This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

DeepMerge: Learning to Merge Programs

Elizabeth Dinella, Member, IEEE, Todd Mytkowicz, Member, IEEE, Alexey Svyatkovskiy, Member, IEEE
Christian Bird, Senior Member, IEEE Mayur Naik, Member, IEEE Shuvendu Lahiri, Member, IEEE

Abstract—In collaborative software development, program merging is
the mechanism to integrate changes from multiple programmers. Merge
algorithms in modern version control systems report a conflict when
changes interfere textually. Merge conflicts require manual intervention
and frequently stall modern continuous integration pipelines. Prior work
found that, although costly, a large majority of resolutions involve re-
arranging text without writing any new code. Inspired by this observation
we propose the first data-driven approach to resolve merge conflicts with a
machine learning model. We realize our approach in a tool DEEPMERGE
that uses a novel combination of (i) an edit-aware embedding of merge
inputs and (ii) a variation of pointer networks, to construct resolutions
from input segments. We also propose an algorithm to localize manual
resolutions in a resolved file and employ it to curate a ground-truth
dataset comprising 8,719 non-trivial resolutions in JavaScript programs.
Our evaluation shows that, on a held out test set, DEEPMERGE can predict
correct resolutions for 37% of non-trivial merges, compared to only 4% by
a state-of-the-art semistructured merge technique. Furthermore, on the
subset of merges with upto 3 lines (comprising 24% of the total dataset),
DEEPMERGE can predict correct resolutions with 78% accuracy.

1 INTRODUCTION

In collaborative software development settings, version
control systems such as “git” are commonplace. Such version
control systems allow developers to simultaneously edit code
through features called branches. Branches are a growing
trend in version control as they allow developers to work
in their own isolated workspace, making changes indepen-
dently, and only integrating their work into the main line of
development when it is complete. Integrating these changes
frequently involves merging multiple copies of the source
code. In fact, according to a large-scale empirical study of
Java projects on GitHub [13], nearly 12% of all commits are
related to a merge.

To integrate changes by multiple developers across
branches, version control systems utilize merge algorithms.
Textual three-way file merge (e.g. present in “git merge”) is
the prevailing merge algorithm. As the name suggests, three-
way merge takes three files as input: the common base file O,
and its corresponding modified files, A and 5. The algorithm
either:

1) declares a “conflict” if the two changes interfere with
each other, or

2) provides a merged file M that incorporates changes
made in A4 and B.

Under the hood, three-way merge typically employs
the dif£3 algorithm, which performs an unstructured (line-
based) merge [36]. Intuitively, the algorithm aligns the two-
way diffs of A (resp. B) over the common base O into a

© 2022 |IEEE. Personal use is permitted, but re'gublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
T. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: MICROSO!

Base O Variant A Variant B Resolution?
(base. js) (a.Js) (b.Js) (m.Js)
y = 42; x = 1; y = 42; x = 1;
). y = 42; z = 43; y = 42;
z = 43;
©2) y = 42; x = 1; z = 43; CONFLICT
' y = 42; y = 42;

Figure 1: Two examples of unstructured merges.

sequence of diff slots. At each slot, a change from either A or
B is incorporated. If both programs change a common slot, a
merge conflict is produced, and requires manual resolution of
the conflicting modifications.

Figure 1 shows two simple code snippets to illustrate
examples of three-way merge inputs and outputs. The figure
shows the base program file O along with the two variants .4
and B. Example (1) shows a case where dif £3 successfully
provides a merged file M incorporating changes made in
both A and B. On the other hand, Example (2) shows a case
where diff3 declares a conflict because two independent
changes (updates to x and z) occur in the same diff slot.

When diff3 declares a conflict, a developer must
intervene. Consequently, merge conflicts are consistently
ranked as one of the most taxing issues in collaborative,
open-source software development, “especially for seemingly
less experienced developers” [15]. Merge conflicts impact
developer productivity, resulting in costly broken builds that
stall the continuous integration (CI) pipelines for several
hours to days. The fraction of merge conflicts as a percentage
of merges range from 10% — 20% for most collaborative
projects. In several large projects, merge conflicts account for
up to 50% of merges (see [13] for details of prior studies).

Merge conflicts often arise due to the unstructured dif£3
algorithm that simply checks if two changes occur in the
same diff slot. For instance, the changes in Example (2),
although textually conflicting, do not interfere semantically.
This insight has inspired research to incorporate program
structure and semantics while performing a merge. Structured
merge approaches [3], [25], [42] and their variants treat
merge inputs as abstract syntax trees (ASTs), and use tree-
structured merge algorithms. However, such approaches still
yield a conflict on merges such as Example (2) above, as

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

{ unchanged lines (prefix) } <<<<<< a.js
<< x = 1;

{ lines edited by A } [TITI] base.js
R =TT

{ affected lines of base O } z = 43;

S —— >>>>>> b, js

{ lines edited by 55 } y = 42;

>>>>>>

{ unchanged lines (suffix) }

(a) Format of a conflict. (b) Instance of a conflict.

Figure 2: Conflict format and an instance reported by diff3
on Example (2) from Figure 1.

they do not model program semantics and cannot safely
reorder statements that have side effects.! To make matters
worse, the gains from structured approaches hardly transfer
to dynamic languages, namely JavaScript [42], due to the
absence of static types. Semantics-based approaches [47],
[37] can, in theory, employ program analysis and verifiers
to detect and synthesize the resolutions. However, there are
no semantics-based tools for synthesizing merges for any
real-world programming language, reflecting the intractable
nature of the problem. Current automatic approaches fall
short, suggesting that merge conflict resolution is a non-
trivial problem.

This paper takes a fresh data-driven approach to the
problem of resolving unstructured merge conflicts. Inspired
by the abundance of data in open-source projects, the paper
demonstrates how to collect a dataset of merge conflicts and
resolutions.

This dataset drives the paper’s key insight: a vast majority
(80%) of resolutions do not introduce new lines. Instead, they
consist of (potentially rearranged) lines from the conflict
region. This observation is related to the “plastic surgery
hypothesis” [5] and the “redundancy assumption®” [28] and
is confirmed by a prior independent large-scale study of Java
projects from GitHub [15], in which 87% of resolutions are
comprised exclusively from lines in the input. In other words,
a typical resolution consists of re-arranging conflicting lines
without writing any new code. Our observation naturally
begs the question: Are there latent patterns of rearrangement?
Can these patterns be learned?

This paper investigates the potential for learning latent
patterns of rearrangement. Effectively, this boils down to the
question:

Can we learn to synthesize merge conflict resolutions?
Specifically, the paper frames merging as a sequence-to-
sequence task akin to machine translation.

To formulate program merging as a sequence-to-sequence
problem, the paper considers the text of programs A, B, and
O as the input sequence, and the text of the resolved program
M as the output sequence. However, this seemingly simple
formulation does not come without challenges. Section 5
demonstrates an out of the box sequence-to-sequence model
trained on merge conflicts yields very low accuracy. In order
to effectively learn a merge algorithm, one must:

1. We ran jdime [25] in structured mode on this example after
translating the code snippet to Java.

2. Please see section 8 for an in depth discussion of how the Plastic
Surgery Hypothesis and the Redundancy Assumption relate to this
work.

© 2022 IEEE. Personal use is permitted, but re

2

1) represent merge inputs in a concise yet sufficiently
expressive sequence;

2) create a mechanism to output tokens at the line granu-
larity; and

3) localize the merge conflicts and the resolutions in a given
file.

To represent the input in a concise yet expressive em-
bedding, the paper shows how to construct an edit aware
sequence to be consumed by DEEPMERGE. These edits
are provided in the format of diff3 which is depicted in
Figure 2(a) in the portion between markers “<<<<<<<* and
“>>>>>>>", The input embedding is extracted from parsing
the conflicting markers and represents A’s and B’s edits over
the common base O. In this paper we refer to the lines of
code between the conflict start marker (<<<<<<<) and the
conflict end marker (>>>>>>>) as a conflict region.

To represent the output at the line granularity, DEEP-
MERGE's design is a form of a pointer network [44]. As such,
DEEPMERGE constructs resolutions by copying input lines,
rather than learning to generate them token by token. Guided
by our key insight that a large majority of resolutions are
entirely comprised of lines from the input, such an output
vocabulary is sufficiently expressive.

Lastly, the paper shows how to localize merge conflicts
and the corresponding user resolutions in a given file. This
is necessary as our approach exclusively aims to resolve lo-
cations in which dif£3 has declared a conflict. As such, our
algorithm only needs to generate the conflict resolution and
not the entire merged file. Thus, to extract ground truth, we
must localize the resolution for a given conflict in a resolved
file. Localizing such a resolution region unambiguously
is a non-trivial task. The presence of extraneous changes
unrelated to conflict resolution makes resolution localization
challenging. The paper presents the first algorithm to localize
the resolution region for a conflict. This ground truth is
essential for training such a deep learning model.

The paper demonstrates an instance of DEEPMERGE
trained to resolve unstructured merge conflicts in JavaScript
programs. Besides its popularity, JavaScript is notorious
for its rich dynamic features, and lacks tooling support.
Existing structured approaches struggle with JavaScript [42],
providing a strong motivation for a technique suitable for dy-
namic languages. The paper contributes a real-world dataset
of 8,719 merge tuples that require non-trivial resolutions
from nearly twenty thousand repositories in GitHub. Our
evaluation shows that, on a held out test set, DEEPMERGE
can predict correct resolutions for 37% of non-trivial merges.
DEEPMERGE's accuracy is a 9x improvement over a recent
semistructured approach [42], evaluated on the same dataset.
Furthermore, on the subset of merges with upto 3 lines
(comprising 24% of the total dataset)) DEEPMERGE can
predict correct resolutions with 78% accuracy.

Contributions. In summary, this paper:

1) is the first to define merge contflict resolution as a ma-
chine learning problem and identify a set of challenges
for encoding it as a sequence-to-sequence supervised
learning problem (§ 2).

2) presents a data-driven merge tool DEEPMERGE that uses
edit-aware embedding to represent merge inputs and a
variation of pointer networks to construct the resolved

program (§ 3).

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

3) derives a real-world merge datasetfor supervised learn-
ing by proposing an algorithm for localizing resolution
regions (§ 4).

4) performs an extensive evaluation of DEEPMERGE on
merge conflicts in real-world JavaScript programs. And,
demonstrates that it can correctly resolve a significant
fraction of unstructured merge conflicts with high preci-
sion and 9x higher accuracy than a structured approach.

2 DATA-DRIVEN MERGE

We formulate program merging as a sequence-to-sequence
supervised learning problem and discuss the challenges we
must address in solving the resulting formulation.

2.1

A merge consists of a 4-tuple of programs (A, 8,0, M)
where A and B are both derived from a common O, and M
is the developer resolved program.

A merge may consist of one or more regions. We define
a merge tuple (A, B, O), R) such that A, B, O are (sub) pro-
grams that correspond to regions in .4, B, and O, respectively,
and R denotes the result of merging those regions. Although
we refer to (A4, B, O, R) as a merge tuple, we assume that the
tuples also implicitly contain the programs that they came
from as additional contexts (namely A, B, O, M).
Definition 1 (Data-driven Merge). Given a dataset of M

merge tuples,

Problem Formulation

D ={(A", B", 0", R"}M,

a data-driven merge algorithm merge is a function that
maximizes:

M

Zmerge(Ai, B, 0" =R’

i=1
treating Boolean outcomes of the equality comparison as
integer constants 1 (for true) and 0 (for false).

In other words, merge aims to maximize the number of
merges from D. Rather than constraining merge to exactly
satisfy all merge tuples in D, we relax the objective to
maximization. A perfectly satisfying merge function may
not exist in the presence of a real-world noisy dataset
D. For instance, there may be (A’ B', O, RY) € D and
(A7,Bi,09,R¥) € D fori +# j, Al = AJ, Bt = BI, 0" = 0J
but R # R’. In other words, two merge tuples consist of the
same edits but different resolutions.

Example 1. Figure 3(a) shows a merge instance that we
will use as our running example throughout. This instance
is formulated in our setting as the merge tuple (A, B, O, R)
depicted in Figure 3(b). R contains only lines occurring in the
input. The two lines in R correspond to the first line of B and
the third line of A. For this example, the R also incorporates
the intents from both A and B intuitively, assuming b does
not appear in the rest of the programs. (]

One possible way to learn a merge algorithm is by
modeling the conditional probability

p(R|A, B,O) 1)

In other words, a model that copies and orders portions
of the input programs to produce the output program R.

© 2022 |IEEE. Personal use is permitted, but re'gublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
T. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: MICROSO!

3
<<<<<< a. s let b = x + 5.7
A=|var y = floor(b)
let b = x + 5.7 console.log(y)
var y = floor (b)
console.log(y) o=| var b = 5.7
I1111] base.js var y = floor (b)
var b = 5.7 B=| var v = floor(x + 5.7)
var y = floor (b)
====== R= var y = floor(x + 5.7)
var y = floor(x + 5.7) console.log(y)
>>>>>> b.js
(a) A merge instance. (b) Corresponding merge tu-
ple.

Figure 3: Formulation of a merge instance in our setting.

Because programs are sequences, we further decompose
Eq 1 by applying the chain rule [38]:

N
p(R‘AvaO) = Hp(Rj|R<ijvaO)

Jj=1

This models the probability of copying an element from A,
B, or O into the j—th element of the R, given the elements
copied into R so far. There are many possible ways to model
a three-way merge. However, the above formulation suggests
one obvious approach is to use a maximum likelihood
estimate of a sequence-to-sequence model.

2.2 Challenges

Applying a sequence-to-sequence (Seq2seq) model to merge
conflict resolution poses unique challenges. We discuss three
key challenges, concerning input representation, output
construction, and dataset extraction.

2.2.1 Representing the Merge Inputs as a Sequence.

In a traditional sequence-to-sequence task such as machine
translation, there is a single input sequence that maps to
a single output sequence. However, in our case, we have
three input sequences of varying sizes, corresponding to the
three versions of a program involved in a merge conflict. It is
not immediately evident how to determine a suitable token
granularity and encode these sequences in a manner that is
amenable to learning. One obvious solution is to concatenate
the tokens of the three sequences to obtain a single sequence.
However, the order of concatenation is unclear. Furthermore,
as we show in Section 3.2, such a naive representation not
only suffers from information loss and truncation, but also
poor precision by being unaware of A and B’s edits over
common base O. In summary, we have:

CH1: Encode programs A, B, and O as the input to a
Seq2Seq model.

2.2.2 Constructing the Output Resolution

Our key insight that a majority of resolutions do not intro-
duce new lines leads us to construct the output resolution
directly from lines in the conflict region. This naturally
suggests the use of pointer networks [44], an encoder-decoder

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

architecture capable of producing outputs explicitly pointing
to tokens in the input sequence. However, a pointer net-
work formulation suggests an equivalent input and output
granularity. In Section 3.2, we show that the input is best
represented at a granularity far smaller than lines.

Thus, the challenge is:

CH2: Output R at the line granularity given a non-line
granularity input.

2.2.3 Extracting Ground Truth from Raw Merge Data.

Finally, to learn a data-driven merge algorithm, we need real-
world data that serves as ground truth. Creating this dataset
poses non-trivial challenges. First, we need to localize the
resolution region and corresponding conflict region. In some
cases, developers performing a manual merge resolution
made changes unrelated to the merge. Localizing resolution
regions unambiguously from input programs is challenging
due to the presence of these unrelated changes. Second, we
need to be able to recognize and subsequently filter merge
resolutions that only include changes from one side of the
merge but completely ignore the changes in the other. One
behavior of developers faced with a merge conflict is to
simply use the version in one of the incoming branches as
the resolution and later incorporate the changes from the
other branch. In these cases, the version of the file checked
in at the merge point in the repository does not accurately
represent the “correct” merge resolution and should not be
used. In summary, we have:
CH3: Identify merge tuples {(A%, B',0%, R\)}M,
given (A, B,O, M).

3 THE DEEPMERGE ARCHITECTURE

Section 2 suggested one way to learn a three-way merge is
through a maximum likelihood estimate of a sequence-to-
sequence model. In this section we describe DEEPMERGE,
the first data-driven merge framework, and discuss how it
addresses challenges CH1 and CH2. We motivate the design
of DEEPMERGE by comparing it to a standard sequence-to-
sequence model, the encoder-decoder architecture.

3.1

Sequence-to-sequence models aim to map a fixed-length
input ((Xn)nen), to a fixed-length output, ((Yar)men) [39].
> The standard sequence-to-sequence model consists of
three components: an input embedding, an encoder, and a
decoder.

Input embedding: An embedding maps a discrete input
from an input vocabulary V (z,, € NIV, to a continuous
D dimensional vector space representation (z,, € R”) [30].
Such a mapping is obtained b%] multiplication over an
embedding matrix £ € RPXIVI. Applying this for each
element of X gives X y.

Encoder Decoder Architectures

Encoder: An encoder encode, processes each T, and
produces a hidden state, z,, which summarizes the sequence
upto the n-th element. At each iteration, the encoder
takes as input the current sequence element z,, and the

3. Note that M is not necessary equal to N.

© 2022 IEEE. Personal use is permitted, but re

4

previous hidden state z,_;. After processing the entire input
sequence, the final hidden state, zy, is passed to the decoder.

Decoder: A decoder decode, produces the output sequence
Y from an encoder hidden state Z,,. Similar to encoders,
decoders work in an iterative fashion. At each iteration, the
decoder produces a single output token y,, along with a
hidden summarization state h,,. The current hidden state
and the previous predicted token y,, are then used in the
following iteration to produce y,,+1 and hp41. Each y,,, the
model predicts is selected through a softmax over the hidden
state:

P(Ymly1, s Yym—1, X) = softmax(h.,)

DEEPMERGE is based on this encoder-decoder architec-
ture with two significant differences.

First, rather than a standard embedding followed by
encoder, we introduce a novel embedding method called
Merge2Matrix. Merge2Matrix addresses CH1 by summarizing
input programs (A4, B, O) into a single embedding fed to the
encoder. We discuss our Merge2Matrix solution as well as
less effective alternatives in Section 3.2.

Second, rather than using a standard decoder to generate
output tokens in some output token vocabulary, we augment
the decoder to function as a variant of pointer networks. The
decoder outputs line tuples (i, W) where W € {4, B} and 4
is the ¢-th line in W. We discuss this in detail in Section 3.4.

Example 2. Figure 4 illustrates the flow of DEEPMERGE
as it processes the inputs of a merge tuple. First, the raw text
of A, B, and O is fed to Merge2Matrix. As the name suggests,
Merge2Matrix summarizes the tokenized inputs as a matrix.
That matrix is then fed to an encoder which computes the
encoder hidden state zy. Along with the start token for the
decoder hidden state, the decoder takes zx and iteratively
(denoted by the - - -) generates as output the lines to copy
from A and B. The final resolution is shown in the green
box. O

3.2 Merge2Matrix

An encoder takes a single sequence as input. As discussed in
Section 2.2, a merge tuple consists of three sequences. This
section introduces Merge2Matrix, an input representation
that expresses the tuple as a single sequence. It consists of
embedding, transformations to summarize embeddings, and
finally, edit-aware alignment.

3.2.1 Tokenization and Embedding

This section discusses our relatively straightforward applica-
tion of both tokenization and embedding.

Tokenization. Working with textual data requires tokeniza-
tion whereby we split a sequence of text into smaller units
referred to as fokens. Tokens can be defined at varying
granularities such as characters, words, or sub-words. These
units form a vocabulary which maps input tokens to integer
indices. Thus, a vocabulary is a mapping from a sequence
of text to a sequence of integers. This paper uses byte-pair
encoding (BPE) as it has been shown to work well with
source code, where tokens can be formed by combining
different words via casing conventions (e.g. snake_case or
camelCase) causing a blowup in vocabulary size [22]. Byte-
pair encoding is an unsupervised sub-word tokenization

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

<<<<<K<k< A
let b =x + 5.7
var y = floor (b)

<1,a>
<2,a>

[

var y = floor(x + 5.7)
console.log(y)

<1,B>
<3,a>

console.log (y) <3,A>
(NN
var b = 5.7 <1,0>
var y = floor(b) <2,0>
var y = floor(x + 5.7) <1,B>
>>>>>>> B

START token

Merge2Matrix
ES
[000000000000C00000000 |
zn

line <1,A>
line <2,A>
line <3,A>
line <1,0>
line <2,0>
line <1,B>
STOP token

line <1,A>
line <2,A>

line <3,A> <1,B>
line <1,0>
line <2,0>
line <1,B>

STOP token

i

hpy i by

Figure 4: Overall DEEPMERGE framework. The dotted box represents repetition of decode until m = M i.e. the (STOP) token
is predicted. In this example, we have omitted m = 2 in which the call to decode outputs y, = (3, A).

that draws inspiration from information theory and data
compression wherein frequently occurring sub-word pairs
are recursively merged and stored in the vocabulary. We
found that the quality of results when using BPE was empir-
ically superior to the results when using other tokenization
schemes.

Embedding. Given an input sequence Xy, and a hy-
perparameter (embedding dimension) D, an embedding
transformation creates X . As described in Section 3.1,
the output of this embedding is then fed to an encoder.
Because a merge tuple consists of three inputs (A4, B, and O),
the following sections introduce novel transformations that
summarize these three inputs into a format suitable for the
encoder.

3.2.2 Merge Tuple Summarization

In this section, we describe summarization techniques that
are employed after embedding. Before we delve into details,
we first introduce two functions used in summarization.

Suppose a function that concatenates embedded repre-
sentations:

concaty : (RPXN x ... x RPXN) _y RD*sN

that takes s similarly shaped tensors as arguments and
concatenates them along their last dimension. Concatenating
these s embeddings increases the size of the encoder’s input
by a factor of s.

Suppose a function linearize that linearly combines s
embedded representations. We parameterize this function
with learnable parameters € R**1. As input, linearize
takes an embedding 7; € RP fori € 1..S. Thus, we define

linearizeg(T1,...,Ts) =01 - T1+ -+ 05 - Ts + 0541

where all operations on the inputs 71, . .., Z, are pointwise.
linearize reduces the size of the embeddings fed to the
encoder by a factor of s.

Now that we have defined two helper functions, we
describe two summarization methods.

Naive. Given a merge tuple’s inputs (4, B, O), a naive
implementation of Merge2Matrix is to simply concatenate
the embedded representations (i.e., concatz(A, B, 0O)) Tra-
ditional sequence-to-sequence models often suffer from
information forgetting; as the input grows longer, it becomes

© 2022 |IEEE. Personal use is permitted, but re'gublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
T. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: MICROSO!

harder for encode to capture long-range correlations in that
input. A solution that addresses CH1, must be concise while
retaining the information in the input programs.
Linearized. As an attempt at a more concise representa-
tion, we introduce a summarization we call linearized. This
method linearly combines each of the embeddings through
our helper function: linearizeq(A, B, O). linearizey is re-
lated to attention, but encapsulates more than just attention.
linearizeg is a transformation from a higher-dimensional
space (2 in our case) to a single dimension space. The
transformation does learn weights on different tokens in
the input which can be thought of as attention. However,
attention mechanisms do not necessarily perform dimension-
ality reduction which is the key component of linearizeg. In
Section 5 we empirically demonstrate better model accuracy
when we summarize with linearizeg rather than concat.

3.2.3 Edit-Aware Alignment

In addition to input length, CH1 also alludes that an effective
input representation needs to be “edit aware”. The aforemen-
tioned representations do not provide any indication that A
and B are edits from O.

Prior work, Learning to Represent Edits (LTRE) [48] intro-
duces a representation to succinctly encode 2 two-way diffs.
The method uses a standard deterministic diffing algorithm
and represents the resulting pair-wise alignment as an auto-
encoded fixed dimension vector.

A two-way alignment produces an “edit sequence”. This
series of edits, if applied to the second sequence, would
produce the first. An edit sequence, Ao, is comprised
of the following editing actions: = representing equivalent
tokens, + representing insertions, — representing deletions,
+» representing a replacement. Two special tokens) and | are
used as a padding token and a newline marker, respectively.
Note that these As only capture information about the kinds
of edits and ignore the the tokens that make up the edit
itself (with the exception of the newline token). Prior to the
creation of A, a preprocessing step adds padding tokens such
that equivalent tokens in A (resp. B) and O are in the same
position. These sequences, shown in Figure 5 are denoted as
A" and AO’ (resp. B’ and BO').

Example 3. Consider B’s edit to O in Figure 5 via its
preprocessed sequences B’, BO’, and its edit sequence
Apo. One intuitive view of Apgp is that it is a set of

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

Al

DPEEEED A E) ® 1) () et 000

<<k A A
let b = x + 5.7
var y = floor (b)

CEEsECEIOEEECE Y eMOC=BE

embed
A 40 = align(4, O)

console.log (y)

N 20 (=EE

@ EDEE==] 5 0 |

var b = 5.7
var y = floor (b)

======= 0

var y = floor(x + 5.7) B 1
S>>>>>> B

0
W@@@rﬂmu@ 0 |

Apo = align(B, O)

(] @ E) Eeer O B ETD) |

7 <
[000000000000000000000 |/

XT = linearizey (As0,ABo0)

&
oo OEEECEIuECEEC = JEE

Figure 5: Merge2Matrix: implemented with the Aligned Linearized input representation used in DEEPMERGE.

instructions that describe how to turn B’ into BO' with
the aforementioned semantics. Note the padding token ()
introduced into Ao represents padding out to the length
of the longer edit sequence A 40. O

We now describe two edit-aware summarization methods
based on this edit-aware representation. However, our setting
differs from the original LTRE setting as we assume three
input sequences and a three-way diff. In the following sum-
marization methods, we assume that A, B, O are tokenized,
but not embedded before invoking Merge2Matrix.

Aligned naive. Given A 40 and App, we embed each
to produce Ao and Apgp, respectively. Then we com-
bine these embeddings through concatenation and thus
concaty (A0, Apo) is fed to the encoder.

Aligned linearized. This summarization method is de-
picted in Figure 5, invoking linearize to construct an input
representation over edit sequences. First, we apply alignment
to create Ayp and App. This is portrayed through the
& operator. Following construction of the As, we apply
embedding and subsequently apply our edit-aware linearize
operation via the Q) operator. Thus, we summarize embed-
dings with linearizeg(Aao, Apo) and feed its output to
the encoder. As we demonstrate in Section 5, this edit-aware
input representation significantly increases the model’s
accuracy.

LTRE. Finally, for completeness, we also include the
original LTRE representation. We modify this to our setting
by creating two 2-way diffs. The original LTRE has a second
key difference from our summarization methods. LTRE
includes all tokens from from the input sequences in addition
to the edit sequences That is, LTRE summarizes A’ AO’, A 40,
B’, BO', and Apo. Let A/, AO" and A 40, (resp B/, BO/,
and App) be the embedding of a two-way diff. Then, the
following summarization combines all embeddings:

concatg(Aao, A, AO', Ao, B', BO')

© 2022 IEEE. Personal use is permitted, but re

3.3 The Encoder

The prior sections described Merge2Matrix which embeds a
merge into a continuous space which is then summarized by
an encoder. DEEPMERGE uses a bi-directional gated recurrent
unit[9] (GRU) to summarize the embedded input sequence.
Similar to other approaches applying neural techniques to
source code [49], we empirically found that a bi-directional
GRU provided better results than a uni-directional GRU.

3.4 Synthesizing Merge Resolutions

This section summarizes DEEPMERGE's approach to solving
CH2. Given a sequence of hidden vectors Z produced by
an encoder, a decoder generates output sequence Yy;. We
introduce an extension of a traditional decoder to copy lines
of code from those input programs.

Denote the number of lines in A and B as Li4 and Lip,
respectively. Suppose that L = 1..(Lia + Lig); then, a value
i € L corresponds to the i-th line from A if i <= Liy4, and
the i — Li 4-th line from B, otherwise.

Given merge inputs (4, B, O), DEEPMERGE’s decoder
computes a sequence of hidden states H,;, and models
the conditional probability of lines copied from the input
programs A, B, and O by predicting a value in y,,, € Yas:

PYml|y1, s Ym—1, A, B, 0) = softmax(hy,)

where h,, € H)s is the decoder hidden state at the m-th
element of the output sequence and the argmax(y,,) yields
an index into L.

In practice, we add an additional (STOP) token to L. The
(STOP) token signifies that the decoder has completed the
sequence. The (STOP) token is necessary as the decoder may
output a variable number of lines conditioned on the inputs.

This formulation is inspired by pointer networks [44], an
encoder-decoder architecture that outputs an index that ex-
plicitly points to an input token. Such networks are designed
to solve combinatorial problems like sorting. Because the
size of the output varies as a function of the input, a pointer

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

network requires a novel attention mechanism that applies
attention weights directly to the input sequence. This differs
from traditional attention networks which are applied to the
outputs of the encoder Zy. In contrast, DEEPMERGE requires
no change to attention. Our architecture outputs an index
that points to the abstract concept of a line, rather than an
explicit token in the input. Thus, attention applied to Zx;, a
summarization of the input, is sufficient.

3.5 Training and Inference with DEEPMERGE

The prior sections discussed the overall model architecture
of DEEPMERGE. This section describes hyperparameters that
control model size and how we trained the model. We use a
embedding dimension D = 1024 and 1024 hidden units in
the single layer GRU encoder. Assume the model parameters
are contained in §; training seeks to find the values of 6 that
maximize the log-likelihood

arg max log pp(R|A, B, O)
0

over all merge tuples ((4, B, 0), R) in its training dataset.
We use standard cross-entropy loss with the Adam optimizer.
Training takes roughly 18 hours on a NVIDIA P100 GPU
and we pick the model with the highest validation accuracy,
which occurred after 29 epochs.

Finally, during inference time, we augment DEEPMERGE
to use standard beam search methods during decoding to
produce the most likely k top merge resolutions. DEEP-
MERGE predicts merge resolutions up to C' lines. We set
C = 30 to tackle implementation constraints and because
most resolutions are less than 30 lines long. However, we
evaluate DEEPMERGE on a full test dataset including samples
where the number of lines in M is > C.

4 REAL-WORLD LABELED DATASET

To build our dataset, we identify merge conflicts and their
resolutions in a git repository history. For each file in a merge
commit, we extract the version of the file in the last commit
in both branches involved in the merge (the commit just
preceding the merge), yielding A and B. We also identify
the commit representing the common base of both branches
and extract the version of the file from that commit, which
provides O. Finally, we extract the version of the file in
the merge commit (which has presumably been resolved
by the author) which we treat as the correctly merged file,
M. Running diff3 with O, A, and B indicates if there is
a merge conflict in the file and produces a conflict file with
conflict region markers (For an example, see Figure 6-a).
However, matching conflict regions (denoted by the conflict
markers) in the conflict file with corresponding resolutions
in M is non-trivial.

This section describes our solution to CH3: localizing
merge instances (4, B, 0, R); from (A, B,O, M). Since a
program may have several merge conflicts, we decompose
the overall merge problem into merging individual instances.
As shown in Figure 3, A, B, and O regions can be easily ex-
tracted given the dif£3 conflict markers. However, reliably
localizing a resolution R involves two sub-challenges:

1) How do we localize individual regions R unambigu-
ously?

© 2022 IEEE. Personal use is permitted, but re

2) How do we deal with trivial resolutions?
In this section, we elaborate on each of these sub-challenges
and discuss our solutions. We conclude with a discussion of
our final dataset and its characteristics.

Algorithm 1 Localizing Merge Tuples from Files for Dataset

1: procedure LOCALIZEMERGETUPLES(C, M)
2 MT + 0 > Merge Tuples
3 for i € [1, NUMCONFLICTS(C)] do
4: R <+ LOCALIZERESREGION(C, M,)
5 if R == nil then
6 continue > Could not find resolution
7 end if
8: (A, B,0) +GETCONFLICTCOMPONENTS(C, %)
9: if R € {A, B,O} then
10: continue > Filter trivial resolutions
11: end if
12: if LINES(R) C LINES(A) U LINES(B) then
13: MT « MT U{(A,B,O,R)}
14: end if
15: end for

16: return MT
17: end procedure

18: procedure LOCALIZERESREGION(C, M,)
: n < Length(M) > Length of M in chars

20: m < Length(C) > Length of C in chars

21: (spos, epos) < GETCONFLICTSTARTEND(C, 7)

22: prfz < (BOF) + C[0 : spos]

23: sffz + Clepos : m| + (EOF)

24: s <~ MINIMALUNIQUEPREFIX(reverse(prfz), reverse(M))

25: e < MINIMALUNIQUEPREFIX(sffz, M)

26: if s > 0 and e > 0 then

27: return M[n — s : €]
28: else

29: return nil

30: end if

31: end procedure

32: procedure MINIMALUNIQUEPREFIX(z, y)

33: Output:Returns the start position of the minimal non-empty
prefix of = that appears uniquely in y, else -1

34: end procedure

35: procedure LINES(p)
36: Output:Returns the set of lines comprising the program p
37: end procedure

Algorithm 1 denotes a method to localize merge tu-
ples from a corpus of merge conflict and resolution files.
The top-level procedure EXTRACTMERGETUPLES takes C,
the diff3 conflict file with markers, along with M, the
resolved file. From those inputs, it extracts merge tuples
into MT. The algorithm loops over each of the conflicted
regions in C, and identifies the input (A, B, O) and output
(R) of the tuple using GETCONFLICTCOMPONENTS and
LOCALIZERESREGION respectively. Finally, it applies a filter
on the extracted tuple (lines 5 — 14). We explain each of these
components in the next few subsections.

4.1 Localization of Resolution Regions

Creating a real-world merge conflict labeled dataset
requires identifying the “exact” code region that constitutes
a resolution. However, doing so can be challenging; Figure 6
demonstrates an example. The developer chooses to perform
a resolution baz () ; that does not correspond to anything
from the A or B edits, and the surrounding context also
undergoes changes (e.g. changing var with let which restricts

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

<BOF>

var time = new Date();

. . . <BOF>
print_time (time); ©
<<<<<<< a.j _—)
« = foo(?-js let time = new Date();
e b;se is print_time (time);
e) baz();

_ X print_time (time);
x bar () ; <EOF>

>>>>>>> b.js
print_time (time);
<EOF>

(b) Resolution.

(a) A merge instance.

Figure 6: Challenging example for localizing resolution. Red
code indicates the minimally unique suffix of the code
preceding the conflict region and blue indicates the minimally
unique prefix of the code succeeding the conflict region.

the scope in the prefix). To the best of our knowledge, there
is no known algorithm to localize R for such cases.

LOCALIZERESREGION is our method that tries to localize
the it" resolution region R, or returns nil when unsuccessful.
Intuitively, we find a prefix and suffix in a merge instance
and use this prefix and suffix to bookend a resolution. If we
cannot uniquely find those bookends, we say the resolution
is ambiguous.

The method first obtains the prefix prfz (resp. suffix sffz)
of the i*" conflict region in C in line 22 (resp. line 23). We add
the start of file (BOF') and end of file (FOF') tokens to the
prefix and suffix respectively.

The next few lines try to match the prefix prfz (resp. suffix
sffzr) in the resolved file M unambiguously.

For simplicity, let us first focus on finding the suffix
of the resolution region in M in line 25. The procedure
MINIMALUNIQUEPREFIX takes two strings and y and
finds the start position of the minimal non-empty prefix
of x that appears uniquely in y, or returns -1. For example,

MINIMALUNIQUEPREFIX(“abc”, “acdabacc”) is 3 since “ab”

is the minimal prefix of x that appears uniquely in y starting
in position 3 (0-based indexing).

In our running example from Figure 6, z is sffz, the code
following the conflict region:

print_time (time);
<EOF>

and y is the entire resolution (figure 6-b). Note that
“print_time (time) ;” occurs twice in the resolution, so
the minimal non-empty prefix of x that occurs uniquely must
include the <EOF> token. This is indicated by the blue text
in Figure 6.

To find the prefix of the resolution, we reverse the prfz
string and search for matches in reversed M, and then finally
find the offset from the start of M by subtracting s from the
length n of M.

Returning to our running example, this means we need
to find the minimal non-empty prefix of the code that
precedes the conflict region. Code that is reversed character
by character is difficult to read and make sense of, so we
avoid that shoing both strings in reverse below. In place of
that it’s helpful to recognize that looking for the minimally
unique prefix of one reversed string in another reversed string
is equivalent to finding the minimally unique suffix of the first

© 2022 IEEE. Personal use is permitted, but re

8

string in the second string (code that is reversed character by
character can be difficult to follow). We therefore color the
suffix of strings below rather than the prefix of the reversed
strings for ease of the reader.

Below is prfz, the code preceding the conflict region. Our
aim is to find the smallest suffix of this code that occurs
exactly once in the resolution.
<BOF>

var time = new Date();
print_time (time);
For reference, the resolution is:

<BOF>
var time = new Date();
print_time (time);
baz () ;
print_time (time);
<EOF>
Again, note that matching the line

“print_time (time) ;” is not minimally unique because it
occurs twice in the resolution. Working backwards from that
line, it is not until the “e () ;7 from the “Date () ; ” in the
previous line is included that prfz provides a unique match
in M. We indicate this in the minimal unique match in prfz
and M above and in Figure 6 by using red text (note the
end of the third line of code in both listings is also red).
Having identified the end of prefix of the conflict region
(red) and the beginning of the suffix of the conflict region
(blue), both which match in exactly one location in M, these
serve to bookend the resolution, enabling us to identify and
extract “baz () ;7 as R, the resolution region (line 27).
After localizing the resolution regions, we have a set of
merge instances of the form (4, B, O, R). We can use our
definition from Section 2 to label a merge tuple (A, B, O, R).

4.1.1 Validation of LOCALIZERESREGION

To evaluate LOCALIZERESREGION we performed a manual
analysis. We selected 50 merge conflicts at random for
inspection. For each conflict, we then generated the merge
conflict file (with the merge conflict markers identifying A,
B, and O) and also extracted the actual developer resolved
version of the file (the version of the file containing R).
We then ran LOCALIZERESREGION on every conflict region
in each conflict to extract the resolution region and also
examined both files (with the aid of a side-by-side diff viewer)
to manually identify the resolution region.

In all, there were 174 conflict regions in the 50 merge
conflicts. LOCALIZERESREGION identified the correct merge
resolution region in all 174 cases. An exact binomial test [18]
at the 95% level gives a confidence interval of [0.979, 1.0],
indicating that given these results, there is a 95% likelihood
that the true accuracy of LOCALIZERESREGION is between
97.9% and 100%. Given this level of performance, we use it
confidently to extract resolution regions in our data sets.

4.2 Filtering Trivial Resolutions

Upon examining our dataset, we found a large set of merges
in which A was taken as the resolution and B was entirely
ignored (or vice versa). These trivial samples, in large, were
(likely) the product of running git merge with “ours” or
“theirs” command-line options. Using these merge options

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

indicates that the developer did not resolve the conflict after
careful consideration of both branches, but instead relied on
the git interface to completely drop one set of changes. The
aforementioned command-line merge options are typically
used the commit is the first of many fix-up commits to
perform the full resolution.

We appeal to the notion of a “valid merge” that tries to
incorporate both the syntactic and semantic changes from
both A and B. Thus, these samples are not valid as they
disregard the changes from B (resp. A) entirely. Furthermore,
these trivial samples comprised 70% of our “pre-filtering”
dataset. Previous work confirmed our observation that a
majority of merge resolutions in GitHub Java projects (75%
in Table 13 [13]) correspond to taking just A or B. To avoid
polluting our dataset, we filter such merges (4, B,0, R)
where R € {A, B, O} (line 9 in Algorithm 1). Our motivation
to filter the dataset of trivial labels is based on both dataset
bias and the notion of a valid merge.

4.3 Final Dataset

We crawled repositories in GitHub containing primar-
ily JavaScript files, looking at merge commits. We chose
JavaScript as the language of focus for evaluation due to its
importance and growing popularity and the fact that static
analysis of JavaScript is challenging due to its weak, dynamic
type system and permissive nature [19], [23]. Gathering data
from GitHub indiscriminately can lead to both noise and bias.
We addpress this by following the advice of Kalliamvakou et
al. [21], We select projects that were active in the past
one year (at the time of writing), and received at least
100 stars (positive sentiment). In all, our training data-set
comprised 1126 JavaScript repositories. We also verified that
the dataset did not contain duplicate merges. We ignore
minified JavaScript files that compress an entire JavaScript
file to a few long lines. Finally, note that Algorithm 1 filters
away any resolution that consists of new segments (lines)
outside of A and B as our technique targets resolutions
that do not involve writing any new code. After applying
filters, we obtained 8,719 merge tuples. We divided these
into a 80/10/10 percent training/validation/test split. This
complete dataset contains the following distribution in terms
of total number of lines in A and B: 45.08% ([0,5]), 20.57%
([6,10]), 26.42% ([11,50]), 4.22% ([51,100]) and 3.70% (100+).

5 EVALUATION

In this section, we empirically evaluate DEEPMERGE to

answer the following questions:

RQ1 How effective is DEEPMERGE at synthesizing resolu-
tions?

RQ2 How effective is DEEPMERGE at suppressing incorrect
resolutions?

RQ3 On which samples is DEEPMERGE most effective?

RQ4 How do different choices of input representation
impact the performance of DEEPMERGE?

5.1 RQ1: Effectiveness of Resolution Synthesis

In this section, we perform an evaluation to assess DEEP-
MERGE's effectiveness of synthesizing resolutions. Our pre-
diction, R, is considered correct if it is an exact (line for line,
token for token) match with R.

© 2022 IEEE. Personal use is permitted, but re

9
Top-1 Top-3
DEEPMERGE 36.50% 43.23%
SCANMERGE 4.20% 7.43%
SEQ2SEQ 2.3% 3.3%
JSESTMERGE 3.7% N/A

Table 1: Evaluation of DEEPMERGE and baselines: resolution
synthesis accuracy (%).

Evaluation metrics. DEEPMERGE produces a ranked list of
predictions; we define top-1 (resp. top-3) accuracy if the R
is present in first (resp. top 3) predictions. This is a lower
bound, as multiple resolutions may be “correct” with respect
to the semantics of the changes being merged (e.g., in some
cases, switching two declarations or unrelated statements
has no impact on semantics).

Quantitative Results. Table 1 shows the performance of
DEEPMERGE on a held out test set. DEEPMERGE has an
overall top-1 accuracy of 36.5%, correctly generating more
than one in three resolutions as its first ranked choice.
When we consider the top-3 ranked resolutions, DEEPMERGE
achieves a slightly improved accuracy of 43.23%.

Baselines. Table 1 also includes a comparison of DEEP-
MERGE to three baselines. We compare to a heuristic
based approach (SCANMERGE), an off-the-shelf sequence-
to-sequence model (SEQ2SEQ), and a structured AST based
approach (JSESTMERGE).

Our first baseline SCANMERGE, is a heuristic based
approach designed by manually observing patterns in our
dataset. SCANMERGE randomly samples from the space
of sub-sequences over lines from A and B that fulfill the
following constraints:

(i) The code produced is syntactically valid and parses.

(ii) The resolution includes every line from A and every line
from B. Intuitively, no part of the change in A or the change
in B is discarded.

(iii) The relative order of lines within A and within B is
maintained within the resolution. If line = precedes line y in
A, then z must precede y in the resolution, even if lines from
B are interspersed between them.

These heuristic restrictions are based on manual obser-
vations that a large majority of resolutions satisfy these
conditions.

Table 1 shows SCANMERGE's performance averaged over
10 trials. DEEPMERGE performs significantly better in terms
of top-1 resolution accuracy (36.50% vs 4.20%). SCANMERGE
only synthesizes one in 20 resolutions correctly. In contrast,
DEEPMERGE correctly predicts one in 3 resolutions. On
inputs of 3 lines or less, SCANMERGE only achieves 12%
accuracy suggesting that the problem space is large even for
small merges.

We also compared DEEPMERGE to an out of the
box sequence-to-sequence encoder-decoder model [40]
(SEQ2SEQ) implemented with FAIRSEQ 4 natural lan-
guage processing library. Using a naive input (ie.,
concats(A, B, 0)), tokenized with a standard byte-pair en-
coding, and FAIRSEQ’s default parameters, we trained on the

4. https:/ / github.com/pytorch/fairseq

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

Threshold [1,3] lines [4,5] lines [6,7] lines [8,10] lines [>10] lines

0 78.40% 56.50% 37.04% 10.87% 2.93%

Table 2: Evaluation of DEEPMERGE: accuracy vs input size (%).

same dataset as DEEPMERGE. DEEPMERGE outperforms the
sequence-to-sequence model in terms of both top-1 (36.5% vs.
2.3%) and top-3 accuracy (43.2% vs. 3.3%). This is perhaps
not surprising given the precise notion of accuracy that does
not tolerate even a single token mismatch. We therefore also
considered a more relaxed measure, the BLEU-4 score [34],
a metric that compares two sentences for “closeness” using
an n-gram model. The sequence-to-sequence model achieves
a respectable score of 27%, however DEEPMERGE still
outperforms with a BLEU-4 score of 50%. This demonstrates
that our novel embedding of the merge inputs and pointer
network style output technique aid DEEPMERGE significantly
and outperform a state of the art sequence-to-sequence
baseline model.

Lastly, we compared DEEPMERGE to J[SFSTMERGE[42],
a recent semistructured AST based approach. [SESTMERGE
leverages syntactic information by representing input pro-
grams as ASTs. With this format, algorithms are invoked to
safely merge nodes and subtrees. Structured approaches do
not model semantics and can only safely merge program
elements that do not have side effects. Structured approaches
have been proven to work well for statically typed languages
such as Java [3], [25]. However, the benefits of semistruc-
tured merge hardly translate to dynamic languages such as
JavaScript. JavaScript provides less static information than
Java and allows statements (with potential side effects) at
the same syntactic level as commutative elements such as
function declarations.

As a baseline to compare to DEEPMERGE, we ran JSFST-
MERGE with a timeout of 5 minutes. Since JSFSTMERGE is a
semistructured approach we apply a looser evaluation metric.
A resolution is considered correct if it is an exact syntactic
match with R or if it is semantically equivalent. We determine
semantic equivalence manually. JSFSTMERGE produces a
correct resolution on 3.7% of samples which is significantly
lower than DEEPMERGE. Furthermore, JSFSTMERGE does
not have support for predicting Top-k resolutions and only
outputs a single resolution. The remaining 96.3% of cases
failed as follows. In 92.1% of samples, [SESTMERGE was not
able to produce a resolution and reported a conflict. In 3.3% of
samples, [SEFSTMERGE took greater than 5 minutes to execute
and was terminated. In the remaining 0.8% JSFSTMERGE
produced a resolution that was both syntactically and
semantically different than the user’s resolution. In addition
to effectiveness, DEEPMERGE is superior to JSFSTMERGE
in terms of execution time. Performing inference with deep
neural approaches is much quicker than (semi) structured
approaches. In our experiments, JSFSTMERGE had an av-
erage execution time of 18 seconds per sample. In contrast,
sequence-to-sequence models such as DEEPMERGE perform
inference in under a second.

Sensitivity to Input Merge Conflict Size. We observe that
there is a diverse range in the size of merge conflicts (lines
in A plus lines in B). However, as shown in Figure 7, most

© 2022 IEEE. Personal use is permitted, but re

10

Synthesis Accuracy Based on Size of Merges

(=]
o

(| - o
—|—e— Cumulative Proportion of Merges = 4
—e— Top—3 Accuracy o
«© | Top—-1 Accuracy [}
- © L2 =
o y 4=
g © 5
S © =
| o
g e s £
» Fwe g
2 s &
£ 31 a
& 8 2
N] s <
e E
S
- ©

o | - S

© IS

5 10 15 20

Size of Merge in Lines

Figure 7: DEEPMERGE’s performance vs merge input size.
Cumulative distribution of merge sizes in red.

(58% of our test set) merges are small, consisting of 7 or less
lines. As a product of the dataset distribution and problem
space size, DEEPMERGE performs better for smaller merges.
We present aggregate Top-1 accuracy for the input ranges in
Table 2. DEEPMERGE achieves over 78% synthesis accuracy
on merge inputs consisting of 3 lines or less. On merge inputs
consisting of 7 lines or less (58% of our test set) DEEPMERGE
achieves over 61% synthesis accuracy.

DEEPMERGE achieves a top-1 accuracy of 36.50% and
top-3 accuracy of 43.23%. It shows 61% accuracy on
merges 7 lines or less in size. DEEPMERGE outperforms a
state of the art structured merge approach (JSFSTMERGE
with 3.7% top-1 accuracy) as well as baseline and Naive
neural approaches.

5.2 RQ2: Effectiveness of Suppressing Incorrect Reso-
lutions

The probabilistic nature of DEEPMERGE allows for accom-
modating a spectrum of users with different tolerance for
incorrect suggestions. “Confidence” metrics can be associated
with each output sequence to suppress unlikely suggestions.
In this section, we study the effectiveness of DEEPMERGE’s
confidence intervals.

In the scenario where DEEPMERGE cannot confidently
synthesize a resolution, it declares a conflict and remains
silent without reporting a resolution. This enables DEEP-
MERGE to provide a higher percentage of correct resolutions
(higher precision) at the cost of not providing a resolution
for every merge (lower recall). This is critical for practical
use, as prior work has shown that tools with a high false
positive rate are unlikely to be used by developers [20].
Figure 8 depicts the precision, recall, and F1 score values,
for various confidence thresholds (with 95% confidence
intervals). We aim to find a threshold that achieves high
precision without sacrificing too much recall. In Figure 8§,
the highest F1-Score of 0.46 is achieved at 0.4 and 0.5. At
threshold of 0.5, DEEPMERGE’s top-1 precision is 0.72 with
a recall of 0.34. Thus, while DEEPMERGE only produces a

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

Precision, Recall, and F1 score
(with 95% confidence intervals)

1.0

“|—=— Precision
— F1

Recall

e

0.8

0.6
|

Recall, Precision, F1
0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8

Confidence Threshold

Figure 8: Top-1 precision and recall by confidence threshold.

Class Top-1 Accuracy Percent of Dataset
CONCAT 44.40% 26.88%
OTHER 29.03% 73.12%

Table 3: Accuracy and Distribution of classes.

resolution one third of the time, that resolution is correct
three out of four times. Compared to DEEPMERGE with no
thresholding, at a threshold of 0.5 DEEPMERGE achieves a 2x
improvement in precision while only sacrificing a 10% drop
in recall. Thresholds of 0.4 and 0.5 were identified as best
performing on a held out validation set. We then confirmed
that these thresholds were optimal on the held out test set
reported in Figure 8.

When using a threshold to suppress low confidence res-
olutions, DEEPMERGE is able to achieve top-1 accuracy
of 72% (precision), providing resolution suggestions for
34% (recall) of conflicts.

5.3 RQ3: Categorical Analysis of Effectiveness

We now provide an analysis of DEEPMERGE's performance.
To understand which samples DEEPMERGE is most effective
at resolving, we classify the dataset into two classes: CONCAT
and OTHER. The classes are defined as follows:

1) CONCAT - resolutions of the form AB or BA. Specifi-
cally:
o R contains all lines in A and all lines in B.
o There is no interleaving between A’s lines and B’s

lines.

o The order of lines within A and B is preserved.

2) OTHER - resolutions not classified as CONCAT.
OTHER samples can be any interleaving of any subset of
lines.

Table 3 shows the performance of DEEPMERGE on
each class. DEEPMERGE performs comparably well on each
category suggesting that DEEPMERGE is effective at resolving
conflicts beyond concatenation.

© 2022 IEEE. Personal use is permitted, but re

11

Top-1 Top-3

Naive 9.62% 14.09%
Linearized 15.25% 19.95%
LTRE 23.37% 29.21%
Aligned Naive 27.41% 32.22%
Aligned Linearized 36.50% 43.23%

Table 4: Accuracy of different input representation choices.

DEEPMERGE performs best on conflicts whose resolution
is all of A followed by all of B (or vice versa), achieving
a top-1 accuracy of 44%

5.4 RQ4: Impact of Input Representation

We now evaluate the use of Merge2Matrix and show the
benefit of the Aligned Linearized implementation used in
DEEPMERGE.

We evaluate DEEPMERGE on each combination of sum-
marization and edit aware alignment described in Section
3.2: Naive, Linearized, LTRE, Aligned naive, and Aligned
Linearized. Table 4 shows the performance of each input
representation on detection and synthesis. The edit-aware
input formats: LTRE, Aligned Natve, and Aligned Linearized
attain an improvement over the edit-unaware formats. Our
Aligned representations are more succinct and contribute to
a large increase in accuracy over the edit-unaware formats.
Aligned Naive increases accuracy over our best edit-unaware
format by 12.16% for top-1 and 12.27% for top-3. We believe
this is due to the verbosity of including the underlying tokens
as well as the A edit sequence. The combination of our edit-
aware and summarization insights (Aligned Linearized) yields
the highest accuracy.

The Aligned Linearized representation yields the best
results, with improvements of to 9% to 27% in top-1
accuracy over other representations (11% to 29% for
top-3 accuracy).

5.5 Incorrect Predictions

In an effort to understand how and why DEEPMERGE
get some merge conflict resolutions wrong, we manually
examined 50 incorrect merge suggestions. In each case, we
examined the original code, O, the two changes to the code, A
and B, the actual resolution R and the suggested resolution
from DEEPMERGE.

There were many cases where the suggestion from
DEEPMERGE was simply wrong for no apparent reason.
However, during our manual analysis, there were some
patterns and common cases that emerged that can inform
future refinements of our approach.

Mixed additions and deletions: In at least five of the
incorrect cases, one branch only removed code (sometimes
all of the code in O) and the other branch only added code. In
these cases, DEEPMERGE tends to simply take the additional
code from one branch, but doesn’t remove the code deleted
in the other.

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

Missing closing symbols: In twelve cases out of 50,
DEEPMERGE fails to include at least one line that consists
only of a closing symbol (parenthesis, brace, or bracket).
Since these lines typically have only one character and often
there are other lines already included in the resolution that
consist solely of the same character, we hypothesize that the
model “gets confused” and neglects to include all closing
punctuation. One might wonder why the same issue doesn’t
occur with opening symbols, but we observed that opening
symbols, such as the beginning of a list or of a function,
often come at the end of a line with preceding code such as a
variable name, function signature, or if condition. Note that
accepting these suggested resolutions would yield code that
is syntactically incorrect because of unbalanced delimiters.

Same line included twice in different forms: In five
cases, a line of code in O was modified slightly differently in
A and in B and the suggestion from DEEPMERGE included
both versions of the line. This often led to code that contained
semantic issues such as two declarations of the same variable
with different values or types.

Large conflicts: Many of the incorrect suggestions were
for conflicts that were bigger than normal. Often the sugges-
tions were very similar to the actual resolution, but differed
in one or two places; We computed the ROUGE-2 score [27]
between the DEEPMERGE suggested resolution and the actual
resolution for each conflict and even for large conflicts it was
often over 0.8. Intiuitively, we believe that it makes sense that
larger conflicts are more likely to be incorrect because they
contain more “decision points” where the model must select
which line from the input sequences should be included
in the suggested resolution. Even if each individual choice
made by the model about which line to include at a given
point has a high probability of being correct, the likelihood
of all such choices being correct for a resolution drops as the
number of choices (i.e., lines) goes down as the numnber of
choices goes up. Any wrong choice will lead to the suggested
resolution not matching the actual resolution and will be
considered incorrect.

Semantically equivalent code: Finally, in eleven cases,
the resolution suggested by DEEPMERGE was textually
different from, but semantically equivalent to, the actual
resolution. Most often this took the form of a slightly different
order of import statements or a slightly different order of
items added to a list. In these cases, we checked to see if there
was a pattern to the ordering (e.g., alphabetical order) which
might indicate that a particular order was preferred, but
we didn’t identify any. The other cases were merges where
statements or declarations that were independent from each
other were ordered differently in the DEEPMERGE suggestion
than in the actual resolution.

This last category indicates that DEEPMERGE is actually
doing better than our automated evaluation indicates, as we
are not able to automatically detect semantically equivalent
resolutions. Fixing the other cases is likely fairly challenging,
but identifying them may be an easier task. For instance, one
could use a parser to identify syntactically incorrect code and
add a checker on the resultant abstract syntax tree to find
duplicate declarations. Exploring methods for addressing
these types of incorrect merge conflict resolution suggestions
is an avenue for future research.

© 2022 IEEE. Personal use is permitted, but re

12

5.6 Summary of Results

Our evaluation and baselines indicate that the problem of
synthesizing resolutions is a non-trivial task, even when
restricted to resolutions that rearrange lines from the conflict.
DEEPMERGE not only can synthesize resolutions for more
than a third of times, but can also use its internal confidence
to achieve high precision (72%). DEEPMERGE can synthesize
resolutions significantly more accurately than heuristic based,
neural, and structured approaches. We also illustrate the
need for edit-aware aligned encoding of merge inputs to
help deep learning be more effective synthesizing non-trivial
resolutions.

6 THREATS TO VALIDITY

As with any empirical investigation, our choice of dataset
may be impacted by threats to validity [31]. We outline the
key threats to validity and our mitigation strategies in this
section.

External Validity is concerned with the generalizability of
our results. To achieve generalizability, the sample data sets
we train on and evaluate on must be representative of the
population of merge conflict resolutions. To ensure that our
dataset consists of representative merges, we sampled merge
conflict resolutions from over 1126 software repositories on
GitHub. Gathering data from GitHub indiscriminately can
lead to both noise and bias. We address this by following
the advice of Kalliamvakou et al. [21] and select projects
that have recent activity, received a large number of stars
(positive sentiment), and include a non-trivial number of
contributors. Finally, there may be more than one correct
merge resolution, such that using the recorded resolution
as the oracle is incomplete. In this context, the results of
DEEPMERGE may actually be better than reported, as it may
be producing resolutions that do not match the oracle, but
are nonetheless correct.

Internal Validity refers to the factors that may affect the
reliability of the results of the experiments. For both training
and evaluation of DEEPMERGE, we require an oracle for each
merge conflict resolution. Fortunately, we have a wealth of
historical merge conflicts and resolutions that occurred in
practice and thus we are able to treat the actual recorded
resolutions as the oracle. We note that two potential issues
with this approach. First, developers may not always resolve
a merge correctly. We manually investigated a sample of
commits and did not see evidence of modifying the merges
in subsequent commits. Second, there may be more than
one correct merge resolution, such that using the recorded
resolution as the oracle is incomplete. In this context, the
results of DEEPMERGE may actually be better than reported,
as it may be producing resolutions that do not match the
oracle, but are nonetheless correct.

In terms of implementation, we rely on existing, well
vetted tooling in both our data collection and model im-
plementation. For example, we identify differences and
conflicts using the well known di££3 tool and our models
are all built using the PyTorch framework. While we cannot
unequivally state that our implementation is free of errors,
we are confident in it because we employ Q/ A practices such
as code review in our development and we have manually
investigated the results heavily.

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIET. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

7 DISCUSSION

Having demonstrated that DEEPMERGE achieves high pre-
cision and works well on real-world merge conflicts, we
now discuss how we envision it’s usage in the software
development process and share lessons learned during the
development and evaluation of DEEPMERGE.

7.1

We are currently exploring the best ways to integrate DEEP-
MERGE in the development process. Since the accuracy of
DEEPMERGE is not 100%, we do not envision this to be
a completely automatic tool that resolves merge conflicts
without a developer’s involvement. Rather, we believe that
DEEPMERGE can save developers valuable time by providing
high confidence suggestions to supplant manual code editing
in two potential usage scenarios.

First, when a developer attempts to merge their branch
into another, an IDE may recognize a conflict either through
hooks in git that are executed upon a conflict or from the
presence of conflict markers in source code files. The IDE
would then invoke DEEPMERGE and offer the developer the
choice to accept a synthesized resolution and have it applied.

Second, if a proactive tool (e.g., Crystal [6]) determines
that a conflict is imminent when a merge occurs, DEEPMERGE
could be automatically employed to generate a merge conflict
resolution as a Pull Request and a developer could accept,
reject, or modify the suggestion.

It is also important to note that deep learning component
of DEEPMERGE was trained on a large corpus of git reposi-
tories and can be used “off the shelf”. It does not need to be
trained on a specific repository in order to be used on that
repository. The repositories used to evaluate DEEPMERGE in
this paper were not part of the training corpus of data.

Integration into the Development Pipeline

7.2 Lessons Learned and Future Directions

In our investigations of merge conflicts and our experience
developing and evaluating DEEPMERGE, we believe that
there are some key takeaways that are of benefit to the
community as well as some clear directions for future
research in the area of merge conflict resolution.

Merge conflicts resolutions rarely introduce any new
tokens. In practice, the vast majority of merge conflict
resolutions pull all of their code from the input conflicting
code without a single new token. This finding severely
constrains the merge resolution problem and makes solutions
more tenable. DEEPMERGE achieves significant improvement
using a pointer network to “recall” lines of code from A, B,
and O over using a more general code generation approach
(e.g., sequence to sequence models).

Neural models provide an intriguing alternative to
structured merge. Structured merge approaches have existed
for quite a few years and have decent performance. However,
it is well known that these approaches suffer from the lack of
types for dynamic languages such as Javascript [4]. We are
encouraged that a neural model that works on lines of text
with no structural information is able to significantly exceed
the performance of a structured merge approach for such
dynamic languages, in spite of the structured merge being
tailored to semantics and structure of a particular language.

© 2022 IEEE. Personal use is permitted, but re

13

This leads to further research directions, however. Combining
both approaches by using structured representations such as
that used for structured merge could potentially yield even
better performance for merge conflict resolution, possibly
even for languages with mature structured merge tools. How
to go about this remains an open problem.

Line level granularity only goes so far. While we have
demonstrated that DEEPMERGE works well, there are still a
non-trivial amount of merges that comprise lines of text that
don’t exist in the A, B, or O even if the tokens do. Further
work is required to explore how to resolve merge conflicts at
the token, rather than the line, level.

Data curation is important. We encountered a number of
challenges in extracting, filtering, and cleaning merge conflict
data. Our experience has been that given enough data, it’s
usually possible to build an ML model that can work well on
the data. However, the performance of such a model on real
world tasks will be limited by the quality of the data. As an
example, the need for the LOCALIZERESREGION algorithm
came about because we identified issues in the resolutions in
our data.

8 RELATED WORK

Our technique is related to several existing works in both
program merging and deep learning for code.

8.1

The most widely used method for merging changes is
diff3, the default for most version control systems. One
reason for its popularity is that di££3 is purely text based
and therefore language agnostic. However, its behavior has
been formalized and Khanna et al. showed that the trust
developers have in it may be misplaced [24], including the
examples in Figure 1.

There have been many attempts to improve merge
algorithms by taking language specific analyses into account
(see the work of Mens for a broad survey [29]). Westfechtel
et al. use the structure of the source code to reduce merge
contflicts [46]. Apel et al. noted that structured and unstruc-
tured merge each has strengths and weaknesses. They devel-
oped JSFSTMERGE, a semi-structured merge, that alternates
between approaches [4]. They later introduced JDIME, an
approach that automatically tunes a mixture of structured
and unstructured merge based conflict locations [2]. Sousa
et al. introduced a verification approach, SAFEMERGE that
examines the base program, both changed programs, and
the merge resolution to verify that the resolution preserves
semantic conflict freedom [37].

The key difference between DEEPMERGE and these
structured or semi-structured merge approaches is that they
require a priori knowledge of the language of the merged
code in the form of a parser or annotated grammar (or more
advanced program verification tools). Further, structured
merge tools cannot conservatively merge changes made
within method bodies. Finally, Pan et al. [32] explore the use
of program synthesis for learning repeated resolutions in a
large project. The approach requires the design of a domain-
specific languages inspired by a small class of resolutions
(around imports and macros in C++). In contrast to both

Source Code Merging

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIET. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

these approaches, DEEPMERGE only requires a corpus of
merge resolutions in the target language, and can apply to
all merge conflicts. However, we believe that both these
approaches are complementary and can be incorporated into
DEEPMERGE.

Our approach as well as the previous approaches dis-
cussed here deal with merge conflicts individually. In con-
trast, Shen et al. [35] leverage their insight that multiple
conflicts in the same merge are often related in some way.
They use graph algorithms on a graph representation of
merge conflicts to cluster and order related conflicts and
infer resolution strategies for unresolved conflicts based on
already resolved ones.

8.2 Deep Learning on Source Code

We leverage deep neural network based natural language
processing methods to address the challenge of three way
merge resolution. We discuss related works in sequence-to-
sequence learning that inspired our model and applications
of deep learning for the software engineering domain.

Pointer networks [44] use attention to constrain general
sequence-to-sequence models [40], [8]. Recent works incor-
porate a copy mechanism in sequence-to-sequence models
by combining copying and token generation [16], adding
a copying module in the decoder [50], and incorporating
it into the beam search [33]. In contrast to DEEPMERGE,
none of these approaches address the challenges described
in Section 2 in a three-way merge.

Deep learning has been successfully used on source
code to improve myriad software engineering tasks. These
include code completion and code generation [41], [10],
code search [17], software testing [14], defect prediction [45],
and code summarization [1]. Deep learning has been used
in program repair using neural machine translation [43],
[7], sequence-editing approaches [33], and learning graph
transformations [11]. For a deeper review of deep learning
methods applied to software engineering tasks, see the
literature reviews[26], [12].

While neural sequence-to-sequence models are utilized in
most of those applications, they consume only one input
sequence, mapping it to a single output sequence. Edit
aware embeddings [48] introduced LTRE method to encode
two program variants to model source code edits. As we
demonstrate, our edit-aware encoding Aligned Linearized
is inspired by this approach but significantly outperforms
LTRE in the context of data-driven merge.

8.3 Studies of Code Repetition and Redundancy

Our key insight is related to, but different from, the “Plastic
Survery Hypothesis”(PSH) introduced by Barr ef al. [5]. In
their paper, Barr et al. describe the PSH as having two parts.
First, changes in a version of a program are repetitive relative
to their parent, the program to which the changes are applied.
Second, that this repetitiveness is usefully exploitable. The
assertion of the PSH is that given a particular source code
change, the majority of the lines in the change already exist
somewhere in the codebase.

In the context of merge conflict resolutions, we make
a stronger locality claim. Our key insight is that the lines
in a merge conflict resolution most often come from from

© 2022 IEEE. Personal use is permitted, but re

14

the set of lines that caused the conflict. This means that
we limit where they come from (spatial locality) as well as
when they were introduced (temporal locality). This observed
property of merge conflict resolutions reduces the search
space and makes finding a valid conflict resolution a tenable
ML problem.

Martinez et al [28] introduced a similar idea of “Temporal
Redundancy”. By their definition “a [code] fragment is
temporally redundant if that same fragment appeared in
a previous commit.” Further, they introduce a local scope
notion of temporal redundancy in which the fragment has
been used in a previous commit to the same file. The success of
DeepMerge can be attributed to a more refined or constrained
variant of this temporal redundancy, which beneficially limits
the conflict resolution search space even further. We find that
conflict resolutions rely primarily on fragments (lines in our
case) that were introduced in the set of commits that exist
on the branch between the common base (O) and the last
commit on the branch prior to the merge. In addition, while
Martinez et al. introduce local temporal redundancy which
is constrained to code within the same file, we find that
resolutions have even more constrained spatial locality; lines
in the resolution primarily come from the lines that comprise
the conflict in the merge.

9 CONCLUSION

We motivated the problem of data-driven merge and high-
lighted the main challenges in applying machine learning.
We proposed DEEPMERGE, a data-driven merge framework,
and demonstrated its effectiveness in resolving unstructured
merge conflicts in JavaScript. We chose JavaScript as the
language of focus in this paper due to its importance and
growing popularity and the fact that analysis of JavaScript
is challenging due at least in part to its weak, dynamic
type system and permissive nature [19], [23]. We believe
that DEEPMERGE can be easily extended to other languages
and perhaps to any list-structured data format such as
JSON and configuration files. We plan to combine program
analysis techniques (e.g., parsing, typechecking, or static
verifiers for merges) to prune the space of resolutions,
and combine structured merge algorithms with machine
learning to gain the best of both techniques. Furthermore,
we plan to generalize our approach beyond line level output
granularity.

Elizabeth Dinella is a PhD student at the Uni-
versity of Pennsylvania advised. She received
her B.S. in computer science from Rensselaer
Polytechnic Institute in 2018. Her research is in
the fields of software engineering and machine
learning. In particular, Elizabeth is interested in
“bridging the gap” between traditional analysis
tools and human developers using deep learning.

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MICROSOIgT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

Todd Mytkowicz is a Software Engineer at
Google and formally a Sr. Principal Researcher
at Microsoft Research. His research focuses on
developer productivity tools, performance, and
parallelism. He has a PhD in Computer Science
from the University of Colorado, Boulder.

Alexey Svyatkovskiy is a research manager at
Microsoft. His research field is on the intersection
of natural language processing, machine learn-
ing, and program analysis. He develops models
that understand and generate code, helping to
improve developer productivity and automate var-
ious software engineering tasks — like code com-
pletion, program sketch generation, and merge
conflict resolution. Alexey received his Ph.D.
- from the Purdue University and M.S. from Saint-

Petersburg State University. Prior to Microsoft, he
has been at Princeton University part of the Machine Learning for Fusion
Energy Sciences group focusing on neural approaches to disruption
forecasting in tokamak fusion plasmas and scalable research com-
puting. More information is available at: https://www.microsoft.com/en-
us/research/people/alsvyatk/

Christian Bird is a Senior Principal Researcher
in the Empirical Software Engineering group at
Microsoft Research. He is primarily interested in
the relationship between software design, social
dynamics, and processes in large development
projects and in developing tools and techniques
to help software teams. He has studied software
development both quantitatively and qualitatively
at Microsoft, IBM, and in the Open Source realm.
Most recently his work has focused on code
review, use of branching in source code reposi-
tories, and release engineering. He has published in the top Software
Engineering venues, has received multiple distinguished and test of
time paper awards, and his research has been highlighted in the
Communications of the ACM. Christian is an ACM Distinguished Scientist,
received B.S. from Brigham Young University and his Ph.D. from the
University of California, Davis.

Mayur Naik is a Professor of Computer and
Information Science at the University of Pennsyl-
vania. He received a Ph.D. in Computer Science
from Stanford University in 2008, advised by
Alex Aiken, and an M.S. from Purdue University
in 2003, advised by Jens Palsberg. He was a
researcher at Intel Labs, Berkeley from 2008 to
2011, and an Assistant Professor of Computer
Science at Georgia Tech from 2011 to 2016.

© 2022 |IEEE. Personal use is permitted, but re'gublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
T. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: MICROSO!

15

Shuvendu Lahiri is a Senior Principal Re-
searcher at Microsoft Research Redmond. His
research interests are in rigorous techniques
based on formal methods and machine learning
towards reliable software development. He has
worked on SMT solvers, formal specification and
verification, software testing and other program-
ming tools. He holds a PhD from Carnegie Mellon
University and a BTech from IIT Kharagpur. He
has served on the program committee of several
programming languages, formal methods and
software engineering conferences, as well as chaired formal methods
conferences. His works has received best/distinguished paper awards
from leading formal methods and software engineering conferences, a
test-of-time award from ICSE, and lifetime CAV award for SMT solvers.

REFERENCES

[1] U. Alon, O. Levy, and E. Yahav. code2seq: Generating sequences
from structured representations of code. In International Conference
on Learning Representations, 2019.

[2] S. Apel, O. Leenich, and C. Lengauer. Structured merge with
auto-tuning: balancing precision and performance. In Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering, pages 120-129, 2012.

[3] S.Apel,]. Liebig, B. Brandl, C. Lengauer, and C. Késtner. Semistruc-
tured merge: Rethinking merge in revision control systems. In ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages
190-200, 2011.

[4] S. Apel, J. Liebig, C. Lengauer, C. Kéastner, and W. R. Cook.
Semistructured merge in revision control systems. In VaMoS, pages
13-19, 2010.

[5] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro. The
plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
306-317, 2014.

[6] Y.Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection
of collaboration conflicts. In T. Gyimé6thy and A. Zeller, editors,
SIGSOFT/FSE'11 19th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-19) and ESEC’11: 13th European Software
Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9,
2011, pages 168-178. ACM, 2011.

[7] S. Chakraborty, M. Allamanis, and B. Ray. Tree2tree neural transla-
tion model for learning source code changes. CoRR, abs/1810.00314,
2018.

[8] K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations
using RNN encoder—decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMINLP), pages 1724-1734, Doha, Qatar, Oct.
2014. Association for Computational Linguistics.

[9] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation, 2014.

C. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sun-

daresan. Pymt5: Multi-mode translation of natural language and

python code with transformers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages

9052-9065, 2020.

E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang. Hoppity:

Learning graph transformations to detect and fix bugs in programs.

In International Conference on Learning Representations, 2020.

F. Ferreira, L. L. Silva, and M. T. Valente. Software engineer-

ing meets deep learning: A literature review. arXiv preprint

arXiv:1909.11436, 2019.

G. Ghiotto, L. Murta, M. de Oliveira Barros, and A. van der Hoek.

On the nature of merge conflicts: A study of 2, 731 open source java

projects hosted by github. IEEE Trans. Software Eng., 46(8):892-915,

2020.

P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning

for input fuzzing. In 2017 32nd IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 50-59. IEEE, 2017.

G. Gousios, M. D. Storey, and A. Bacchelli. Work practices and

challenges in pull-based development: the contributor’s perspec-

tive. In Proceedings of the 38th International Conference on Software

Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages

285-296. ACM, 2016.

(10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

(36]

[37]

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3183955

J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying mechanism
in sequence-to-sequence learning. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1631-1640, Berlin, Germany, Aug. 2016.
Association for Computational Linguistics.
X. Gu, H. Zhang, and S. Kim. Deep code search. In Proceedings of the
40th International Conference on Software Engineering, ICSE 18, page
933-944, New York, NY, USA, 2018. Association for Computing
Machinery.
M. Hollander and D. A. Wolfe. Nonparametric statistical methods.
John Wiley & Sons, 1973.
S. H. Jensen, A. Moller, and P. Thiemann. Type analysis for
javascript. In International Static Analysis Symposium, pages 238-255.
Springer, 2009.
B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In 2013
35th International Conference on Software Engineering (ICSE), pages
672-681. IEEE, 2013.
E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian. The promises and perils of mining github.
In Proceedings of the 11th working conference on mining software
repositories, pages 92-101, 2014.
R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes.
Big code != big vocabulary: Open-vocabulary models for source
code. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ICSE '20, pages 1073 — 1085, New York,
NY, USA, 2020. Association for Computing Machinery.
V. Kashyap, K. Dewey, E. A. Kuefner,]. Wagner, K. Gibbons, J. Sar-
racino, B. Wiedermann, and B. Hardekopf. Jsai: a static analysis
platform for javascript. In Proceedings of the 22nd ACM SIGSOFT
international symposium on Foundations of Software Engineering, pages
121-132, 2014.
S. Khanna, K. Kunal, and B. C. Pierce. A formal investigation of
diff3. In International Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 485-496. Springer, 2007.
O. Leflenich, S. Apel, and C. Lengauer. Balancing precision and
erformance in structured merge. Automated Software Engineering,
22(3):367-397, 2015.
X. Li, H. Jiang, Z. Ren, G. Li, and J. Zhang. Deep learning in
software engineering. arXiv preprint arXiv:1805.04825, 2018.
C.-Y. Lin and E. Hovy. Automatic evaluation of summaries using
n-gram co-occurrence statistics. In Proceedings of the 2003 human
language technology conference of the North American chapter of the
association for computational linguistics, pages 150-157, 2003.
M. Martinez, W. Weimer, and M. Monperrus. Do the fix ingredients
already exist? an empirical inquiry into the redundancy assump-
tions of program repair approaches. In P. Jalote, L. C. Briand, and
A. van der Hoek, editors, 36th International Conference on Software
Engineering, ICSE "14, Companion Proceedings, Hyderabad, India, May
31 - June 07, 2014, pages 492-495. ACM, 2014.
T. Mens. A state-of-the-art survey on software merging. IEEE
transactions on software engineering, 28(5):449-462, 2002.
T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.
M. L. Mitchell and J. M. Jolley. Research design explained. Cengage
Learning, 2012.
R. Pan, V. Le, N. Nagappan, S. Gulwani, S. K. Lahiri, and
M. Kaufman. Can program synthesis be used to learn merge
conflict resolutions? an empirical analysis. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021, pages 785-796. IEEE, 2021.
S. Panthaplackel, M. Allamanis, and M. Brockschmidt. Copy that!
editing sequences by copying spans, 2020.
K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics,
pages 311-318, 2002.
B. Shen, W. Zhang, A. Yu, Y. Shi, H. Zhao, and Z. Jin. So-
manyconflicts: Resolve many merge conflicts interactively and
systematically. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1291-1295. IEEE
Computer Society, 2021.
R. Smith. Gnu diff3. distributed with GNU diffutils package, April
1998.
M. Sousa, I. Dillig, and S. K. Lahiri. Verified three-way program
merge. Proc. ACM Program. Lang., 2:165:1-165:29, 2018.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

16

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27, pages 3104-3112. Curran
Associates, Inc., 2014.

L. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. Aduvances in neural information processing
systems, 27, 2014.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2,
NIPS’14, page 3104-3112, Cambridge, MA, USA, 2014. MIT Press.
A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan. Pythia: Ai-
assisted code completion system. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’19, page 2727-2735, New York, NY, USA, 2019.
Association for Computing Machinery.

A. T. Tavares, P. Borba, G. Cavalcanti, and S. Soares. Semistructured
Merge in JavaScript Systems, page 1014-1025. IEEE Press, 2019.

M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk. An empirical study on learning bug-fixing patches
in the wild via neural machine translation. ACM Trans. Softw. Eng.
Methodol., 28(4), Sept. 2019.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 28,
pages 2692-2700. Curran Associates, Inc., 2015.

S. Wang, T. Liu, and L. Tan. Automatically learning semantic
features for defect prediction. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 297-308. IEEE, 2016.
B. Westfechtel. Structure-oriented merging of revisions of software
documents. In Proceedings of the 3rd international workshop on
Software configuration management, pages 68-79, 1991.

W. Yang, S. Horwitz, and T. Reps. A program integration algorithm
that accommodates semantics-preserving transformations. ACM
Trans. Softw. Eng. Methodol., 1(3):310-354, 1992.

P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt.
Learning to represent edits. In International Conference on Learning
Representations, 2019.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu. A novel
neural source code representation based on abstract syntax tree. In
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 783-794. IEEE, 2019.

Q. Zhou, N. Yang, F. Wei, and M. Zhou. Sequential copying
networks. In AAAI, 2018.

Authorized licensed use limited to: MICROSOFT. Downloaded on July 25,2022 at 16:46:36 UTC from IEEE Xplore. Restrictions apply.

