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ABSTRACT
Causal skeleton learning aims to identify the undirected graph of

the underlying causal Bayesian network (BN) from observational

data. It plays a pivotal role in causal discovery and many other

downstream applications. The methods for causal skeleton learning

fall into three primary categories: constraint-based, score-based,

and gradient-based methods. This paper, for the first time, advo-

cates for learning a causal skeleton in a supervision-based setting,

where the algorithm learns from additional datasets associated with

the ground-truth BNs (complementary to input observational data).

Concretizing a supervision-based method is non-trivial due to the

high complexity of the problem itself, and the potential “domain

shift” between training data (i.e., additional datasets associated

with ground-truth BNs) and test data (i.e., observational data) in

the supervision-based setting. First, it is well-known that skeleton

learning suffers worst-case exponential complexity. Second, conven-

tional supervised learning assumes an independent and identical

distribution (i.i.d.) on test data, which is not easily attainable due

to the divergent underlying causal mechanisms between training

and test data. Our proposed framework, ML4S, adopts order-based
cascade classifiers and pruning strategies that can withstand high

computational overhead without sacrificing accuracy. To address

the “domain shift” challenge, we generate training data from vici-
nal graphs w.r.t. the target BN. The associated datasets of vicinal
graphs share similar joint distributions with the observational data.

We evaluateML4S on a variety of datasets and observe that it re-

markably outperforms the state of the arts, demonstrating the great

potential of the supervision-based skeleton learning paradigm.
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1 INTRODUCTION
Causal skeleton learning aims to identify the undirected graph (i.e.,

skeleton) of the underlying causal Bayesian network (BN) from

observational data. It forms the basis of many popular downstream

applications, including causal discovery [15], optimal feature selec-

tion [35, 36] and experimental design [18, 30].

Table 1: Four categories for skeleton learning.

Category Formulation

Constraint-based ∃𝒛.𝑣𝑖 ⊥⊥ 𝑣𝑗 | 𝒛 ⇐⇒ ¬𝑣𝑖 − 𝑣𝑗

Score-based maximize 𝑓 (𝐺) subject to𝐺 is DAG

Gradient-based maximize 𝑓 (𝑊 ) subject to ℎ (𝑊 ) = 0

Supervision-based (ML4S) estimate 𝑃𝑟 (𝑣𝑖 − 𝑣𝑗 | 𝒙𝑖 𝑗 , {(𝐷1,𝐺1), · · · })

𝑣𝑖 , 𝑣𝑗 : vertices in the skeleton;

𝒛: a set of vertices in the skeleton;

𝑣𝑖 − 𝑣𝑗 : the two vertices are adjacent; (¬ denotes negation)

𝐺 : Bayesian network;

𝑊 : adjacency matrix;

𝑓 : score function;
ℎ: acyclicity constraint function;

𝒙𝑖 𝑗 : feature for estimating 𝑃𝑟 (𝑣𝑖 − 𝑣𝑗 ) (probability of 𝑣𝑖 − 𝑣𝑗 );
(𝐷,𝐺) : generated data and associated Bayesian networks for training;

As illustrated in Table 1, the methods of skeleton learning pri-

marily fall into three categories: constraint-based, score-based, and

gradient-based methods. Each of these methods takes observational

data as input and produces a skeleton but with different strate-

gies. Constraint-based methods progressively eliminate spurious

adjacencies based on conditional independence relations between

variables. By using either combinatorial or continuous optimiza-

tion techniques, score-based and gradient-based methods search

for a directed acyclic graph (DAG) to maximize a predefined score

function, and the skeleton is obtained as the undirected graph of

the DAG. In summary, these methods do not have access to any

https://doi.org/10.1145/3534678.3539447
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additional datasets associated with ground-truth BNs or skeletons,

which can be viewed as unsupervised.

In contrast, in this paper, we advocate a new aspect of skele-

ton learning that learns a skeleton in a supervision-based setting:

an algorithm can access additional datasets associated with their

ground-truth BNs. A machine learning (ML) model is trained on

these datasets (labels are derived from the associated ground-truth

BNs), and then it is used to predict adjacencies on the observational

data. The supervision-based method enjoys the benefit of “free”

acquisition of training data: with forward sampling techniques [2],

we can generate additional datasets from as many synthetic BNs in

the DAG space as needed. In fact, many existing algorithms can be

deemed as a binary classifier with hardcoded rules.

Remark. Given observational data 𝐷 sampled from a BN with
vertices 𝑉 = {𝑣1, · · · , 𝑣𝑝 }, the following feature and binary classifier
predict the adjacency between each pair of vertices. Given 𝑣𝑖 , 𝑣 𝑗 , the
feature can be extracted as

𝒙𝑖 𝑗 = min

𝒛⊆𝑉 \{𝑣𝑖 ,𝑣𝑗 }
{𝑣𝑖 ∼ 𝑣 𝑗 | 𝒛} (1)

where {𝑣𝑖 ∼ 𝑣 𝑗 | 𝒛} is a scalar value that measures the conditional
dependency between 𝑣𝑖 , 𝑣 𝑗 given 𝒛. The classifier C𝐷 is defined as

C𝐷 (𝑣𝑖 , 𝑣 𝑗 ) =
{
adjacent 𝒙𝑖 𝑗 ≠ 0

non-adjacent 𝒙𝑖 𝑗 = 0

(2)

Under the canonical assumption, C𝐷 yields the correct skeleton by
enumerating all pairs of vertices. Appendix A contains the proof.

Concretizing supervision-based skeleton learning is non-trivial.

First, skeleton learning suffers exponential complexity [32]. For

instance, Eqn. 1 encapsulates all conditional dependencies as the

feature associated with each node pair, whose number is combi-

natorial. Further, due to divergent underlying causal mechanisms

between synthetic BNs and target BNs, supervision-based methods

encounter potential “domain shifts” between training and test data.

We introduce how we address the two challenges in the following.

Order-based Cascade Classifiers. Overall, one CI test can only

refute adjacency. That is, adjacency can only be established af-

ter exhaustively enumerating all possible condition sets (i.e., 𝒛 of
constraint-based methods in Table 1), imposing super-exponential

complexity. Typical constraint-based methods, for example, the PC

algorithm [32], conduct hypothesis tests incrementally w.r.t. order

size (i.e., cardinality of condition set). Once conditional indepen-

dence is observed, it is sufficient to establish non-adjacency and

no further tests are needed. Inspired by this, ML4S adopts a novel

learning paradigm over a sequence of cascade classifiers, with each

model (i.e., a classifier) corresponding to a particular order taking

the results of the CI tests up to that order. Higher order models are

applied only when lower order models are unable to refute adja-

cency. Finally, adjacencies are confirmed when no model can refute

them. We formulate the problem and show that it asymptotically

converges to the ground-truth BN’s skeleton. We introduce infor-

mative features to enhance the supervision-based learning quality

(Sec. 4.1) and pruning strategies to reduce costly CI tests (Sec. 4.2).

Generate Training Data from Vicinal Graphs. Given a param-

eterized BN, we can generate associated dataset by forward sam-

pling [2]. Thus, training data can be obtained by randomly gener-

ated BNs (e.g., use Erdős-Rényi Model) [12]. However, as shown in

Sec. 6, it is challenging for machine learning models trained only

on random BNs to predict quality skeletons on real-world bench-

marks, which may due to “domain shift” between training and test

data. Motivated by this, it would be desirable to use (𝑿 𝑣,𝐺𝑣) (i.e.,
the pair of generated dataset 𝑿 𝑣

and its associated BN 𝐺𝑣
) such

that 𝑿 𝑣
has a “similar” distribution w.r.t. the distribution 𝑃𝑋 of

the input observational data (i.e., test data). To do so, we propose

a novel approach to generating training data from vicinal graphs.

Each vicinal graph corresponds to a BN that is Markov compati-

ble to a similar distribution 𝑃 ′
𝑋
of 𝑃𝑋 (i.e., instance of the Markov

equivalence class). The node adjacency of vicinal graphs forms the

label for training. Note that generating vicinal graphs does not

necessitate ground-truth DAG, which is unattainable. Instead, we

propose a practical method for generating vicinal graphs by mutat-

ing a pseudo BN from a proxy algorithm (e.g., PC algorithm) and

parameterizing them via estimated Dirichlet distributions (Sec. 5).
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Figure 1: Comparison of ML4S and other algorithms on F1
Score. Blue implies thatML4S is superiorwhereas red denotes
the compared algorithm is superior.
Evaluation Highlight.We compareML4S and other algorithms

in Fig. 1 based on the F1 Score for output skeletons on 14 datasets

from the bnlearn benchmark [29]. Each grid in the heatmap rep-

resents the amount by which ML4S improves or degrades the F1

Score when compared to other algorithms. Overall,ML4S is among

the top-3 best algorithms in terms of F1 Score on 12 of the 14

datasets and shows superior performance to all algorithms on the

overall rankings. We interpret the findings as very encouraging.

Particularly,ML4S outperforms other algorithms by a remarkable

margin on the diabetes dataset (#13), a highly challenging large

causal graph with 413 nodes (see details in Sec. 6). In summary, we

conclude our contribution as follows:

• We, for the first time, formulate causal skeleton learning in a

supervision-based paradigm. A trained machine learning model

decides the node adjacency in Bayesian networks.

• We instantiate supervision-based skeleton learning into a novel

procedure of learning cascade classifiers. A set of features and

pruning strategies have been proposed to boost this procedure.

• To prepare training data, we introduce a novel approach to

generating dataset-specific vicinal graphs; this enables applying

supervision-based schemes in a practical and robust manner to

diverse real-world datasets.

• We evaluateML4S using 14 challenging datasets from the bn-

learn repository. ML4S remarkably outperforms and consis-

tently improves the state of the arts.ML4S is available at [1].
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2 RELATEDWORK
Causal Skeleton Learning. Causal skeleton learning serves the

cornerstone of many causal discovery algorithms. Algorithms from

various categories typically employ different strategies for learning

skeletons. Constraint-based algorithms infer adjacency from condi-

tional independence based on observational data. PC begins with a

complete graph and deletes edges using conditional independence

from hypothesis tests [32]. There are also PC-derived algorithms,

including PC-stable [8] and Consistent-PC [20], which improve the

robustness of skeleton learning. GS adopts grow-shrink strategy

to learn skeleton [25]. It begins with an edgeless graph with edges

being added in the growing phase; it then removes spurious edges

in the shrinking phase. Many algorithms adopt a similar strategy

to learn the skeleton, including TPDA [6] and MMPC [33]. REAL

enhances skeleton learning by mitigating faithfulness violations in-

duced by deterministic relations among variable dependencies [11].

Score-based algorithms recover skeleton graphs by maximizing a

pre-defined scoring criterion, such as BDe(u) [16]. Representative

score-based algorithms includes HC [33], GES [7], BLIP [28] and

GOBNILP [9]. Recently, gradient-based algorithms have been pro-

posed. For example, NOTEARS [39] and DAG-GNN [37] seek to

recover the data generation process while adhering to acyclicity

constraints. In summary, these methods do not have access to any

additional datasets associated with ground-truth BNs or skeletons,

which can be viewed as unsupervised approaches.

Supervised Causal Discovery. Supervised causal discovery has

become an emerging topic, with the goal of leveraging the power

of machine learning models to distinguish causes and effects. The

majority of them focus on predicting pairwise causal directions [3,

13, 22, 23]. Li et al. aim to learn the whole DAG from data gen-

erated by linear Structural Equation Model [21]. ML4C takes a

skeleton as input and predicts whether an unshielded triple is a

v-structure [10]. In short, existing works focus on predicting direc-

tions on undirected causal relationships and form the second phase

of causal discovery. Therefore, they are complementary to ML4S,
which recovers skeletons by supervision-based learning.

DownstreamApplications of Skeleton Learning.Various down-
stream applications and algorithms make use of skeletons. First,

skeletons can be used to decouple the learning of skeletons from

orientations in the majority of causal discovery algorithms. There

are several well-known optimizations for existing algorithms in

case skeletons are already known [33]. For constraint-based algo-

rithms, its orientation rules can be applied seamlessly on ML4S-
identified skeletons. For score-based algorithms, instead of starting

from scratch, searching a DAG from a skeleton would notably re-

duce overall computational overheads. Gradient-based algorithms

can also be boosted by skeleton learning: we show this combination

through a case study (see Sec. 6 and Appendix F). Skeletons also

serve as the cornerstone of other downstream applications, such as

optimal feature selection [35, 36] and experimental design [18, 30].

3 PRELIMINARIES
Notations.We use𝑋𝑖 to represent a variable and use𝑿 to represent

a set of variables. The node (vertex) in a graph (BN or skeleton) is

represented by the lowercase 𝑥𝑖 of the variable 𝑋𝑖 . We use 𝑉𝐺 , 𝐸𝐺
denote the set of nodes and edges in a graph𝐺 , respectively. 𝑣𝑖−𝑣 𝑗 ∈

𝐸𝐺 denotes that 𝑣𝑖 and 𝑣 𝑗 are adjacent in 𝐺 and 𝑣𝑖 → 𝑣 𝑗 ∈ 𝐸𝐺
denotes that 𝑣𝑖 is a parent of 𝑣 𝑗 . 𝑁𝐺 (𝑣) B {𝑣 ′ | 𝑣 ′ − 𝑣 ∈ 𝐸𝐺 }
denotes all neighbors of 𝑣 in skeleton or BN𝐺 (in BN, 𝑣 ′−𝑣 denotes
either 𝑣 ′ → 𝑣 or 𝑣 ′ ← 𝑣) and 𝑃𝑎𝐺 (𝑣) B {𝑣 ′ | 𝑣 ′ → 𝑣 ∈ 𝐸𝐺 }
denotes all parents of 𝑣 in BN 𝐺 .

3.1 Markov Assumption and Faithfulness
Suppose the observational data follows a joint distribution 𝑃𝑿 and

a BN𝐺 . Markov assumption implies a recursive decomposition to

𝑃𝑿 given 𝐺 such that

𝑃𝑿 =
∏

𝑃 (𝑋𝑖 | 𝑃𝑎𝐺 (𝑥𝑖 )) (3)

Global Markov Property [19] holds true when Markov assump-

tion holds true. It states that

𝑥𝑖 ⊥⊥𝐺 𝑥 𝑗 | 𝒛 =⇒ 𝑥𝑖 ⊥⊥ 𝑥 𝑗 | 𝒛 (4)

where ⊥⊥𝐺 stands for d-separation in𝐺 and ⊥⊥ stands for statistical

conditional independence in 𝑃𝑿 . We refer to [32] for the detailed

definition on d-separation.

Faithfulness assumption states that conditional independence

on the joint distribution implies d-separation on the BN. Formally,

𝑥𝑖 ⊥⊥ 𝑥 𝑗 | 𝒛 =⇒ 𝑥𝑖 ⊥⊥𝐺 𝑥 𝑗 | 𝒛 (5)

Under the Markov assumption and faithfulness assumption, con-

ditional independence and d-separation are equivalent. In the re-

mainder of the paper, we use canonical assumption to denoteMarkov

assumption and faithfulness assumption.

3.2 Skeleton, Identifiability and 𝑘-partial Graph
Under causal sufficiency [32], causal skeleton stands for the undi-

rected graph of BN, whose formal definition is as follows.

Definition 3.1 (Skeleton). A undirected graph 𝑆 = (𝑉𝑆 , 𝐸𝑆 )
represents the skeleton of a causal DAG 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) if

(𝑥 → 𝑦) ∈ 𝐸𝐺 ∨ (𝑦 → 𝑥) ∈ 𝐸𝐺 ⇐⇒ (𝑥 − 𝑦) ∈ 𝐸𝑆 (6)

When the Markov and faithfulness assumptions are satisfied, the

following theorem [32] holds, which also forms the basis of many

constraint-based approaches, as illustrated in Table 1.

Theorem 3.1. Under the canonical assumption, 𝑥𝑖 , 𝑥 𝑗 is adjacent
in 𝑆 if and only if ∀𝒛 ∈ 𝑉𝐺 , 𝑥𝑖 ̸⊥⊥ 𝑥 𝑗 | 𝒛.

Given Theorem. 3.1, the skeleton is identifiable when complete

information regarding conditional independence is provided. In

practice, enumerating all possible conditional independence in-

formation is costly. In a more realistic scenario, conditional inde-

pendence is tested sequentially. 𝑘-order conditional independence

statements of 𝑥𝑖 , 𝑥 𝑗 subsumes the conditional independence be-

tween 𝑥𝑖 , 𝑥 𝑗 of ∀|𝒛 | ≤ 𝑘 . 𝑘-order identifiability on a limited order of

conditional independence is defined as follows.

Definition 3.2 (𝑘-Order Identifiability). Let |𝑉𝐺 | = 𝑛. Un-
der canonical assumption, the adjacency between 𝑥𝑖 , 𝑥 𝑗 is 𝑘-order
identifiable if 1) ∃|𝒛 | ≤ 𝑘 such that 𝑥𝑖 ⊥⊥ 𝑥 𝑗 | 𝒛, or 2) 𝑘 ≥ 𝑛 − 2.

Def. 3.2 specifies the circumstances under which we can detect

the adjacency. As a result, we can gradually expand the order of

CI tests and perform CI tests solely on currently unidentifiable

edges. At 𝑘-order, we at most recover a 𝑘-partial graph due to the

remaining unidentifiable edges [4].
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Definition 3.3 (𝑘-partial Graph). An undirected graph𝐺𝑘 =

(𝑉𝑘 , 𝐸𝑘 ) represents the 𝑘-partial graph of the ground-truth BN 𝐺 if

∀𝑥,𝑦, (∃|𝑍 | ≤ 𝑘, 𝑥 ⊥⊥𝐺 𝑦 | 𝑍 ) ⇐⇒ (𝑥 − 𝑦) ∉ 𝐸𝑘 (7)

𝐺𝑘 is an undirected graph, and it is clear that for 𝑘 < 𝑛 − 2,

all edges in 𝐺𝑘 are unidentifiable according to Def. 3.2 under the

canonical assumption. By assessing the size of minimal d-separator

for each pair of nodes in a BN, we can construct the 𝑘-partial graph.

Proposition 3.1. Let 𝑆 = (𝑉𝑆 , 𝐸𝑆 ) be the true skeleton of a BN 𝐺

and |𝑉𝐺 | = 𝑛. ∀0 < 𝑘 < 𝑛 − 1, 𝐸𝑆 = 𝐸𝑛−2 ⊆ 𝐸𝑘 ⊆ 𝐸𝑘−1.

When the order increases, more edges become identifiable by

refuting its adjacency. Therefore, 𝑘-partial graph is a subgraph to all

𝑘 ′-partial graph if 𝑘 ′ < 𝑘 . Suppose CI tests are correct. When all CI

tests are given, if no CI tests can reject an adjacency, the adjacency

is confirmed at the (𝑛 − 2)-order, as all possible CI tests have been
enumerated. Then, we can find the true skeleton. In practice, a

threshold of maximal order is usually set to avoid combinatorial

explosions. If the maximal in degree of the ground-truth BN is

known, we obtain stronger results on convergence. Note that the

proof to Proposition. 3.1 and 3.2 is trivial. We omit it here.

Proposition 3.2. Let 𝑆 = (𝑉𝑆 , 𝐸𝑆 ) be the true skeleton and 𝑑 be
the maximal in degree of the ground-truth BN. 𝐸𝑆 = 𝐸𝑑 , where 𝐸𝑑 is
the edges of 𝑑-partial graph.

4 ML4S
Fig. 2a depicts the workflow of ML4S. It begins by using marginal

independence to construct a 0-partial graph𝐺0. The 0-partial graph

and 1-order CI tests are then passed to the 1-order model to obtain

both training and test data (we instantiate this supervision-based

setting as “cascade procedure”). The output — the 1-partial graph —

is further given to train the 2-order model and so on.

Remark. Under the canonical assumption and correct CI tests,
when 𝑘 is sufficiently large, iteratively repeating the cascade pro-
cess converges the output of the 𝑘-order model to the real skeleton,
according to Proposition. 3.1 and Proposition. 3.2.

We explain howML4S generates a 𝑘-partial graph from a (𝑘 −1)-
partial graph𝐺𝑘−1 in Alg. 1. Alg. 1 trains a model𝑀𝑘 (line 1). Then,

Alg. 1 enumerates each edge in 𝐺𝑘−1 (line 2), generates a feature
vector for this edge (line 3, see details in Sec. 4.1), and uses the

trained model to predict whether the edge exists in the 𝑘-partial

graph 𝐺𝑘 (line 4).𝐺𝑘 is initialized as an edgeless graph containing

full nodes from𝐺𝑘−1. If𝑀𝑘 predicts adjacency, the edge is added to

𝐺𝑘 (line 5). Recall that we can at most recover the 𝑘-partial graph

using 𝑘-order CI tests. With canonical assumption and correct CI

tests, each model in ML4S yields the 𝑘-partial graph.

We illustrate how a 𝑘-order model is trained in Fig. 2b (lines 8–17

in Alg. 1). Here, a set of parameterized vicinal graphs are provided

(see Sec. 5 for generating vicinal graphs). Given a vicinal graph,

we employ forward sampling to obtain the data 𝑋 𝑣
associated to

the BN, which forms a setV𝑘−1 containing generated datasets and

their (𝑘 − 1)-partial graphs (corresponding to the vicinal graphs)
estimated by the preceding model𝑀𝑘−1 (line 10). For each (𝑘 − 1)-
partial graph 𝐺𝑣

𝑘−1, we iterate its edges (line 11), and generate

features between two nodes 𝑥𝑖 , 𝑥 𝑗 using the same GenerateFeature
function (line 12), whose label is defined by the adjacency of 𝑥𝑖 , 𝑥 𝑗

Algorithm 1: Generate 𝑘-partial graph
Input: (𝑘 − 1)-partial graph estimated by𝑀𝑘−1:𝐺𝑘−1,

observational data: 𝑿 , a set of generated datasets and

associated (𝑘 − 1)-partial graphs of vicinal graphs:
V𝑘−1 = {(𝑋 𝑣,𝐺𝑣

𝑘−1), · · · }
Output: 𝑘-partial graph estimated by𝑀𝑘 :𝐺𝑘

1 𝑀𝑘 ← Train() ; // train 𝑘-order model𝑀𝑘

2 foreach (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐸𝑘−1 do
3 𝒙𝑖 𝑗 ← GenerateFeature(𝑥𝑖 , 𝑥 𝑗 ,𝑿 ) ;
4 if 𝑀𝑘 (𝒙𝑖 𝑗 ) = adjacency then
5 add 𝑥𝑖 − 𝑥 𝑗 to𝐺𝑘

6 return𝐺𝑘 ;

7

8 Function Train():
9 // prepare training data for𝑀𝑘

10 foreach (𝑿 𝑣,𝐺𝑣
𝑘−1) ∈ V𝑘−1 do

11 foreach (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐸𝑣
𝑘−1 do

12 𝒙𝑖 𝑗 ← GenerateFeature(𝑥𝑖 , 𝑥 𝑗 ,𝑿 𝑣) ;
13 if 𝑥𝑖 , 𝑥 𝑗 are adjacent then
14 add 𝒙𝑖 𝑗 to training data as a positive sample;

15 else add 𝒙𝑖 𝑗 to training data as a negative sample;

16 train a model𝑀𝑘 with all training data;

17 return𝑀𝑘 ;

(line 13). The feature and label are inserted into the training data

(lines 14–15). Then,𝑀𝑘 is trained by fitting the training data (line

16), which is further used to infer adjacency on test data (lines 2–5).

Sec. 4.1 describes how we extract a set of informative features to

form the outputs of GenerateFeature in Alg. 1. Sec. 4.2 introduces

pruning techniques to eliminate unnecessary CI tests during fea-

ture generation. We also elaborate on some implementation-level

optimizations in Appendix D due to space limitations.

4.1 Feature Generation
Using only qualitative conditional independence suffices to recover

skeletons from data. However, in practice, such qualitative condi-

tional independence is often error-prone and sensitive to thresholds.

Thus, we augment the qualitative conditional independence to quan-

titative conditional dependency derived from hypothesis tests. We

also consider neighborhoods of target node pair to enable more ac-

curate learning. Holistically, we propose features from two aspects:

quantitative 𝑘-order conditional dependencies and local structural

information. The former includes two classes of features (Sec. 4.1.1);

and the latter contains three classes of features (Sec. 4.1.2), which

together form the output of GenerateFeature in Alg. 1.

4.1.1 Quantitative Conditional Dependency. We view the 𝑘-order

conditional dependency as a finer-grained version of the qualitative

conditional independence; we form the following two features.

𝑘-order Conditional Dependencies. We first conduct 𝑘-order

CI tests between a pair of nodes and use the quantitative 𝑘-order

conditional dependencies to form a numeric vector as features of

this node pair. Note that the quantitative condition dependencies

are derived from the p-values (see Appendix D).

Residual of Conditional Dependencies.We also consider how

the conditional dependencies between a node pair𝑥𝑖 , 𝑥 𝑗 are changed,

when a new variable 𝑦 is added to the current condition set 𝒛 (we
term the change as residual of conditional dependencies of 𝑥𝑖 , 𝑥 𝑗 ).
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Figure 2: Overview

Intuitively, when 𝑥𝑖 and 𝑥 𝑗 are adjacent in the ground-truth BN,

their dependencies would exhibit certain “resistance” regardless of

whether 𝑦 is in 𝒛. In that sense, the dependencies should not vanish

in higher-orders. In contrast, when the two nodes are non-adjacent

in the ground-truth BN, their dependencies will vanish if𝑦 together

with 𝒛 d-separates 𝑥𝑖 and 𝑥 𝑗 . A relevant notion called “Monotone

DAG-Faithfulness Assumption” [6] entails that the conditional de-

pendencies of 𝑥𝑖 and 𝑥 𝑗 is monotonic w.r.t. the number of unblocked

paths between them in the ground-truth BN. With 𝑦 adding to the

condition set 𝒛, if we observe a notable drop in conditional depen-

dencies (i.e., a large residual), 𝑥𝑖 and 𝑥 𝑗 are likely to be non-adjacent

as one path between them may be blocked by 𝑦. Operationally, we

calculate the residual of conditional dependencies as follows:

{𝑥𝑖 ∼ 𝑥 𝑗 | 𝒛} −min

𝑦
{𝑥𝑖 ∼ 𝑥 𝑗 | 𝒛 ∪ {𝑦}} (8)

where |𝒛 | = 𝑘 − 1. Here, for each (𝑘 − 1)-order conditional de-
pendency that is computed on 𝑥𝑖 , 𝑥 𝑗 | 𝒛, we find a new node 𝑦 to

minimize the 𝑘-order conditional dependency on 𝑥𝑖 , 𝑥 𝑗 | 𝒛.

𝑥!
𝑥"

0.8

0.9
0.7

0.70.6

0.9

Figure 3: Example of model’s prediction on different edges.
4.1.2 Local Structural Information. Local structural information

depicts the sparsity around the checked pair of nodes through

various lenses. Three features are accordingly formed as follows.

Superiority. Note that the preceding model provides a numerical

prediction on each edge in the (𝑘 − 1)-partial graph. Therefore, the
superiority of the target edge in the local structurewould be a strong

indicator to its true adjacency. Consider Fig. 3, and let the neighbors

of 𝑥𝑖 , 𝑥 𝑗 on the (𝑘−1)-partial graph be 𝑁𝑖 , 𝑁 𝑗 , the superiority of the

adjacency between 𝑥𝑖 , 𝑥 𝑗 is defined by their neighbors, respectively.

Particularly, on 𝑥𝑖 , it is defined as

|{𝑥𝑚 | 𝑥𝑚 ∈ 𝑁𝑖 , 𝑀𝑘−1 (𝑥𝑖 , 𝑥 𝑗 ) > 𝑀𝑘−1 (𝑥𝑖 , 𝑥𝑚)}|
|𝑁𝐺𝑘−1 (𝑥𝑖 ) | − 1

(9)

which counts the number of edges of 𝑥𝑖 ’s neighbors having a lower

confidence compared with 𝑥𝑖 − 𝑥 𝑗 . In Fig. 3, there are two edges

with lower predictions on adjacency (i.e., 0.6 and 0.7), and therefore,

the relative confidence on 𝑥𝑖 is 2/3 = 0.67. Likewise, the relative

confidence on 𝑥 𝑗 is 1/2 = 0.5. In addition, we also use the absolute

superiority on 𝑥𝑖 , 𝑥 𝑗 (0.8 in Fig. 3) as one feature.

Degrees of Target Nodes. Many skeleton learning algorithms

make additional assumptions about the sparsity or minimality of

the ground-truth BN [11, 34]. In practice, BNs are frequently sparse.

Rather than making explicit assumptions, we use the degrees of

𝑥𝑖 , 𝑥 𝑗 on the (𝑘 −1)-partial graph (i.e., number of neighbors) as part

of features to train our model. The example in Fig. 3 generates this

feature as 3, 3, denoting the degrees of 𝑥𝑖 , 𝑥 𝑗 , respectively.

Density. We consider a local structure as dense if two nodes 𝑥𝑖 , 𝑥 𝑗
have a large proportion of common neighbors. When higher-order

CI tests are performed, these common neighbors may have the

adjacency of 𝑥𝑖 , 𝑥 𝑗 blocked. To quantify such density, we compute

the overlapping ratio [10] as follows:

|𝑁𝑖 ∩ 𝑁 𝑗 |
min( |𝑁𝑖 |, |𝑁 𝑗 |)

(10)

4.2 Pruning Strategy

𝑥𝑖
𝑥𝑗

Figure 4: Example of an intermediate 𝑘-partial graph.

In addition to the effort in the learning process, we also explore

pruning unnecessary CI tests in the following two aspects.

P1: Pruning CI Tests for General Cases. Inspired by PC [32], it

should generally bemore efficient to enumerate size-𝑘 combinations

on the neighbors of 𝑥𝑖 , 𝑥 𝑗 , rather than picking conditional set 𝒛
from the entire graph. For instance, given an intermediate graph

estimated by model𝑀𝑘−1 at the (𝑘 − 1) order, let 𝑁𝑖 , 𝑁 𝑗 (blue and

green nodes in Fig. 4) represent the set of neighbors of 𝑥𝑖 , 𝑥 𝑗 . The

𝑘-order model requires only that all 𝒛 ⊆ 𝑁𝑖 ∪ 𝑁 𝑗 with |𝒛 | = 𝑘 .

P2: Pruning CI Tests for 1-Order Models. Pearl’s axioms on

conditional independence [27] (Appendix C) allow us to infer high-

order conditional independence from a set of known low-order

conditional independence. In particular, we observe a pruning op-

portunity derived from the following lemma.

Lemma 4.1. Let𝐺𝑘 be the 𝑘-partial graph to the BN𝐺 . If 𝑥𝑖 , 𝑥 𝑗 are
adjacent in𝐺𝑘 , for any node 𝑧 ∉ 𝑁𝑖 ∩ 𝑁 𝑗 , there exist a set of nodes𝒘
with |𝒘 | ≤ 𝑘 such that 𝑥𝑖 ̸⊥⊥ 𝑥 𝑗 | {𝑧} ∪𝒘 . (see proof in Appendix B)

Lemma. 4.1 entails a useful conditional dependence based on the

local structure of the 0-partial graph. Formally,

Proposition 4.1. Let 𝐺0 be the 0-partial graph to the BN 𝐺 . If
𝑥𝑖 , 𝑥 𝑗 are adjacent in 𝐺0, for any node 𝑧 ∉ 𝑁𝑖 ∩ 𝑁 𝑗 , 𝑥𝑖 ̸⊥⊥ 𝑥 𝑗 | {𝑧}.

Proposition. 4.1 allows us to only conduct CI tests on the shared

neighbors (the blue node in Fig. 4), as 𝑥𝑖 , 𝑥 𝑗 are always conditionally

dependent given the other neighbors (green nodes in Fig. 4).

In practice, we find Proposition. 4.1 highly useful, because 0-

partial graphs are generally dense and conducting 1-order CI tests
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even within the neighborhood (by P1) is costly. As shown in Sec. 6,

this pruning strategy alleviates a notable proportion of CI tests.

5 VICINAL GRAPHS
Quality training data (i.e., graphs associated with generated datasets

via forward sampling) is essential to model training. Therefore, gen-

erating a set of adequate graphs is the key task. Instead of generating

graphs randomly in the DAG space (e.g., by Erdős-Rényi Model),

we propose to generate vicinal graphs, where each vicinal graph is

Markov compatible to a joint distribution sharing certain “similari-

ties” with the distribution of observational data. In the following,

we introduce how vicinal graphs are generated and parameterized

such that we can use forward sampling to obtain generated data.

𝑋 𝑌 𝑍 𝑊

Observational Data Pseudo BN Vicinal Graphs

𝑍

𝑋

𝑌 𝑊
Proxy Mutation

𝑍

𝑋

𝑌 𝑊

𝑍

𝑋

𝑌 𝑊

Figure 5: Generate vicinal graphs from observational data.

The workflow of generating vicinal graphs is outlined in Fig. 5.

ML4S first employs a proxy algorithm, representing an existing

causal discovery algorithm like PC, to learn a pseudo BN w.r.t. the

observational data. Then, it forms the seed of generating vicinal

graphs. Specifically, we mutate the pseudo BN with two schemes to

obtain vicinal graphs: 1) randomly inserting edges, and 2) randomly

deleting edges. After multiple rounds of mutations, the structure

of vicinal graphs are generated. However, in this stage, the vicinal

graphs are not parameterized (without CPTs (conditional probabil-

ity tables)), on which forward sampling cannot be applied. In the

following, we introduce how CPTs are prepared.

As a starting point, we may parameterize vicinal graphs with

randomly generated CPTs. However, the underlying joint distribu-

tion represented by random CPTs may drastically differ to the true

joint distribution of observational data, undermining the training

process. As a desiderata, we would expect the vicinal graphs’ dis-

tributions to retain a reasonable degree of similarity to the one of

ground-truth BN. To accomplish this, we generate vicinal graphs’

CPTs by inheriting pseudo BN’s CPTs. First, we employ MLE (Max-

imum Likelihood Estimation) to estimate the CPTs of a pseudo BN.

For each node in a vicinal graph, its CPT is directly inherited from

the pseudo BN if its parents are identical to its counterpart node in

the pseudo BN. When its parents are modified by edge insertions or

deletions during mutations, its CPT would be adjusted accordingly.

The rest of this section describes how we generate CPTs for such

cases while preserving essential probabilistic properties.

EdgeDeletion.Adjusting CPTs for edge deletion is straightforward
using marginalization, as in Alg. 2 (lines 1–4). Consider the left

vicinal graph shown in Fig. 5, which deletes the edge between𝑍 and

𝑊 in the pseudo BN. The CPT of𝑍 on the pseudo BN (CPTold in line
2) encodes the distribution of 𝑃 (𝑍 | 𝑌,𝑊 ). In the new vicinal graph,

𝑍 only has one parent node, whose CPT shall encode 𝑃 (𝑍 | 𝑌 ).
By the law of total probability, 𝑃 (𝑍 | 𝑌 ) = ∑

𝑤 𝑃 (𝑍 | 𝑌,𝑊 = 𝑤),
which forms the new CPT (line 3).

Edge Insertion. Generating CPTs for edge insertion is complex.

Consider the right vicinal graph in Fig. 5, where an extra edge

Algorithm 2: Generate CPTs for Vicinal Graphs
1 Function DeleteEdge(start_node, end_node):
2 CPTold ← end_node’s CPT;
3 CPTnew ← Marginalize(CPTold, start_node) ;
4 update end_node’s CPT with CPTnew;
5 Function InsertEdge(start_node, end_node):
6 CPTold ← end_node’s CPT;
7 CPTnew ← ∅;
8 foreach cpt𝑖 ∈ CPTold do
9 𝜶𝑖 ← MLE_Dirichlet(cpt𝑖 ) ;

10 foreach val ∈ start_node do
11 cptval

𝑖
← Dirichlet(𝛽𝜶𝑖 ) ;

12 CPTnew ← CPTnew ∪ {cptval𝑖
};

13 update end_node’s CPT with CPTnew;

between 𝑋 and 𝑍 is inserted. On the pseudo BN, 𝑍 ’s CPT encodes

𝑃 (𝑍 | 𝑌,𝑊 ). If we simply let 𝑃 (𝑍 | 𝑌,𝑊 ,𝑋 ) = 𝑃 (𝑍 | 𝑌,𝑊 ) on
each𝑋 = 𝑥 to retain a similar distribution,𝑋 would be independent

of 𝑍 given 𝑌,𝑊 , implying that 𝑋 should be non-adjacent to 𝑍 in

accordance with the faithfulness assumption. To resolve the con-

flict, we employ the Dirichlet-multinomial distribution (Dirichlet

distribution for brevity) to sample diverse CPTs while retaining the

essences of observational data. The method is outlined in Alg. 2

(lines 5–13). Here, Dirichlet distribution can be seen as a family

distribution of categorical-valued distributions. For each concrete

conditional probability distribution 𝑃 (𝑍 | 𝑌 = 𝑦,𝑊 = 𝑤) (line 8),
we use MLE to estimate the parameters of its Dirichlet distribution

𝜶𝑖 (line 9). Then, for each possible value 𝑥 of variable 𝑋 , we sample

𝑃 (𝑍 | 𝑌 = 𝑦,𝑊 = 𝑤,𝑋 = 𝑥) from Dirichlet(𝛽𝜶𝑖 ) (line 11), where
𝛽 is a hyper-parameter tuning “variance” of the Dirichlet distribu-

tion. After enumerating all possible combinations of conditional

probability distribution 𝑃 (𝑍 | 𝑌 = 𝑦,𝑊 = 𝑤) and 𝑥 , the new CPT is

generated. Furthermore, since 𝑃 (𝑍 | 𝑌 = 𝑦,𝑊 = 𝑤,𝑋 ) is sampled

from the same Dirichlet distribution, the joint distribution will be

similar but the conflict is resolved. We refer readers to [17] for MLE

on Dirichlet distributions.

6 EVALUATION
In evaluation, we aim to answer the following research questions:

(1) how good are the skeletons discovered by ML4S compared with
other de facto algorithms?

(2) does ML4S provides a general and unique improvement to all
algorithms?

(3) how do different techniques (e.g., vicinal graphs and pruning
strategies) improve ML4S?

(4) how good isML4S in terms of boosting downstream applications?
In the following subsections, we explore each research question.

6.1 End-to-end Comparison
We collect 14 datasets from the bnlearn repository [29] of diverse

scales. Each dataset correspondswith 10,000 observational data sam-

ples. We compareML4S with a wide range of learning algorithms,

including constraint-based algorithms (REAL [11], MMPC [33] and

PC [32]), score-based algorithms (HC [33], GES [7], BLIP [28] and

GOBNILP [9]), and gradient-based algorithms (NOTEARS [39],

DAG-GNN [37] and CDRL [40]). ML4S uses BLIP to learn a pseudo
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Table 2: Comparison of different skeleton learning algorithms on the bnlearn benchmarks.We highlight the best , second best
and third best algorithms in each dataset. ML4S is among the top-3 on 12 out of 14 datasets.

Dataset

#nodes/#edges

Metric ML4S
Constraint-based Score-based Gradient-based

REAL MMPC PC HC GES BLIP GOBNILP NOTEARS DAG-GNN CDRL

child

20/25

Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57 0.72 0.88

Recall 1.00 1.00 1.00 1.00 0.89 1.00 1.00 0.52 0.84 0.52 0.60

F1 Score 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.68 0.68 0.60 0.71

insurance

27/52

Precision 0.98 1.00 0.97 1.00 0.69 0.93 0.98 0.97 0.40 0.47 0.82

Recall 0.77 0.71 0.69 0.79 0.81 0.75 0.81 0.56 0.73 0.35 0.27

F1 Score 0.86 0.83 0.81 0.88 0.74 0.83 0.88 0.71 0.52 0.40 0.41

water

32/66

Precision 1.00 1.00 1.00 1.00 0.68 0.97 0.86 - 0.66 0.91 0.75

Recall 0.45 0.42 0.41 0.52 0.55 0.48 0.48 - 0.47 0.32 0.27

F1 Score 0.65 0.60 0.58 0.68 0.61 0.65 0.62 - 0.55 0.47 0.40

mildew

35/46

Precision 0.92 1.00 0.89 0.92 0.76 0.94 0.82 - 0.52 0.59 0.53

Recall 0.72 0.59 0.52 0.76 0.67 0.70 0.61 - 0.52 0.59 0.53

F1 Score 0.80 0.74 0.66 0.83 0.71 0.80 0.70 - 0.52 0.59 0.53

alarm

37/46

Precision 0.98 0.96 0.98 1.00 0.69 0.98 0.94 1.00 0.43 0.55 0.74

Recall 0.96 0.93 0.93 0.96 0.96 0.96 0.96 0.59 0.89 0.61 0.57

F1 Score 0.97 0.95 0.96 0.98 0.80 0.97 0.95 0.74 0.58 0.58 0.64

barley

48/84

Precision 0.83 0.90 0.84 1.00 0.66 0.91 0.88 0.96 0.25 0.41 0.64

Recall 0.68 0.62 0.55 0.73 0.70 0.69 0.60 0.64 0.45 0.23 0.17

F1 Score 0.75 0.73 0.66 0.84 0.68 0.78 0.71 0.77 0.32 0.30 0.26

hailfinder

56/66

Precision 0.22 0.15 0.08 0.16 0.14 0.16 0.20 0.14 0.10 0.07 0.06

Recall 0.18 0.11 0.11 0.11 0.18 0.15 0.19 0.12 0.15 0.03 0.08

F1 Score 0.20 0.12 0.09 0.13 0.16 0.16 0.19 0.13 0.12 0.04 0.07

hepar2

70/123

Precision 0.97 0.97 0.97 0.91 0.74 1.00 0.96 0.94 0.61 1.00 -

Recall 0.69 0.60 0.60 0.57 0.80 0.62 0.69 0.61 0.53 0.12 -

F1 Score 0.81 0.74 0.74 0.70 0.77 0.76 0.80 0.74 0.57 0.22 -

win95pts

76/112

Precision 0.91 0.89 0.94 0.96 0.32 0.86 0.78 - 0.44 0.81 -

Recall 0.69 0.59 0.59 0.70 0.90 0.87 0.88 - 0.81 0.52 -

F1 Score 0.78 0.71 0.73 0.81 0.48 0.86 0.82 - 0.57 0.63 -

pathfinder

109/195

Precision 0.85 0.98 0.81 - - - 0.40 - 0.17 0.71 -

Recall 0.46 0.41 0.43 - - - 0.35 - 0.43 0.43 -

F1 Score 0.59 0.58 0.56 - - - 0.37 - 0.24 0.54 -

munin1

186/273

Precision 0.62 0.86 0.77 - - - 0.67 - 0.19 0.55 -

Recall 0.47 0.38 0.38 - - - 0.51 - 0.34 0.18 -

F1 Score 0.54 0.51 0.51 - - - 0.58 - 0.24 0.27 -

andes

223/338

Precision 0.96 0.98 0.96 0.94 - - 0.90 - 0.84 0.90 -

Recall 0.86 0.79 0.78 0.82 - - 0.90 - 0.40 0.25 -

F1 Score 0.91 0.88 0.86 0.87 - - 0.90 - 0.54 0.39 -

diabetes

413/602

Precision 0.76 0.71 0.80 - - - 0.73 - 0.05 0.19 -

Recall 0.80 0.60 0.53 - - - 0.65 - 0.43 0.56 -

F1 Score 0.78 0.65 0.64 - - - 0.69 - 0.08 0.29 -

pigs

441/592

Precision 0.93 1.00 1.00 - - - 0.93 - 0.60 0.90 -

Recall 1.00 1.00 1.00 - - - 1.00 - 0.99 0.69 -

F1 Score 0.97 1.00 1.00 - - - 0.96 - 0.75 0.79 -

Overall

Rank

Mean 2.00 4.00 4.93 3.93 6.21 4.07 3.07 7.57 7.57 8.14 8.86

Std 1.07 1.77 2.34 2.79 1.52 2.49 1.79 2.19 2.13 2.45 1.46

BN and then generates vicinal graphs using the pseudo BN; their

ground-truth adjacencies form the labels of training data.ML4S is

trained with 5,000 vicinal graphs by default (and smaller on large

datasets). ML4S employs XGBoost [5] as classifiers with default

parameters. Other implementation details are presented in Appen-

dix D. We consider a case as failed (denoted as “-”) if an algorithm

takes more than eight hours or crashed. For algorithms allowing a

time limit, we use the best-so-far results within eight hours.

We report the full comparison on Precision, Recall and F1 Score

of different algorithms in Table 2. A succinct comparison has been

given in Fig. 1. Overall, we interpret the results as highly promising.

Holistically,ML4S is the best algorithms among all these de facto

algorithms with an average rank of 2.00 ± 1.07. The second best

algorithm, BLIP, has an overall lower and less stable performance of

3.07 ± 1.79. We also observe that different algorithms usually have

distinct performance on different datasets. In particular, we observe

that classical algorithms such as PC and GES manifest competitive
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performance on small datasets (child, insurance, etc.). We presume

it is primarily because we adopt the latest implementations of the

algorithms with good engineering quality and useful tricks (e.g.,

PC stable strategy). Nevertheless, they generally fail to scale to

larger datasets with more than 100 variables, which impedes their

overall performance. In addition, we observe that gradient-based

algorithms are usually sub-optimal in comparison to algorithms

from other categories. We presume it is because they are originally

designed for continuous data with stronger assumptions enforced.

6.2 Generality and Uniqueness
We further explore ML4S through the lens of improvement on the

chosen proxy algorithms. Here, we focus on two orthogonal aspects:

1) IsML4S a general improvement to different proxy algorithms? 2)

Is ML4S a unique improvement that cannot be trivially replaced by

existing approaches? For the first question, we employ the pseudo

BNs learned by different algorithms to generate vicinal graphs on

the pathfinder dataset, where different algorithms show a distinct

performance (see Table 2). For the second question, we employ

the “Backward” phase described in MMPC [33] as a standard post-

process on skeletons discovered by the BLIP algorithm.

Table 3: F1 Score of different algorithms on pathfinder.
REAL MMPC BLIP NOTEARS DAG-GNN

w/o ML4S 0.58 0.56 0.37 0.24 0.54

w/ ML4S 0.65 0.63 0.59 0.48 0.69

Improvement +12.1% +12.5% +59.5% +100.0% +27.8%

Generality. ML4S improves existing proxy algorithms in general.

To demonstrate this, we create vicinal graphs on the pathfinder

dataset using several proxy algorithms and provide the (improved)

F1 Score in Table 3. On the one hand, we see thatML4S enhances

F1 Score significantly when compared to the original results. On

the other hand, we find that the quality of the training data has

a notable effect on performance. The greater agreement between

the pseudo BN and the ground-truth BN (i.e., a higher accuracy

in the 2nd row), the betterML4S performs to improve the overall

accuracy (i.e., the accuracy in the 3rd row).

Table 4: F1 Score of BLIP (B), BLIP with Backward (BB) and
ML4S (M). #1-14 denote the datasets evaluated in Table 2. We
highlight the best for each comparison.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

B 1.0 .88 .62 .70 .95 .71 .19 .80 .82 .37 .58 .90 .69 .96

BB 1.0 .82 .57 .62 .96 .69 .19 .72 .74 .34 .53 .88 .59 1.0

M 1.0 .86 .65 .80 .97 .75 .20 .81 .78 .59 .54 .91 .78 .97

Uniqueness. We demonstrate how ML4S is distinct from existing

post-processing techniques to skeleton learning. Table 4 summa-

rizes F1 Score for BLIP, BLIP with Backward, and BLIP with ML4S
on 14 datasets. While “Backward” is highly useful in MMPC [33], it

generally fails to improve BLIP on skeleton learning. In contrast,

ML4S delivers an unique improvement to existing algorithms.

6.3 Ablation Study and Feature Impact
Wenow study how techniques proposed in the paper improveML4S.
We explore the impact of training data, features and pruning.

Table 5: F1 Score on different training data.
Vicinal Random (SF) Random (ER)

insurance 0.86 0.74 (-14%) 0.74 (-14%)

water 0.65 0.63 (-3%) 0.61 (-6%)

mildew 0.80 0.68 (-15%) 0.74 (-8%)

barley 0.75 0.62 (-16%) 0.63 (-16%)

Vicinal Graph vs. Random Graph. Table 5 assesses the perfor-
mance of ML4S when trained on data of varying quality. In partic-

ular, we examine howML4S would perform on purely random BNs.

These random graphs are constructed using two classical random

graph models, namely the Erdős-Rényi Model and the Scale-Free

(SF) Model. Random graphs are on a par with the ground-truth

BN in terms of scale. We observe that replacing vicinal graphs

with random graphs notably degrades the performance of ML4S.
We see it as reasonable, given that real-world BNs exhibit distinct

characteristics that are hard to capture using random graphs.
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Figure 6: Feature impact computed using Shapley values
(SHAP) for a 2-order model on the barley dataset. “PERC”
denotes percentiles with 20 splits.

Feature Impact.We also explore the impact of different features

(introduced in Sec. 4.1) on model predictions. We use Shapley values

(SHAP [24]) to illustrate feature importance for a 2-order model

on the barley dataset in Fig. 6, with 0.0 on the x-axis denoting

“no impact.” Features are ranked by their Shapley values, where

features with higher importance have their positive (red dots) and

negative (blue dots) impact farther away from 0.0. Overall, we find

that all features described in Sec. 4.1 make reasonable contributions

to model predictions. Among these features, we observe that the

feature of superiority is the most important and positively corre-

lated with the prediction of the 2-order model. We consider it as

intuitive; the superiority of an edge in the (𝑘−1)-model would most

likely increase the confidence of 𝑘-model in their adjacency. We

also observe that the feature of 𝑘-order conditional dependencies is

a strong predictor of adjacencies, as it reflects conditional indepen-

dence relations which are the basis of constraint-based methods.

See Appendix E for a detailed feature impact analysis.

Table 6: Number and Proportion of Omitted CI Tests.
#1 #2 #3 #4 #5 #6 #7

714 (-53%) 1370 (-57%) 410 (-76%) 4620 (-44%) 1712 (67%) 7058 (-18%) 5162 (-70%)

#8 #9 #10 #11 #12 #13 #14

3130 (-85%) 1506 (-84%) 22242 (-73%) 28608 (-70%) 6194 (-89%) 326130 (-78%) 174122 (-56%)

Pruning Strategies. We give the number and proportion of CI

tests that our pruning algorithms facilitate to omit in Table 6. We do

not examine P1 because its effectiveness is self-evident and it has

been used in many existing constraint-based methods. We focus

on P2 here. Table 6 reports the results for 14 datasets. We interpret
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the results as promising. On average, it eliminates 65.8% of the

1-order CI tests for P2, especially on large datasets. For instance,

78% 1-order CI tests are pruned by P2 on the diabetes dataset.

6.4 Downstream Application
We illustrate the effectiveness of ML4S in terms of boosting down-

stream applications through a case study on NOTEARS [39]. In

particular, we design a crafted NOTEARS [39], which takes skele-

tons as a prior. Following [39], we use structural Hamming distance

(SHD) between the output DAG and the ground-truth DAG as the

performance metrics (lower is better). The the detailed algorithm

and full results are reported in Appendix F. Overall, ML4S sub-

stantially improves NOTEARS on all datasets. In particular, on the

diabetes dataset, the original NOTEARS yields 5666 erroneous edges

(most are false positives), whileML4S, by supplying the skeleton,

substantially eliminates errors. We presume skeletons produced by

ML4S can be used as general enhancements to a variety of gradient-

based algorithms, including DAG-GNN [37] and CDRL [40]. For

other algorithms (e.g., constraint-based), their combinations with

skeletons are evidently explored in [33].

7 CONCLUSION AND FUTUREWORK
Causal skeleton learning uncovers the underlying undirected graph

(skeleton) of causal BNs using observational data. We proposed

the first supervision-based paradigm for causal skeleton learning.

The proposed technique features an effective cascade procedure for

skeleton learning, with training data derived from vicinal graphs.

Evaluation over various datasets illustrates the promising capability

of ML4S by notably outperforming the state of the arts.

This paper primarily focuses on analyzing discrete data. Hav-

ing that said, both the supervision-based paradigm andML4S are

capable of handling a wide variety of data types. For instance, we

envision that users of ML4S can use kernel-based CI test [38] to

conduct statistical tests over continuous data, allowing ML4S to

be applied smoothly. Also, we have presented a case study to illus-

trate that causal skeleton enhances the accuracy of downstream

gradient-based causal discovery tasks in Sec. 6.4. We leave boosting

other downstream tasks (e.g., optimal feature selection) with our

proposed technique as future work.
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A PROOF OF CLASSIFIER CORRECTNESS
We construct a classifier C𝐷 at the remark in Sec. 1. We prove that

C𝐷 yields the correct skeleton w.r.t. observational data.

Proof. We discuss C𝐷 with two types of errors (i.e., false posi-

tive and false negative) and prove the absence of these errors under

the canonical assumption. Here, false positive (FP) denotes C𝐷 pre-

dicts a non-adjacent node pair as adjacent and false negative (FN)

denotes C𝐷 predicts an adjacent node pair as non-adjacent.

False Positive. Suppose 𝑣𝑖 , 𝑣 𝑗 are non-adjacent. Under the canoni-
cal assumption, there exists a set of nodes 𝒛 such that 𝑣𝑖 ⊥⊥ 𝑣 𝑗 | 𝒛.
In that sense, their conditional dependency {𝑣𝑖 ∼ 𝑣 𝑗 | 𝒛} = 0 and

𝒙𝑖 𝑗 = 0. According to Eqn. 2, C𝐷 will always predicts them as

non-adjacent.

False Negative. Suppose 𝑣𝑖 , 𝑣 𝑗 are adjacent. Under the canonical
assumption, for any 𝒛 ∈ 𝑉 \ {𝑣𝑖 , 𝑣 𝑗 }, 𝑣𝑖 ̸⊥⊥ 𝑣 𝑗 | 𝒛, which implies the

conditional dependencies for any 𝒛 is higher than zero. According

to Eqn. 2, C𝐷 will always predicts them as adjacent.

In sum, when the canonical assumption holds, C𝐷 would not

yield any FP or FN. Thus, C𝐷 recovers the correct skeleton. □

B PROOF OF LEMMA. 4.1
Proof. We prove Lemma. 4.1 by contradictions. Suppose there

exists a node 𝑧 ∉ 𝑁𝑖 ∩ 𝑁 𝑗 such that ∀|𝒘 | = 𝑘, 𝑥𝑖 ⊥⊥ 𝑥 𝑗 | {𝑧} ∪ 𝒘 .
Without loss of generality, let 𝑧 ∉ 𝑁𝑖 . According to the adjacency on

the 𝑘-partial graph, we have ∃|𝒘 | ≤ 𝑘, 𝑥𝑖 ⊥⊥ 𝑧 | 𝒘 and 𝑥𝑖 ̸⊥⊥ 𝑥 𝑗 | 𝒘 .
According to Pearl’s axioms on conditional independence [27] (see

Appendix C), 𝑥𝑖 ⊥⊥ 𝑧 | 𝒘 and 𝑥𝑖 ⊥⊥ 𝑥 𝑗 | {𝑧} ∪ 𝒘 imply that

𝑥𝑖 ⊥⊥ 𝑥 𝑗 ∪ {𝑧} | 𝒘 by Contraction rule. Then, by Decomposition

rule, 𝑥𝑖 ⊥⊥ 𝑥 𝑗 ∪ {𝑧} | 𝒘 implies that 𝑥𝑖 ⊥⊥ 𝑥 𝑗 | 𝒘 and 𝑥 𝑗 ⊥⊥ {𝑧} | 𝒘 ,
which contracts the fact that 𝑥𝑖 ̸⊥⊥ 𝑥 𝑗 | 𝒘 . □

C PEARL’S AXIOMS ON CONDITIONAL
INDEPENDENCE

We introduce Pearl’s axioms [27] used in Lemma. 4.1 as follows.

The uppercase symbols denote a set of variables.

Decomposition.
(𝑋 ⊥⊥ 𝑌 ∪𝑊 | 𝑍 ) =⇒ (𝑋 ⊥⊥ 𝑌 | 𝑍 ) ∧ (𝑋 ⊥⊥𝑊 | 𝑍 )
Contraction.
(𝑋 ⊥⊥ 𝑌 | 𝑍 ) ∧ (𝑋 ⊥⊥𝑊 | 𝑍 ∪ 𝑌 ) =⇒ (𝑋 ⊥⊥ 𝑌 ∪𝑊 | 𝑍 )

D IMPLEMENTATION DETAILS
We implementML4S with about 5k lines of Python code. Our code-

base is available at [1]. We use XGBoost [5] to form the basic models

in each order with default parameters. We use at most four orders

of conditional dependencies. If the adjacency cannot be rejected by

4-order model, we confirm it as an edge in the skeleton. We employ

the following technique to generate conditional dependencies via a

non-linear transformation to p-values and also confirm adjacent

edges in an early stage.

Generate Conditional Dependencies. Following [10], we employ

the non-linear transformation on p-values to derive conditional

dependencies such that they can be smoothly processed by machine

learning models. Formally,

𝑔(𝑧) = 1 − 2

𝜋

∫ 𝑧

0

𝑒−𝑥
2

𝑑𝑥 (11)

and we use the quantity 𝑧 = 𝑔−1 (𝑝) as a re-scaled p-value, where
𝑔−1 is the inverse of the function defined in Eqn. 11. We call 𝑧 as

conditional dependency; and lower p-values correspond to higher 𝑧.

Handling Features of Flexible Size.Most machine learning mod-

els would anticipate receiving a fixed-size feature. However, 𝑘-order

conditional dependencies and corresponding residuals may be of

arbitrary size, as we have no control over the number of CI tests per-

formed of this order. There are many well-established techniques to

handle such features, such as kernel embedding [26, 31]. In ML4S,
we employ a simple yet highly effective strategy to handle these

cases. Suppose we have a collection of 𝑘-order conditional depen-

dencies. We first estimate a distribution by treating these scalars as

samples from an unknown linear distribution and then extracting

percentiles of this distribution (e.g., 10%, 20%-percentile) to form

a fixed-length vector. In addition, we compute several common

statistics (e.g., max, min, mean and std). We then concatenate all

these extracted features to form a vector for the model.

Early Edge Confirmation.We also spot an opportunity to confirm

an adjacent edge in an early stage, by which we do not need to

conduct high-order CI tests that are costly and error-prone. The

optimization opportunity relies on the following lemma.

Lemma D.1. Let 𝐺𝑘 be a 𝑘-partial graph of ground-truth BN𝐺 , if
there exists a pair of adjacent nodes 𝑥,𝑦 in 𝐺𝑘 where 𝑥 has at most
𝑘 + 1 − 𝑠 neighbors in 𝐺𝑘 and 𝑦 has at most 𝑘 + 1 neighbors in 𝐺𝑘 , 𝑥
is adjacent to 𝑦 in 𝐺 , where 𝑠 is the number of its spouses.

Proof. We prove the above lemma by contradictions. Suppose

𝑦 is adjacent to 𝑥 in𝐺𝑘 but non-adjacent to 𝑥 in𝐺 . Let𝑀𝐵𝑥 be the

Markov blanket of 𝑥 . Let 𝑁𝑥 , 𝑁𝑥 be the neighbors of 𝑥 in𝐺𝑘 and𝐺 ,

respectively. We prove the lemma in three cases.

Case 1: 𝑦 is not a spouse of 𝑥 in 𝐺 . According to Proposi-

tion. 3.1, |𝑀𝐵𝑥 | ≤ (𝑘 + 1 − 𝑠) − 1 + 𝑠 = 𝑘 . And 𝑀𝐵𝑥 d-separates

all nodes in 𝑉 \𝑀𝐵𝑥 to 𝑥 , which implies that 𝑥 ⊥⊥ 𝑦 | 𝑀𝐵𝑥 . Given

that |𝑀𝐵𝑥 | ≤ 𝑘 , 𝑥,𝑦 are non-adjacent in 𝐺𝑘 , which contradicts.

Case 2: 𝑦 is a non-descendant spouse to 𝑥 in 𝐺 . In this

case, according to Markov property, 𝑃𝑎𝐺 (𝑥) d-separates 𝑥 with all

non-descendant nodes. According to Proposition. 3.1, |𝑃𝑎𝐺 (𝑥) | <
|𝑁𝑥 | ≤ 𝑘 + 1 − 𝑠 . Thus, |𝑃𝑎𝐺 (𝑥) | ≤ 𝑘 , which further implies that

𝑥,𝑦 are non-adjacent in 𝐺𝑘 . It contradicts.

Case 3: 𝑦 is a descendant spouse to 𝑥 in 𝐺 . In this case, 𝑥

is a non-descendant spouse to 𝑦. According to Markov property,

𝑃𝑎𝐺 (𝑦) d-separates 𝑦 with all non-descendant nodes. According

to Proposition. 3.1, |𝑃𝑎𝐺 (𝑦) | < |𝑁𝑦 | ≤ 𝑘 + 1. Thus, |𝑃𝑎𝐺 (𝑦) | ≤ 𝑘 ,

which further implies that 𝑥,𝑦 are non-adjacent in𝐺𝑘 . It contradicts.

□

In theory, the size of spouse is unknown during skeleton learning,

but is bounded by the maximal indegree 𝑏 and maximal outdegree

𝑎 of the BN, where 𝑠 ≤ 𝑎(𝑏 −1). In the tree-based BN, e.g. TAN [14],

the lemma would be largely eliminates computational costs, where

𝑠 = 0. In practice, we employ 𝑠 = 0 as a hyper-parameter that trades

accuracy for efficiency. The empirical false rate of this optimization

on normal datasets is 0.03 when 𝑘 = 2 and 0.02 when 𝑘 = 3, which

we deem as negligible.
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Algorithm 3: Boost Gradient-based Algorithms withML4S
Input: Observational Data: 𝑿
Output: Adjacency Matrix:𝑊

1 generate skeleton 𝑆 with ML4S on 𝑿 ;

2 generate skeleton-induced adjacency matrix𝑊 𝑆
by 𝑆 ;

3 initialize adjacency matrix𝑊 = [0]𝑛×𝑛 ;
4 while not terminated do
5 compute gradient ∇𝐹 ;
6 ∇𝐹 ∗ ← ∇𝐹 ⊙𝑊 𝑆

;

7 update𝑊 with ∇𝐹 ∗;
8 end
9 return𝑊 ;
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Figure 7: Detailed feature impact computed using Shapley
values (SHAP) for a 2-order model on the insurance dataset.

E FEATURE ANALYSIS
We report the detailed feature impact in Fig. 7, which validates our

statements Sec. 4.1. First, both superiority and maximal conditional

dependencies show strong correlations to adjacencies and notably

influencemodel’s predictions. Density also manifests a clear correla-

tions on the adjacencies, which is consistent with our hypothesis. If

the two nodes shares a large proportion of common neighbors (i.e.,

high density; red in Fig. 7), they are very likely to be non-adjacent

in the ground-truth skeleton (left to 0.0). Likewise, the maximal

degree of focused nodes also negatively affects the model deciding

adjacencies. Conversely, the impacts of residuals are subtle in terms

of its maximum and minimum. Minimum residuals are positively

correlated with adjacencies while maximum residuals are negative.

We interpret it as reasonable. Since non-adjacent nodes would man-

ifest low conditional dependencies, their minimal residuals would

be small under a small baseline. However, their maximal residuals

would be useful to estimate the “vanishment” in the monotonic

assumption. The impacts of percentiles on conditional dependen-

cies and residuals also align to our hypothesis but relatively minor

compared to other statistics (e.g., min and max).

F BOOSTING NOTEARS WITHML4S
Skeletons can be used to support a variety of downstream appli-

cations. It has shown that many constraint-based and score-based

causal discovery algorithms decouple the phases of skeleton learn-

ing and orientation [32, 33]. Thus, the output of ML4S can be

smoothly employed to enhance these algorithms by replacing their

own skeleton learning module. Here, we demonstrate a case of

boosting NOTEARS, which is a representative gradient-based algo-

rithm, with skeletons generated byML4S.
To the best of our knowledge, this is the first attempt for en-

hancing gradient-based algorithms with known skeletons, shedding

a light on versatile usages of ML4S and other skeleton learning

algorithms. We outline the general workflow for boosting gradient-

based algorithms in Alg. 3, where the gradient is hooked. Alg. 3 first

leverages ML4S to identify the skeleton (line 1) and then generate

the skeleton-induced adjacency matrix𝑊 𝑆
(line 2). When 𝑥𝑖 , 𝑥 𝑗 are

adjacent on 𝑆 ,𝑊 𝑆
𝑖,𝑗

= 1. Otherwise,𝑊 𝑆
𝑗,𝑖

= 0. Then, the adjacency

matrix of DAG is initialized as a zero matrix. In the optimization

phase of gradient-based algorithms (line 4–8), the original gradient

is modified by𝑊 𝑆
with Hadamard product (line 6). In that sense,

the gradient on non-adjacent edges becomes zero such that the

adjacency matrix is only updated on a limited edges (line 7). There-

fore, the gradient-based algorithms is only responsible for orienting

edges; skeleton learning is offloaded to ML4S which is generally

more accurate, as already shown in Table 2.

We report the results of Alg. 3 in Table 7 and observe that Alg. 3

improves NOTEARS on all datasets.

Table 7: SHD of NOTEARS and NOTEARS withML4S.

Dataset NOTEARS NOTEARS w/ML4S
child 31 10 (-68%)

insurance 91 36 (-60%)

water 68 54 (-21%)

mildew 57 35 (-39%)

alarm 69 16 (-77%)

barley 184 71 (-61%)

hailfinder 153 96 (-37%)

hepar2 128 84 (-34%)

win95pts 162 55 (-66%)

pathfinder 576 186 (-68%)

munin1 612 227 (-63%)

andes 305 244 (-20%)

diabetes 5666 553 (-90%)

pigs 612 123 (-80%)
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