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ABSTRACT

In sponsored search engines, pre-trained language models have
shown promising performance improvements on Click-Through-
Rate (CTR) prediction. A widely used approach for utilizing pre-
trained language models in CTR prediction consists of fine-tuning
the language models with click labels and early stopping on peak
value of the obtained Area Under the ROC Curve (AUC). Thereafter
the output of these fine-tuned models, i.e., the final score or inter-
mediate embedding generated by language model, is used as a new
Natural Language Processing (NLP) feature into CTR prediction
baseline. This cascade approach avoids complicating the CTR pre-
diction baseline, while keeping flexibility and agility. However, we
show in this work that calibrating separately the language model
based on the peak single model AUC does not always yield NLP
features that give the best performance in CTR prediction model
ultimately. Our analysis reveals that the misalignment is due to
overlap and redundancy between the new NLP features and the
existing features in CTR prediction baseline. In other words, the
NLP features can improve CTR prediction better if such overlap
can be reduced.

For this purpose, we introduce a simple and general joint-training
framework for fine-tuning of language models, combined with the
already existing features in CTR prediction baseline, to extract sup-
plementary knowledge for NLP feature. Moreover, we develop an
efficient Supplementary Knowledge Distillation (SuKD) that trans-
fers the supplementary knowledge learned by a heavy language
model to a light and serviceable model. Comprehensive experiments
on both public data and commercial data presented in this work
demonstrate that the new NLP features resulting from the joint-
training framework can outperform significantly the ones from
the independent fine-tuning based on click labels. we also show
that the light model distilled with SuKD can provide obvious AUC
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improvement in CTR prediction over the traditional feature-based
knowledge distillation.
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1 INTRODUCTION

Pre-trained language models, such as BERT [4] and RoBERTa [23],
have been successfully used to improve the Click-Through-Rate
(CTR) prediction in Sponsored Search Engines[24][28][15]. The
traditional way used in industry for utilizing pre-trained language
models into the CTR prediction pipeline is to use the output of these
models, e.g., the final score or the intermediate embedding, as a new
NLP feature fed into the CTR prediction model. In this case, the
pre-trained models are generally fine-tuned by augmenting official
models with click labels and early stopped based on peak value
of obtained Area Under the ROC Curve (AUC) in fine-tuning. The
final performance of a new NLP feature can be evaluated through
the additional AUC or Relative Information Gain (RIG) of the new
CTR prediction model with this feature over the baseline without
it (referred to as end-to-end gain) [25][5][2][21][16]. This cascade
approach avoids complicating the CTR prediction model with the
addition of new signals and ensures learning flexibility and iteration
agility. Nonetheless, we show in this work that this approach can
not always yield NLP feature with the best performance for CTR
prediction. By accounting the correlation between the NLP feature
and the existing features used in CTR prediction baseline (the one
without this NLP feature), we observe this misalignment coming
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from information overlap and redundancy between the fine-tuning
of language model and the training of CTR prediction model with
existing features, which also inspires us to improve the NLP features
in CTR prediction by reducing such overlap.

To address the misalignment described above, we introduce a
simple and general joint-training framework for the fine-tuning of
pre-trained language models, combined with the existing features
from CTR prediction baseline (referred to as auxiliary features). In
this framework, a node-wise summed input for interaction layers
is applied to make the language model learn the additional and
less redundant information beyond these auxiliary features on CTR
prediction task (thereafter referred to as supplementary knowledge),
resulting into NLP features that can improve the performance of
final CTR prediction model significantly.

To make the supplementary NLP feature more serviceable, we
also design a Supplementary Knowledge Distillation (SuKD) com-
ponent, which integrates our joint-training framework into the
traditional feature-based distillation [12][30], to transfer the sup-
plementary knowledge learned by a heavy language model (acting
as teacher) to a light model (acting as student) efficiently. In SuKD,
the student model can not only learn the supplementary knowledge
supervised by the teacher model, but also keep the joint-training
framework to learn the supplementary knowledge by itself simul-
taneously.

We summarize the contributions of this paper below:

e We show that fine-tuning separately the pre-trained lan-
guage model with the peak single model AUC does not yield
features that provide ultimately the best CTR prediction per-
formances. Our analysis reveals that this is largely due to
the contribution overlap between the new NLP features and
the existing features used for CTR prediction baseline.

e We introduce, up to our knowledge for the first time, the
supplementary knowledge in the building of NLP features
for CTR prediction in sponsored search engines. A joint-
training framework, which combines the fine-tuning of lan-
guage models with the existing features from CTR prediction
baseline, is presented to assist the language models with sup-
plementary knowledge learning. Compared with separately
fine-tuning task supervised with click labels, this framework
considers avoiding information overlap between existing
features and the new NLP features, which is beneficial to
improve the performance of new NLP features in CTR predic-
tion model. Furthermore, we develop an efficient framework
for knowledge distillation SuKD to transfer the supplemen-
tary knowledge from a heavy teacher model to a light student
model.

e Comprehensive experiments based on both commercial and
public data show that the joint-training framework can bring
significant improvement on end-to-end gain compared with
independent fine-tuning with click labels. Moreover, we
show that the gain obtained by our approach, while main-
taining lower complexity and high flexibility, is close to the
gain that could be obtained by integrating the network of
language model into CTR prediction baseline directly. On
both of the two data sets, we show that using the SuKD, light
BERT model with only 3 distilled transformer layers can
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generate NLP features with almost twice end-to-end gain
compared with traditional feature-based distillation. Besides,
we show that SuKD can even improve the performance of
student models with networks different from the teacher.

We describe below the organization of this paper. In Section 2,
we present the related work. In Section 3, we give the details of the
joint-training framework and the SuKD. In Section 4, we present
our evaluation results on both commercial and public data to show
the advantages of our approach and, we develop some conclusions
in the last section.

2 RELATED WORK

In this section, we present a summary of related work on CTR pre-
diction models, pre-trained language models, knowledge distillation
frameworks and joint-training.

2.1 CTR Prediction Model in Sponsored Search
Engines

CTR prediction models used for the choosing of advertisements to
present in sponsored search engines should ensure low-latency in
addition to high-accuracy. For example, the CTR prediction model
in Baidu.com uses a deep neural network, called Phoenix Nest, with
a handcrafted set of features coming from the user, query, and ad-
vertisement properties [5]. Google Ads has developed a “Follow
The Regularized Leader” (FTRL) model to predict CTR and is pre-
sented in [25]. Google play uses a Wide & Deep model described in
[2]. Inspired by the Wide & Deep model, [7] introduces DeepFM
model to emphasize both low- and high-order feature interactions.
Microsoft Bing.com adopts a Neural Network boosted with GBDT
ensemble model [21] for ads CTR prediction. This is the industrial
scenario we are using through this paper. The features of these CTR
prediction models can be grouped into two categories: one is the
raw text/ID from user, query and ad, and the other is the output
generated from sub-models, such as LR model [21][25], pre-trained
language model [24][34], etc.

2.2 Pre-trained Language Model and Knowledge
Distillation

Recent work has shown the abilities of pre-trained language models
to extract deep relationship in a sentence pair [4][23][19][32][22],
that are useful for augmenting the semantic features of query and
recommendation pair in sponsored search engines [24][34][15][8][35].
Generally, one trains the pre-trained language models against the
real click data, targeting directly the prediction of click/non-click la-
bels. Thereafter, one can use the score from the final layer [34][15],
or the embedding from the intermediate layer [24][8], of these
language models as an additional NLP input feature in the CTR
prediction model. For example, Microsoft Bing Ads uses the em-
bedding from the hidden layer of TwinBERT model as a semantic
feature [24] while Meituan.com and JD.com use only the output
score of BERT [34][15].

Although pre-trained language models can provide strong seman-
tic insights, their deployment in an online environment is complex
and costly. [12][1] propose Knowledge Distillation approaches (KD)
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to help in alleviating this issue. These approaches can be catego-
rized into two groups: response-based distillation where a student
model tries to mimic the final output score of the teacher model
[12][1][37], and feature-based distillation which supervises the stu-
dent network training with both the output score and the outputs
of intermediate layers in the teacher model [30][11][18][14][27].

In this work, we extract more efficient NLP features in terms of
final advertisement CTR prediction. This is achieved by introducing
supplementary knowledge in fine-tuning of pre-trained language
model to reduce redundancy and overlap with existing features in
baseline. We also develop a KD method to reduce the complexity
of the heavy language models for use in online sponsored search
engines.

2.3 Joint-Training

Joint-training consists of training together multiple networks with
different learning objectives in order to benefit from the synergy
of the learning [31][6]. Joint-training has been widely used for
online advertisement recommendation. In [2] a wide linear model
and a deep neural network are trained together to both memorize
and generalize a recommendation systems. [20] designs a jointly-
trained network during the cold start recommendation phase. In our
work, we have applied the idea from joint-training by using a node-
wise summed input for the interaction layers to make pre-trained
language model and the auxiliary features learn the supplementary
knowledge from each other efficiently.

3 SUPPLEMENTARY LEARNING THROUGH
JOINT-TRAINING

CTR prediction for advertisements is a core component of spon-
sored search systems. For this purpose, we need to adopt simple
and low-latency models that are usable in online platforms, while
still achieving high CTR prediction accuracy. In CTR prediction
models, both numerical features (which can characterize the user
historical behaviors) and semantic features (which can represent
the relationship between query and impressed ads) are used as
inputs. BERT, RoBERTa and other pre-trained language models that
can extract deep semantic relationship between sentence pair, are
to be considered as efficient tools to generate relevant NLP features
from query and ad text that can be exploited in CTR prediction.

We can make a theoretical analysis for the impact of adding NLP
features to a CTR prediction baseline with auxiliary features, where
the end-to-end RIG [10] is used as the evaluation metric for pre-
sentation convenience. Supposing a CTR prediction system using
n — 1 features X" 1 = {x1,x2, ..., xp—1} (the auxiliary features used
in CTR prediction baseline in our case), and augmented CTR predic-
tion system with an additional feature x;, (the new NLP feature in
our case), the end-to-end RIG gain of feature x, can be calculated
as:

-1 —1
ARIG = |1 - L?’redict _|1- L;l’rediz:t _ LI';redict _L?’redict o)

emp Lemp Lemp
where Lg:el Jict 1S the average log-loss of CTR prediction baseline
model with a feature set X*~! = {x1,x2,...,x,_1}, while L?’redict

is the average log-loss of augmented CTR prediction model with
additional feature xp. Lgmyp is the average log-loss of a naive model
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that predicts CTR with the average empirical CTR, which can be
considered as a constant in our study. Therefore, to improve ARIG,

n—1 _Jn i :
Predict — Lpredic; Should be maximized. Assuming that we have

N samples and Pl.”_1 = P(click = 1]X™!) and P! = P(click =
1|1X"™1, x,,) are respectively the predicted CTR for sample i using
n — 1 features without x, and using n features including x,, and y;
is the click label of sample i, we can rewrite the log-loss difference
as:

-1
Lgredlct _Llr;redlct
1 N
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By applying the Bayes formula, we have finally :
L}g:édict - L;redict
N n-1 .J:.1 —
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While the log-loss function, Lg;, of fine-tuning of the pre-trained
language model with click labels, is given by:

P(xp|click = 1)
P(xn)

P(xp|click = 0)

+(1-y;)log Plon)

1 N
Lpe =Hetiek = Z [Hi log ] )
i=1
where H_j;qr is the entropy of click variable:

Hgjjer = —P(click = 1) log P(click = 1) — P(click = 0) log P(click = 0) (5)

and is not dependent on the feature x,. Under the condition that

xn and X" ! are independent, it is clear that minimizing Lg; can
maximize the value L;;: dict ~ Lpredic; and ultimately ARIG. How-
ever, when x, and X! are dependent, this is not anymore the
case. In the extreme case that x, and X™ ! are directly related,
ie,xp = f(X" 1), we have P(x,|X™ 1) = P(xn|X™ L, click) = 1,
yielding ARIG = 0. So this is important to ensure that x, and X™~!
%}:ﬂ]’f“ is as large as possible, rather
than only trying to maximize W

We will illustrate the impact of misalignment in Section 4.2.1
where we show that the NLP feature generated by the fine-tuned
model with peak single model AUC does not give the best ultimate
performance on CTR prediction. This motivates us to consider how
to reduce such overlap, and to design a joint-training framework
to extract additional and less redundant semantic knowledge to
existing features in the baseline.

We show in Figure 1 the proposed joint-training architecture.
There are two components: the left one is only using auxiliary
features, i.e., features already used by the CTR prediction baseline.
Among these features, the position of showing an ad is a special
one that is independent of the others. Following [21], we separate
this position feature from the other auxiliary inputs, by connecting
it to a separate hidden node Hp, while the others are connected to
another set of nodes, making a low dimensional hidden layer H,
that is called auxiliary layer. This ensures that the position feature
is not interacting with others through the model learning, as the
position an ad is displayed and its quality should be independent
factors of the final CTR.

The right part of architecture deals with NLP features. It gets as
input the pair <query, ad> and the main part is a standard language

are not overlapping, i.e.,
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model, e.g., coming from BERT or RoBERTa, with a [CLS] pooling
layer to provide the embedding. This pooling layer is mapped into a
low-dimensional hidden layer H. (called supplementary layer) that
has the same dimension as the auxiliary layer H,. The two hidden
layers, H, and H, are node-wise summed and the outcome is sent
to a sequence of interaction layers H;. The node-wise summation
provides the fusion mechanism of auxiliary features with NLP ones,
i.e., each node in the input of H; is the summation of the general
abstraction of auxiliary features through the layer H, and the deep
embedding coming from the language model. We will evaluate
this architecture in Section 4.2.2 and show that it can improve the
end-to-end gain, compared with the simple concatenation of the
auxiliary layer H, and the supplementary layer He.

Prediction

{ . L

b(H ) 1 (A ] b

\ 7
1
1

i !
' !
1 I Pre-trained 1
i . NLP Model I
; .

1
1 1

. .

S B ) )
\‘Position Feature Auxiliary Features- !Query&AdTexts .
. Auxiliary Features Part

~ it . ——

Figure 1: Architecture of joint-training with NLP information
fusion

It is noteworthy that the set of layers in H (see Figure 1) can
follow different type of architectures, such as Deep Neural Network
[36], FM[29], ResNet[9] etc. depending on the application need.
In our experiments, we use a single hidden layer with Sigmoid
activation for our commercial data (coming from Bing), while for
public dataset two hidden layers with ReLU activation are used.

The pre-trained language models are generally complex and have
alarge depth, e.g., RoBERTa-Large is a 24-layers transformer model,
while the neural network of auxiliary features is typically shallow.
The training of such a wide and deep framework is difficult, when
the weights in the network are initialized to random values [13].
To solve this issue, we split the learning into two steps. In the first
initial training step, we fine-tune the pre-trained language model
alone, and train the remaining network with only auxiliary features
respectively. The targets for both two learnings are directly the
click labels. In the second step, we use the calibrated weights in the
first step, as initial values for the two parts of the network in Figure
1. We then continue the learning combining both auxiliary and NLP
features and update all weights simultaneously through a set of
iterations. By doing this, in the second step we implement a joint-
training. We show the performance of these two steps joint-training
in Section 4.2.2. Theoretically, the loss function of our joint-training
framework can be derived as:
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N — —
B 1 P(xn |X™ 1, click = 1)P(X™ !|click = 1)
Ljt =Hetick = 35 Z‘ [yi log Py X1 P(xXT)
= (6)
P(xn |X™ 1, click = 0)P(X™ !|click = 0)
P(xn | X"~ P(X"T)

+(1-y;) log

As the joint-training focuses on the learning of NLP feature
xn, P(X" Y click) and P(X™ 1) can be considered as constants

in Equation 6. Therefore, minimizing Lj; involves maximizing

P(xn|X™ 1 click)
P(xn|X7=1)
Another issue is relative to the complexity of heavy language

model that makes it too costly to use for online applications. One
solution proposed in the literature to deal with this is the distillation
approach to transfer the knowledge learned by a heavy teacher
model to a light student model, which could be run online and
matched the delay constraints. This inspires us to propose the
Supplementary Knowledge Distillation (SuKD) architecture shown
in Figure 2.

as in Equation 3 and ultimately maximizing ARIG.

Viea Vs
Lhara=LeelVsea» V) O

Lsoge = LuselDes Ho

I E—
O

——
Ea )

Pre-trained Light Student
NLP Model Model

( ) )] )

Position Feature Auxiliary Features Query&Ad Texts Query&Ad Texts Auxiliary Features  Position Feature

Teacher Part Student Part

Figure 2: Framework of Supplementary Knowledge Distilla-
tion

On the left side of the figure is the teacher model, which is the
fully joint-trained model integrating auxiliary and NLP features
described earlier. This model provides supervision information, in
the form of embedding coming from layers H, to the student model
on the right side, that can be a model mimicking the teacher model
structure but with less depth or lower dimension of hidden layers
(as shown in Figure 2) or any other type of light network. The light
student can learn the supplementary knowledge from the teacher
with a distillation loss function, in our case the Mean Square Error
(MSE) between the embedding resulting from H in the teacher
model and the embedding resulting from D, in the student model.
Inspired by [12], we also use the ensemble of soft and hard losses
in distillation, ie., besides considering the outputs from H, of the
teacher model that results in soft MSE loss, we also consider the
hard loss that is evaluated from the click prediction at the last stage
of the joint-training framework described above. The final loss of
distillation is evaluated as a weighted sum of hard and soft losses.
We use the multitask weighting auto-tuning method introduced
in [17], that can learn to balance these weights optimally during
training, to select the weights (w1, w2) used for the final loss. This
yields the following loss function for SuKD:

Laistit1 = € " Lysg(De, He) +log wi + e "2 Leg (yseu, y) +log wy (7)

where Lyssg(Dc, He) is the MSE loss of approximating the embed-
ding from teacher H, with the one from student D, and Lcg (Ysru, y)
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is the cross entropy loss between the final CTR prediction yszy, of
the student model integrating both NLP and auxiliary features and
the true click labels y of training sample. The weights w; and wy
are trainable during distillation.

In online deployment, only the NLP feature part in student side is
served to generate the embedding output from D, which represents
the supplementary semantic knowledge learned by student and is
fed into downstream CTR prediction model as new feature.

4 EXPERIMENTS

In this section, we evaluate the joint-training framework and SuKD
architecture described in the previous section on two distinct data
sets: one commercial, and one public, each with different CTR
prediction baselines. This will give evidences that our proposed
joint-training framework is general and can be used for augmenting
various CTR prediction models with supplementary NLP features.

4.1 Experimental Settings

4.1.1 Bing Ads Data. Microsoft Bing Ads is a commercial envi-
ronment that implements ad sponsored search. We have used this
platform to gather a data set consisting of 230 million <query, ad>
pairs with click labels, which are randomly sampled from Bing Ads
logs obtained in Feb. 2019. Among these samples, we use the ones in
the first three weeks as training set and the ones in the last week as
validation set for CTR prediction. Each sample contains five types
of information:

® Query text: A short text entered by the users in Bing.com
search box.

o Ad text: The text of advertisement presented to the user
along with the query, including ad title and ad display URL.

e CTR prediction features: A set of 290 numerical features
which have been used in the Bing Ads CTR prediction base-
line. These features are grouped into 4 categories: (1) query-
related features such as length of the query, historical value
of CTR of the query, etc.; (2) ad-related features such as his-
torical value of CTR of the ad, history of displaying of the
ad etc.; (3) user-related features which describe the user’s
current and historical behaviors, e.g., the last time an ad was
clicked, the total number of ads clicked in the last month,
etc.; (4) cross-features, e.g., the matched pair (Query, AdTitle)
indicating the similarity between a query and an ad title
[21].

e Position feature: As suggested by [21], the displayed po-
sition of the ad is a special feature that is independent of
other features, with the consideration that the displayed po-
sition and the ad quality can affect the likelihood of a click
separately.

o Click label: an indicator of the ad being clicked or not.

The CTR prediction model currently used in Bing Ads is de-
scribed in [21] with the above described features. This is a Neural
Network (NN) boosted with a Gradient Boosting Decision Tree
(GBDT) ensemble model. The GBDT is initialized with a prediction
score coming from a fully trained NN. In other terms, the GBDT
tries to predict the residual error between the ground truth and a
NN’s output. This NN boosted with GBDT model is also used as
our baseline model on Bing Ads data.
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We build the joint-training architecture following Figure 1. In
H;, we use a single 30-dimensional layer with Sigmoid activation
function. Adding to the separated node for position feature Hj,
the total dimension of hidden layer in this network is 31. Both
layers He and H,, are also set to be 30-dimensional, i.e., we generate
a 30-dimensional vector to represent NLP feature used for CTR
prediction.

The RoBERTa-Large model with 24 layers (abbreviated as RoBERTa-
24) released by Facebook [23] is used as the pre-trained language
model in teacher training. Query and ad title concatenated with ad
display URL are given as inputs to language model. We fine-tune
the RoBERTa-24 model using the approach described in [4], i.e., we
first pre-train the standard RoOBERTa-24 model on our training data,
using the Mask Language Model (MLM) task without click labels,
and then continue fine-tuning the model on the same data, using
the Classification (CLS) task with click labels. For this training, the
batch size is set to 256 and the RoBERTa-24 model is fine-tuned for 4
epochs with learning rate 2e-5. In parallel, the 290 features described
above are introduced as auxiliary features from baseline, yielding a
neural network N Nj;; with 291-dimensional input (i.e., 290 auxil-
iary features and one position feature) and a 31-dimensional hidden
layer (30 hidden nodes plus the one for position feature), which is
fully trained using the click labels with 20 iterations. For the joint-
training phase, we initialize the weights in the auxiliary features
component with the weights trained in NNjp;; and the weights of
the NLP feature part are initialized with the weights coming from
the fine-tuned RoBERTa-24 model. We continue training all weights
in the joint-training framework with two epochs and a small learn-
ing rate of 5e-6. Finally, the 30-dimensional embedding generated
from H, which follows the RoBERTa-24 [CLS] pooling layer is used
as the new NLP feature for CTR prediction model. We also calibrate
over light student models using the SuKD architecture, based on
this RoBERTa-24 teacher model.

4.1.2  KDD Cup 2012 CTR prediction dataset for search ads. ! In
addition to Bing Ads data, we also evaluate our approach on a public
dataset, the KDD Cup 2012 data [26][33]. This dataset contains 235
million pairs of query and ad sampled from the logs at Tencent
search engine Soso.com. Each sample in this dataset is likewise the
Bing Ads data, i.e., it contains five components: query text, ad text,
CTR prediction features, position feature and click labels.

For this dataset, we use BERT-Base with 12 layers (abbreviated as
BERT-12) [4] as the pre-trained language model that gets as input
the pair of query and ad title concatenated with ad display URL.
In order to show the generality and effectiveness of the proposed
method, we follow the work in [26] and choose two representative
models as the CTR prediction baselines: Wide & Deep, and DeepFM.

e Wide & Deep is a popular CTR prediction model introduced
by Google [2] which combines a shallow linear model with
a deep neural network.

e DeepFM is an improved version based on Wide & Deep,
which replaces the linear model in the wide component with
a Factorization-Machine (FM) [7].

Similarly to what described on the Bing Ads dataset, we pre-train
the standard BERT-12 model on KDD Cup 2012 dataset first using

Uhttps://www.kaggle.com/c/kddcup2012-track2
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MLM task and after fine-tune with click labels. We also use the
SuKD approach with a light BERT-3 model as student model in the
distillation phase.

For the sake of reproducibility, We provide all the details of
the experiments run on the KDD cup 2012 data, including data
preprocessing and all hyperparameter settings, in the appendix.

4.1.3  Evaluation Metrics. We are using, as most papers and re-
searches in the space of CTR prediction, the AUC [3] and the RIG
[10] to evaluate the end-to-end performance of CTR prediction. In
order to account for infrequent (Query, Ad) couples which account
for 42.6% of samples in Bing Ads, we evaluate the AUC and the
RIG both on the whole dataset (called ALL Slice) and also on these
infrequent couples (called Tail Slice), representing the tail behavior.
The metrics on tail slice indicate the performance of CTR prediction
model, and in particular the improvement provided by NLP features,
for cold queries.

For knowledge distillation, we introduce the Conversion Ratio
(CR), which measures the share of the gain in the teacher model
that is transferred to the student model.

Without explicit statement, all results shown in this section are
obtained during the best step in training process. The baseline
is the CTR prediction model without new NLP features, and all
improvements of AUC and RIG are relative to the baseline.

4.2 Results

In this section, we present the results obtained by using the experi-
mental settings described earlier on the two datasets. It is notewor-
thy that in an industrial setting, on Bing Ads for example, even an
AUC gain of 0.02% on ALL slice and of 0.05% on tail slice are sta-
tistically significant, and are moreover relevant from the business
perspectives. For the KDD Cup 2012 data, the potential for improve-
ment is larger than the Bing Ads, as the AUC/RIG of KDD Cup
2012 baseline are relatively weak. Using [26] as reference, 1% im-
provement in AUC of KDD Cup 2012 data can be seen as significant
gain.

4.2.1 Inconsistency between Single-Model AUC and Global AUC.
We present in Figure 3 the evolution during the fine-tuning epochs
of the AUC obtained on the tail slice of Bing Ads dataset. We com-
pare the single-model AUC for the RoBERTa-24 model in fine-
tuning, along with the end-to-end AUC obtained over the full CTR
prediction system, including the score from the RoBERTa-24 model
fine-tuned with the same epochs. As can be seen in Figure 3, in
the first three epochs, both the two increase along with each other,
while after the third epoch the single-model AUC begins to drop
while the end-to-end AUC is still climbing. This indicates the lan-
guage model achieving the best single-model AUC is not the most
favorable one for the end-to-end AUC.

This is in accordance with the theoretical analysis given before,
which shows that single-model optimization yields global opti-
mization only if the generated NLP feature is independent of the
auxiliary ones. Thus, the observed inconsistency is likely result-
ing from the overlap between NLP features and previous features
coming from the baseline. We investigate this in Section 3.

4.2.2  Contribution of Joint-Training. In this part, we first show the
advantages of joint-training framework as described in Section 3.
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Figure 3: Comparison of the trends of single-AUC and end-
to-end AUC on tail slice as a function of the number of fine-
tuning epochs on Bing Ads dataset

For this purpose, we compare three different designs: 1) node-wise
summation in a fusion layer vs. concatenation of auxiliary layer
and supplementary layer; 2) training all weights vs. fixing weights
in auxiliary features part; 3) two-steps initialization vs. random
initialization for all weights.

We show in Table 1 the comparison of results obtained over Bing
Ads data. The table shows that the node-wise summation achieves
a supplemental 0.06% end-to-end AUC gain on tail slice compared
with the concatenation of auxiliary and supplementary layers. A
second element is that the comparison between the first and the
third lines indicates that making all weights trainable yields an
additional 0.14% end-to-end AUC gain on the tail slice, compared
with fixing the weights in the auxiliary features part. Finally, the
two-steps initialization can provide an additional 0.15% end-to-end
AUC gain compared to the weights random initialization at the
beginning of joint-training.

In Table 2, we present a comparison of the end-to-end AUC/RIG
gain obtained with separately fine-tuning the language model and
the joint-training with auxiliary CTR prediction features over our
two datasets. In order to make a fair comparison, as the NLP feature
from joint-training is a 30-dimensional vector, we also reduce the
dimension of RoBERTa/BERT [CLS] pooling layer to 30 using a
full-connection layer before the final output and present the re-
sults of end-to-end gain after separate fine-tuning of the language
model, where we use the score only, or the 30-dimensional embed-
ding, or both the score & the embedding from fine-tuning as three
references.

On both the two datasets, the end-to-end AUC and RIG gains of
three types of NLP feature from separate fine-tuning of language
model are very similar. However, the joint-training of NLP and
auxiliary features yields an end-to-end AUC/RIG gain that is 70%
(resp., 80%) higher than the separate fine-tuning, both on ALL slice
and tail slice on Bing Ads data (resp., KDD Cup 2012 data). The
consistency of the improvement from joint-training over different
datasets and different CTR prediction baselines, gives strong indi-
cation on the pertinence of our proposed joint-training approach.

We also evaluate the ideal situation where the network of lan-
guage model is integrated directly into the CTR prediction baseline
by increasing the dimension of input space, which can reduce the
overlap between NLP feature and auxiliary features globally but
needs much more training efforts. We show in Table 3 the com-
parison of the supplementary learning approach with such global
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Framework ALL Slice Tail Slice
Input Design for Hy Trainable weights Initialization AAUC | ARIG | AAUC | ARIG
Node-wise summation All weights Two-steps 0.09% | 0.32% | 0.47% | 2.53%
Concatenation of H,, H, All weights Two-steps 0.08% 0.31% 0.41% 2.22%
Node-wise summation Only NLP feature part Two-steps 0.06% | 0.22% | 0.33% | 1.70%
Node-wise summation All weights Random initialization for auxiliary features part | 0.05% | 0.20% | 0.32% | 1.70%

Table 1: Comparison between end-to-end gains from different framework designs on Bing Ads Data

ALL Slice Tail Slice
Dataset CTR model NLP Features RAUC T ARIG T AAUC | ARG
FT Score 0.05% 0.19% 0.27% 1.50%
) FT Embedding 0.05% | 0.20% | 027% | 1.43%
Bing Ads NN+GBDT g ore & Embedding | 0.05% | 0.21% | 0.28% | 153%
JT Embedding 0.09% | 032% | 047% | 2.53%
FT Score 167% | 1.61% | 2.63% | 2.17%
) FT Embedding 166% | 1.65% | 2.64% | 231%
Wide & Deep I —rgcsre & Embedding | 168% | 171% | 2.66% | 2.36%
JT Embedding 314% | 2.80% | 4.35% | 3.54%
KDD Cup 2012 FT Score 167% | 1.73% | 2.62% | 1.93%
DeeoFM FT Embedding 167% | 1.85% | 2.64% | 2.16%
P FT Score & Embedding | 1.68% | 191% | 2.65% | 2.24%
JT Embedding 316% | 2.61% | 4.01% | 3.37%

Table 2: Comparison of end-to-end gains obtained by adding NLP features generated from joint-training (JT) and separate

fine-tuning (FT) on two datasets

learning on both datasets. The integrated model used for KDD
Cup 2012 data is built by concatenating the 30-dimensional embed-
ding from BERT-12 model with the embedding layer of Wide &
Deep model (resp., DeepFM model) to generate a new embedding
layer and all parameters in these two sub-models are optimized
simultaneously in training. On the Bing Ads data, we replace the
NN in NN+GBDT with our joint-training network (including both
auxiliary features part and NLP feature part).

ALL Slice Tail Slice
Dataset CTR model | Technology AAUC T ARIG | AAUC | ARG
. Integration | 0.10% | 0.34% | 0.50% | 2.70%
Bing Ads NN+GBDT JT 0.09% | 032% | 047% | 2.53%
. Integration | 3.30% | 2.94% | 4.41% | 3.76%
KDD Cup 2012 Wide&Deep JT 3.14% | 2.80% | 435% | 3.54%
P Decopnl | _Integration | 344% | 278% | 453% | 3.5%%
cep JT 316% | 2.61% | 401% | 337%

Table 3: Comparison between end-to-end gains of integrated
model and NLP embedding features generated by joint-
training on two datasets

From Table 3, we can observe that the end-to-end gain brought
by the supplementary joint-training approach is close to the ideal
gain expected from the integrated model, without the huge associ-
ated learning burden. This observation is valid over different CTR
prediction baselines. For DeepFM baseline applied to KDD Cup
2012 data, the NLP features from joint-training holds 92% of the
ideal end-to-end AUC gain, and this proportion increases even for
Wide & Deep baseline as 95% of gain is held. On Bing Ads data, the
joint learning approach maintains 90% of ideal end-to-end AUC
gain. This validates the fact that the joint-learning approach is
relevant, as it maintains more than 90% of the gain while having
a much lower and tractable learning complexity. As an example,
the integration of DeepFM and BERT-12 model in Table 3 should
take 9 days on 8 X V100 GPUs to achieve the best end-to-end AUC
while our simple joint-training framework can take only 5 days in
the same baseline settings, which is more suitable for the frequent
re-calibration in CTR prediction.

4.2.3 Contribution of SuKD. As described before, despite the signif-
icant end-to-end AUC gain coming from the pre-trained language
model, its usage in practice is costly. As an example, the RoBERTa-
24 model has 355M parameters. In order to manage the complexity
and to make possible an online usage of the language models, we
proposed in Section 3 a knowledge distillation approach, named
SuKD, that can generate a light student model learning from the
heavy teacher model. For this purpose we extend the joint-training
to the knowledge distillation, and we show here the results obtained
from SuKD on the two datasets.

We show in Table 4 a performance comparison of three distilla-
tion approaches based on a simple BERT-3 student model. The three
distillation approaches are response-based distillation where the
soft target of student model is the predicting score of teacher model,
feature-based distillation using a soft loss function that is the MSE
between the two 30-dimensional embedding generated from stu-
dent and teacher model, and SuKD that combines the joint-training
and feature-based distillation into a single consistent approach as
described in Section 3. All approaches use the ensemble of soft and
hard losses in distillation. As shown in Equation 7 the weights of
soft loss and hard loss are trainable, and we use auto-tuning for
them. We use the RoBERTa-24 (resp., BERT-12) as teacher model
on Bing Ads data (resp., KDD Cup 2012 data). The performances
are evaluated over both datasets and to make the comparison fair,
for all the three distillation frameworks a 30-dimensional vector is
fed into the CTR prediction model.

As shown in Table 4, we can see that both the SuKD and the
feature-based distillation yield a high conversion ratio, e.g., for
Bing Ads data, the BERT-3 student model generated from SuKD
(resp., feature-based distillation) maintains on tail slice 80.85% (resp.
77.78%) of the end-to-end gain obtained from teacher, that is bet-
ter than the response-based distillation, with 66.67%. Additionally,
SuKD benefits successfully from the advantage of joint-training.
Overall, for the same student model complexity, i.e., BERT-3, and
the same NLP feature dimension, i.e., 30-dimensional embedding,
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Teacher Student CR of Student from Teacher

Dataset CTR model KD Technology ALL Slice Tail Slice ALL Slice Tail Slice ALL Slice Tail Slice
AAUC [ ARIG [ AAUC | ARIG | AAUC [ ARIG [ AAUC | ARIG | AUCCR | RIGCR | AUCCR [ RIGCR
SuKD 0.09% 0.32% 0.47% 2.53% 0.07% 0.25% 0.38% 2.05% 77.77% 78.13% 80.85% 81.03%
Bing Ads NN+GBDT Response-based KD | 0.05% | 0.19% | 0.27% | 1.50% | 0.03% | 0.13% | 0.18% | 0.95% 60.00% 68.42% 66.67% 63.33%
Feature-based KD 0.05% 0.19% 0.27% 1.50% 0.04% 0.15% 0.21% 1.17% 80.00% 78.95% 77.78% 78.00%
SuKD 3.14% 2.80% 4.35% 3.54% 2.47% 2.22% 3.62% 2.84% 78.66% 79.29% 83.22% 80.23%
Wide & Deep | Response-based KD 1.67% 1.61% 2.63% 2.17% 1.05% 1.07% 1.66% 1.34% 62.87% 66.46% 63.12% 61.75%
KDD Cup 2012 Feature-based KD 1.67% 1.61% 2.63% 2.17% 1.31% 1.25% 2.16% 1.72% 78.44% 77.64% 82.13% 79.26%
SuKD 3.16% 2.61% 4.01% 3.37% 2.62% 2.06% 3.35% 2.72% 82.91% 78.93% 83.54% 80.71%
DeepFM Response-based KD | 1.67% | 1.73% | 2.62% | 1.93% | 0.98% | 1.06% | 1.60% | 1.14% 58.68% 61.27% 61.07% 59.07%
Feature-based KD 1.67% | 1.73% | 2.62% | 1.93% | 1.35% | 1.36% | 2.05% | 1.56% | 80.84% 78.61% 78.24% 80.83%

Table 4: Comparison between end-to-end gains of NLP embedding features generated by response-based distillation, feature-

based distillation and SuKD on two datasets

SuKD can achieve additional gain on both ALL and tail slices. On
Bing Ads data, there is 0.17% end-to-end AUC gain on tail slice
compared to feature-based distillation. On KDD Cup 2012 data,
there is 1.46% AUC gain on tail slice for Wide & Deep baseline and
1.30% gain on tail slice for DeepFM baseline. The comparison over
different datasets and different CTR prediction baselines proves
the effectiveness and universality of SuKD in the improvement of
end-to-end gain on student model.

As the conversion ratio of SuKD and feature-based distillation are
very close, one might consider other way to combine joint-training
and knowledge distillation, i.e., to do the feature-based distillation
from a teacher model during a separate fine-tuning of the language
model and then jointly train the student model with auxiliary CTR
prediction features. In Table 5, we compare the latter solution with
SuKD over Bing Ads data and show that SuKD method is giving
the better performance. It is notable that the best end-to-end AUC
(resp., RIG) gain on the tail slice of the alternative solution is 0.34%
(resp., 1.79%), and it yields a loss of 0.04% (resp., 0.26%) compared
with SuKD. This loss happens probably because the joint-training
in teacher side can make the language model learn supplementary
knowledge more efficiently than in student side.

ALL Slice Tail Slice
KD Technology AAUC [ ARIG | AAUC | ARIG
SuKD 0.07% 0.25% 0.38% 2.05%
Feature-based KD and Joint- | 0.06% 0.22% 0.34% 1.79%
Training Student Model

Table 5: Comparison between end-to-end gains of two ways
generating student NLP feature on Bing Ads data

Besides BERT-3, we also tried more complex BERT models with
more transformer layers in the student side to investigate if the
conversion ratio improves. Table 6 presents the end-to-end AUC
gains and conversion ratios on tail slice of Bing Ads data with
BERT-3, BERT-4, BERT-6 and BERT-12. As showed, more complex
student model can yield higher conversion ratio. It is notable that
BERT-6 with SuKD achieves more than 93% end-to-end AUC gain
from teacher which has 4 times more transformer layers, mean-
ing that SuKD is an efficient technique to transfer the end-to-end
supplementary knowledge from teacher to student.

SuKD is a general knowledge distillation approach, where the stu-
dent model is not limited to be similar with the teacher model. We
therefore tried a wide and sparse DNN model as student, where the
inputs are hundreds of millions of one-hot encoding features, that
can be beneficial to represent the cross characteristics between the

Language model AAUC on Tail Slice | CR of Student on Tail Slice
Teacher RoOBERTa-24 0.47% -
SuKD BERT-3 0.38% 80.85%
SuKD BERT-4 0.40% 85.11%
SuKD BERT-6 0.44% 93.62%
SuKD BERT-12 0.45% 95.74%

Table 6: Comparison on end-to-end AUC gains and conver-
sion ratios on tail slice between different number of BERT
layers in SuKD on Bing Ads data

query and ad texts, e.g., Matched(Query,AdTitle) might give multiple
one-hot features indicating matched word between query and ad.
All one-hot encoding features are mapped into a 400-dimensional
embedding layer, and two full-connected hidden layers with respec-
tively 200 and 30-dimensions are following before a final output
node.

We compare in Table 7 the obtained end-to-end gains of two 30-
dimensional NLP features generated from the last hidden layer of
the DNN model with two different distillation techniques: response-
based distillation from RoBERTa-24 model with separate fine-tuning
alone, and SuKD from RoBERTa-24 model with joint-training. The
table shows that SuKD applied over the DNN model can bring an
additional 0.10% end-to-end AUC gain on tail slice compared with
response-based distillation. This result is in line with the conclusion
drawn from BERT-3, showing the generality of our conclusions.

ALL Slice Tail Slice
KD Technology | 3316 T ARIG | AAUC | ARIG
SuKD 0.05% 0.18% 0.25% 1.34%
Response-based KD | 0.03% | 0.10% | 0.15% | 0.80%

Table 7: Comparison of end-to-end gains between DNN fea-
tures generated by two KD technologies on Bing Ads data

4.3 Online Performance

The CTR prediction model with new NLP feature has deployed in
an online A/B testing. In this testing, we scheduled two flights (i.e.,
control and treatment) with randomly sampled traffic and similar
configuration settings except the CTR prediction models. For the
control flight we used the baseline CTR prediction model and for
the treatment one we used the new CTR prediction model with
supplementary NLP features.

We deployed the distilled BERT-12 model with SuKD from RoBERTa-
24 model in Bing.com Ads system to generate the 30-dimensional
supplementary NLP feature for online CTR prediction. Twenty
V100 GPUs were allocated for online application. The resulting
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system achieved a 6.0 ms latency per <query, ad impression> pair,
which is tolerable.

We observed during the online A/B testing for one month, the
treatment flight brings 2% gain on click yields with only 0.6% in-
crease on display yields, compared with the control flight, where
1% fluctuations on click yields and display yields can be seen as
significant changes. This provides furthermore evidence for the
interest of the method in a real deployment.

5 CONCLUSION

In this paper, we have focused on learning supplementary knowl-
edge for end-to-end CTR prediction model using NLP features. We
introduced a novel joint-training framework which can boost effec-
tively the contribution of the NLP features in CTR prediction. We
further proposed a distillation approach for the deep models that
transfers efficiently the supplementary knowledge from a heavy
teacher model to light student models. We evaluated the proposed
approaches using a set of comprehensive experiments, and showed
that the proposed joint-training technology and supplementary
knowledge distillation framework are achieving performance gains
in both commercial and public data, and therefore provide promis-
ing solutions for real world deployment.
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A APPENDIX

To ease the reproducibility of the work, we are providing here
some details about the experiments on the public KDD Cup 2012
dataset, including the data description, the baseline settings and
the language model settings.

A.1 Data Details

The dataset contains 235 million search ads impressions sampled
from session logs of the Tencent search engine Soso.com. Each
sample in this dataset is similar to Bing Ads data and contains five
components:

e Query text: a list of tokens hashed from the natural language;

o Ad text: including ad title and ad display URL which are also
a list of tokens;

o CTR prediction features: containing 57 CTR features used for
prediction including sparse features such as UserID, AdID,
user’s gender etc., and numerical features such as historical
CTRs, impressions per Ad/Advertiser/Query/User, user’s age,
and depth of session etc.;

e Position feature: indicating the position where the ad is
shown;

o Click label: 1 means the ad has been clicked and 0 otherwise.

Differently from Bing Ads data, all textual features in KDD Cup
2012 dataset are anonymous, and it is difficult to map the hash ID
from data to vocabulary ID of pre-trained language models. We
solve this issue, by treating these anonymous tokens as new words
and building the map from these hash IDs to new extended IDs
following existing vocabulary of pre-trained language models.

As there is no time information in this dataset, it is impossible to
split the training data and validation data according to impression
time. We use a simple way to generate the training and validation
datasets, by randomly choosing 1/11 of samples as validation data
and the remaining as training data. Table 8 summaries the statistics
of training data and validation data.

Impressions | Clicks CTR
Training Data | 216,038,149 | 7,550,609 | 0.0349

Validation Data | 19,544,730 667,024 | 0.0341
Table 8: Statistics for KDD Cup 2012 dataset

A.2 Baseline Settings

We first introduce the generation of embedding layer for both Wide
& Deep and DeepFM. As described in A.1, there are sparse features,
textual features and numerical features in each training sample and
for different types of feature, the processing methods are differ-
ent. For sparse features, we extent each input to a 8-dimensional
embedding respectively. In terms of textual features such as query
text, ad title and ad display URL, we first extent each word into a
8-dimensional word-embedding, and then use Average-Pooling to
get a sentence-level embedding. For numerical features, we normal-
ize them with max-min normalization at first and then concatenate
these into embedding layer directly.

Dong Wang et al.

e Wide & Deep: The wide component is a Logistic Regression
that takes one-hot vectors as inputs and the deep component
has embedding layer for each input and two following dense
hidden layers with ReLU activation. The wide component
and deep component are combined using a weighted sum of
their output logits as the final prediction score.

e DeepFM: In FM component, we generate the first-order
features from the input features directly and generate the
second-order features by crossing the embedding layer de-
scribed above. In deep component, we use two ReLU layers
stacked over the embedding layer.

A.3 Language Model Settings

The teacher model of fine-tuning is initialized by BERT-12 model.
The query and the concatenation of the ad title with its display URL
are used as two input sentences.

As mentioned in Section 3, the training process consists of two
phases: at first training separately the initial weights for auxiliary
and NLP features, and in the second phase, these two parts are
jointly trained. For auxiliary features, we follow the network archi-
tecture in [26], from which the embedding layer described in A.2 is
borrowed, and stack two dense hidden layers with ReLU activation
after the embedding layer. These layers have each a dimension of
respectively 30 and 10, besides one separate position node. We train
this network independently over 10 epochs with a learning rate
5e-4 to get the initial weights of the auxiliary features part. For
initialization of NLP feature part, the standard BERT-12 model is
pre-trained on the training data with MLM task, where the masking
rate is 15%, and then is fine-tuned with click labels over the same
training data. The hyperparameters are set to the same values in
both pre-training and fine-tuning. The training batch size is 256,
learning rate is 2e-5 with linear decay, and the epochs number is
set to 4.
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Figure 4: Framework of Joint-Training on KDD Cup 2012
Data

For joint-training, the [CLS] pooling output from the language
model and the embedding layer from auxiliary features are mapped
to 30-dimensional layers H, and H, respectively, and then node-
wise summed, yielding the input of the interaction layers. We set a
small learning rate value of 1e-5 with linear decay and only train
for two epochs to avoid over-fitting. Figure 4 depicts the framework
we used for joint-training of the KDD Cup 2012 data.
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In distillation phase, we use light BERT-3 model as student model. model. The learning rate is set as le-5 with linear decay and the
The model is initialized with the weights from the bottom three lay- number of distillation epochs is 5.
ers of the jointly-trained BERT-12 model coming from the teacher
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