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ABSTRACT

The Deep Noise Suppression (DNS) challenge is designed to foster
innovation in the area of noise suppression to achieve superior per-
ceptual speech quality. This is the 4th DNS challenge, with the pre-
vious editions held at INTERSPEECH 2020 [1], ICASSP 2021 [2],
and INTERSPEECH 2021 [3]. We open-source datasets and test sets
for researchers to train their deep noise suppression models, as well
as a subjective evaluation framework based on ITU-T P.835 to rate
and rank-order the challenge entries. We provide access to DNS-
MOS P.835 and word accuracy (WAcc) APIs to challenge partici-
pants to help with iterative model improvements. In this challenge,
we introduced the following changes: (i) Included mobile device
scenarios in the blind test set; (ii) Included a personalized noise sup-
pression track with baseline; (iii) Added WAcc as an objective met-
ric; (iv) Included DNSMOS P.835; (v) Made the training datasets
and test sets fullband (48 kHz). We use an average of WAcc and
subjective scores P.835 SIG, BAK, and OVRL to get the final score
for ranking the DNS models. We believe that as a research commu-
nity, we still have a long way to go in achieving excellent speech
quality in challenging noisy real-world scenarios.

Index Terms— Deep Noise Suppression, P.835, Perceptual
Speech Quality, Personalized Noise Suppression, Speech Enhance-
ment

1. INTRODUCTION

In recent times, hybrid work has become the “new normal” as the
number of people working remotely has increased significantly due
to the COVID-19 endemic. Audio calls in the presence of back-
ground noises such as a dog barking, a baby crying, kitchen noises,
neighboring talkers, in-car noises, etc., get significantly degraded
in terms of quality/intelligibility of the perceived speech. This
leads to increased fatigue in audio meetings. Deep learning-based
noise suppression (DNS) has shown promising results with superior
speech quality [4, 5, 2] which is significantly better than classical
approaches [6]. Previous DNS challenges accelerated DNS research
by providing a massive training dataset, real test sets, training data
synthesizer, and subjective evaluation frameworks based on ITU-T
P.808 [7], and P.835 [8]. Many recent papers have leveraged the
DNS challenge datasets for developing DNS models [1, 2, 3].

The ICASSP 2022 DNS challenge focuses on personalized
and non-personalized DNS for fullband audio. Personalized de-
noising suppresses neighboring talkers in addition to background
noises. We provide fullband datasets for training personalized and
non-personalized DNS models. We collected real-world test sets,
developed a framework for P.835 subjective evaluation, created APIs
for DNSMOS P.835 [9] and WAcc. We provided the development
test set, DNSMOS P.835 API, and WAcc API at the beginning of
the challenge, which helps participants to optimize their models.
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The blind test set is released 5 days before the challenge deadline,
and this is used for ranking the models for DNS performance. We
evaluated the submitted models based on ITU-T P.835 subjective
evaluation scores, namely speech quality (SIG), background noise
quality (BAK), and overall audio quality (OVRL), as well as WAcc
from a state-of-the-art speech recognition system. In addition, we
make DNSMOS P.835 [9] freely available to researchers. DNS-
MOS P.835 is a deep learning model that predicts SIG, BAK, OVRL
scores for a noisy test clip.

2. CHALLENGE TRACKS

This challenge has two tracks, namely (1) non-personalized DNS
and (2) personalized DNS (PDNS) for fullband audio. Unlike previ-
ous challenges, this time, we did not have wideband (16 kHz) data
in our training data and testset. Similar to previous DNS Challenges,
we provide a training data synthesizer that could also be used with
other datasets if participants choose to do so. The data synthesizer,
configuration, scripts to access the Azure APIs, and data download
scripts are provided in the challenge Github repository'.

We provided a baseline model for Track 1% and baseline en-
hanced test clips for Track 2. In this paper, we briefly describe
the baseline models for both tracks. We adopted WAcc as an ob-
jective metric for measuring the impact of DNS on speech recogni-
tion systems. Participants submitted enhanced clips for one or both
tracks. We conducted ITU-T P.835 and WAcc computation on sub-
mitted enhanced clips. The motivation to add WAcc as an evaluation
metric stems from the fact that several models from past challenges
had noticeable WAcc degradation resulting from over-suppression of
noise and/or speech distortions. We provided the participants with
an Azure API for estimating WAcc on the development set. We
computed DNSMOS P.835 [9] for each audio clip in the training
set and provided this to participants. DNSMOS P.835 scores can be
used to segment the training dataset for conducting the data ablation
studies. Participants can do experiments with different portions of
the training dataset based on a chosen threshold for SIG, BAK, and
OVRL. The computational requirements for the challenge tracks are
described in https://aka.ms/dns-challenge

3. DATASETS
3.1. Training Datasets

We provide clean speech, noise, impulse responses, and a training
data synthesizer for both tracks. The same noise and impulse re-
sponses are provided for both tracks. Each track has its training
data synthesizer. Our training data consists of English read speech,

Thttps://github.com/microsoft/DNS-Challenge
Zhttps://github.com/microsoft/DNS-Challenge/blob/master/
NSNet2-baseline/nsnet2-20ms-48k-baseline.onnx
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Fig. 1. Distribution of noise types in our blind test set.

English singing, French, German, Italian, Russian, and Spanish lan-
guages. The PDNS track has clean speech, where each audio clip
consists of a concatenation of all audio clips belonging to a talker.
We also provide a baseline speaker embedding for each talker in the
PDNS training set. We choose clean speech with DNSMOS P.835
SIG, BAK, and OVRL to have a score of more than 4.25. The PDNS
track leverages clean speech with a DNSMOS P.835 OVRL > 4.25.
Next, the audio files for each talker are combined into a single clip.
We randomly sample 2.5 minutes of clean speech for each speaker
and provide it as enrollment speech. We extract speaker embed-
dings for each enrollment audio using a baseline RawNet2 speaker
model [10] which is adopted as the baseline speaker embedding ex-
tractor for this challenge. The next sections describe the clean speech
and noise data.

3.1.1. Clean Speech

The clean speech consists of six languages, namely English, French,
German, Italian, Russian, and Spanish. English clean speech con-
sists of read speech and singing, while the rest of the languages only
have read speech. We provide DNSMOS P.835 scores to help par-
ticipants filter the data based on DNSMOS P.835 scores if they want
to do data ablation studies. The personalized track consists of clips
with DNSMOS P.835 OVRL > 4.25. We combine all audio clips
from each unique talker into a single file. The PDNS training data
has a total of 3230 talkers, out of which 60% of the talkers are ran-
domly chosen to be primary talkers while the rest are neighboring
talkers. We provide the file list for PDNS clean speech with ‘pri-
mary’ and ‘secondary’ tags. Challenge participants can use the pro-
vided primary/secondary tags or generate their own. We sampled
60% of the speakers as primary talkers, ensuring a uniform distribu-
tion among all languages, read speech or singing.

English clean speech is derived from Librivox® where we in-
clude audio clips chosen using a subjective ITU-T P.808 frame-
work [7]. English singing data consists of high-quality audio record-
ings from professional singers contained in the VocalSet corpus [11].
It has 10.1 hours of clean singing recorded by 20 professional
singers: 9 males, and 11 females. This data was recorded on a range
of vowels, a diverse set of voices on several standard and extended
vocal techniques, and sung in contexts of scales, arpeggios, long
tones, and excerpts. The PDNS English clean speech contains 1934
talkers from Librivox, 110 talkers from VCTK corpus, 20 talkers
from Vocalset. The PDNS clean speech consists of 47 talkers for
French, 874 for German, 14 for Italian, 7 for Russian, and 224 for
Spanish.

3https://librivox.org/

3.1.2. Noise

We use the same noise clips for both tracks. Noise data consists of
about 62,000 clips belonging to 150 noise classes. The noise clips
were chosen from Audio Set* [12] and Freesound’. Audio Set is a
collection of about 2 million human-labeled 10s sound clips drawn
from YouTube videos belonging to about 600 audio events. Certain
audio event classes are over-represented in Audio Set. For example,
there are over a million clips with audio classes music and speech
and less than 200 clips for classes such as toothbrush, creaking, etc.
Approximately 42% of the clips have a single class, but the rest may
have 2 to 15 labels. We developed a sampling approach to balance
the noise classes in our dataset such that each class has at least 500
clips. We used a speech activity detector to remove the clips with
any kind of speech activity (voice content) from our noise clips.
This enabled us to get noise clips with no presence of speech. We
augmented the Audio Set noise clips with 10,000 noise clips down-
loaded from Freesound and DEMAND databases [13]. The total
noise data constitute 181 hours of audio. Fig. 1 shows the histogram
of noise classes included in the blind test set. These noise types were
validated by a human listener after the collection of the blind set.

3.1.3. Impulse Responses

We provide 248 real and about 60,000 synthetic room impulse re-
sponses, which can be leveraged for generating reverberant noisy
training data. The training data synthesizer adds noise to reverberant
clean speech depending on the chosen configuration. Participants
may choose to use clean speech or reverberant speech as training
targets for their DN'S models. We chose impulse responses from the
openSLR26 and openSLR28 [14] datasets.

3.2. Test set

We have two test sets: dev test set and blind test set. The dev test set
is intended for model development and optimization, and is provided
at the start of the challenge. The blind test set is used for ranking
the challenge model in terms of evaluation metrics and is intended
to be used as an unseen test set. Good performance of a model on
the blind test set will show it is generalized. Both test sets consist
of fullband audio clips recorded in real-world scenarios collected
through crowd-sourcing where workers read provided text prompts
and record their voice using desktop/laptop/mobile devices in the
presence of noise and/or neighboring talkers.

3.2.1. Non-personalized Development Test set

The development test set for the non-personalized track consists of
930 real recordings. All clips contain noisy speech in the English
language. Among these, 193 test clips have emotional speech in the
presence of noise. There are six emotion types, namely happy, sad,
angry, yelling, crying, and laughter. Crowd-sourced workers were
asked to read provided text prompts and create emotional events in
each test clip. The remaining clips contain the voice of a talker read-
ing text in the presence of the following noise types: fan, air con-
ditioner, typing, door shutting, clatter noise, car noise (i.e., standing
near a car on a busy street or standing outside the car), kitchen noise
(noise from kitchen utensils, dish scrubbing etc.), dish washer, run-
ning water, opening chips bags, munching or eating, creaking chair,
heavy breathing, copy machine, baby crying, dog barking, inside-
car noise (e.g., sitting on a passenger seat in a car which is being
driven by someone else), mouse clicks, mouse scroll wheel, touch

“https://research.google.com/AudioSet
Shttps://freesound.org/
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pad clicks, etc. Each test clip was recorded at 48 kHz with a du-
ration of 10 to 20 seconds. Workers were asked to record in the
near-field (close-talk) and far-field with distances of 1, 2, and 3 me-
ters. All test clips in the non-personalized development test set were
recorded using a laptop or desktop computer.

3.2.2. Personalized Development Test set

Both development and blind test set have 2.5 minutes of enroll-
ment speech for primary talkers to be used in personalized denois-
ing. PDNS leverages speaker embedding (features) for preserving
only the primary talker in a noisy environment while suppressing
the neighboring talkers and noise. The development test set for the
personalized track consists of 1443 real recordings. All clips con-
tain noisy speech in the English language. Among these, 193 test
clips have emotional speech in the presence of noise and are identi-
cal to the emotional test clips in the non-personalized track. There
are 737 test clips where the primary talker reads the provided text in
the presence of the same noise types as those in the non-personalized
track. Each test clip was recorded at 48 kHz with a duration of 10-20
seconds. Workers were asked to record in the near-field (close-talk)
and far-field with distances of 1, 2, and 3 meters. There are 166 test
clips with the primary talker speaking in the presence of a neigh-
boring talker and noise where both the noise and neighboring talker
are simultaneously active in the primary talker’s background. There
are 347 test clips where the primary talker is speaking in the pres-
ence of a neighboring speaker with no background noise. Thus, we
have simulated three scenarios for PDNS: (i) primary talker in the
presence of noise; (ii) primary talker in the presence of neighbor-
ing talker; and (iii) primary talker in the presence of simultaneously
active neighboring talker and noise. All test clips in the personal-
ized development test set were recorded using a laptop or desktop
computer.

3.3. Blind test set

We collected a common blind test set for both tracks, which facili-
tates a direct comparison of both tracks to elucidate the benefits of
personalized noise suppression. Track 2 leverages 2.5 minutes of
clean speech enrollment data for personalized denoising. The blind
set has 2.5 minutes of enrollment speech for each test clip, which is
intended for use only by personalized models. There are 859 real
test clips, each with a duration of 10s, in the blind test set. We col-
lected the blind test set on a variety of desktop and mobile platforms
through crowd-sourcing, where 70% of the test clips were collected
on a smartphone. The blind test set went through several iterations
of data validation based on unit tests and human listening. We did
not include test clips from the same speaker if they had a similar
background noise. In this way, we have a unique speaker and back-
ground noises in each test clip. We transcribed the blind test set
using a third-party data annotation service. We did expert listening
to correct the speech transcription for the blind test set to ensure high
accuracy. Participants were provided with the blind test set 5 days
before the data submission deadline.

4. RESULTS & DISCUSSIONS
4.1. Baseline for Non-personalized DNS

We trained NSNet2 [3, 15] on a subset of the fullband non-
personalized training dataset to obtain the baseline. The subset
was characterized by clean speech clips having the DNSMOS P.§835
scores greater than or equal to 4.2, 4.5, and 4.0 for SIG, BAK, and
OVRL, respectively. We denoised the Track 1 dev test-set and blind
test-set with the trained NSNet2 baseline model, to get the baseline

enhanced clips. We release the ONNX® model and inference script
for NSNet2.

4.2. Baseline for Personalized DNS

The baseline for the PDNS track consists of the baseline speaker
embedding extractor and the baseline PDNS model. The baseline
speaker embedding extractor is RawNet2 [16] trained on wideband
audio from VoxCeleb2 [17]. Lack of fullband audio datasets with
speaker IDs and thousands of speakers led us to select VoxCeleb2,
which is a wideband audio dataset with 6,000 speakers. Thus our
baseline PDNS model had a wideband speaker embedding extractor.
We used the baseline speaker embedding extractor on all enrollment
data in the training set, and provided the participants with speaker
embeddings. This lowered the barrier to entry in the PDNS track.
Participants were permitted to retrain the RawNet2 model with full-
band data. The challenge permitted the use of external datasets in ad-
dition to DNS challenge datasets. Participants could leverage other
state-of-the-art speaker models [18, 19, 16] for extracting speaker
embeddings [18, 19].

PDNS models are trained to suppress neighboring talkers and
background noises and only preserve the enhanced speech from the
primary talker. To achieve this, PDNS models leverage speaker em-
bedding features extracted from the enrollment speech along with
spectral features (or raw-waveform) of the noisy input audio. We
used the personalized DCCRN (pDCCRN) model described in [20]
as the baseline PDNS model for this challenge. We modified pDC-
CRN to accept 48 kHz input and added a layer to the encoder and
decoder. Since the baseline speaker embedding extractor uses wide-
band audio, the input audio is downsampled to 16 kHz before ex-
tracting the speaker embeddings.

Each unique talker in the personalized training dataset, PDNS
dev test set, and blind test set has 2.5 minutes of enrollment speech.
PDNS models are expected to leverage talker-aware training and
talker-adapted inference. There are two motivations to provide clean
speech for enrollment of the primary talker: (1) speaker models are
sensitive to false-alarms in speech activity detection (SAD) [21];
clean speech can be used for obtaining accurate SAD labels resulting
in speaker-discriminative embeddings. (2) Speaker adaptation is ex-
pected to work well using multi-conditioned data; clean speech can
be used for generating reverberant and noisy multi-condition enroll-
ment data for speaker adaptation.

4.3. Evaluation Methodology

This challenge relies on ITU-T P.835 [8] subjective evaluation for
evaluating the DNS models, since objective speech quality metrics,
such as PESQ [22], SDR, and POLQA [23], do not correlate well
with subjective speech quality [24]. A modified version of ITU-
T P.835 was used for measuring the performance of personalized
models. The modified P.835 for personalized DNS provides 10s of
enrollment speech of the primary speaker so that the raters can rec-
ognize the primary talker’s voice while assigning subjective scores.
Human raters were instructed to focus on the quality of the voice of
the primary talker when more than two talkers were present in a test
clip.

Four metrics, three P.835 subjective scores (SIG, BAK, OVRL)
and WAcc from a speech recognition system were used to evaluate
challenge models. Scores on the blind test set were combined into
a final score for ranking the models. Higher WAcc shows superior
denoising performance with respect to speech recognition. WAcc is
defined as WAcc = 1 — WER, where WER is the word error rate of

Shttps://onnx.ai
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Team# dSIG dBAK dOVRL dWacc Final Score

2 0.00 254 149 -0.02 0.74
14 003 212 125 -0.03 0.71
49 010 211 123 -0.04 0.70
41 -019 230 122 -0.04 0.69
25 027 239 119 -0.07 0.68
46 027 208 106 -0.05 0.67
4 025 227 113 -0.07 0.67
45 028 206 103 -0.05 0.67
29 032 210 099 -0.04 0.67
3 -0.32 226 1.09 -0.07 0.67
7 -0.30 2.03 098 -0.04 0.67
4 043 231 1.03 -0.07 0.66
37 032 206 097 -007 0.65
22 017 150 083 -0.05 0.64
43 035 170 083 -0.05 0.64
33 031 162 084 -0.06 0.64
47 046 170 073 -0.05 0.63
46 058 207 084 -0.10 0.62
84 057 187 074 -0.08 0.62
36 055 192 075 -0.09 0.61
49 068 194 070 -0.10 0.60
Baseline -0.66 1.78 0.63 -0.09 0.60
3 -035 115 053 -0.08 0.59
62 039 089 037 -0.04 0.59
Noisy [0.00 0.00 0.00 0.00 0.56
3+ 026 156 080 -0.70 0.31
54 224 144 -073 -0.70 0.12

Fig. 2. Results: P.835 subjective evaluation of all models from Track
1 non-personalized DNS on blind testset.

Final

Team# dSIG dBAK dOVRL dWAcc
Score

17 -0.05 236 140 -0.02 0.72
42 -0.06 240 141 -0.03 0.72
49 -0.08 2.14 127 -0.03 0.70
29 -0.36 2.18 1.07 -0.04 0.67
31 -0.26 1.60 0.86 -0.05 0.64
15 -0.52] 2.34 1.00 -0.11 0.63
Baseline -0.61 2.09 0.84 -0.08 0.62
44 -0.69 2.11 0.80 -0.13 0.59
49 -0.74 1.73 0.60 -0.09 0.59
6 -0.51 1.24 0.53 -0.10 0.57
Noisy | 0.00 0.00 0.00 0.00 0.56
13 =111 1.29 0.08 -0.23 0.45

Fig. 3. Results: P.835 subjective evaluation of all models from Track
2 personalized DNS on blind testset.

speech recognition system. The final score is computed as
Final score = 0.5[WAcc + 0.25(OVRL — 1)].

4.4. Results
We received 24 and 10 submissions for Track 1 and Track 2, respec-
tively. Each team submitted a processed blind test set (Sec. 3.3).

Fig. 2 and Fig. 3 show the subjective P.835 scores, WAcc and
final score for challenge entries in decreasing order of performance.
dSIG, dBAK, dOVRL refers to the difference in SIG, BAK, OVRL
between the enhanced clip and noisy clip. Similarly, dWAcc is the
difference in WAcc between the enhanced clip and noisy clips.

For the top performing teams, we ran an ANOVA test to deter-
mine statistical significance (see https://aka.ms/dns-challenge). The
2nd, 3rd and 4th place are tied for Track 1. Likewise the 1st and 2nd
place for Track 2 are tied. Teams 17, 19, and 42 did not submit a
paper so were disqualified per the challenge rules.

From a breakdown of scores based on the device type (mo-
bile/desktop) we find that the MOS scores for clips recorded on
mobile devices is higher than those from desktop devices (see
https://aka.ms/dns-challenge). This suggests that mobile had better

Table 1. DNSMOS PCC and SRCC
Track 1 Track 2
SIG | BAK | OVRL SIG | BAK | OVRL
PCC 093 | 0.92 0.94 092 | 0.96 0.96
SRCC || 0.78 | 0.89 0.85 0.84 | 0.89 0.93

Table 2. Comparison of top performing models.

Track | Team Params | Real- Additional

time data-sets
Factor

1 2[28] 1.5M | 0.60 N

1 14[29] | 10.27M | 0.68 N

1 41 [30] 299M | 045 N

1 25 [31] 529M | 0.65 N

2 42 [27] 7.81M | 0.96 Y

2 29[32] | 1241 M | 0.19 Y

acoustic devices or environments than the desktop scenarios.

We required participants to not do any automatic gain control
(AGC). Also, we did not perform any AGC on blind test clips or en-
hanced clips. A state-of-the-art speech recognition API from Azure
Cognitive service was used for computing WAcc. The speech recog-
nition system was trained to handle audio with a wide range of en-
ergy levels so we do not expect any degradation of WAcc due to
varying energy levels in clips from the blind test set. Table 1 shows
the Pearson correlation coefficient (PCC) and Spearman’s rank cor-
relation coefficient (SRCC) between per-model subjective scores and
corresponding DNSMOS P.835 scores [9]. The high correlation be-
tween subjective scores and DNSMOS P.835 in both tracks shows
the efficacy of DNSMOS P.835 in ranking the DNS models. It vali-
dated our approach for providing a dev test set and DNSMOS P.835
to challenge participants for model development.

Table 2 gives a high-level comparison of the top performing
models. Note there is low correlation of model size or real-time fac-
tor with performance. The top performing models for Track 1 didn’t
use additional datasets, while the Track 2 models did. The winning
team for Track 1 [25] also won the ICASSP 2022 AEC Challenge
[26], and demonstrates a single model can provide excellent AEC,
DNS, and WAcc performance. The performance of the personal-
ized DNS track also show excellent performance, greatly exceeding
results of our first personalized DNS challenge [2] with the winner
[27] providing very good dOVRL with low dSIG and low dWAcc.
Note, however, that no team actually improves SIG and WAcc is 2%
worse than noisy. There is still a lot of room for improvement.

5. CONCLUSION

We hope this challenge dataset, test set, test framework, DNSMOS
P.835, and top performing papers (Table 2) help push the field for-
ward. The next DNS challenge will have a more diverse test set
including more languages, accents, and devices from realistic noisy
scenarios. We plan to have a dedicated inference engine/evaluation
setup for computing the model complexity and inference time for
all submitted models. We will also include a validation of the look-
ahead to make sure the comparison is fair for all models.
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