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ABSTRACT

The ICASSP 2022 Acoustic Echo Cancellation Challenge is in-
tended to stimulate research in acoustic echo cancellation (AEC),
which is an important area of speech enhancement and still a top
issue in audio communication. This is the third AEC challenge
and it is enhanced by including mobile scenarios, adding speech
recognition word accuracy rate as a metric, and making the audio
48 kHz. We open source two large datasets to train AEC models
under both single talk and double talk scenarios. These datasets
consist of recordings from more than 10,000 real audio devices and
human speakers in real environments, as well as a synthetic dataset.
We open source an online subjective test framework and provide an
online objective metric service for researchers to quickly test their
results. The winners of this challenge were selected based on the
average Mean Opinion Score (MOS) achieved across all scenarios
and the word accuracy rate.

Index Terms: acoustic echo cancellation, deep learning, single talk,
double talk, subjective test

1. INTRODUCTION

With the growing popularity and need for working remotely, the
use of teleconferencing systems such as Microsoft Teams, Skype,
WebEx, Zoom, etc., has increased significantly. It is imperative to
have good quality calls to make the user’s experience pleasant and
productive. The degradation of call quality due to acoustic echoes
is one of the major sources of poor speech quality ratings in voice
and video calls. While digital signal processing (DSP) based AEC
models have been used to remove these echoes during calls, their
performance can degrade when model assumptions are violated,
e.g., fast time-varying acoustic conditions, unknown signal pro-
cessing blocks or non-linearities in the processing chain, or failure
of other models (e.g., background noise estimates). This problem
becomes more challenging during full-duplex modes of commu-
nication where echoes from double talk scenarios are difficult to
suppress without significant distortion or attenuation [1].

With the advent of deep learning techniques, many supervised
learning algorithms for AEC have shown better performance com-
pared to their classical counterparts, e.g., [2, 3, 4]. Some studies
have also shown good performance using a combination of classical
and deep learning methods such as using adaptive filters and recur-
rent neural networks (RNNs) [4, 5] but only on synthetic datasets.
While these approaches are promising, they lack evidence of their
performance on real-world datasets with speech recorded in diverse
noise and reverberant environments. This makes it difficult for re-
searchers in the industry to choose a good model that can perform
well on a representative real-world dataset.

Table 1. Pearson Correlation Coefficient (PCC) and Spearman’s
Rank Correlation Coefficient (SRCC) between objective and sub-
jective P.808 results on single talk echo scenarios (see Section 5).

PCC SRCC

ERLE 0.31 0.23
PESQ 0.67 0.57

Most AEC publications use objective measures such as echo
return loss enhancement (ERLE) [6] and perceptual evaluation of
speech quality (PESQ) [7]. ERLE in dB is defined as:

ERLE = 10 log10
E[y2(n)]

E[e2(n)]
(1)

where y(n) is the microphone signal, and e(n) is the residual echo
after cancellation. ERLE is only appropriate when measured in a
quiet room with no background noise and only for single talk scenar-
ios (not double talk), where we can use the processed microphone
signal as an estimate for e(n). PESQ has also been shown to not
have a high correlation to subjective speech quality in the presence of
background noise [8]. Using the datasets provided in this challenge
we show that ERLE and PESQ have a low correlation to subjective
tests (Table 1). In order to use a dataset with recordings in real en-
vironments, we can not use ERLE and PESQ. A more reliable and
robust evaluation framework is needed that everyone in the research
community can use, which we provide as part of the challenge.

This AEC challenge is designed to stimulate research in the AEC
domain by open sourcing a large training dataset, test set, and sub-
jective evaluation framework. We provide two new open source
datasets for training AEC models. The first is a real dataset cap-
tured using a large-scale crowdsourcing effort. This dataset consists
of real recordings that have been collected from over 10,000 diverse
audio devices and environments. The second dataset is synthesized
from speech recordings, room impulse responses, and background
noise derived from [9]. An initial test set will be released for the
researchers to use during development and a blind test set near the
end, which will be used to decide the final competition winners. We
believe these datasets are large enough to facilitate deep learning and
representative enough for practical usage in shipping telecommuni-
cation products.

This is the third AEC challenge we have conducted. The first
challenge was held at ICASSP 2021 [10] and the second at INTER-
SPEECH 2021 [11]. These challenges had 31 participants with en-
tries ranging from pure deep models, hybrid linear AEC + deep echo
suppression, and DSP methods. The results show that the deep and
hybrid models far outperformed DSP methods, with the latest win-
ners being both pure deep and hybrid models. However, there is still
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much room for improvement. To improve the challenge and further
stimulate research in this area we have made the following changes:

• The dataset has increased from 5,000 devices and environ-
ments to 10,000 to provide additional training data.

• Mobile phone scenarios are now included, which are an im-
portant area that is even more challenging than desktop or
notebook computers. 50% of the blind test set were mobile
devices, and 50% were desktop devices.

• The Microsoft Speech Recognizer’s Word Accuracy rate
(WAcc) is used as a metric in the challenge, as many sce-
narios include speech recognition and the AEC should not
degrade WAcc. WAcc = 1 - Word Error Rate.

• The test sets are now 48 kHz, which is an important require-
ment for many scenarios.

The training dataset is described in Section 2, and the test set
in Section 3. We describe a DNN-based AEC method in Section 4.
The online subjective evaluation framework is discussed in Section
5, and the objective service in Section 6. The challenge metric is
given in Section 7 and the challenge rules are described in https:
//aka.ms/aec-challenge.

2. TRAINING DATASETS

The challenge will include two new open source datasets, one real
and one synthetic. The datasets are available at https://github.com/
microsoft/AEC-Challenge.

2.1. Real dataset

The first dataset was captured using a large-scale crowdsourcing ef-
fort. This dataset consists of more than 50,000 recordings from over
10,000 different real environments, audio devices, and human speak-
ers in the following scenarios:

1. Far end single talk, no echo path change
2. Far end single talk, echo path change
3. Near end single talk, no echo path change
4. Double talk, no echo path change
5. Double talk, echo path change
6. Sweep signal for RT60 estimation

For the far end single talk case, there is only the loudspeaker
signal (far end) played back to the users and users remain silent (no
near end speech). For the near end single talk case, there is no far
end signal and users are prompted to speak, capturing the near end
signal. For double talk, both the far end and near end signals are ac-
tive, where a loudspeaker signal is played and users talk at the same
time. Echo path changes were incorporated by instructing the users
to move their device around or bring themselves to move around
the device. The RT60 distribution for 4387 desktop environments
in the real dataset for which impulse response measurements were
available is estimated using a method by Karjalainen et al. [12] and
shown in Figure 1. For 1251 mobile environments the RT60 distri-
bution shown was estimated blindly from speech recordings [13].

We use Amazon Mechanical Turk as the crowdsourcing platform
and wrote a custom HIT application that includes a custom tool that
users download and execute to record the six scenarios described
above. The dataset includes Microsoft Windows and Android de-
vices. Each scenario includes the microphone and loopback signal
(see Figure 2). Even though our application uses the WASAPI raw

audio mode to bypass built-in audio effects, the PC can still include
Audio DSP on the receive signal (e.g., equalization and Dynamic
Range Compression (DRC)); it can also include Audio DSP on the
send signal, such as AEC and noise suppression.

For far end signals, we use both clean speech and real world
recordings. For clean speech far end signals, we use the speech seg-
ments from the Edinburgh dataset [14]. This corpus consists of short
single speaker speech segments (1 to 3 seconds). We used a long
short term memory (LSTM) based gender detector to select an equal
number of male and female speaker segments. Further, we combined
3 to 5 of these short segments to create clips of length between 9 and
15 seconds in duration. Each clip consists of a single gender speaker.
We create a gender-balanced far end signal source comprising of 500
male and 500 female clips. Recordings are saved at the maximum
sampling rate supported by the device and in 32-bit floating point
format; in the released dataset we down-sample to 48 kHz and 16-
bit using automatic gain control to minimize clipping.

For noisy speech far end signals we use 2000 clips from the
near end single talk scenario. Clips are gender balanced to include
an equal number of male and female voices.

For the far end single talk scenario, the clip is played back twice.
This way, the echo canceller can be evaluated both on the first seg-
ment, when it has had minimal time to converge, and on the second
segment, when the echo canceller has converged and the result is
more indicative to a real call scenario.

For the double talk scenario, the far end signal is similarly
played back twice, but with an additional silent segment in the
middle, when only near end single talk occurs.

For near end speech, the users were prompted to read sentences
from a TIMIT [15] sentence list. Approximately 10 seconds of audio
is recorded while the users are reading.

2.2. Synthetic dataset

The second dataset provides 10,000 synthetic scenarios, each includ-
ing single talk, double talk, near end noise, far end noise, and vari-
ous nonlinear distortion scenarios. Each scenario includes a far end
speech, echo signal, near end speech, and near end microphone sig-
nal clip. We use 12,000 cases (100 hours of audio) from both the
clean and noisy speech datasets derived in [9] from the LibriVox
project1 as source clips to sample far end and near end signals. The
LibriVox project is a collection of public domain audiobooks read
by volunteers. [9] used the online subjective test framework ITU-T
P.808 to select audio recordings of good quality (4.3 ≤ MOS ≤ 5)
from the LibriVox project. The noisy speech dataset was created by
mixing clean speech with noise clips sampled from Audioset [16],
Freesound2 and DEMAND [17] databases at signal to noise ratios
sampled uniformly from [0, 40] dB.

To simulate a far end signal, we pick a random speaker from
a pool of 1,627 speakers, randomly choose one of the clips from
the speaker, and sample 10 seconds of audio from the clip. For the
near end signal, we randomly choose another speaker and take 3-
7 seconds of audio which is then zero-padded to 10 seconds. Of
the selected far end and near end speakers, 71% and 67% are male,
respectively. To generate an echo, we convolve a randomly cho-
sen room impulse response from a large internal database with the
far end signal. The room impulse responses are generated by using
Project Acoustics technology3 and the RT60 ranges from 200 ms to
1200 ms. In 80% of the cases, the far end signal is processed by

1https://librivox.org
2https://freesound.org
3https://www.aka.ms/acoustics

9108



Fig. 1. Distribution of reverberation time (RT60).

Fig. 2. The custom recording application recorded the loopback and
microphone signals.

a nonlinear function to mimic loudspeaker distortion. For example,
the transformation can be clipping the maximum amplitude, using
a sigmoidal function as in [18], or applying learned distortion func-
tions, the details of which we will describe in a future paper. This
signal gets mixed with the near end signal at a signal to echo ratio
uniformly sampled from -10 dB to 10 dB. The signal to echo ratio
is calculated based on the clean speech signal (i.e., a signal without
near end noise). The far end and near end signals are taken from the
noisy dataset in 50% of the cases. The first 500 clips can be used
for validation as these have a separate list of speakers and room im-
pulse responses. Detailed metadata information can be found in the
repository.

3. TEST SET

Two test sets are included, one at the beginning of the challenge and
a blind test set near the end. Both consist of 800 real world record-
ings, between 30-45 seconds in duration. The datasets include the
following scenarios that make echo cancellation more challenging:

• Long- or varying delays, i.e., files where the delay between
loopback and mic-in is atypically long or varies during the
recording.

• Strong speaker and/or mic distortions.
• Stationary near end noise
• Non-stationary near end noise
• Recordings with audio DSP processing from the device, such

as AEC or noise reduction
• Glitches, i.e., files with “choppy” audio, for example, due to

very high CPU usage
• Gain variations, i.e., recordings where far end level changes

during the recording (2.1), sampled randomly

4. BASELINE AEC METHOD

We adapt a noise suppression model developed in [19] to the task
of echo cancellation. Specifically, a recurrent neural network with
gated recurrent units takes concatenated log power spectral features
of the microphone signal and far end signal as input, and outputs
a spectral suppression mask. The short-time Fourier transform is

computed based on 20 ms frames with a hop size of 10 ms, and a
320-point discrete Fourier transform. We use a stack of two gated
recurrent unit layers, each of size 322 nodes, followed by a fully-
connected layer with a sigmoid activation function. The model has
1.3 million parameters. The estimated mask is point-wise multiplied
with the magnitude spectrogram of the microphone signal to sup-
press the far end signal. Finally, to resynthesize the enhanced signal,
an inverse short-time Fourier transform is used on the phase of the
microphone signal and the estimated magnitude spectrogram. We
use a mean squared error loss between the clean and enhanced mag-
nitude spectrograms. The Adam optimizer with a learning rate of
0.0003 is used to train the model. The model and the inference code
is available in the challenge repository.4

5. ONLINE SUBJECTIVE EVALUATION FRAMEWORK

We have extended the open source P.808 Toolkit [20] with methods
for evaluating the echo impairments in subjective tests. We followed
the Third-party Listening Test B from ITU-T Rec. P.831 [21] and
ITU-T Rec. P.832 [22] and adapted them to our use case as well as
for the crowdsourcing approach based on the ITU-T Rec. P.808 [23]
guidance.

A third-party listening test differs from the typical listening-only
tests (according to the ITU-T Rec. P.831) in the way that listeners
hear the recordings from the center of the connection rather in the
former one in which the listener is positioned at one end of the con-
nection [21]. Thus, the speech material should be recorded by hav-
ing this concept in mind. During the test session, we use different
combinations of single- and multi-scale Absolute Category Ratings
depending on the speech sample under evaluation. We distinguish
between single talk and double talk scenarios. For the near end sin-
gle talk, we ask for the overall quality. For the far end single talk
and double talk scenario, we ask for an echo annoyance and for im-
pairments of other degradations in two separate questions5. Both im-
pairments are rated on the degradation category scale (from 1:Very
annoying, to 5:Imperceptible) to obtain Degradation Mean Opinion
Scores (DMOS). Note that we do not use the Other degradation cat-
egory for far end single talk for evaluating echo cancellation perfor-
mance, since this metric mostly reflects the quality of the original
far end signal. However, we have found that having this component
in the questionnaire helps increase the accuracy of echo degradation
ratings (when measured against expert raters). Without the Other
category, raters can sometimes assign degradations due to noise to
the Echo category.

For the far end single talk scenario, we evaluate the second half
of each clip to avoid initial degradations from initialization, con-
vergence periods, and initial delay estimation. For the double talk
scenario, we evaluate roughly the final third of the audio clip.

The subjective test framework with an AEC extension is avail-
able at https://github.com/microsoft/P.808. A more detailed descrip-
tion of the test framework and its validation is given in [24].

6. AZURE SERVICE OBJECTIVE METRIC

We have developed an objective perceptual speech quality metric
called AECMOS. It can be used to stack rank different AEC methods

4https://github.com/microsoft/AEC-Challenge/tree/main/baseline/
icassp2022

5Question 1: How would you judge the degradation from the echo? Ques-
tion 2: How would you judge other degradations (noise, missing audio, dis-
tortions, cut-outs)?
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Table 2. AECMOS PCC and SRCC
Scenario PCC SRCC

Far end single talk echo DMOS 0.828 0.719
Near end single talk MOS 0.843 0.856
Double talk echo DMOS 0.882 0.766
Double talk other DMOS 0.929 0.913

based on MOS estimates with high accuracy. It is a neural network-
based model that is trained using the ground truth human ratings ob-
tained using our online subjective evaluation framework. The audio
data used to train the AECMOS model is gathered from the numer-
ous subjective tests that we conducted in the process of improving
the quality of our AECs as well as the first two AEC challenge re-
sults. The performance of AECMOS on AEC models is given in
Table 2 compared with subjective human ratings on the 18 submit-
ted models. We note that this model had not seen any mobile nor
fullband data during training. The next version of AECMOS will
have mobile and fullband data in its training data. A more detailed
description of AECMOS is given in [25]. Sample code and details
of the evaluation API can be found on https://aka.ms/aec-challenge.

7. CHALLENGE METRIC

The challenge performance is determined using the average of the
four subjective scores described in Section 5 and WAcc, all weighted
equally. Specifically:

M =
(FEST −1)

4
+

(NEST −1)
4

+
(DTecho−1)

4
+

(DTother−1)

4
+WAcc

5

where FEST is far end single talk, NEST is near end single talk,
DTecho is double talk echo, and DTother is double talk other.

8. RESULTS

We received 18 submissions for the challenge. Each team submitted
processed files from the blind test set (see Section 3). We batched all
submissions into three sets:

• Near end single talk files for a MOS test (NE ST MOS).

• Far end single talk files for an Echo and Other degradation
DMOS test (FE ST Echo/Other DMOS).

• Double talk files for an Echo and Other degradation DMOS
test (DT Echo/Other DMOS).

The results are shown in Figure 3. The score differences in near
end, echo, double talk, and WAcc highlight the importance of evalu-
ating all scenarios, since in many cases, performance in one scenario
comes at a cost in another scenario. The PCC of WAcc and the mean
subjective scores is 0.85, which helps motivate why WAcc needs to
be measured.

For the top performing teams, we ran an ANOVA test to deter-
mine statistical significance (see https://aka.ms/aec-challenge). The
2nd and 3rd, and 5th and 6th places were tied. For the ties, the win-
ners were selected using the lower complexity model.

A high-level comparison of the top 5 performing models is given
in Table 3. Real-time factor is the run-time / frame time on an Intel
Core i5 quad core 2.4 GHz CPU or equivalent. The 1st place model
[26] also won the ICASSP 2022 DNS Challenge [27], providing the
only model that didn’t induce SIG [28] distortion in that challenge.
It is a hybrid model but is unique in that it uses the linear AEC only
to condition the DNN, not filtering the audio. Three of the top 5

Fig. 3. AEC challenge results

Fig. 4. Results for desktop and mobile recordings

teams use linear AEC’s and DNN’s, and all 5 use the STFT domain.
In addition, all 5 models perform noise suppression in addition to
AEC. There is a wide range of model sizes and complexities, and it
wasn’t necessary to use external datasets to do well in the challenge.

When comparing the results between mobile and desktop
recordings (Figure 4), we observe relatively similar scores for the
near end single talk category, but significantly lower scores for mo-
bile in echo categories, especially for double talk. The difference is
highest in the double talk degradation category, where the score for
mobile recordings is lower by 0.75 MOS. One reason for this is that
in mobile devices, the loudspeaker is closer to the microphone, so
the signal-to-echo ratio in these devices is lower on average.

9. CONCLUSIONS

While the results of this challenge continue to improve over previ-
ous challenges, there is still significant room for improvement, espe-
cially with the mobile scenario. We hope this challenge, dataset, test
set, and test framework stimulate research in this important area of
speech enhancement.

Table 3. Comparison of the top 5 teams

Place Paper Hybrid Params Real-time Additional
Factor Datasets

1 [26] Y* 1.5 M 0.60 N
2 [29] Y 17.4 M 0.10 Y
3 [30] Y 4.8 M 0.20 Y
4 [31] Y 55.5 M 0.30 N
5 [32] N 4.3 M 0.02 Y
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