arXiv:2202.01493v1 [cs.RO] 3 Feb 2022

IEEE ROBOTICS AND AUTOMATION MAGAZINE 1

Spatial Computing and Intuitive Interaction:
Bringing Mixed Reality and Robotics Together

Jeffrey Delmerico, Roi Poranne, Federica Bogo, Helen Oleynikova, Eric Vollenweider, Stelian Coros, Juan Nieto,
Marc Pollefeys

Abstract

Spatial computing—the ability of devices to be aware of their surroundings and to represent this digitally—offers novel
capabilities in human-robot interaction. In particular, the combination of spatial computing and egocentric sensing on mixed
reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning, which
offers exciting new possibilities for collaboration between humans and robots. This paper presents several human-robot systems
that utilize these capabilities to enable novel robot use cases: mission planning for inspection, gesture-based control, and immersive
teleoperation. These works demonstrate the power of mixed reality as a tool for human-robot interaction, and the potential of
spatial computing and mixed reality to drive the future of human-robot interaction.

I. INTRODUCTION

INCE the term was first coined almost twenty years ago [1], the rise of virtual, augmented, and mixed reality technologies

has highlighted the importance and applications of spatial computing as a novel paradigm for interacting with spatial
information through our devices. Spatial computing refers to the digitization and modeling of the device’s environment and
the objects within it, such that the device has spatial context. What distinguishes mixed reality from virtual realty is the ability
to observe both the physical and digital world simultaneously, with digital content aligned to the real spatial environment, and
the ability to interact with both physical and digital objects. While augmented reality devices offer some of these capabilities
through multi-touch screens, mixed reality is characterized by a more immersive visualization and interaction experience through
a head-mounted display.

In the world of mobile robotics, spatial computing is a requirement for most operations. In order to navigate in an environment,
avoid obstacles, and perform useful functions, mobile robots need to build and use a digital representation of their understanding
of the environment. Often this takes the form of a map, where the robot maintains an estimate of where it is in space, as well
as the structure of the environment. But more broadly, this representation can be a digital twin of the environment, where any
information about the world that has spatial meaning can be embedded in a digital framework intended to capture information
about the space, and the digital devices in it, as accurately and completely as possible.

The trend in devices taking advantage of spatial computing is often called the Third Wave of Personal Computing, after the
first two waves where desktops provided access to home computing, and then mobile devices initially made this computing
power ubiquitous and portable, but without any awareness of the space they are in. Mobile robots and mixed reality (MR)
devices thus have significant synergies, since they require many of the same spatial computing capabilities, regardless of
whether they are designed to be used by a human, or to behave autonomously.

This alignment of spatial understanding between human-oriented MR devices and robots provides an opportunity to unlock
new modes of interaction between humans and machines. In particular, by sharing these spatial representations or digital
twins between human and robotic devices, we can enable all of the agents involved to leverage that information for greater
capabilities. This enables them to do more, and provides a common understanding so that humans and robots can all work
together better and more efficiently through natural and intuitive interaction and collaboration.

Additionally, by leveraging the egocentric sensing and immersive visualization of MR devices, we can also provide embodied
teleoperation experiences for remote devices. In this scenario, the user projects their actions to a remote robot while using the
robot’s spatial understanding to provide immersive feedback on the task at hand.

In this paper, we aim to show our efforts in this domain, with three works that illustrate how mixed reality can enable more
flexible collaboration and even new types of interactions between humans and robots. Section [[I] details a system in which a user
can plan autonomous inspection missions for a robot, which is made possible by sharing a persistent spatial reference frame
in which these missions are defined. We then describe an approach for using the egocentric sensing and human understanding
capabilities of a mixed reality headset to control a robot using gestures in Section which builds on the previous section
with simultaneous colocalization of the robot and human. Finally, Section [[V] removes the colocalization aspect and instead
explores the use of immersive mixed reality experiences to provide the user with a remote robot’s spatial understanding, while
retargeting the MR device’s egocentric sensing to remotely teleoperate the robot.

J. Delmerico, F. Bogo, H. Oleynikova, E. Vollenweider, J. Nieto, and M. Pollefeys are with the Microsoft Mixed Reality and Al Lab, Ziirich, Switzerland.
e-mail: {firstname.lastname @microsoft.com}

R. Poranne and S. Coros are with the Computational Robotics Lab at ETH Ziirich, Switzerland. e-mail: {roi.poranne, scoros}@inf.ethz.ch

R. Poranne is also with department of computer science at the University of Haifa, Israel. e-mail: roiporanne @cs.haifa.ac.il

H. Oleynikova is now with NVIDIA. e-mail: holeynikova@nvidia.com

IEEE ROBOTICS AND AUTOMATION MAGAZINE 2

II. SHARING SPATIAL INFORMATION

We first consider a scenario in which devices share spatial information in a temporally decoupled fashion. Here, we
demonstrate that spatial data can be persisted over time by defining it with respect to world-locked reference coordinate
systems. The general workflow begins with one device defining a reference coordinate system by building a visual map of the
environment. Spatial information is then anchored to this reference frame, which is fixed with respect to the space, enabling it
to persist in that location over time. Another device, or the first device at a later time, can then relocalize to this map, recover
the reference coordinate system, and access the stored information in the same place in the world where it was defined.

In this section, we show how this type of workflow can be utilized to enable the planning of robotic inspection missions.
This work is motivated by the need for automated inspection in many commercial and industrial settings, where mobile robots
have the navigation capabilities to actually execute the missions, but where planning the path that the robot should take is still
a cumbersome process. In these large, dynamic environments, and in unconstrained spaces such as disaster zones, it’s often not
possible to augment the environment with fiducial markers to facilitate the sharing such spatial information from the planner
to the robot. We therefore propose to use shared, world-locked coordinate systems through mixed reality as a way to provide
a common spatial reference for the user and the robot.

Existing commercial solutions for mission planning either use a computer interface that is decoupled from the environment,
or require the user to drive the robot through the trajectory first, in a teach-and-repeat fashion. Planning a robot trajectory
within a high-fidelity 3D model or mesh of the environment using a computer is certainly possible, and is currently deployed
in commercial services (e.g. ROCOS{T_]). However, this approach requires the model to contain a high level of detail of the
inspection targets, in order to accurately indicate where the robot should observe without actually being there. This type of
approach has been used for ground robot [2] and drone mission planning in mixed [3|] and virtual reality [4], but using 3D
terrain models, which are far more available than high-resolution digital twins of inspection sites for ground robots. Additionally,
augmented [5]] and mixed reality [6] have been used with a virtual robot arm to facilitate trajectory programming, but connecting
these simulated arms to the real robot has used fiducial markers, rather than colocalization with any spatial context.

Unlike these prior works, utilizing the spatial context of the environment provides a more natural way to define a robot
trajectory. However, while solutions such as Boston Dynamics’ Autowalk feature for SPOT enable the user to plan missions
in context while physically present in the space, such a teach-and-repeat approach requires the user to manually control the
robot through the environment each time they define a mission, and it is not possible at this time to edit missions without
re-recording them. While this is a powerful feature, it still has a strict requirement that both the user and the robot are present
and available each time a mission must be defined. The inability to change saved missions also leads to a situation where
missions should be executed repeatedly in order for the process of defining them to be worth the effort, otherwise the robot
could just be used in teleoperation mode with the same level of efficiency.

A. Mission Planning

We propose instead to use mixed reality as a tool for defining inspection missions in context, without the requirement of
first teleoperating the robot through the desired trajectory. This concept is illustrated in Fig. [Tal This is made possible by using
a common coordinate system that persists in space, over time, to share spatial information about the mission between devices.
In particular, we leverage the cloud-based localization service Azure Spatial Anchors to create such a reference coordinate
frame, and then to enable localization to it by other devices, and persistence of the spatial data. In this system, a human
user with a HoloLens defines an inspection mission by placing holographic markers to indicate desired poses for the robot.
At some later time, an autonomous robot can localize to the spatial anchors that were placed during mission creation, obtain
the set of waypoints and inspection poses of the mission, which are defined relative to these anchors, and then execute the
mission autonomously. This approach has the advantage that the robot, whose availability is likely a bottleneck in current work
environments, is only required for executing the mission, and not also for defining it. Furthermore, these missions can also be
edited in mixed reality, without the need to recreate an entirely new trajectory each time the mission needs to be adapted.

In practice, the workflow for this system proceeds as follows. The HoloLens user moves around her environment, manipulating
holograms representing inspection waypoints. These waypoints can be created, deleted, and connected in an arbitrary graph
structure, including branching. Since localization to spatial anchors depends on observing the same part of the environment
where the anchor was created, anchors are created automatically as the user moves away from existing anchors, ensuring
that waypoints are always defined with respect to an anchor to which they are in close proximity. We use a radius of 2.5m
from previous anchors as the threshold for creating a new anchor, which was empirically determined. Anchor localization
accuracy and recall degrade beyond 4 — 5m, but an appropriate value here would depend on the structure and appearance of the
environment. Once the user is satisfied with the mission waypoints, the mission can be saved by serializing it and storing these
parameters in a cloud-based database. The user experience during mission planning is shown in Fig. 2a] where the waypoints
are represented by spheres with camera frustums for the orientation of the inspection pose, and coordinate axes representing
spatial anchor reference frames.

Uhttps://www.rocos.io/content/robotics-fleet-management

IEEE ROBOTICS AND AUTOMATION MAGAZINE 3

Inspection Poses

2\ -
& [) & l.j HoloLens 2 interaction
S '/o//

¥

Multiple spatial
anchors

List of
nodes & edges

TN

Branches with decision strategy
(human, rule based, API requests)

(a) (b)

Fig. 1: Artistic renderings of mission planning workflow and mission components. A human user with a HoloLens device
moves through the environment to be inspected and places holograms that represent waypoints defining a trajectory. Inspection
poses can be defined to trigger the robot to capture data at regions of interest. The underlying structure of a mission is a list of
nodes and edges representing a graph of waypoints, with branching decisions in the graph handled by one of several decision
strategies. As the user moves through the space and places waypoints, Azure Spatial Anchors are placed automatically to cover
the trajectory so each robot pose can be defined with respect to a nearby reference coordinate system. This mission structure
is then serialized in JSON format, so that it can be retrieved from a database by the robot and executed autonomously after
localizing to the spatial anchors in the mission.

(a) (b)
Fig. 2: Mission planning and execution. Fig. [2a| shows the view through the HoloLens as the user moved holographic markers
for the trajectory waypoints. Each waypoint is represented by a sphere for the desired position, and a camera frustum to define
the orientation the robot should take for inspection. The axes to the right of the trajectory mark the origin of an automatically-
created spatial anchor coordinate system. Fig. [2b] shows the user’s view as the robot is executing the mission, with a robot
model overlaid on the physical one, and a sample data capture at an inspection pose. This user view during mission execution
is only for illustration, as the robot can execute the missions autonomously without human intervention.

When the robot is ready to execute the mission, it obtains the serialized parameters from the database, localizes to the spatial
anchors, and then proceeds through the waypoints. If the HoloLens user is colocalized to the anchors and running the app,
the user can monitor the progress of the mission in mixed reality, with an articulated model of the robot overlaid on its pose
in the real world (see Fig. 2b). Branching decisions at interconnected waypoints can be made through API calls based on the
results of the inspection, or by the user selecting the desired branch if the mission is being executed in this interactive mode
with the HoloLens. The structure of a mission is conceptualized in Fig. [T

B. Azure Spatial Anchors

Azure Spatial Anchors (ASA) is a mixed reality cloud service designed for localization. The fundamental concept of the
service is that a small visual map, created through structure-from-motion and representing a specific location in the world,
is stored in the cloud with a unique ID. The set of features and descriptors constituting this map then define a coordinate
system that is fixed to the world—if those features can be detected later, and their 3D positions recovered, then the coordinate
system can also be recovered. Devices wishing to localize to a particular anchor, known by its unique ID, then create their
own structure-from-motion map, which they submit to the cloud service as a query. If correspondences for the feature points
in the query can be found in the reference map in the cloud, then the service returns a relative pose.

IEEE ROBOTICS AND AUTOMATION MAGAZINE 4

2) BB intel NUC, Ubuntu 18.04 4 = unity @
3 | Local network
Ros Bridge (C++) e —{ ROS# UWP (CH) ‘
- websocket Y
ROS ROS#
ASA ROS Commander (python) ‘ Mission Planning & Execution (C#) ‘
ROS d
Spot ROS Wrapper (python)
\. il /
1) gRPC AP, Ethernet N 5) Human |

‘ Holograms, Robot Model, ‘

‘ Boston Dynamic Spot MR interaction

Fig. 3: System diagram showing the components of the mission planning framework. The robot (1) communicates through its
SDK to a ROS wrapper and our mission planning orchestration node, which run on a companion computer (2). This computer
communicates with the HoloLens over the local network (3) or through serialized missions stored in an Azure database.
The HoloLens (4) interfaces with the ROS communication framework using a ROS# Unity plugin to the mission planning
application, which ultimately provides an interactive, mixed reality experience for the user (5).

This service is cross-platform and relies on a device’s onboard visual odometry in order to build these visual maps to
create or query an anchor. On HoloLens devices, the onboard head-tracking processes handle this. For mobile devices, ARKit
and ARCore provide the image features and poses for iOS and Android, respectively. On robotic systems, a special research
version of the SDK was released with Ubuntu Linux support as well as a ROS wrapperE] Unlike the other devices, where the
visual pose estimation happens in the context of a platform-specific odometry system (e.g. an ARCore or ARKit session), pose
estimation solutions on mobile robots can be quite diverse. The Linux version of the SDK thus accepts undistorted images
and poses and computed its own features. The pose of the camera can be estimated directly through visual odometry on the
robot, or by attaching the camera with a calibrated transformation to a mobile base that is estimating its pose through some
other means (e.g. with LiDAR). While the success of localization queries to ASA depends heavily on the particular cameras,
trajectories, and environments in question, in practice the performance is in the range of centimeter-level accuracy. This is
shown in Fig. [2b] where the robot’s estimate of its pose with respect to the anchor closely matches the actual robot pose when
it is transformed into the HoloLens’ field of view, as seen in the close alignment of the robot and its holographic model.

C. System Overview

The system is organized in a modular and distributed fashion, with components deployed on the HoloLens, on the robot,
and in the cloud. It is possible to run the HoloLens and robot at the same time, where the mission parameters and some
visualizations are sent between the devices with ROS, or to define and run the mission at different times, in which case the
mission definition is serialized and stored in a databse in the Azure cloud. An overview of these components and the flow of
data between them is visualized in Fig. [3]

The HoloLens runs an application that is built using the Unity 3D engin Some pre-built components from the Mixed
Reality Toolkiﬂ handle the user’s interaction with the app’s holograms. The ROS#E] package acts as a bridge between the Unity

Zhttps://github.com/microsoft/azure_spatial_anchors_ros
3https://unity.com/
“https://github.com/microsoft/MixedReality Toolkit-Unity
Shttps://github.com/siemens/ros-sharp

IEEE ROBOTICS AND AUTOMATION MAGAZINE 5

environment and the ROS communication framework. HoloLens provides support for creating and querying Azure Spatial
Anchors through an SDK, and this functionality is connected to Unity through an XR plugin layer. These components work
together to enable the user to create and move holographic markers in the environment, and store the poses of these waypoint
markers with respect to spatial anchor coordinate systems.

On our robot, a Boston Dynamics SPOT, we connect a companion computer (an Intel NUC running Ubuntu 18.04) through
the robot’s ethernet port, in order to run our user code. This code includes of a wrapper for SPOT’s gRPC-based SDKE]
that connects its data streams to ROS topicsﬂ as well as a corresponding bridge node that receives messages from the ROS#
component in the HoloLens Unity app that are sent over a websocket. An additional ROS package of utilitief] helps to interface
SPOT with the Azure Spatial Anchors service. The robot’s behavior is orchestrated by the ASA ROS Commander node, which
obtains the mission definition from either ROS or the cloud database. Once the robot localizes to the spatial anchors defined
in the mission using the ASA service, this node sends the waypoints as trajectory commands through the wrapper to the Spot
SDK, and monitors the robot’s progress through the mission. An important note is that this mission planning system relies on
the robot’s underlying navigation capabilities to actually plan and execute paths to the waypoints that are sent as goals.

Finally, the cloud components consist of the Azure Spatial Anchors service (see Sec. [[I-B), and a CosmosDB database to
store serialized mission parameters. The waypoint poses, spatial anchor IDs, and other mission information are serialized into
JSON format and then stored in the database with a unique ID as a key. When operating in the temporally decoupled mode,
the ASA ROS Commander node can look up a particular mission in the database, download the JSON, and then execute the
mission once it localized to the mission’s anchors.

D. Outlook

This system represents a milestone in spatial computing and interaction. By sharing common reference frames, the mixed
reality device can provide the robot with actionable spatial information that it can understand in its own spatial context, leading
to an improvement in efficiency in a common commercial and industrial robotics task. One limitation of the current spatial
anchors service is that the anchor maps are not automatically connected together in the cloud to form large-scale, continuous
digital twins, even if they are located in the same area. This use of discrete spatial anchors limits scalability for this application,
but future work on using continuous digital twins for localization of multiple heterogeneous devices will enable this type of
shared spatial understanding on a large scale.

ITI. COLOCALIZATION AND INTERACTION

Colocalization of devices requires that they are each able to localize themselves to a common reference coordinate system.
Through their individual poses with respect to this common coordinate frame, the relative transformation between localized
devices can be computed, and subsequently used to enable new behaviors and collaboration between devices. In the scenario
described in Sec. [lI} the robot and mixed reality device do not interact directly and are not necessarily colocalized at the same
time, but share spatial information that is anchored to a common spatial reference frame. Here, we consider a scenario in which
multiple devices colocalize to a shared coordinate system simultaneously, thereby enabling temporally synchronized behaviors
and interaction.

When the colocalized devices are all mobile robots, this could mean that swarming or collective behaviors are possible, as
well as parallelization of spatial tasks. On the other hand, if there is a mix of human-centered devices (e.g. mixed reality headsets
or mobile devices) and robots, this colocalization can unlock more natural human-robot interaction. This section describes a
system that exploits the colocalization of a human wearing a Microsoft HoloLens 2 and a mobile robot to demonstrate intuitive
hand gestures for robot control.

This work is motivated by a need for semi-autonomous behaviors with shared control, as a way to reduce the attentional
load for the operator. Defining high-level tasks for the robot to perform autonomously, particularly through intuitive interfaces,
enables the user to focus on other tasks or control multiple robots simultaneously. This is desirable in search and rescue
environments [7]], but will be important in the increasingly robot-filled workplace of the future.

A. Colocalizing the Human and Robot

We consider two approaches for colocalizing devices to a common reference frame: sharing a map, and utilizing a visual
localization service in the cloud. Prior work in this domain has explored the use of augmented reality (AR) for more efficient
human-robot interaction and visualization of the robot’s state and intent. However, these works have relied on colocalization
through detection of landmark objects [8], or the use of fiducial markers mounted on the robot [9]]. While these approaches for
colocalization are sufficient to perform AR visualization, they do not provide further spatial understanding for the AR device

Shttps://github.com/boston-dynamics/spot-sdk
7https://github.com/clearpathrobotics/spot_ros
8https://github.com/Eric Voll/spot-mr-core

IEEE ROBOTICS AND AUTOMATION MAGAZINE 6

(a) HoloLens view (b) Robot view
Fig. 4: Colocalization of a robot and a HoloLens through a shared map. Fig. @ shows the user’s view of a spatial mesh, which
was captured from the HoloLens, overlaid on the real world. This map is converted to a 2D occupancy grid representation,
whose coordinate frame is aligned with that of the mesh, in order to enable robot localization with LiDAR (shown in Fig. @

or robot. Here, we propose to share not just a relative pose but a shared map between the devices, enabling both devices to
take advantage of a common digital twin of the space.

In order to share a map from the HoloLens with the robot, we execute an offline procedure to create and then convert a map
of an environment for colocalization. We leverage the onboard spatial mapping processes of the HoloLens, which constantly
build a sparse visual feature map for tracking the motion of the device, as well as a dense mesh of the environment. The user
observes the environment with the HoloLens depth camera in order to build the dense mesh, and our application provides
visual feedback to show areas of the space that have been mapped (see Fig. fa). The sparse map is aligned to the dense
representation, and it enables the HoloLens to relocalize to the environment in a future session.

Once the spatial mesh has been captured, we apply several processing steps to convert it to an occupancy grid representation
that can be used by the robot for LiDAR-based localization. We take the mesh as input, which typically consists of several
connected components, and apply Poisson reconstruction to make it watertight. This watertight mesh is used to initialize a
signed distance function (SDF) representation of the space. Finally, a horizontal 2D slice from the SDF is extracted at a
user-defined height, such that the implicit surfaces in the SDF define the occupied cells in the occupancy grid representation,
and the voxels in the SDF with positive distance represent free space cells. An example of such a map being used for LIDAR
localization is shown in Fig. Ab]

The X-Y origin of the map is preserved during these conversion steps, so 2D coordinates given in the HoloLens coordinate
frame correspond to the same X-Y position in the plane where the robot is navigating. So in the shared map scenario, when
the HoloLens and the robot localize to their respective maps, spatial information can be translated between the two map
representations.

We also demonstrate the use of the Azure Spatial Anchors (ASA) cloud localization service to colocalize the HoloLens and
robot to the same anchor. This service was described in more detail in Sec. For this application, we require a single
anchor that both devices can localize to, which then provides a common reference frame. In our workflow, the HoloLens
observes the environment and then creates an anchor through the service. We synchronize the unique ID of the created anchor
with the robot through ROS, and then leverage the ASA ROS wrapper to query this anchor using a stream of camera images
and poses from the robot. Once the robot localizes to the desired anchor, the anchor’s reference frame is added to the ROS #f
tree, where it can be used to transform spatial data to or from the robot’s other reference frames.

For the purposes of our system, these two approaches are interchangeable. They both provide the devices with a common
coordinate system through which to share spatial information, but the shared map approach is tailored to robots equipped for
LiDAR navigation, while the ASA approach is designed for robots using visual navigation.

B. Gesture Recognition

In the colocalized scenario we consider here, egocentric sensing by human-oriented devices can give spatial meaning to
human motions, expressions, and gestures. We focus on detecting and classifying hand gestures with a HoloLens 2 headset, and
then translating these into navigation commands for the robot. The HoloLens 2 features a variety of cameras for sensing both
the environment and the actions of the user, and estimating how the device moves through space. In particular, we leverage
its hand tracking capability, which uses the depth camera to track the user’s articulated hands and exposes the joint positions
through an APL

We implement our gesture classification model as a neural network. Namely, we use a MultiLayer Perceptron (MLP) [10],
which takes as input HoloLens hand tracking data and outputs probabilities over a set of predefined gesture classes. As for

IEEE ROBOTICS AND AUTOMATION MAGAZINE 7

'Y N ' N
HoloLens Robot
Colocalization: \ Colocalization:
* ASA - Create Anchors * ASA - Query Anchors
* Shared Map — Spatial Mesh i |* Shared Map —Occupancy Grid

Gesture Detection]\ \

[User Selected Goals] [ROS#]~ || ROS || {Navigation Stack]
[-
\

Robot Visualization]

>, L >,

Fig. 5: System diagram for the interaction framework. Colocalization between the HoloLens and robot is achieved either by
both devices localizing to the same Azure Spatial Anchors, or by creating a map on the HoloLens (a 3D mesh) and sharing it
with the robot in a representation that it can use (an occupancy grid). The devices communicate spatial information (navigation
goals, robot states and paths), which is defined with respect to their shared coordinate system, via ROS. Human-robot interaction
is achieved through intuitive gesture recognition, or by placing holographic markers to give target poses to the robot.

the hand data, we assume that only one hand is in view (or we consider the right hand, if both are in view), and extract local
joint angles for a total of 19 joints. In our experiments, we found that using only joint flexion angle values is enough to obtain
an accurate gesture classification. We therefore parameterize each joint by a single value. Relying on single-frame predictions
can lead to noisy classification results. To improve robustness we leverage temporal information, running the model over time
windows of 12 frames (which correspond to roughly 0.2 seconds with the app running at 60fps): to classify a gesture at time ¢,
we consider all the hand joint angle values tracked within the interval [¢, ¢ — 12), flattening them into a (12 x 19)-dimensional
vector which constitutes our MLP input. For the output, we consider three main gesture classes for human-machine interaction:
“stop”, “come here” and “point”. We also add a background class to identify frames in which the user is not interacting with
the robot and therefore not performing any gesture. This gives us a total of 4 classes.

The MLP network has a total of 4 layers and uses Rectified Linear Units (ReLUs) [10] as activation functions. All hidden
layers are 128-dimensional. Per-gesture confidence values are obtained by applying the sigmoid function to the output of the
last layer. Finally, the gesture with the highest confidence is chosen as the classifier output. Figure [6a] exemplifies the app
output: the first line describes the output gesture (“stop”), which is the one obtaining the highest confidence value (0.62). We
found that adding an attention layer [[12] right before the classification one helps capture spatial and temporal correlations
between joints, and therefore yields more accurate results.

The network showed good results already when trained on a small training set: we asked 6 subjects to perform each of the 3
gestures (plus random actions for the background class) twice, recording the corresponding hand tracking data with an ad-hoc
app. We trained our model on data from 5 subjects, withholding 1 subject for validation. We implemented our MLP network
in pytorch, and then reimplemented it in C# to perform inference in Unity.

C. Robot Control with Holograms and Gestures

In this system, the HoloLens acts as a human-robot interface for giving the robot navigation commands. The user can select
an arbitrary navigation goal for the robot by moving a holographic marker to a location in the environment and confirming this
as the robot’s target pose by clicking a holographic button (see Fig. [6c). Alternatively, intuitive hand gestures (see Sec.
are detected on the HoloLens and then translated to navigation commands for the robot. Figure [5| shows a diagram illustrating
the components of the system and the flow of data between them.

In the case of a navigation goal set by the holographic marker, the target pose is selected in the reference frame of the
HoloLens, but is transformed to the common reference frame of the map that is shared between the robot and HoloLens, in
order for the robot to interpret that goal in its own reference frame. The come here gesture shown in Fig. [6b] leverages the
shared spatial understanding of the two devices to provide the semantically meaningful action that corresponds to the gesture.
When the gesture is detected, the “here” in come here is translated to be the HoloLens’ location in the shared map, and thus
a goal pose in front of this location is sent to the robot. The point gesture works similarly to come here, in the sense that
when it is detected, the pose of the HoloLens and the user’s hand position while making the gesture are used to determine
the position that they are pointing to, and this is sent as the goal. The stop gesture is used to preempt execution of the current
trajectory if the robot is already moving toward a target pose.

IEEE ROBOTICS AND AUTOMATION MAGAZINE 8

(a) Gesture classifier output (b) “Come here” gesture (c) Planned path showing robot intent

Fig. 6: Human-robot interaction through hand gestures and navigation goals. In Fig. @ the user is making the “stop” gesture,
which the classifier correctly identifies. This gesture is mapped to an action that preempts and cancels an existing trajectory
on the robot. Another gesture that is recognized is “come here”, shown in Fig. which triggers the robot to plan a path to
the position of the user, which it knows due to colocalization. Finally, the robot can provide visual feedback of its intent, as
seen by its planned path in Fig.

We use ROS for communication between the HoloLens and robot, with ROS#ﬂ providing the interface between the Unity-
based holographic app running on the HoloLens and the other ROS nodes. The design of the system is robot-agnostic, and
relies on the robot’s own navigation stack to actually execute any motion commands that are generated from the HoloLens.
For example, we have demonstrated this system as a human-robot interface for controlling a Turtlebot 2 and a Clearpath
Jackal by sending PoseStamped messages from the HoloLens to the robot’s move_base node (see Fig. [6c). We have also
controlled a Boston Dynamics SPOT with the same system, by passing the target pose for the robot to the SPOT SDK’ﬂ
trajectory_command function and allowing its onboard navigation to move the robot to reach the goal.

An important aspect of using a mixed reality human-robot interface is that spatial information can be shared in both
directions—from user to robot, and from robot to user—within the environmental context. In the case of this system, spatial
information shared by the robot takes the form of a marker for its position and holographic line representing the planned path
to reach its current target pose. The ability to visualize the robot’s state and intentions simultaneously with the surrounding
environment provides a clear advantage in terms of human-robot safety. When the HoloLens user can see the path that the
robot is following overlaid on the real world, they can understand the robot’s intent more clearly than with colored lights
or a 2D interface on a mobile device. We envision safer and more efficient human-robot collaboration through this type of
feedback, where visualization of the robot’s intent can fill in the gaps left by body language and verbal communication that
make human-human collaboration more straightforward.

D. Outlook

We have demonstrated that gesture control for robots can be more intuitive when the human and the robot can share a
spatial context, and gestures can have spatial meaning. This is made possible by the egocentric sensing of the HoloLens, and
a shared map representation between the devices. However, the gesture detection system proposed here only captures a small
set of commands. There are many opportunities to expand on these types of spatially-relevant gestural interactions when the
robot and human are colocalized through a shared understanding of their space.

IV. IMMERSIVE TELEOPERATION AND EMBODIMENT

In the previous section, we discussed gesture based interaction in a shared environment. Here, we remove the shared
environment and shared understanding of space, and instead explore the projection of the user’s actions to a remote robot, and
the robot’s sense of space back to the user. We consider several levels of immersion, based on touching and manipulating a
model of the robot to control it, and the higher-level immersion of becoming the robot and mapping the user’s motion directly to
the robot. The works described here focus on immersive teleoperation of robotic arms, where challenges include the differences
in structure and articulation between the human and robot, and the lack of proprioception in teleoperation. We present several
novel approaches that address these challenges through mixed reality: embodied teleoperation, motion retargeting, and task
autocorrection. In each of these methods, a mixed reality device provides a way to collect multimodal inputs (e.g. hand poses),

%https://github.com/siemens/ros-sharp
10https://github.com/boston-dynamics/spot-sdk

IEEE ROBOTICS AND AUTOMATION MAGAZINE 9

(a) Teleoperation by touch (b) Teleoperation by embodiment

Fig. 7: Teleoperation by controlling a digital twin can be done from the outside, via kinesthetic programming, or from within,
by embodying the robot and having it follow the motions of the operator.

and provide immersive visual feedback to the user. All of these approaches are motivated by a desire to improve the ease of
use and user experience in controlling a robot to perform manipulation tasks.

A basic level of proficiency in teleoperating a robotic arm, for example using a joystick, may be reached quite quickly. But
achieving mastery for performing complicated actions can require a significant time investment, particularly if the arm has many
degrees of freedom. It is mentally taxing, as the operator must internally compute transformations, or rely on muscle memory,
to perform even simple manipulation tasks. One alternative approach for controlling an arm is kinesthetic programming, where
the operator directly touches and moves the arm to record motions and later replay them. This is impossible to do from
afar, but sensory disabilities or limited mobility of the user may also make it impractical to program the desired motions in
person. Instead, immersive teleoperation allows us to manipulate a digital twin of a remote arm by holographic touching (see
Fig. [Ta). There, using a HoloLens 2, an operator grabs the end effector of Dual-armed ABB YuMi hologram by pinching and
repositioning its hologram. The underlying system simply solves an inverse kinematics (IK) problem in real time, and can
stream joint angles to a remote YuMi.

Another emerging approach for immersive teleoperation is via embodiment, where the robot is treated as an avatar of the
operator In this case, the operator possesses the robot by transferring their motions to the robot, and optionally viewing the
environment from its own perspective. An example of this using the same YuMi/HoloLens application appears in Fig. [7b] In
this case, the palms of the users are tracked by the HoloLens, and their positions are set as IK targets for the end effectors of
the YuMi. A pinching gesture also closes the gripper.

A notable demonstration of embodiment that leverages tactile feedback is the Tactile Teleroboﬂ a system that comprises
a robot hand with multiple sensors mounted on a robot arm, which is operated using a tactile feedback glove. Other recent
approaches leverage different combinations of tracking methods, HMDs and robotic systems. For example, a recent vision-based
system, DexPilot [[13]], was used to teleoperate a robotic hand-arm system by observing human hand via 4 RGB-D cameras.

Ultimately, our goal with regards to the embodiment approach is to enhance the sense of body ownership. That is, the ability
of the operator to comfortably control the robot as if it was their own body. Robots today are still far away from true body
ownership, with significantly lower-than-human dexterity, tactile sensing and feedback that can not mimic reality well, and
engineering limitations such as high latency and errors in tracking. We consider some of these fundamental challenges as we
explore the mapping of human inputs to robot outputs with motion retargeting.

A. Motion retargeting

Central to the question of embodiment is the question of mapping human motions to an avatar. The difficulty lies in the vast
differences between human and robot proportions and morphology. Two of the most commonly used approaches are joint angle
mapping, or inverse kinematics. Angle mapping maps the operator’s joint angles directly to the avatar’s joint angles. Naturally,
this is only feasible when the avatar has similar morphology to the human. While motions mapped with this approach may
appear plausible, they lack some semantics. For example, the Fig. [8a]illustrates joint angle mapping of a human hand to a robot
hand. The human hand is posed such that it is touching a finger to a thumb, but this pose is not captured by the robot hand
due to these differences in morphology. Alternatively, the IK approach finds joint angles to map the avatar’s hands, fingertips
or end effectors, relative to the operator’s hand or fingertips (see Fig. [Bb). In this case, the operator has more control over
the exact positioning of the fingertips, but the hand pose itself might appear very different. This could be an issue when, for
example, the operator wishes the avatar to make a specific hand gesture.

Several alternative approaches for retargeting have been proposed in the past, with the intent of making retargeting more
effective for performing tasks, thus also improving body ownership. These approaches commonly formulate an optimization

https://www.convergerobotics.com/

IEEE ROBOTICS AND AUTOMATION MAGAZINE 10

3 |
‘A7 N R \
NV (° ;\\\/\L D\\ /
(==

5

(a) Angle mapping (b) IK-based mapping
Fig. 8: Retargeting hand poses can be accomplished with many different strategies. The simpler strategies involve mapping
the operator’s joint angle to the robot directly, or using the operator fingertips as inverse kinematics targets.

Fig. 9: Immersive teleoperation by embodiment of a system comprising of an Allegro hand mounted on a URS. The system
tracks the motions of the operator shown in the image using a Hololens. This data is continuously retargetted and submitted to
the robot. (Left) the operator moves into a pose that will cause the arm to grab the block on the table. (Middle) The operator
changes pose to lift the cube. (Right) Inside view of the Hololens, showing the robot hologram superimposed over the user’s
hand, with the real robot in the background.

problem which minimizes various combinations and variations of objectives similar to the ones above. For example, Rakita
et al. used a weighted sum of an IK objective and other smoothness terms, while minimized a weighted sum of
differences between the distances of operator fingers and robot fingers, both with heuristically determined weights.

We conducted experiments to evaluate these retargeting methods, and found that the retargeting method of choice, and the
ideal parameters for it, change drastically between users, to the point where the choice of one user is absolutely unusable by
another. Retargeting does not result in what they perceive as the correct motion they aimed to perform, and thus it does not
lead to the desired degree of body ownership. One of the main reason is that simplistic retargeting approaches do not faithfully
convey the operator’s intent. The setup used to test this is shown in Fig. 9] where we use a system comprising of an Allegro
hand mounted on a URS. The operator could see a holographic digital twin of the system, overlayed over their hand, which
provides some visual feedback, as well as the real robot in the background. The users were asked to manipulate the hand and
perform a pick-and-place task, with different objectives and parameters applied. Following the experiment, users were asked
to describe their experience, including sources of frustration in operating the system. In the ensuing discussions, it became
evident that different users have widely differing preferences for the retargeting model. The hypothesis is that personalizing
the model to the user will have them perform tasks faster and more accurately and will reduce mental strain (evaluated using,
e.g., NASA-TLX).

The HoloLens provides a new and exciting methodology for experimenting and optimizing the user experience of retargeting.
This is thanks to the ability to overlay a hologram of the robot directly over the operator’s own body, both sharing the same frame
of reference, in contrast to the operator watching the real robot react to their motions from an entirely different perspective,
which we observed to be quite confusing for many users. The methodology we propose for user-specific retargeting is as follows:
1) Users are shows different robot poses as holograms; 2) they then attempt to pose themselves to match the robot poses; 3)
then, given a retargeting multi-objective, we can solve an optimization problem that finds the weights that reproduces the users’
poses. This involves solving a bi-level optimization problem that can be done, for example, using sensitivity analysis [15]. A
preliminary study showed that there is indeed variability to the set of weights optimized for each user. It remains to be seen
what the exact distribution of weights is, across different users, and whether single average set will be effective.

IEEE ROBOTICS AND AUTOMATION MAGAZINE 11

B. Task Autocorrection

Despite the many advances, demonstrations show that state-of-the art systems, while impressive, are still far from exhibiting
human dexterity, and it is clear that a totally immersive experience will not be attainable in the foreseeable future. One of the
issues that will certainly linger is the difference between human and robot morphology. Even with personalized retargeting,
this difference will inhibit the sense of body ownership for the time being. However, robots can already autonomously perform
many simple tasks, such as pick-and-place, that human operators still struggle with. The question is therefore, how to bridge
this gap? One approach is known as Assistive Teleoperation. As described in [|16], it is the process of arbitrating, i.e., blending,
the operator’s motion with a learned optimal policy for a specific task. Thus, if the task is known in advance, the system can
retarget the motions by making subtle tweaks to the user’s inputs, so that the motion successfully performs the task and the
modifications are not too intrusive for the user. We build on this concept and propose a new concept which we term Task
Autocorrection, which is similar but more geared towards immersiveness. Task autocorrection refers to the process of making
small modifications to the movements of the avatar, such that they match the intention of the operator.

The autocorrection framework consists of several components: In addition to the teleoperation setup, the framework consists
of a retargeter that maps input motions to the avatar, an intent predictor that outputs the user’s intent, and the task corrector
that adapts the retargeter based on the predicted intent. The retargeter and predictor provide continuous output as the user
controls the robot. The task corrector computes the optimal robot motion for the predicted task and blends the user’s motion
with the optimal one, based on the confidence level of the prediction.

As a proof of concept, we devised a simple deep learning-based autocorrection prototype for the holographic teleoperation
setup described above. In this system, the operator uses a HoloLens 2 to manipulate a holographic robotic arm in a scene
consisting of the robot, two desks, and several balls (Fig. [I0a). The tasks that were considered were picking up and placing the
balls and sliding a grasped ball between two walls. The input data for training the intent predictor was the hand palm trajectory,
the trajectories of the 26 hand joints, the gaze (origin and direction) trajectory, and the stacked scene data. These were labeled
by the action itself (e.g., grab or release) and the object it was applied to (e.g., blue ball). The input is transformed into four
equal-sized embedded vectors by forward propagation along two stacked Long Short Term Memory (LSTM) layers followed
by one ReLU layer in each branch. The embedding vectors are fused together by learnable weighted averaging and then fed
into a final ReLU network before computing the soft-max output. The output is a vector, which represents the probability for
each action. For the prototype, the actions were Pick, Place, Slide-Between-Walls and None. In case a pick or place action
were predicted, the target output which object the action was applied to. The training dataset was generated by recording
users performing these tasks, e.g., pick up a ball and place it on a desk randomly or pick up a ball and slide it between two
walls. Around 5 hours of training data were gathered. The trained model achieved 89.48 % accuracy for action prediction and
85.02 % accuracy for target prediction on the test set.

Next, for each action, an optimal trajectory was defined. For example, to place a ball on a desk, a smooth motion that does
not penetrate the desk must be computed. Sliding a ball through the between the two walls must be done in a perfect linear
motion. The optimal trajectory then arbitrates the operator’s motion based on the confidence level and an aggressiveness factor
that is determined experimentally.

C. Autocorrection User Study

To evaluate the performance of the prototype, we held a small user study (n=7), where participants were invited to interact
with our system, with or without the assistance of autocorrection. Similar user studies have compared the usability of several
non-MR teleoperation methods [17]], and provided useful insights into the effect of the user interface on the effectiveness and
ease of use in manipulation tasks. For other tasks such as robotic inspection, augmented reality interfaces have demonstrated
significant benefits for users in the speed and performance of robot teleoperation [[18]. The participants were required to grab
the grey ball first and place it on a spot marked by an indicator (shown as a small sphere in the hologram) and then grab the
yellow ball and place it next to another indicator. The participants were told to try to place the ball properly, that is, it should
not be placed in the air or through the surface of the desk. As seen in Fig. without autocorrection, due to the operator’s
limited capacity to control the robot, the ball is placed through the desk, but with autocorrection enabled, it is placed perfectly.

In a separate experiment, participants were asked to pick the gray ball first and drag it along the slot from side to side, twice.
In this case, the participants were told to keep the ball as low as possible without colliding with the desk or the walls. Before
starting the experiment itself, a warm-up trial was conducted to let the participants become familiar with basic operations. For
each trial, the participants were asked to perform either a Pick-And-Place task or a Slide task once with or without enabling
autocorrection, and without them knowing whether it enabled or not.

The recorded experiments were evaluated using two quantitative metrics during simulation: Violation Distance and Operation
time. In addition, the participants were asked to rate the degree of naturalness, from 1 being “very unnatural” to 5 being “very
natural” during control for each trial. A Task Load Index (TLX) was also rated by participants for this question referring to the
Effort rating of the NASA Task Load Index (NASA-TLX), where we rescaled it from 1, meaning “Very easy”, to 5 meaning
“Very hard”.

IEEE ROBOTICS AND AUTOMATION MAGAZINE 12

Autocorrection No Autocorrection

(a) The scene (b) Autocorrection on/off
Fig. 10: Autocorrection makes it easier for user to perform tasks accurately. As seen in the right image, without autocorrection,
user might place the ball through the table. With auocorrection, the system identifies the task and assists with the optimal
motion.

The hypotheses were that the autocorrected motions will reduce the violation distance, shorten the operation time, and lower
the TLX, while lowering the naturalness score as well. Analysis shows that the improvement is statistically significant, with the
downside of the reduced naturalness score. This drawback could be addressed by using a more refined autocorrection system.

D. Outlook

The solutions presented in this section address some of the challenges with remote teleoperation of robot arms. Motion
retargeting and task autocorrection make the human-robot interaction feel more natural to the user, and behave more naturally
by assisting the user in executing accurate motions.

Looking forward, there are several limitations to the current framework. The mixed reality device acts as an egocentric sensor
platform, capturing the human’s actions, but these works do not yet take advantage of either the robot’s or the human’s spatial
context. Extending the proposed system to tasks that require dynamics will require physical simulation. A realistic simulation
will further enable gathering data that includes different grasps and more dexterous manipulations tasks. Considering its
scalability to many tasks, another limitation of the proposed approach is the necessity to obtain data for each task and define
each optimal trajectory. To this end, a database of task and optimal trajectory must be established, and autocorrection could
even be used to bootstrap it. In addition to improving the generalization of these methods to more, and more arbitrary, tasks,
future work to leverage spatial computing will provide these immersive and embodied teleoperation experiences with more
capabilities to accomplish tasks in real-world environments. Separate from the addition of new features to the system, an
expanded user study with more participants and deeper experiments would provide valuable information to guide future work
in preparing autocorrection to be applied to real-world tasks.

V. CONCLUSION

This paper has presented several prototype systems that utilize robots and mixed reality devices to provide novel solutions
to compelling real-world applications through human-robot interaction. The two key technologies that enable these solutions
are the spatial computing and egocentric sensing capabilities of mixed reality devices. All three systems make use of one or
both of these to provide new spatial capabilities, as well as intuitive and natural interaction. However, these systems are only
preliminary explorations toward these real-world applications, and our initial results have uncovered more new questions than
they have answered.

The primary barrier to practical deployment of the proposed mission planning framework from Sec. [[I} is the lack of support
for large-scale, continuous maps in Azure Spatial Anchors (or any other current spatial anchor cloud provider). Ideally, we
would like to have our robots and devices localized continuously as they move through the environment, not just when they are
near to a particular anchor. This capability will require large-scale, continuous maps in the cloud, and a service that provides
localization to a venue (rather than an individual anchor) that is robust to the network dropouts that may occur in large indoor
spaces. Both the robots and MR devices should also be able to leverage a priori spatial information from Building Information
Models (BIM) and CAD data to visualize and use both as-planned information from these designs and as-built information
from physically being on site. These features are not yet present in current commercial localization services, but state of the
art research has demonstrated that these capabilities are ready to be applied to these real-world scenarios.

IEEE ROBOTICS AND AUTOMATION MAGAZINE 13

On the other hand, there are still many open avenues for research in human-robot interaction through MR. In particular,
although we have demonstrated intuitive control by giving a robot commands through natural hand gestures, the robot’s
understanding of this interaction is no different than if these navigation goals were provided by a keyboard and mouse, and
its representation of its environment is still one of obstacles and free space. While this lack of semantic understanding is not
a barrier for simple tasks like navigation to a goal, further work will be required to endow the robot with the understanding
of human presence and the semantic context necessary to perform more complex tasks that can be communicated in a natural
way by humans. We have released several pieces of open source software (see Sec. [ll)) to help facilitate research in this domain
that interfaces HoloLens 2 devices and robots.

Within immersive teleoperation, some of the major open questions will need to be resolved through better human under-
standing. The user studies around motion retargeting and task autocorrection have so far been limited in scope. Consequently,
there are questions about whether it is possible and beneficial to provide personalized models for each user to provide an
improved experience from a single method. Deeper and broader user studies should be performed to better understand the
requirements for general usability, and to provide insights on future research questions to pursue.

Bringing both spatial and human understanding together in a human-robot system offers promising new modes of interaction.
We have shown several mixed reality-based systems that leverage these technologies to provide solutions to real-world robot
use cases. While these capabilities are deployable today, and applicable to many commercial and research scenarios beyond
the scope of this paper, these works represent only the tip of the iceberg, with many possibilities for future research in spatial
computing and human-robot interaction.

ACKNOWLEDGMENT

The authors would like to thank Oswaldo Ferro, Jan Stiihmer, Lukas Gruber, and Simon Huber for their contributions to
these projects.

REFERENCES

[1] S. Greenwold, “Spatial computing,” Massachusetts Institute of Technology, Master, 2003.
[2] M. Gianni, G. Gonnelli, A. Sinha, M. Menna, and F. Pirri, “An augmented reality approach for trajectory planning and control of tracked vehicles in
rescue environments,” in 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). 1EEE, 2013, pp. 1-6.
[3] D. Vaquero Melchor, “Technologies and concepts for enhancing interaction and enabling collaboration in augmented and mixed reality,” Ph.D. dissertation,
Universidad Politécnica de Madrid, 2020.
[4] Y. Liu, N. Yang, A. Li, J. Paterson, D. McPherson, T. Cheng, and A. Y. Yang, “Usability evaluation for drone mission planning in virtual reality,” in
International Conference on Virtual, Augmented and Mixed Reality. Springer, 2018, pp. 313-330.
[5] H. Fang, S. K. Ong, and A. Y.-C. Nee, “Robot programming using augmented reality,” in 2009 International Conference on CyberWorlds. 1EEE, 2009,
pp. 13-20.
[6] M. Ostanin and A. Klimchik, “Interactive robot programing using mixed reality,” IFAC-PapersOnlLine, vol. 51, no. 22, pp. 50-55, 2018.
[71 J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano et al., “The current state and
future outlook of rescue robotics,” Journal of Field Robotics, vol. 36, no. 7, pp. 1171-1191, 2019.
[8] K. Chandan, V. Kudalkar, X. Li, and S. Zhang, “Arroch: Augmented reality for robots collaborating with a human,” in IEEE International Conference
on Robotics and Automation (ICRA), 2021.
[9] F. Muhammad, A. Hassan, A. Cleaver, and J. Sinapov, “Creating a shared reality with robots,” in ACM/IEEE International Conference on Human-Robot
Interaction (HRI). 1EEE, 2019, pp. 614-615.
[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[11] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data mining, inference and prediction. Springer, 2009.
[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, 2017.
[13] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y. W. Chao, Q. Wan, S. Birchfield, N. Ratliff, and D. Fox, “Dexpilot: Vision-based teleoperation of dexterous
robotic hand-arm system,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 9164-9170.
[14] D. Rakita, B. Mutlu, and M. Gleicher, “A motion retargeting method for effective mimicry-based teleoperation of robot arms,” in 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction, 2017, pp. 361-370.
[15] S. Zimmermann, G. Hakimifard, M. Zamora, R. Poranne, and S. Coros, “A multi-level optimization framework for simultaneous grasping and motion
planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2966-2972, 2020.
[16] A. Dragan and S. Srinivasa, “Formalizing assistive teleoperation,” in Proceedings of Robotics: Science and Systems, July 2012.
[17] D. Kent, C. Saldanha, and S. Chernova, “A comparison of remote robot teleoperation interfaces for general object manipulation,” in Proceedings of the
2017 ACM/IEEE International Conference on Human-Robot Interaction, 2017, pp. 371-379.
[18] H. Hedayati, M. Walker, and D. Szafir, “Improving collocated robot teleoperation with augmented reality,” in Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, 2018, pp. 78-86.

	I Introduction
	II Sharing Spatial Information
	II-A Mission Planning
	II-B Azure Spatial Anchors
	II-C System Overview
	II-D Outlook

	III Colocalization and Interaction
	III-A Colocalizing the Human and Robot
	III-B Gesture Recognition
	III-C Robot Control with Holograms and Gestures
	III-D Outlook

	IV Immersive teleoperation and embodiment
	IV-A Motion retargeting
	IV-B Task Autocorrection
	IV-C Autocorrection User Study
	IV-D Outlook

	V Conclusion
	References

