional allocation in step (1), then to

ensure fairness, we cannot further reduce the current job’s demand. In

this case, we do the following.

(a) We repeat step (1) ignoring the job’s CPU and memory require-

ments. We find a server that can just satisfy the job’s GPU re-

quirements. We know by construction that there is atleast one job

on this server, which is allocated more than GPU-proportional share

of resources. We identify the job or a set of jobs (Js) on this server

by switching whom to GPU-proportional share, we can release just

as much resources required by the current job j. We switch the jobs

in Js to fair-share and by design, job j will fit this server.

(b) We continue this recursively for all runnable jobs.

In the worst case, all the running jobs in a round could be allocated

GPU-proportional share of resources. Therefore, Synergy ensures that its al-

locations never degrades a job throughput to less than GPU-proportional al-

location.

5.3.3 Discussion

While Synergy-Tune is simple to implement and has many appeal-

ing properties that it makes local changes, which in principle can be paral-

lelized, and converges to allocations where every job strictly achieves as much
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throughput as its GPU-proportional allocation, one pertinent question is to

understand how good is the allocation produced by Synergy-Tune compares

to an optimal solution. One natural way is to compare Synergy-Tune to an

allocation produced by an Integer Program (IP). In our experiments, we see

that for smaller instances Synergy-Tune produces allocations that are very

close to the optimum.

5.3.4 Implementation

We implement Synergy and an associated simulator in 8000 lines of

Python code. Our scheduler is event-driven. There is a global event queue

where job arrivals, schedule event, and deploy events are queued. These events

are handled in the order of their arrival time. There is a priority job queue,

where all the jobs arriving into the cluster are added. This queue is sorted by

the priority metric decided by the scheduling policy; for instance, SRTF sorts

the jobs in the order of job remaining time.

When a schedule event occurs, the scheduler collects a list of runnable

jobs from the job queue and identifies the appropriate placement for these

jobs for the following round, either using Synergy-Greedy, Synergy-Tune or

Synergy-Opt. Then when a deploy event is triggered, these allocations are

deployed on to the cluster. By default, every job requests for a lease update to

continue running on the same server, if its allocations haven’t changed for the

next round [153]. The scheduler then either grants a lease update or terminates

the lease for the job, adding it back to the job queue.
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The scheduler and the DNN jobs interact via a thin API provided by the

Synergy data iterator. DNN job scripts must be updated to call the Synergy

iterator which is a wrapper around the default PyTorch [29] and DALI [21]

iterators. The iterator handles registering the job with the scheduler, and

appropriately sending lease updates, It also checkpoints the job to a shared

storage if its lease is terminated. The iterator also synchronizes across GPU

processes for a multi-GPU job to ensure that each process makes identical

progress. We use gRPC [3] for communicate between the scheduler and the

jobs.

We implement Synergy-Opt in cvxpy [73] for use in our simulator. The

optimistic profiling module is also implemented in Python, and it profiles the

incoming jobs hooked to the Synergy iterator, prior to the job’s initial addition

to the scheduling queue. This is a one time overhead, which is negligible when

compared to the long runtime of our jobs.

5.4 Evaluation

In this section, we use a number of microbenchmarks, trace-driven sim-

ulations from production cluster traces, and physical cluster deployment to

evaluate the efficacy of Synergy’s scheduling and profiling mechanism. Our

evaluation seeks to answer the following questions.

• Does Synergy’s data-aware scheduling mechanism improve objective met-

rics such as makespan and average JCT in a physical cluster (§5.4.2) and
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in trace-driven simulations of large-scale clusters (§5.4.3, §5.4.4) ?

• How does Synergy-Tune and Synergy-Greedy perform with different

workload splits and how well do they utilize available resources (§5.4.5)?

• How does Synergy compare to Synergy-Opt (§5.4.6) ?

5.4.1 Experimental setup

Clusters. Our experiments run on both a physical and a large simulated

cluster. Our experiments are performed on state-of-the-art internal servers at

Microsoft - these servers are part of larger multi-tenant research/production

clusters. We run physical cluster experiments on a cluster with 32 V100 GPUs

across 4 servers. Each server has 500GB DRAM, 24 CPU cores, and 8 GPUs.

In all our experiments, fair-share CPU allocation is 3 cores per GPU and

fair-share memory allocation is 62.5GB per GPU.

For simulated experiments, we assume two cluster sizes; a 128 GPU

cluster across 16 servers and a 512 GPU cluster across 64 machines, where

each machine resembles the physical server configuration mentioned above.

Models. Our experiments consider 10 different DNNs (CNNs, RNNs, and

LSTMs) spanning across image classification (AlexNet, ResNet18, ShuffleNet,

MobileNet, ResNet50), speech recognition (DeepSpeech), music classification

(M5), language translation (GNMT), and language modeling (LSTM, Transformer-

XL). We categorize these models by task (image, language, and speech) and

assign a certain weight to these tasks in our traces, called the split. For in-
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Task Model Dataset

Image

Shufflenetv2 [219]

ImageNet [180]
AlexNet [117]
Resnet18 [91]

MobileNetv2 [181]
ResNet50 [91]

Language
GNMT [208] WMT16 [37]

LSTM [] Wikitext-2 [136]
Transformer-XL [63] Wikitext-103 [136]

Speech
M5 [62] Free Music [66]

DeepSpeech [89] LibriSpeech [165]

Table 5.4: Models used in this work.

stance, if the split for a given trace is (30,40,30), then the percentage of image,

language, and speech models in the job trace is 30%, 40% and 30% respectively.

All experiments are performed on PyTorch 1.1.0.

We run our physical and simulated experiments using both production

traces from Microsoft Philly cluster [18] and traces derived using the Philly

trace.

In the production trace, we use the job GPU demand, arrival time, and

duration as is from the trace and fix an appropriate cluster size for simulation.

We assign a model to each job from Table 5.4 based on a chosen workload

split .

In the production-derived trace, we extract job GPU demand from the

production trace and assign a model based on the chosen split . We then

appropriately scale the job runtime and arrival for the chosen cluster size,

while keeping the job duration distribution similar to the one in Philly trace.
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We achieve this as follows:

• Duration. The duration of each job for GPU-proportional allocation is

sampled from an exponential distribution: the job duration is set to 10x

minutes, where x is drawn uniformly from [1.5,3] with 80% probability,

and from [3,4] with 20% probability similar to the trace duration used

in prior work [153]. The iterations for this job is calculated using the as-

signed runtime and the per-iteration time obtained from the empirically

profiled value.

• Arrival. We classify derived traces into two kinds based on the job

arrival time : (1) a static trace where all the jobs arrive at the start

of the workload, and (2) a dynamic trace, where the job arrival time is

determined by a Poisson distribution at a rate λ.

Such a derived trace gives us the flexibility to vary the load on the

cluster, the distribution of job duration and the composition of jobs in the

workload. It thus helps evaluate our scheduling mechanism across a range of

workload scenarios.

The experiments with the production Philly trace uses a 512 GPU

cluster with a subrange of the trace containing 8000 jobs. The derived traces

with varying job arrival rates uses a 128 GPU cluster. In both cases, we report

the average metrics across a set of 1000 jobs in steady state.

For the physical cluster experiment, we choose a fixed arrival rate for the

derived trace that keeps our cluster at full load (GPU demand of all runnable
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jobs > available GPUs in the cluster). For the simulated experiments, we vary

the load λ on the cluster to evaluate its impact on cluster metrics. For the

simulated experiments, we show results for two trace categories - (1) all jobs

request single-GPU (2) multi-GPU jobs that request 1, 2, 4, 8, or 16 GPUs.

Policies and metrics. We evaluate Synergy against GPU-proportional for 4

different scheduling polices; FIFO, SRTF, LAS, and FTF. For a static trace,

we measure makespan (time to complete all jobs submitted at the beginning

of the trace) and for the dynamic job traces, we measure the average job

completion time (JCT) of a subset of jobs in steady state (cluster at full load),

and their CDF. This is same as the evaluation metrics used by prior related

work [209, 133, 153].

5.4.2 End-to-End Physical Cluster Experiments

For the physical cluster experiments, we run a Synergy-Tune (tune)

and GPU-proportional allocation (proportional) for two different workload

traces. (1) A static production-derived trace of 100 jobs with a split (60,30,10),

scheduled using FIFO and evaluated for makespan. (2) A dynamic production-

derived trace with continuous job arrivals and a split of (30,60,10), scheduled

using SRTF and evaluated for average and 99th percentile JCT. Both scenar-

ios use an appropriately sized trace that keeps the cluster fully loaded. We

compare the obtained results to that of the simulator by replaying the same

trace. Additionally, we compare our metrics to the upper bound generated by

the optimal solution, Synergy-Opt (opt). The results are shown in Table 5.5.
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Policy Workload
Mechanism

Time (hrs)
(Metric) Split Deploy Simulate

FIFO
(Makespan) 60-30-10

Proportional 16 15.67
Tune 11.6 11.33
Opt - 11.01

SRTF
(Avg JCT) 30-60-10

Proportional 4.81 4.52
Tune 3.21 3.19
Opt - 3.06

SRTF
(99 Percentile

JCT)

30-60-10
Proportional 17.32 16.85

Tune 8.59 8.54
Opt - 8.21

Table 5.5: Physical cluster experiments. This table sshows the comparison
of makespan and average JCT, and 99th percentile JCT for two different traces;
(1) a static trace with a workload composition of 60% image, 30% language
and 10% speech models using FIFO scheduling (2) a dynamic trace with a
workload composition of 30% image, 60% language and 10% speech models,
using SRTF scheduling policy. Synergy-Tune improves makespan by 1.4×,
average JCT by 1.5 × and 99th percentile JCT by 2×.

Synergy-Tune reduces the makespan of static trace by 1.4× when com-

pared to a data-agnostic GPU-proportional allocation mechanism. For the

dynamic trace, Synergy-Tune reduces average JCT of steady-state jobs by

1.5× while reducing the 99th percentile JCT of these jobs by 2× as shown in

Table 5.5.

We compare the observed results from physical experiments to the same

trace replayed on our simulator. As shown in Table 5.5, the difference between

metrics in real and simulated clusters are less than 5%, demonstrating the

fidelity of the simulator.

We also see from Table 5.5 that the cluster objectives achieved by
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Synergy-Tune are within 4% of the optimal solution in this case. We do not

deploy the optimal allocations due to the challenges enumerated in §5.3.1.4

5.4.3 End-to-end results in simulation

We run simulated experiments on a cluster of 128 GPUs across 16

servers using production-derived traces. Each server is setup to mimic the

real-world server used in our physical cluster experiments. We evaluate Syn-

ergy against GPU-proportional allocation mechanism for 4 different schedul-

ing policies - FIFO, SRTF, LAS and FTF. We run dynamic workload traces,

where jobs arrive continuously throughout the workload, at a rate lambda, as

such a workload closely resembles real-world traces [18]. We show results for

both single-GPU traces (where all jobs request 1 GPU) and multi-GPU traces

(where jobs request multiple GPUs). Our metric of evaluation is the average

Job Completion Time (JCT) of a set of 1000 jobs in cluster steady state.

Comparing Synergy-Tune to GPU-proportional allocation. We plot

the average JCT for a set of jobs in steady state cluster for varying cluster

loads. We show the results for three scheduling policies, FIFO (single GPU

trace) in Figure 5.5, LAS (multi-GPU trace) in Figure 5.6, and SRTF (multi-

GPU trace) as shown in Figure 5.7. In all cases, we assume a workload split of

(20,70,10). We plot both average JCT and the CDF of job completion times

for a specific cluster load in all the scenarios described above. For the multi-

GPU traces, we split the CDF into those for short and long jobs to distinctly

differentiate the tail of the distribution. We make three key observations.
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(a) Avg JCT across load

(b) CDF of JCT at 9 jobs/hr

Figure 5.5: Average JCT and CDF for FIFO. Comparison of baseline
GPU-proportional allocation with Synergy-Tune and Synergy-Opt.

First, Synergy-Tune improves average JCT by up to 3.4× in the single-

GPU trace, and up to 1.6× in the multi-GPU trace by speeding up resource

sensitive jobs with disproportionate allocation. The improvement in average

JCT is higher as the load increases, because at low load the cluster is not at

full capacity. As load increases, jobs start to get queued and incur queuing
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delay before being scheduled on the cluster. Since Synergy significantly speeds

up individual jobs using disproportionate resource allocation, pending jobs

can get scheduled faster, thereby reducing their queuing delays. Therefore

Synergy improves cluster metrics by both reducing qeuing delays and speeding

up individual jobs. Second, Synergy-Tune is able to sustain a larger cluster

load than GPU-proportional allocation. For multi-GPU scheduling with LAS,

Synergy-Tune reduced the 95th percentile JCT of long jobs by 2×. Third,

the average JCT achieved with Synergy-Tune is within 10% of the optimal

solution in all cases.

Similarly, for FTF scheduling policy, Synergy-Tune observed 2.3× and

2× improvement in average JCT for a single-GPU and multi-GPU trace re-

spectively.

5.4.4 Simulation with production traces

We run simulated experiments on a cluster of 512 GPUs across 64

servers using a subrange of the Philly trace published by Microsoft [18]. We

assume a workload split of (20,70,10) for this trail. Table 5.6 lists the aver-

age JCT with Synergy and GPU-proportional scheduling for three different

scheduling policies. Across all policies, Synergy is able to reduce the average

JCT compared to GPU-proportional scheduling due to better split of resources

between jobs.

We further plot the CDF of job completion time for one of the schedul-

ing policies, SRTF as shown in Figure 5.8. We split the set of 1000 monitored
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(a) Avg JCT

(b) CDF of JCT at 4 jobs/hr (short)

(c) CDF of JCT at 4 jobs/hr (long)

Figure 5.6: Average JCT and CDF for LAS policy.
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(a) Avg JCT

(b) CDF of JCT at 5.5 jobs/hr (short)

(c) CDF of JCT at 5.5 jobs/hr (long)

Figure 5.7: Average JCT and CDF for SRTF.
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Policy SRTF LAS FIFO

GPU-prop. 30 32 71

Synergy 26 28 62

Table 5.6: Average JCT with Synergy across different scheduling policies.

(a) CDF of JCT for short jobs

(b) JCT speedup across jobs

Figure 5.8: CDF for SRTF. This graph compares the baseline GPU-
proportional allocation with Synergy-Tune for SRTF scheduling policy for
long and short jobs using a subrange of real-world Philly trace. The JCT of
individual jobs improves by upto 9× with Synergy.
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JCT (hrs) Short Long

Avg
Prop. 2 80

Synergy 1.7 68

99p
Prop. 9 660

Synergy 4 641

Table 5.7: Cluster metrics. This table shows the average and 99th percentile
JCT for short and long jobs with SRTF

jobs into short (JCT < 4 hrs) and long jobs. Synergy reduces the tail of the

distribution by 2.2× for short jobs and the average JCT of both long and short

jobs by 15% as shown in Table 5.7. For each of the 1000 monitored jobs, we

plot the individual job speedup with repect to GPU-proportional scheduling

in Figure 5.8b. We see that Synergy speeds up jobs by upto 9× using better

resource allocations.

5.4.5 Impact of workload split

The workload split decides the percentage of resource sensitive jobs in

the workload. As the percentage of speech and image models increase in the

trace, there may not be enough spare CPU and memory resources to perform

disproportionate allocation, as they are mostly CPU- and memory-hungry.

Figure 5.9 plots the average JCT with varying load for 3 different workload

splits with FIFO scheduling for multi-GPU jobs. As the percentage of resource-

sensitive jobs increase, we observe that Synergy-Greedy breaks down, and

ends up degrading JCTs significantly compared to a GPU-proportional alloca-
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(a) Split=(20,70,10)

(b) Split=(33,33,33)

(c) Split=(50,0,50)

Figure 5.9: Varying workload split.
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tion. This is because, the naive greedy technique results in resource fragmen-

tation when the demand along CPU and memory dimensions are high, leaving

several GPUs underutilized. Whereas, by the design of Synergy-Tune, it

allocates at least as many resources required to achieve the throughput of

GPU-proportional allocation; therefore, even in the worst case workload split

shown in Figure 5.9c, where all the jobs are CPU- and memory-sensitive,

Synergy-Tune performs as good as GPU-proportional allocation.

Resource utilization. Figure 5.10 plots the GPU allocation over time for

the workload in Figure 5.9c at a high load of 5.5 jobs/hr where the cluster

GPU demand is higher than 100%. While Synergy-Tune is able to sustain

a higher load by finishing jobs faster at low cluster load, Synergy-Greedy

severely underutilizes GPU resources throughout the workload, trading it off

for higher CPU and memory allocation. At low loads as shown in Figure 5.11,

GPU-proportional allocation only utilized 60% of the available CPU resources,

while Synergy-Tune utilized it up to a 90%, resulting in up to 1.5× lower

average JCT.

5.4.6 Comparison to Synergy-Opt

Calculating optimal allocations for every scheduling round with Synergy-

Opt can be quite expensive, especially for large cluster sizes. We plot the time

taken for per-round allocations for Synergy-Opt against that of Synergy-

Tune for varying cluster sizes in Figure 5.12. For Synergy-Opt, the time

to solve the allocation problem quickly escalates, exponentially with increas-
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Figure 5.10: Cluster GPU utilization. This graph plots the GPU utilization
in the cluster at load 5.5 jobs/hr in Figure 5.9c. Synergy-Greedy degrades
average JCT due to GPU fragmentation and under utilization.

Figure 5.11: CPU utilization. This graph plots the CPU utilization in the
cluster at low load. GPU-proportional scheduling under-utilizes the available
CPU resources while Synergy is able to efficiently utilize spare resources to
improve cluster metrics.
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Figure 5.12: Scalability of our scheduling mechanism.

ing cluster sizes, while that for Synergy-Tune is hardly a second. We also

show experimentally that the allocations given by Synergy-Tune are close to

those estimated by Synergy-Opt in §5.4.2 and §5.4.3. At a cluster size of 128

GPUs used in our experiments, Synergy-Tune converges at allocations that

are within 10% of the optimal value, 200× faster than Synergy-Opt.

5.4.7 Comparison to DRF and Tetris

Big data schedulers like Dominant Resource Fairness (DRF) [77] and

Tetris [83] have explored multi-dimensional resource allocation for map-reduce

jobs. DNN jobs have different properties when compared to big-data jobs.

DNN jobs are gang-scheduled, meaning they can run only when all the GPUs

requested by them are available on the cluster at once. Further, the auxiliary

resource requirements like CPU and memory are fungible unlike the GPU de-

mand. DRF and Tetris assume resources to be statically allocated throughout

the lifetime of a job, whereas Synergy assumes these resources to be fungible
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Figure 5.13: Comparison to big data scheduling policies. This graph
compares existing multi-resource allocation policies for big data workloads such
as DRF and TETRIS against Synergy for two different workload compositions
(lower the better).

and could result in varied allocations throughout the lifetime of a DNN job.

Furthermore, profiling the DNN job’s resource demands is unique to Synergy;

big data schedulers assume that the job request already encodes resource de-

mands across all dimensions. To evaluate Synergy against these policies, we

assume that the best-case resource requirement for CPU and memory is fed as

input to the bigdata scheduling policies using Synergy’s profiling mechanism.

On a cluster of 128 GPUs, we evaluate these policies on two differ-

ent workload compositions : W1 (20,70,10), and W2 (50,0,50) and compare

the naive policy with its Synergy-variant, which allows resource tuning. W1

represents a workload split with a good mix of resource-sensitive as well as

resource-insensitive jobs. W2 is a workload dominated by resource-sensitive

jobs, which is one of the worst-case scenarios for multi-dimensional scheduling
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as it could lead to GPU fragmentation (explained in §5.4.5)

We plot the results in Figure 5.13. Tuning resource allocation across

jobs using Synergy reduced the average JCT of DRF by 7.2× and that of

Tetris by 1.8× for the workload split W2. This is because Synergy is able

to allocate auxiliary resources in a fungible-manner every round, whereas the

big-data scheduler’s static allocations performs similar to greedy techniques,

resulting in GPU fragmentation, and thereby degrading the overall cluster

metrics. Synergy performs the best in each scenario as it uses the best-case

resource demands of jobs to perform fungible, disproportionate allocation.

5.5 Limitations and Discussion

We now discuss Synergy’s limitations and scope for future work.

Tradeoff between consolidation and allocation. When multi-GPU jobs

are split across physical servers, they may incur a penalty due to network com-

munication [151, 209]. DNN jobs therefore prefer consolidation. In Synergy,

we assume that no more than a server’s worth of CPU or memory resources

can be allocated to a job if its GPU demands can be satisfied by one server.

However, we find that some jobs may benefit from giving up consolidation if

the throughput gain due to increased CPU or memory allocation is higher than

the penalty due to splitting. It is an interesting future direction to explore the

trade off between consolidation and allocation, while taking into account the

network overhead.
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Dataset locality. When DNN training jobs are submitted to a cluster sched-

uler, the input datasets for the job reside on a remote storage [7, 188]. When

training begins, the dataset is first downloaded locally on the machine, and

then loaded into the server memory. The former is constrained by the remote

storage and network bandwidth, while the latter is restrained by the local

storage bandwidth.

Migrating large datasets, or downloading them from cloud storage is

expensive. Therefore, jobs with large datasets that are sensitive to storage

bandwidths must be placed on the same server until completion, when possible.

In this work, we assume that the datasets are present locally on each server.

We leave it to future work to study the impact of remote storage fetch and

dataset locality on scheduling decisions.

Heterogeneous server resources. In this work, we assume that the server

resources in a cluster are homogeneous; i.e., each server is identical. If we relax

this assumption, we need to carefully evaluate how the performance of a DNN

job changes with heterogeneity in GPU generation; different GPUs exhibit

heterogeneous performance behavior across model architectures. The scope of

this work was to demonstrate the importance of resource-sensitivity awareness

in scheduling. Therefore, we leave it to future work to extend Synergy to be

aware of accelerator performance heterogeneity.
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5.6 Summary

This chapter introduced Synergy, a resource-sensitive DNN cluster sched-

uler. Synergy is based on the insight that, not all jobs exhibit the same level

of sensitivity to CPU and memory allocation during DNN training. Our ex-

periments how that Synergy can reduce average JCT by upto 3.4× compared

to a GPU-proportional allocation strategy using the same scheduling policy.
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Chapter 6

CheckFreq: Mitigating Checkpoint Stalls

when Training with Interruptions

In this chapter, we discuss how to optimize the output data pipeline i.e.,

checkpointing in DNN training. Due to the large runtime of DNN training, the

model weights and optimizer state (collectively, model state) are occasionally

written to persistent storage, for fault tolerance; else, an interruption to the job

due to process failure, or node crash can wipe out all the job state, resulting in

loss of several hours of GPU work. This is termed checkpointing. Traditionally,

models are checkpointed at epoch boundaries [140].

With the recent trend in growing size of datasets [36, 39, 119], and

larger, complex model architectures [41, 161, 48], DNN epoch time and overall

training time is increasing. Therefore, it is critical to frequently checkpoint

training progress, at a finer granularity than epochs - at iteration level.

In this chapter, we explore how to perform fine-grained checkpointing

automatically in a model- and hardware-agnostic manner, without intrusive

changes to the training workload using a framework we introduce - CheckFreq1.

1This Chapter is based on the work Frequent, Fine-Grained DNN Checkpointing, pub-
lished in FAST 21 [146]
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Specifically, we aim to provide (1) frequent iteration-level checkpointing to

persistent storage, (2) ability to resume training at iteration boundaries, and

(3) ensure low data stalls due to checkpointing.

The rest of this chapter is organized as follows. We first analyzes the

state of DNN checkpointing today and highlight the need for fine-grained

checkpointing and the challenges involved in achieving it (§6.1). We then

present the design and implementation of CheckFreq, an automatic, fine-

grained checkpointing framework for DNN training that exploits the DNN

computational model to provide low-cost, pipelined checkpointing (§6.2) FI-

nally, we show experimental results demonstrating the efficacy of CheckFreq

in reducing the recovery time from hours to seconds, across a range of models

and hardware configurations (§6.3).

6.1 The Current State of Checkpointing

We analyze the current state of checkpointing in popular open source

ML training frameworks like PyTorch [29], TensorFlow [38], and MxNet [52].

We analyze training workloads from MLPerf submissions v0.7, and the official

workloads released by NVIDIA, TensorFlow and PyTorch. We find that check-

pointing in open source ML training frameworks is incorrect and inefficient.

• Correctness. The checkpointing mechanism used in the training scripts

could result in loss or corruption of checkpoint files in the event of job

failure or interruption.
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GPU time
Interruption

Recovery Time

Epoch i+1Epoch i

Figure 6.1: Recovery time across models. The amount of GPU work lost
and has to be redone on recovery is termed the recovery time.

• Efficiency. Checkpointing is inefficient. The frequency of checkpointing

is determined in an ad-hoc fashion, typically at epoch-boundaries which

results in loss of several hours of GPU time for recovery. Furthermore,

there is lack of support for checkpointing at fine granularity; existing data

iterators do not support resuming training state at iteration boundaries

and results in high checkpoint stalls.

6.1.1 Checkpointing is Incorrect

Corruption due to overwrites. Some of the official training workloads

maintained by PyTorch [176], overwrite the same checkpoint file at the end

of each epoch to reduce storage utilization. However, this exposes the risk of

corrupting the checkpoint file in the event of a crash during the checkpoint op-

eration. Prior work [170] has shown that different filesystems treat overwrites

differently; a crash could result in non-atomic data update in the writeback

mode of ext3 resulting in data corruption, while it could truncate the file on

ext4, resulting in data loss. In either case, the checkpoint file becomes unus-

able; training has to restart from the first epoch.
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The checkpoint file may not persist. Analyzing the primitives used by

training frameworks for checkpointing, such as torch.save reveal that they

do not fsync() the checkpoint file. We verified that this can lead to data loss.

Moreover, naively performing frequent synchronous fsync() affects training

performance significantly ( §6.3.3.1).

To validate this, we perform a simple crash test, where we checkpoint

random tensors to local storage on a VM, and force shut the VM after the

checkpoint operation successfully returns, to simulate a crash. As expected,

we observe that the checkpoint file is lost when the VM restarts. While the

importance of fsync() for persistence is widely acknowledged and understood

by the storage community, DNN training has unfortunately failed to embrace

this knowledge.

Infact, despite issuing fsync(), some filesystems may fail to persist the

file reliably on disk due to crash-consistency bugs. These situations are out of

the scope of this dissertation. More details on finding crash-consistency bugs

in filesystems can be found in our prior work [141, 142].

6.1.2 Checkpointing is Inefficient

Checkpointing is performed sparingly in an ad-hoc fashion. There is

no systematic checkpointing policy in the training jobs; checkpointing interval

is chosen in an ad-hoc fashion. For example, some jobs do not checkpoint dur-

ing training, while some others start checkpointing only after a large number

of epochs (60% of training) have elapsed. In general, we observe that check-
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pointing is typically performed at epoch boundaries, providing only modest

fault-tolerance; in the event of a job interruption, the training will resume

from the last completed epoch, which potentially loses several hours of GPU

training time that has to be redone. For instance, when ResNext101 is trained

using ImageNet on a V100 GPU, two hours of GPU time is lost on average if

the job is interrupted (§6.3.5).

A naive frequent checkpointing schedule results in checkpoint stalls.

Providing higher fault-tolerance requires checkpointing to be performed more

frequently than at epoch boundaries; i.e., at iteration boundaries. However,

naively increasing the frequency of checkpointing introduces a large check-

point stall in training. Since model weights are constantly updated between

iterations, checkpointing requires the training to briefly pause to capture the

model weights accurately. We term this overhead (i.e, the time GPU is idle,

waiting for the checkpoint to complete) as the checkpoint stall. Therefore, it

is crucial to find the correct checkpointing frequency given a DNN (because

the size of checkpoint varies from 100MBs to 100GBs across DNNs), and the

storage bandwidth, to minimize checkpoint stalls.

Violating the data invariant during training can affect model accu-

racy. Each epoch performs a full pass over the dataset, in a random order and

holds the invariant that each data item is seen exactly once per epoch. One

of the benefits of checkpointing at epoch boundaries is that, the data iterator

state need not be persisted, as it is reset at the end of epoch. Checkpointing

at a finer granularity (i.e. at iterations), requires infrastructure support to
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resume the state of data iterator as well. We note that the support to persist

iterator state exists in some custom dataloaders of NLP models which do not

perform random pre-processing operations for every batch. However, for image

and video models that apply random transformations on the input data every

batch, the existing dataloaders in PyTorch, MxNet, and state-of-the-art data

pipelines like NVIDIA’s DALI are not resumable at iteration boundaries. As a

result, they violate the data invariant in the presence of interruptions, resulting

in upto the 13% drop in accuracy for popular models ResNet18 (Fig 6.6).

6.1.3 Summary

In summary, we observe that the checkpointing mechanism today is in-

correct; resulting in potential checkpoint data loss or corruption. Additionally,

the checkpointing policy is ad-hoc; there is no systematic way of determining

how frequently one must checkpoint, to both minimize recovery time and incur

low checkpoint stalls.

The solution to minimize recovery time is to perform frequent, iteration-

level checkpointing. However, performing correct and efficient fine-grained

checkpointing is challenging. We need (1) low-cost checkpointing mechanisms,

(2) light-weight, resumable data iterators that preserve the model accuracy,

and (3) a way to systematically determine the frequency of checkpointing.
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Technique Benefits

Checkpointing mechanism (How to checkpoint?)

2-phase checkpointing Splits checkpointing into two phases and
pipelines them carefully with compute to make
checkpoints cheap

Recoverable data iterator Maintains data invariant, allows resuming train-
ing at iteration boundaries without affecting ac-
curacy

Checkpointing policy (When to checkpoint?)

Systematic online profiling Automatically determines checkpointing fre-
quency, cognizant of model characteristics

Adaptive rate tuning Dynamically tunes checkpointing frequency to
reduce overhead due to interference

Table 6.1: Overview of techniques used by CheckFreq.

6.2 CheckFreq: Design and Implementation

We present the goals of CheckFreq and the recovery guarantees it pro-

vides. We then present an overview of the overall architecture of CheckFreq,

and discuss the techniques used by CheckFreq to achieve the enlisted goals.

6.2.1 Assumptions and Goals

CheckFreq focuses on optimizing checkpointing, which is by far the

predominant way in which DNN training jobs recover from failures. While it

is possible to use transparent checkpointing techniques such as CRIU [2] to

backup the entire VM state, our work focuses on the dominant approach to

DNN fault-tolerance; framework-assisted checkpointing of model state. Check-

Freq focuses on data-parallel training. We discuss the applicability of Check-
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Freq to model- and pipeline-parallelism in §6.4.

CheckFreq aims to achieve the following goals:

Correctness. CheckFreq aims to provide frequent, iteration-level checkpoint-

ing that is consistent, and persistent.

No impact on model accuracy. CheckFreq aims to not impact the statis-

tical efficiency of the model by ensuring that the data invariant holds when

training resumes after interruption.

Automatic frequency selection. CheckFreq aims to determine and tune

the frequency of checkpointing automatically based on the model being trained,

and the training environment (GPU gen, storage type, iteration time). Check-

pointing frequency influences the recovery time, i.e., time to bring model state

to what it was prior to the interruption.

Low checkpoint stalls. CheckFreq aims to reduce checkpoint stalls during

training, so that there is low runtime overhead to frequent checkpointing (e.g.,

<5%).

Minimal code changes. CheckFreq aims to require minimal changes to the

training code to automate checkpoint management and restoration.

6.2.2 CheckFreq Recovery Guarantees

An interrupted job resumes training from the latest available checkpoint

on disk. In the traditional epoch-based checkpointing, irrespective of when
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the job is interrupted, training resumes from the previous epoch boundary as

shown in Fig 6.1. If a job performs n iterations per epoch and takes time ti

per iteration, then the average recovery time Ravg for this job is :

Ravg =
n

2
∗ ti

This is because, when interrupted in the middle of an epoch, work done

so far in the epoch must be redone when resumed, as the state is reset to the

end of previous epoch. Thus, recovery time R for epoch-based checkpointing

is bounded by:

0 ≤ R ≤ n ∗ ti

Note that n ∗ ti is the duration of an epoch; it can be as large as a

few hours. CheckFreq aims to provide a tight bound on recovery time and

takes a more fine-grained approach to checkpointing at iteration boundaries.

CheckFreq guarantees that there is at most one ongoing checkpoint operation

in the system at any point in time. When interrupted, it rolls back at most

one checkpoint - either the last initiated checkpoint (if it completes), or the

one prior as shown in Fig 6.2. If the frequency automatically determined by

CheckFreq is k iterations, then CheckFreq guarantees that the recovery time

R is bounded by

0 ≤ R ≤ 2 ∗ k ∗ ti

Ravg = k ∗ ti (k << n)
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Figure 6.2: Bounding recovery time. CheckFreq guarantees that training
rolls back at most one checkpoint.

The chosen checkpointing frequency k is 100 – 300× less than n, as

we show later in evaluation (§6.3.4), thereby resulting in orders of magnitude

reduction in recovery time compared to epoch based checkpointing.

6.2.3 Design

We now present an overview of the architecture of CheckFreq and how

it uses various techniques to provide frequent checkpointing at a bounded cost

described in §6.2.2. Table 4.2 lists the different techniques used by CheckFreq

and the benefit of each technique.

Overview. The architecture of CheckFreq is shown in Figure 6.3. Check-

Freq has three major components; a recoverable data iterator that returns a

minibatch of data to the training job, a feedback-driven checkpointing policy

that determines when to trigger a checkpoint, and a low-cost checkpointing

mechanism that is split into a snapshot() and a persist() phase. Check-

Freq monitors the runtime overhead incurred in each checkpoint interval; this

is used as feedback to dynamically tune the checkpointing frequency to en-

sure that the runtime overhead does not exceed a user-given limit p (e.g.,

5%). When interrupted, CheckFreq restores the latest available checkpoint
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Figure 6.3: Training with CheckFreq. CheckFreq’s policy determines the
checkpointing frequency. The checkpointing mechanism then snapshots and
persists the model and iterator state at the identified frequency in a pipelined
manner. If a failure occurs, CheckFreq rolls back the model and iterator state
to the latest available checkpoint and resumes training.

and resumes training. We describe each component in detail below.

6.2.3.1 Checkpointing Mechanism

DNN checkpointing today is performed synchronously; training is paused

until the checkpoint operation is complete. However, synchronous checkpoint-

ing introduces large checkpoint stalls, which results in large runtime overhead

if performed frequently. In other words, the cost of a checkpoint (Tc) is high for

synchronous checkpointing. For example, consider a policy that checkpoints

every three iterations. The model state is written to disk after the weight
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Figure 6.4: Pipelining checkpoint with compute. This figure contrasts
three checkpointing mechanisms, when checkpointing is performed every 3
iterations. (a) performs checkpointing synchronously and incurs a high check-
point stall. (b) takes a snapshot of the model state synchronously but pipelines
disk IO (persist()) with compute, allowing it to proceed in the background.
CheckFreq takes a more nuanced approach by carefully pipelining snapshot()

with the subsequent iteration’s forward and backward pass and incurs lower
checkpointing stalls as shown in (c)

update phase which updates weights based on the gradients computed in the

backward pass. As shown in Figure 6.4a, the checkpoint cost is incurred in

the critical path, resulting in high checkpoint stalls, which can significantly

slow down the end-to-end training time. To mask such high checkpoint costs

within an overhead p, checkpointing needs to be performed infrequently, which

in turn results in high recovery cost.

Two-phase checkpointing. CheckFreq aims to reduce the recovery cost in

the event of an interruption by reducing checkpoint stalls. To achieve low

checkpoint cost, CheckFreq introduces a DNN-aware two-phase checkpoint-

ing mechanism. CheckFreq splits checkpointing into two phases; snapshot()

and persist() and pipelines each phase with computation. The main insight

behind CheckFreq’s two-phase checkpointing is that it exploits the DNN com-

putational model (chapter 2) to pipeline checkpointing operations on modern
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accelerators such as the GPUs.

1. Phase 1 : snapshot(). The first is a snapshot() phase, performed after

the weight update step of the iteration. Here, a copy of the model state is

captured in memory, so that it can be written out to storage asynchronously.

Since the model state resides in GPU memory, snapshot() involves copying

the model parameters from GPU to CPU memory. Performing this oper-

ation synchronously in the critical path results in non-trivial snapshot()

overhead as shown in Figure 6.4b. Therefore, CheckFreq carefully pipelines

snapshot() with compute.

Pipelining snapshot() with compute has to be performed cautiously to

ensure consistency of model parameters and preserve correctness of Stochas-

tic Gradient Descent (SGD), which is a popular optimization technique used

by learning algorithms. Naively pipelining them can result in an inconsis-

tent snapshot that contains part of the weight updates from one iteration

and the rest from the other. CheckFreq exploits the DNN learning structure

to achieve correct, pipelined snapshots.

We observe that the learnable model parameters are updated in GPU

memory after the backward pass of an iteration; in a step called the weight

update. Therefore, we can pipeline snapshot() of iteration i with compute,

until the weight update of iteration i+ 1. If snapshot() does not complete

by then, then iteration i+1 waits until the ongoing snapshot() successfully

completes as shown in Figure 6.4c. This tight coupling is required to ensure

a consistent snapshot; else we might capture a state that is partially updated
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by the subsequent iteration that in turn affects the correctness of the learning

algorithm [135].

GPU-based snapshot(). Although snapshot() is pipelined with com-

pute of the following iteration, it may result in checkpointing stalls in cases

where it is not possible to completely hide the cost of copying model state

from GPU to CPU. Therefore, CheckFreq further optimizes this operation

using a GPU-based snapshot() when feasible. We observe that the cost of

performing a snapshot() in GPU memory is an order of magnitude cheaper

than performing it to CPU memory, as the latter involves a GPU to CPU

copy in the critical path. Therefore CheckFreq takes the following approach.

(a) When spare GPU memory is available in the training environment to

hold a copy of the snapshot, we snapshot() in the GPU on GPU mem-

ory. The persist() phase then asynchronously copies the snapshot to

CPU memory and then to disk.

(b) If not, CheckFreq snapshots directly into CPU memory. This can in-

troduce stalls in critical path.

(c) CheckFreq adjusts the frequency of checkpointing appropriately to min-

imize the overhead of snapshot(), which can be especially large in (b),

and stalls in persist().

2. Phase 2 : persist(). The second phase in checkpointing is the persist()

phase which asynchronously writes the snapshot to persistent storage sim-

ilar to well explored asynchronous checkpointing techniques [187, 158, 198,
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157]. However, to provide bounded rollback guarantees discussed in §6.2.2,

persist() is tightly coupled with compute. CheckFreq performs the persist()

operation as a background process; and monitors its progress. When a sub-

sequent checkpoint is triggered as determined by the policy, the progress of

the ongoing persist() operation is checked. If the persist() has not com-

pleted, then the compute process waits until the ongoing checkpoint opera-

tion is complete. This ensures that there is at most one ongoing checkpoint

operation at any point in time, and if the job is interrupted, it rolls back to

at most one prior checkpoint.

While it may be tempting to abandon an ongoing checkpoint if the next

one is triggered, it is a tricky and risky operation. Suppose we abandon the

current checkpoint and begin writing the next one, a failure at this point may

end up losing both the checkpoints. This could be a chain reaction; a failure

could result in rolling back to a significantly old checkpoint if all the recent

ones were abandoned, resulting in a high recovery time. Since CheckFreq

aims to guarantee that we roll back to at most one prior checkpoint, it does

not abandon any running checkpoints.

Resumable light-weight data iterator. The DNN training workload in-

teracts with CheckFreq using a thin API provided by a data iterator. The

function of a data iterator in DNN training is to return a pre-processed batch

of data items to the GPU, such that the data invariant holds - each epoch

processes all the data items exactly once, in a random order. While the na-

tive iterator in PyTorch and those provided by state-of-the-art data pipelines
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like DALI [21] support this in the common case, they lack resumability if the

training is interrupted.

For example, consider a dataset with eight data items from 1 – 8. In

an epoch, the order of data items processed could be as shown in Fig 6.5a.

Assume that we checkpoint the model state at the end of every iteration which

processes one data item. If training is interrupted in the middle of this epoch,

the data iterator loses state, and resumes with a random shuffled order of

the dataset as shown in Fig 6.5b, resulting in data items being repeated and

missed in a epoch, violating the data invariant.

CheckFreq’s data iterator uses the following techniques to support re-

sumption:

• It shuffles data items every epoch using a seed that is a function of

the epoch number. Therefore, to recreate the same shuffle order, it is

sufficient to persist the current epoch ID, and the number of data items

processed so far (which makes iterator checkpointing lightweight).

• When training resumes, the iterator reconstructs the shuffle order, and

deterministically restarts from where it left off at the last checkpoint as

shown in Fig 6.5c.

Summary. Two-phase checkpointing mechanism along with the resumable

data iterator provides correct, low-cost checkpointing. The next important

question to answer is, how frequently should we checkpoint the model?
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(a) Order of data items processed in an epoch

(b) Resuming with current data iterator

(c) Resuming with CheckFreq data iterator

Figure 6.5: Resuming iterator state. When iterator state is not resumable,
an epoch might miss data items when job is interrupted (items 3,6,7 are missed
in b). CheckFreq (c) ensures that training resumes from exactly where it left
off.

6.2.3.2 Checkpointing Policy

To perform automatic, iteration-level checkpointing, we must deter-

mine the frequency at which checkpointing is performed. On one hand, we

can checkpoint after every iteration, providing low recovery cost but possibly

high runtime overhead. On the other hand, we can perform coarse grained

checkpointing at epoch boundaries, resulting in high recovery cost but low

runtime overhead. An effective checkpointing policy must find the right bal-

ance between recovery cost and runtime overhead, minimizing both. The main

idea behind CheckFreq’s checkpointing policy is to initiate checkpoints every

k iterations (called the checkpointing frequency), such that the overhead of

one checkpointing operation can be amortized over k iterations. While prior

work in HPC have explored ways of identifying the checkpointing frequency

based on failure distribution in the cluster [71, 64, 72], CheckFreq finds the
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shortest interval that masks the overhead of checkpointing based on the DNN

and hardware characteristics.

Systematic online profiling. CheckFreq takes a systematic profile-based

approach to determine the checkpointing frequency. It should be chosen such

that the runtime overhead introduced due to checkpointing is within a per-

centage p of the actual compute time, where p is the permissible overhead

decided by the user (say 5%).

CheckFreq determines the initial checkpointing frequency as follows.

When a training job starts, CheckFreq’s data iterator (§6.2.3.1) automatically

profiles several iteration-level and checkpoint-specific metrics which influences

the checkpointing frequency - the iteration time (Ti), time to perform weight

update (Tw), time to create an in-memory GPU copy (Tg), time to create an in-

memory CPU copy (Tc), time to write to storage (Ts), size of checkpoint (m),

peak GPU memory utilization (M), and total GPU memory (Mmax). Based on

CheckFreq’s 2-phase checkpointing mechanism, the frequency determination

algorithm is as shown in Algorithm 1.

The algorithm provides two outputs; 1) the checkpointing frequency k

which is the number of iterations elapsed between every checkpoint, and 2) the

snapshot() mode (CPU or GPU-based). The algorithm first determines the

snapshot mode based on available free GPU memory; if there is enough space

to snapshot the model state in GPU memory, then the mode is set to GPU,

else the preferred mode is set to CPU-based snapshotting. Based on the chosen
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Algorithm 1 : Checkpointing frequency determination

Input: Ti, Tw, Tc, Tg, Ts,m,M,Mmax, p
Toc ← max(0, Tc − (Ti − Tw)
Tog ← Tg
if Mmax −M > m and Tog ≤ Toc then
To ← Tog
mode← GPU

else
To ← Toc
mode← CPU

end if
k ← Tc+Ts−To

Ti

kmin ←
⌈

To

p∗Ti

⌉
k ← max(k, kmin)

Output: k,mode

mode, the algorithm estimates the overhead in the critical path incurred after

pipelining checkpointing and compute in a tightly coupled manner as described

earlier (§6.2.3.1). It then determines the number of iterations required to

amortize this overhead such that the total runtime overhead incurred is below

the threshold p. For example, consider the cost of a checkpoint operation

and the duration of an iteration are both 1 time unit. If the threshold on

runtime overhead is set to 5%, then CheckFreq chooses to checkpoint every 20

iterations.

Adaptive rate tuning. A static, profile-based frequency determination

works well when the training environment of the model remains unchanged

throughout the runtime of the job. However, in practice, the checkpoint cost

estimated by the online profiler can deviate, resulting in higher than estimated
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runtime overheads. For instance, a job could face write interference by con-

currently running jobs sharing storage for read/write, which affects the time

to write a checkpoint.

Therefore, CheckFreq uses an adaptive rate tuning technique to per-

form feedback-driven frequency changes. CheckFreq’s iterator monitors the

runtime of the job and the actual cost of checkpointing during runtime (af-

ter the initial frequency determination). If the observed runtime exceeds the

desired overhead, then these values are used to recalculate the checkpointing

frequency. The idea is to ensure that the overall runtime overhead does not

exceed the threshold p.

6.2.4 Implementation

We implement CheckFreq as a pluggable module for PyTorch. The

data iterator of CheckFreq is implemented on top of the state-of-the-art data

pipeline DALI for PyTorch. CheckFreq can be used as a drop-in replacement

to the existing data loader in PyTorch.

CheckFreq determines the initial checkpointing frequency by profiling

the first 1% of the iterations in the first epoch, or the first 50 iterations,

whichever is the minimum. Therefore, no checkpointing is performed during

this initial phase, which is a very small fraction of the total runtime. Addi-

tionally, we cache the profiled metrics and the determined policy on persistent

storage so that profiling can be skipped when the job resumes after a crash.

CheckFreq internally uses torch.save(), followed by a fsync() to
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perform persist(), and thus guarantees persistence. To eliminate chances of

data corruption, CheckFreq always writes checkpoints to a new file. However,

to keep space utilization bounded, CheckFreq only maintains two checkpoints

on disk at any given time; one completed checkpoint and the other in-flight.

Additionally, checkpoints performed at epoch boundary are preserved (can

be turned off by the user). CheckFreq wraps the weight update step in the

optimizer with a semaphore that waits on the ongoing snapshot() to ensure

that a copy of the model state is completed before it is updated by the next

iteration.

6.3 Evaluation

In this section we use a number of microbenchmarks and end-to-end

training to accuracy with interruptions to evaluate the efficacy of CheckFreq

with respect to the current epoch-based checkpointing scheme across a variety

of DNNs. Our evaluation seeks to answer the following questions.

• Can CheckFreq’s iterator make iteration-level checkpointing feasible with-

out affecting the accuracy? (§6.3.2)

• Does CheckFreq’s 2-phase checkpoint mechanism reduce checkpoint stalls

compared to the existing synchronous strategy? (§6.3.3)

• Can CheckFreq checkpoint more frequently than epoch-based check-

pointing, while incurring low runtime overhead? (§6.3.4)

• Does CheckFreq reduce the recovery cost when DNN training is inter-

rupted? (§6.3.5)
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GPU GPU CPU Storage

Type Mem(GB) Mem(GB) Media

Conf-Pascal 1080Ti 11 500 HDD

Conf-Volta V100 32 500 SSD

Table 6.2: Server configurations. We use two ML server SKUs; each with
24 CPU cores, 500GB DRAM, and 8 GPUs

• What is the end-to-end benefit of training to accuracy with CheckFreq

in the presence of job interruptions in a real preemptive training envi-

ronment? (§6.3.6)

6.3.1 Experimental setup

We evaluate the efficacy of CheckFreq against the state-of-the-art epoch-

based checkpointing in PyTorch using the state-of-the-art data pipeline DALI [21].

Servers. We evaluate CheckFreq on two generations of GPU; a Volta V100

GPU with a 1.8TB SSD for persistent storage, and a Pascal 1080Ti GPU with

a 1.8TB HDD for persistent storage as shown in Table 6.2. Both these servers

have 8 GPUs, 24 CPU cores and 500GB of DRAM. Both servers run 64-bit

Ubuntu 16.04 with CUDA toolkit 10.0 and PyTorch 1.1.0.

Models. We use 7 DNNs in our evaluation. ResNet18 [91], ResNet50 [91],

ResNext101 [211], DenseNet121 [98], VGG16 [189], InceptionV3 [195] all on

Imagenet-1k dataset [180], and Bert-Large pretraining [69] on Wikipedia &

BookCorpus dataset [222]. For each model, we use the default minibatch size

reported in the literature for these models.
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Baseline. We use the epoch-boundary checkpointing as the baseline for all

the models except BERT. BERT trains in units of iterations; therefore we use

the default checkpointing interval of 200 iterations as the baseline [41]. To

perform persistent and correct checkpoints, we explicitly flush the checkpoint

file after the checkpoint operation returns.

6.3.2 Accuracy implications

We first show the need for resumable data iterator to make fine grained

iteration-level checkpointing feasible. Using the existing state-of-the-art data

iterators to perform iteration-level checkpointing results in violation of the

DNN data invariant as described in (§6.2.3.1). To demonstrate this, we per-

form the following experiment. We train a ResNet18 job for 70 epochs or to a

target accuracy of 69.5% (whichever is earliest) in three different scenarios;

• No interrupt. This is the normal training scenario where the job is not

interrupted until its completion. There is no checkpointing performed

here.

• Baseline-interrupt. This scenario uses the existing DALI iterator

(same with the native PyTorch iterator) to perform checkpoints at the

iteration right before the job is interrupted. We interrupt the job once

very 7 minutes ( approx every two epochs). This corresponds to com-

monly used round durations in preemptive schedulers [209, 153, 133, 87].

• CheckFreq-interrupt. This setting uses the CheckFreq data iterator
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Figure 6.6: Impact of resumable data iterator on accuracy. Performing
iteration-level checkpointing with baseline non-resumable data iterator violates
the data invariant, results in significant loss of accuracy if job is interrupted.
However, CheckFreq’s iterator does not affect the final accuracy.

that is capable of performing a light-weight checkpoint of iterator state

and correctly resuming it. We checkpoint, interrupt, and resume the job

exactly as described in the prior setting.

We plot the Top-1 validation accuracy against cumulative training time.

Figure 6.6 shows that it is not possible to perform iteration-level checkpointing

using existing iterator, without affecting the model accuracy. This is because,

the model state is checkpointed at iteration boundaries, but the data loader

state is lost. However, with CheckFreq’s iterator, the model reaches the target

accuracy in the almost the same time as the setting where the job ran without

any interruption.

Storage overhead. Checkpointing data iterator state does not have a signif-

icant space overhead; it requires persisting two integers - epoch and iteration
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Figure 6.7: Runtime overhead for various models. At a frequency chosen
by CheckFreq, synchronous checkpointing incurs upto 70% overhead while
CheckFreq’s pipelined checkpointing reduces runtime overhead to under 3.5%

number, that take up a few bytes on disk. CheckFreq thus provides light-

weight, resumable data iterators that do not affect the accuracy of DNNs.

6.3.3 Performance of checkpointing mechanism

We now evaluate the performance of the two-phase checkpointing strat-

egy of CheckFreq, and compare it against the synchronous strategy. We fur-

ther provide a split of benefits due to pipelining persist() and snapshot()

operations.

6.3.3.1 Checkpoint stalls

Figure 6.7 shows the runtime overhead incurred due to checkpoint stalls

with CheckFreq and the baseline checkpointing mechanism while checkpointing

at a frequency chosen for that model by CheckFreq on Config-HDD-1080Ti.
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Checkpoint stall (seconds)

Synchronous IO pipelining CheckFreq

Config-SSD-V100 3.6 1.5 0.3

Config-HDD-1080Ti 10.7 1.3 0.07

Table 6.3: Breakdown of benefits. This table shows the split of checkpoint
stall incurred in critical path for VGG16 on two different hardwares

The frequency varies across models, but is kept constant for CheckFreq and

baseline for a given model. While CheckFreq is able to bound the runtime

overheads to about 3.5%, the baseline incurs 17 – 73% runtime overhead due

to frequent checkpointing. The reduction in runtime overhead is due to the

two-phase checkpointing and pipelining it with computation.

6.3.3.2 Breakdown of benefits

To understand how much each phase of the checkpointing mechanism

contributes to the reduction of checkpoint stalls, we train VGG16 on the two

servers using identical batch size of 64 that is the maximum that can fit on

Config-HDD-1080Ti. Checkpointing is performed at a frequency chosen in-

dependently for the two servers. We evaluate three settings in Table 6.3; 1)

The baseline synchronous mode, 2) CheckFreq with only persist() pipelin-

ing (indicated by IO pipelining) and snapshot() performed synchronously, 3)

CheckFreq with both persist() and snapshot() pipelining.

On both hardware, CheckFreq is able to significantly reduce the check-

point cost by 5 – 18× by pipelining both phases of checkpointing with compute
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Model Res18 Res50 ResNext VGG16 BERT

Freq 147 125 238 83 100

Size(MB) 90 195 482 1055 5000

Table 6.4: Checkpoint frequency. This table shows the number of check-
points per epoch and the size of each checkpoint

as compared to only pipelining persist(). On Config-HDD-1080Ti, the bene-

fit due to pipelining persist() is prominent due to the slower storage device.

On Config-SSD-V100 with fast storage, the CPU cost of snapshot() and

the storage cost of persist() contribute equally to the checkpointing cost.

Therefore, pipelining snapshot() with compute provides significant speedup.

6.3.4 Checkpointing policy

We compare the checkpointing frequency determined by CheckFreq

for a threshold overhead p of 3.5%. Table 6.4 shows the number of check-

points performed per epoch for various models along with per-checkpoint size

when performing distributed data parallel training across across 8 GPUs on

Config-HDD-1080Ti. There are two main takeaways here. First, the check-

pointing frequency varies with model; therefore frequency selection must take

into account the model characteristics. Second, CheckFreq is able to perform

83 – 278× more frequent checkpointing when compared to that performed at

epoch boundaries, while incurring ≤ 3.5% overhead. On Config-SSD-V100,

CheckFreq resulted in 25 – 100× more frequent checkpointing than the epoch-

based policy. More frequent checkpoints directly translate to faster recovery
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Setting Isolated Static Adaptive

Overhead 5% 35% 5%

Frequency (# iterations) 14 14 19

Table 6.5: Adaptive frequency tuning. Adaptive frequency tuning is able
to dynamically adjust checkpointing frequency to maintain the same overhead
as if the job is run in isolation.

Model Recovery (seconds)

Baseline CF

ResNet18 840 5

ResNet50 2100 24

VGG16 5700 25

ResNext101 7080 32

DenseNet121 2340 7

Inceptionv3 3000 27

BERT 4920 85

(a) 1 GPU (V100)

Recovery (seconds)

Baseline CF

180 3

540 8

1320 31

1680 14

600 4

780 42

4500 43

(b) 8 GPU (1080Ti)

Table 6.6: Average recovery time (CF - CheckFreq).

times which we evaluate in Section 6.3.5.

Adaptive tuning of frequency. To demonstrate the importance of adap-

tive frequency tuning, we perform the following experiment. We run a VGG16

training job on a single GPU (Job-A), allowing it to checkpoint at an initial

frequency chosen by CheckFreq (with an overhead of 5%). After 100 itera-

tions have elapsed, we trigger another VGG16 job on a different GPU on the

same machine (Job-B), so that the two jobs contend for storage bandwidth

to write checkpoints. We measure the runtime for 500 iterations of Job-A
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with and without adaptive frequency tuning. The results are as shown in

Table 6.5. When Job-A runs in isolation, it incurs an overhead of 5% while

checkpointing every 14 iterations. However, when Job-B is introduced after

100 iterations of Job-A, if there is no adaptation across the two jobs, the check-

pointing frequency is statically fixed to 14 iterations and the runtime overhead

for Job-A increases to 35% (indicated as static in Table 6.5). This is because,

the jobs compete for storage bandwidth, increasing checkpoint cost. In con-

trast, CheckFreq’s adaptive rate tuning dynamically adjusts the checkpointing

frequency and keeps the overhead bounded at 5%.

6.3.5 Recovery time

To understand the benefits of using CheckFreq in the presence of job in-

terruptions, we evaluate the recovery time with the epoch-based checkpointing

and CheckFreq. With epoch-based checkpointing, irrespective of when during

the epoch the job is interrupted, the job rolls back to the previously completed

epoch. Therefore, in the best case, if a failure occurs immediately after the

finish of an epoch, then the recovery time is the same as CheckFreq. However,

on average, half an epoch’s worth of work can be lost if the job is interrupted

in the middle of an epoch. And in the worst case, the entire epoch must be

redone if the job fails just before the completion of an epoch. For the seven

different models, we compare the average case recovery time in two distinct

scenarios; 1) a single-GPU training job on Config-SSD-V100 in Table 6.6a and

2) a 8 GPU data-parallel job on Config-HDD-1080Ti in Table 6.6b.
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Figure 6.8: End-to-end training. We train Resnet50 using a
Config-HDD-1080Ti GPU with interruptions every 5 hours. CheckFreq trains
to state-of-the-art accuracy (76.1%) 2× faster than epoch-based checkpointing
by reducing recovery time.

As can be seen, CheckFreq is able to reduce recovery time from several

minutes (and hours) to just a few seconds, while incurring less than 3.5% run-

time overhead. For e.g.,, when training ResNext101 on a V100 GPU, Check-

Freq reduces the recovery time from 2 hours to 32 seconds on average.

6.3.6 End-to-end training

We evaluate the end-to-end benefit of training with CheckFreq by sim-

ulating a preemptive cluster scenario. We consider a cluster with a premeptive

scheduler similar to the one in large production clusters like Philly [106, 18].

We consider an average preemption interval of 5 hours. Figure 6.8 plots the

total training duration against top-1 validation accuracy for the epoch-based

baseline checkpointing strategy and CheckFreq for training ResNet50 using

a GPU on Config-HDD-1080Ti to state-of-the-art accuracy. CheckFreq re-
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sults in 2× faster training by reducing recovery time from 1.9 hours to under

a minute for every interruption. A similar experiment on Config-SSD-V100

resulted in 1.6× faster training time to accuracy for ResNext101.

6.4 Limitations and Discussion

We now discuss the limitations and future directions for CheckFreq.

Applicability of checkpointing to distributed cluster training. Check-

Freq currently works with the distributed data parallel (DDP) mode, where

only one GPU per node (rank 0) is responsible for checkpointing. While we

show results for single- and multi-GPU training, extending it to multi-node

settings is straightforward; checkpointing in multi-GPU and multi-node set-

tings is the same for DDP in frameworks such as PyTorch. Model weights

are synchronized across different workers (same node or in the distributed

cluster) typically every iteration, or accumulated over a few tens of iterations

before synchronizing; therefore each node sees the same version of weights at

these synchronization points. Hence, one instance of CheckFreq runs on each

node, and persists an identical checkpoint for local recovery at synchroniza-

tion boundaries. Since each node persists checkpoints independently, and in

parallel, there is no additional synchronization overhead for checkpointing.

Generality of CheckFreq. CheckFreq focuses on optimizing checkpoint-

ing, which is by far the predominant way in which DNN training jobs re-

cover from failures. While our dissertation focuses on data parallel training,
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prior work in model or pipeline parallelism, also rely on checkpointing. Us-

ing CheckFreq, checkpointing at minibatch boundaries (every n iterations),

each pipeline stage only persists a subset of parameters and optimizer state

hosted by that worker. CheckFreq also enables checkpointing within minibatch

boundaries during pipeline parallel training (every m microbatches), as Check-

Freq’s iterator controls the introduction of each microbatch into the pipeline.

Checkpointing at the microbatch granularity requires storing additional model

state – specifically accumulated weight gradients at every stage in addition to

parameter and optimizer state. We leave it to future work to integrate Check-

Freq’s implementation into frameworks supporting pipeline parallelism.

While we implement CheckFreq in PyTorch, we can extend it to other

frameworks like TF and MxNet by wrapping the framework-specific APIs into

those exposed by CheckFreq.

6.5 Summary

This chapter presents CheckFreq, an automatic, fine-grained check-

pointing framework for DNN training. CheckFreq achieves consistent, low-

cost checkpoints at iteration level using a resumable data iterator, a pipelined

two-phase checkpointing mechanism, and automatic determination and tuning

of checkpointing frequency. When the job is interrupted, CheckFreq reduces

recovery time for popular DNNs from hours to seconds, while incurring low

runtime overhead. With the growing scale and complexity of DNN training,

CheckFreq enables low-cost, failure resilient training.

167



Chapter 7

Related Work

In this Chapter, we discuss prior research efforts and systems that are

related to this dissertation. First, we describe past efforts in optimizing DNN

training time by optimizing the data pipeline ( §7.1). We next discuss prior

works on DNN cluster scheduling and big data scheduling that our disserta-

tion draws inspiration from ( §7.2). Finally, we discuss prior work related to

optimizing DNN checkpointing ( §7.3).

7.1 Optimizing DNN training time

A number of solutions have been proposed to reduce the training time

for DNNs including specialized hardware [110, 106, 183, 164, 159, 173, 8, 16],

parallel training [117, 65, 56, 109, 116, 151, 99], GPU memory optimiza-

tions [178, 54, 103], lowering communication overhead [128, 217, 90, 104],

faster communication libraries [19, 205], and compiler-based operator opti-

mizations [202, 53, 108]. This paper presents a new point in this spectrum,

data stalls.

Importance of data ingest pipelines. There is a rich literature in the

database community both in understanding data stalls and cache behaviour
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in DBMS [42, 218, 190], as well as building efficient data ingest pipelines for

query processing [45, 201, 131]. Our work seeks motivation from such findings

and analyses data stalls in the context of emerging DNN workloads.

Application-aware caching. The idea of designing a caching policy that is

aware of application semantics is not new. Stonebraker highlighted the im-

portance of domain-aware caching for databases [192]. Tomkins et.al. show

that informed prefetching and caching in file systems can reduce the execu-

tion time of I/O-intensive applications [199]. Similarly, Liao et.al. show that

application-aware client side caching in a parallel filesystem outperforms tradi-

tional caching approaches [124]. Our work draws parallels to such techniques

by first identifying data stall times in DNN training, understanding their ac-

cess pattern and then devising a caching policy based on these observations.

Hardware solutions to fetch stalls. New hardware like NVIDIA’s Magnum

IO [20], and PureStorage’s AIRI [28] provide high throughput storage solutions

to address fetch stalls. While these fast hardware may mask fetch stalls in some

models, they may not help if the model is bottlenecked on prep stalls. CoorDL

accelerates DNN training by mitigating data stalls with existing commodity

servers as opposed to relying on expensive hardware solutions. Furthermore, as

compute gets faster, the bottleneck may shift back to storage. Such high-end

hardware solutions are also unavailable in public cloud.

Redundancy in DNN training. Prior work like Model Batching [154]

has identified redundancy in model search; where an algorithm automatically
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searches for a model architecture for a given task. However, it optimizes for

running multiple DNNs together on a single GPU, by sharing GPU computa-

tion across jobs. CoorDL on the other hand accelerates training in the more

common setting where GPUs are not shared between jobs.

OneAccess [111] is a preliminary study that uses reservoir sampling to

generate uniformly random samples of data while accessing pre-processed data

sequentially. In a departure from the state-of-the-art, OneAccess stores pre-

processed data across epochs to reduce prep stalls; however such an approach

precludes commonly used online data-augmentation (rescaling, translations,

flipping) and randomization (hue, saturation, brightness, and contrast) tech-

niques. This can affect model convergence adversely. Furthermore, OneAccess

uses a simplistic PyTorch baseline with no more than 2 CPU cores used per

GPU and very small datasets (MS-COCO [127] and CIFAR-10 [114]). In con-

trast, CoorDL carefully eliminates redundancy while preserving accuracy and

providing significant speedups.

A team of researchers at Google Brain recently proposed data echo-

ing [57], a technique that reuses data from prior batches if the accelerator

is stalled for the current batch of data.This technique relaxes the DNN ETL

requirements - both data ordering and randomness. Therefore, it needs a care-

ful selection of echoing rate and an additional hyperparameter search even for

existing model architectures to achieve state-of-the-art accuracy. Unlike data

echoeing, the techniques introduced in this dissertation do not alter the ETL

requirements or affect the final accuracy of the model in any way.
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Distributed DNN caching. Prior work like Quiver [118], DeepIO [221], and

Cerebro [150] build systems for large-scale distributed training. These works

have identified that data fetch from remote storage can bottleneck large-scale

distributed DNN training. We now discuss how each one of these systems

fall short of harnessing the insights from our analysis, and the need for a

coordinated caching and pre-processing library for DNN training.

Quiver [118] is a distributed storage (SSD) cache that uses a new sub-

stitutable sampling technique co-designed with the PyTorch framework, which

restricts randomness in the creation of minibatches to a subset of cached items.

Unlike CoorDL that accelerates a variety of training settings, Quiver is specif-

ically designed for HP search when the dataset is too large to fit on the local

storage device ( 3TB).

DeepIO [221] also proposes an entropy-aware sampling technique, and

RDMA based data shuffling for distributed training across servers. However,

when the entire dataset does not fit in memory, DeepIO cache suffers from

thrashing unlike MinIO. Unlike DeepIO, CoorDL does not require any spe-

cialized hardware support and provides impressive speedups over commodity

TCP stack with low bandwidth requirements and no changes to the training

framework.

Cerebro [150] introduces a new parallel SGD strategy for model selec-

tion tasks. It partitions the dataset across the servers in a cluster and hops

the models from one server to other, instead of shuffling data. Cerebro does

not improve performance for DNN training on a single server, while CoorDL
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presented in our dissertation optimizes performance in this scenario. Further-

more, Cerebro is designed for a specifc scenario - distributed model search; on

the contrary, our analysis and CoorDL have a broader scope.

Tensorflow dataloader - tf.data. Recent work presented tf.data, a frame-

work for building and executing efficient input pipelines for machine learning

jobs in TensorFlow [149]. tf.data is based on the programming model of

chaining higher-order functional transformations, executing input pipelines as

dataflow graphs. It also automatically tunes parameters such as buffer sizes

and the amount of parallelism to optimize the data pipeline. While tf.data

is a comparable alternative to the PyTorch dataloader, it fails to harness the

insights from our data stall analysis such as DNN optimized caching, and

eliminating redundancy.

7.2 DNN cluster schedulers

A number of recent works target on cluster scheduling for DNN work-

loads each one focusing on improving a certain objective; Cluster utilization

(Gandiva [209]), JCT (Tiresias [87]), and fairness (Themis [133], Gandiva-

Fair [50]). Some works have also looked at exploting performance heterogeniety

among accelerators to improve cluster objectives [153, 121]. All these sched-

ulers assume GPU to be the dominant resource in the scheduling task; i.e., a

user requests a fixed number of GPUs for her DNN job, and when the requested

number of GPUs are all available, the job is scheduled to run. Other resources

such as CPU and memory are allocated proportional to the number of GPUs
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requested by the job. Existing scheduler thus ignore resource-sensitivity of the

DNN tasks to CPU, and memory. Synergy shows that resource-sensitivity al-

location is an important factor to be considered for DNN workload scheduling

on multi-tenant clusters, and can help achieve better cluster utilization.

Big data schedulers. Our work builds upon the insights drawn from the

rich literature of schedulers for big data jobs [203, 94, 85, 84, 83, 77]. Big data

schedulers like Tetris [83], and DRF [77] have looked at the problem of multi

dimensional resource allocation for big data jobs. They propose new scheduling

policies aimed at optimizing a specific cluster objective for jobs whose resource

demands are prior known. Big data jobs come in with resource requirements

along several dimesnions, all of which is necessary to run that task. On the

contrary, the primary resource in a DNN job is the accelerator (GPU), whose

requirement is specified by the job. Other resources are fungible; Our work

exploits this key insight to perform disproportionate allocations by profiling

job resource sensitivity, and then appropriately packing them onto available

servers.

Algebriac scheduling. Prior work like alsched [200] explore how to perform

optimal scheduling decisions by formulating resource requirements as hard

and soft constraints using algebraic utility expressions, and solve an optimiza-

tion problem. Synergy’s optimal upper bound estimation shares a similar

optimization approach. However, unlike alsched, Synergy does not require

manual encoding of utility functions; resource requirements are automatically

profiled and estimated. Moreover, Synergy is optimized for DNN training; it
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incorporates DNN-aware constraints such as reducing GPU fragmentation and

minimizing the number of fragmented jobs.

7.3 Optimizing DNN checkpointing

While recent work like DeepFreeze [157] that perform asynchronous

DNN checkpointing employ techniques similar to CheckFreq for IO pipelining,

it only considers CPU clusters. It does not consider the cost of snapshotting

the model state in memory when trained using state-of-the-art GPUs. Our

work shows that on modern ML optimized servers, the cost of snapshotting

the model state (copying from GPU to CPU) is significant, demonstrating

how to pipeline this transfer with compute, and use spare GPU capabilities to

enable fast snapshotting.

Furthermore, DeepFreeze requires manual intervention to tune the check-

pointing frequency for a given model, hardware and training environment while

CheckFreq masks these complexities from the user and analytically identifies

the best parameters for checkpointing. Unlike DeepFreeze that uses a static

checkpointing frequency, CheckFreq is also beneficial in shared cluster set-

tings, as it adapts the checkpointing frequency based on memory and storage

interference due to other jobs to minimize checkpoint stalls.

Recent work by Chen [55] look at reducing checkpoint IO using quanti-

zation techniques, while CheckFreq optimizes the checkpointing process with-

out altering the checkpoint data, therefore resulting in no accuracy implica-

tions.
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Asynchronous checkpointing in HPC. Prior work in HPC [187, 158, 198]

uses asynchronous checkpointing to mask the IO latency. A key challenge

that differentiates DNN checkpointing from traditional HPC ones is that, per-

forming a synchronous in-memory copy of the model state from GPU to CPU

is expensive due to the increasingly fast compute capabilities of the GPU.

CheckFreq exploits the DNN learning structure to carefully pipeline even the

in-memory snapshot with computation to perform correct, consistent check-

pointing. Moreover, CheckFreq further reduces the latency of checkpointing

by utilizing spare GPU memory and compute capabilities when possible to

perform fast snapshots. The novelty of CheckFreq thus lies in identifying and

exploiting the unique characteristics of DNN training to correctly, and consis-

tently perform fast, online, CPU- and GPU-based snapshots and providing a

practical, easy to deploy solution to fine-grained checkpointing.

Checkpoint interval estimation in HPC. Prior work [71, 64, 72] deter-

mine checkpointing interval for large scale HPC applications based on failure

distributions observed in the system. CheckFreq does this in a DNN-aware

fashion by exploiting the deterministic, repetitive structure of DNN training

to systematically profile resource utilization at runtime.

Adaptive checkpointing. The idea of using adaptation for fault manage-

ment has been used in HPC applications [120] to decide when to checkpoint,

based on a failure prediction module. CheckFreq introduces adaptivity in DNN

checkpointing frequency. It identifies and dynamically adapts the checkpoint-

ing frequency, based on the characteristics of the model being trained, system
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hardware, and interference due to other jobs.

Frequent checkpointing mechanisms. The idea of frequently checkpoint-

ing application state is well researched in the HPC community. Prior work by

Tiwari explored how to reduce the I/O overhead during checkpointing using

lazy checkpointing [198]. Similarly Di [72] and Daly [64] show how to deter-

mine checkpointing interval for large scale HPC applications based on failure

distributions observed in the system. In contrast to such work, CheckFreq

builds DNN specific checkpointing policy and mechanism that exploits DNN

computational model to pipeline checkpoint with compute, at a frequency de-

termined by the model characteristics.

TensorFlow Checkpoint Manager. TF checkpoint manager [196] allows

checkpointing at a user-given time interval, and supports persisting iterator

state. However, it has three shortcomings. First, the checkpointing frequency

is decided in an ad-hoc fashion by the user; this introduces large checkpoint

stalls if not chosen carefully. Second, it cannot checkpoint the iterator state

if random data transformation is involved; this is common for most image

based models [197]. Finally, even in cases where it can persist iterator state,

TF writes the entire operator graph to storage along with prefetched items

resulting in large checkpoint size. CheckFreq addresses these challenges by

automatically adapting the checkpointing frequency and using a light-weight,

resumable data iterator.

Framework-transparent checkpointing. Transparent checkpointing tech-
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niques such as CRIU [2] can backup entire VM state for fault-tolerance; how-

ever they do not checkpoint GPU or accelerator state. Even if they were to

capture entire device state, device state alone is an order of magnitude larger

than the model state captured at iteration boundaries, making frequent CRIU

checkpoints impractical. Thus, in this work, we focus on the dominant ap-

proach to DNN fault-tolerance - framework-assisted checkpointing of model

state.
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Chapter 8

Conclusion and Future Work

The problem of data stalls in DNN training will only worsen with time;

as the size of data sets increase [36, 40, 119], and GPUs become faster [112].

Our dissertation throws light on ways in which the data pipeline bottlenecks

DNN training, obscuring the efforts of prior research on scaling popular DNN

models [215].

In this dissertation, we present the first detailed study of data stalls

in DNN training, and argue that it is possible to accelerate end-to-end DNN

training time by carefully mitigating data stalls. We show that data stalls ac-

count for up to 70% of the training time in data-intensive DNNs. The insights

from our study guide the design of several systems to mitigate data stalls;

(1) CoorDL, a coordinated caching and pre-processing library for DNN train-

ing. (2) Synergy, a resource-aware scheduler for training DNN jobs on shared

GPU clusters, and (3) CheckFreq, an automated fine-grained checkpointing

framework to reduce GPU recovery time, while minimizing checkpoint stalls.
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8.1 Looking Forward

With the fast evolution of new ML models, growth in the need for large-

scale distributed training infrastructures, changing hardware configurations,

and emerging storage technologies, it is an exciting time for storage for ML

research.

While the systems we built addressed some issues unearthed by our

data stall analysis, we now discuss interesting future research directions that

this dissertation opens up.

Decoded cache to reduce pre-processing overhead. Our dissertation

shows that decoding/decompressing raw images is one of the most expensive

operations during data pre-processing. A future direction is to evaluate the

benefits of caching decoded data items instead of the current approach of

caching raw encoded items. Since decoding is deterministic, it is possible to

cache it across epochs. However, this is non trivial; decoding increases the

dataset size by 5 – 7 ×. A solid future direction is to explore how to make

decoded caching practical without incurring the high space overhead, possibly

using serialized data formats.

Disaggregated data loading. Our dissertation shows that the imbalance in

CPU cores per GPU in ML optimized servers result in data stalls for several

models. In such cases where single-host capacities are maxed out, a viable

approach is to offload data prep to other idle host machines in a cluster.

This is especially useful in production clusters with high-bandwidth Ethernet,
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where several jobs use the same dataset and similar pre-processing pipelines;

a dedicated set of servers can be used to centrally pre-process minibatches

of data, while the training jobs can request minibatch as a service, thereby

entirely disaggregating learning from data management.

Automatic prep offload to accelerators. Data pipelining frameworks like

DALI have the ability to perform certain image and audio based pre-processing

(prep) such as crop, flip, and other transformations on GPU accelerators.

However, the split of operations performed on GPU and CPU has to be decided

by the user manually.

There is a memory-performance tradeoff in deciding how many prep

operations are offloaded to the GPU for two reasons. (1) Performing prep

at the GPU takes up a part of the already scarce GPU memory which may

result in training with lower batch sizes, thereby affecting training efficiency.

(2) Prep at the GPU may interfere with the computations performed by the

learning algorithm; this adversely affects the overall throughput of training

for computationally expensive and deeper networks. Therefore, the split of

prep operations must be carefully chosen considering the model’s architecture,

batch size, and data stalls. While this split is determined manually by trial-

and-error today, automating it with a careful eye on GPU and CPU utilization

is a promising direction towards optimizing the input data pipeline.

More generally, it may be beneficial to offload data pre-processing en-

tirely to specialized hardware accelerators like FPGAs or ASICs so that the

entire GPU capacity can be used by the learning process.

180



Optimizing the inference data pipeline. This dissertation addresses data

stalls in the training pipeline which have three distinct features from inference.

(1) Training requires a large volume of data samples, (2) performs a larger set of

data prep for every batch, and (3) requires backpropagation during the learning

phase. While inference jobs require fewer prep steps per sample or batch, it

also performs lesser GPU computation compared to training. Moreover, the

limited memory and compute availability at edge devices also introduces data

stalls in inference. We hope this dissertation encourages similar research and

possibly unique optimizations in inference land.

8.2 Concluding Remarks

We are now in a world that is most conducive for deep learning re-

search; accelerator speeds are growing at an unprecedented rate, and training

datasets are exploding in size. This growth trend in computational power and

dataset sizes is definitely a boon for DNN training. However, the teraFLOPS

of compute power that the GPUs of today house, cannot be fully harnessed

unless we build equally efficient infrastructure to feed data into these powerful

accelerators. The history of high performance computing has taught us an

important lesson; A system can process only as fast as its slowest component.

This dissertation serves as a reminder to carefully analyze, re-evaluate, and

re-invent design decisions as a system evolves.
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