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ABSTRACT

Deep learning based speech enhancement has made rapid develop-
ment towards improving quality, while models are becoming more
compact and usable for real-time on-the-edge inference. However,
the speech quality scales directly with the model size, and small
models are often still unable to achieve sufficient quality. Further-
more, the introduced speech distortion and artifacts greatly harm
speech quality and intelligibility, and often significantly degrade au-
tomatic speech recognition (ASR) rates. In this work, we shed light
on the success of the spectral complex compressed mean squared er-
ror (MSE) loss, and how its magnitude and phase-aware terms are re-
lated to the speech distortion vs. noise reduction trade off. We further
investigate integrating pre-trained reference-less predictors for mean
opinion score (MOS) and word error rate (WER), and pre-trained
embeddings on ASR and sound event detection. Our analyses reveal
that none of the pre-trained networks added significant performance
over the strong spectral loss.

Index Terms— speech enhancement, noise reduction, speech
distortion reduction, speech quality

1. INTRODUCTION

Speech enhancement techniques are present in almost any device
with voice communication or voice command capabilities. The
goal is to extract the speaker’s voice only, reducing disturbing
background noise to improve listening comfort, and aid intelligibil-
ity for human or machine listeners. In the past few years, neural
network-based speech enhancement techniques showed tremendous
improvements in terms of noise reduction capability [1, 2]. Data-
driven methods can learn the tempo-spectral properties of any type
of speech and noise, in contrast to traditional statistical model-based
approaches that often mismatch certain types of signals. While one
big current challenge in this field is still to find smaller and more
efficient network architectures that are computationally light for
real-time processing while delivering good results, another major
challenge addressed here is obtaining good, natural sounding speech
quality without processing artifacts.

In the third deep noise suppression (DNS) challenge [2], the sep-
arate evaluation of speech distortion (SIG), background noise reduc-
tion (BAK), and overall quality (OVL) according to ITU P.835 re-
vealed that while current state-of-the-art methods achieve outstand-
ing noise reduction, only one submission did not degrade SIG on av-
erage while still showing high BAK. Degradations in SIG potentially
also harm the performance of following automatic speech recogni-
tion (ASR) systems, or human intelligibility as well.

In [3] multichannel speech enhancement models were optimized
on a ASR loss only. In [4] a speech enhancement model was trained
on a signal-based loss and a ASR loss with alternating updates. This

method requires either transcriptions for all training data, or using a
transcribed subset for the ASR loss. Creating a dependency between
speech enhancement module and a specific ASR engine used during
training could however yield undesired effects in practice.

In this work, we explore several loss functions for a real-time
deep noise suppressor with the goal to improve SIG without harm-
ing ASR rates. The contribution of this paper is threefold. First,
we show that by decoupling the loss from the speech enhancement
inference engine using end-to-end training, choosing a higher reso-
lution in a spectral signal-based loss can improve SIG. Second, we
propose ways to integrate MOS and WER estimates from pre-trained
networks in the loss as weighting. Third, we evaluate additional su-
pervised loss terms computed using pre-trained networks, similar to
the deep feature loss [5]. In [6], six different networks pre-trained
on different tasks have been used to extract embeddings from output
and target signals, to form an additional loss, where a benefit was re-
ported only for the sound event detection model published in [7]. We
show different results when trained on a larger dataset and evaluated
on real data using more decisive metrics on speech quality and ASR
performance, while we find that none of the pre-trained networks
improved ASR rates or speech quality significantly.

2. SYSTEM AND TRAINING OBJECTIVE

A captured microphone signal can generally be described by

y(t) = m {s(t) + r(t) + v(t)} , (1)

where s(t) is the non-reverberant desired speech signal, r(t) unde-
sired late reverberation, v(t) additive noise or interfering sounds,
and m{} can model linear and non-linear acoustical, electrical, or
digital effects that the signals encounter.

2.1. End-to-end optimization

We use an end-to-end enhancement system using a complex en-
hancement filter in the short-time Fourier transform (STFT) domain

ŝ(t) = FP {G(k, n) FP {y(t)}}−1 (2)

whereFP {a(t)} = A(k, n) denotes the linear STFT operator yield-
ing a complex signal representation at frequency k and time index n,
and G(k, n) is a complex enhancement filter. The end-to-end opti-
mization objective is to train a neural network predicting G(k, n),
while optimizing a loss on the time-domain output signal ŝ(t) as
shown in Fig. 1.
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Fig. 1. End-to-end trained system on various losses.

2.2. Features and network architecture

We use complex compressed features by feeding the real and imag-
inary part of the complex FFT spectrum as channels into the first
convolutional layer. Magnitude compression is applied to the com-
plex spectra by

Y c(k, n) = |Y (k, n)|c Y (k, n)

max(|Y (k, n)|, ε) , (3)

where the small positive constant ε avoids division by zero.
We use the Convolutional Recurrent U-net for Speech En-

hancement (CRUSE) model proposed in [8] with 4 convolutional
encoder/decoder layers with time-frequency kernels (2,3) and stride
(1,2) with pReLU activations, a group of 4 parallel GRUs in the
bottleneck and add skip connections with 1 × 1 convolutions. The
network output are two channels for the real and imaginary part of
the complex filter G(k, n). To ensure stability, we use tanh output
activation functions restraining the filter values to [−1, 1] as in [9].

3. DATA GENERATION AND AUGMENTATION

We use an online data generation and augmentation technique, using
the power of randomness to generate virtually infinitely large train-
ing data. Speech and noise portions are randomly selected from raw
audio files with random start times to form 10 s clips. If a section is
too short, one or more files are concatenated to obtain the 10 s length.
80% of speech and noise are augmented with random biquad fil-
ters [10] and 20% are pitch shifted within [−2, 8] semi-tones. If the
speech is non-reverberant, a random room impulse response (RIR)
is applied. The non-reverberant speech training target is obtained by
windowing the RIR with a cosine decay of length 50 ms, starting
20 ms (one frame) after the direct path. Speech and noise are mixed
with a signal-to-noise ratio (SNR) drawn from a normal distribution
with mean and standard deviationN (5, 10) dB. The signal levels are
varied with a normal distributionN (−26, 10) dB.

We use 246 h noise data, consisting of the DNS challenge noise
data (180 h), internal recordings (65 h), and stationary noise (1 h),
as well as 115 k RIRs published as part of the DNS challenges [11].
Speech data is taken mainly from the 500 h high quality-rated Lib-
rivox data from [11], in addition to high SNR data from AVspeech
[12] and the Mandarin and Spanish, singing, and emotional CremaD
corpora published within [11], an internal collection of 8 h emotional
speech and 2 h laughing sourced from Freesound. Figure 2 shows
the distributions of reverberant speech-to-noise ratio (RSNR) and
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Fig. 2. SNR and SRR distributions of speech datasets

signal-to-reverberation ratio (SRR) as predicted by a slightly modi-
fied neural network following [13]. The singing data is not shown in
Fig. 2 as it is studio quality and our RSNR estimator is not trained
on singing. While the Librivox data has both high RSNR and SRR,
this is not the case for the other datasets, which have broader distri-
butions and lower peaks. Therefore, we select only speech data from
the AVspeech, Spanish, Mandarin, emotion, and laughing subsets
with segSNR > 30 dB and SRR > 35 dB for training.

4. LOSS FUNCTIONS

In this section, we describe training loss functions that are used to
optimize the enhanced signal ŝ(t). We always use a standard signal-
based spectral loss described in Sec. 4.1, which is extended or mod-
ified in several ways as described in the following subsections.

4.1. Magnitude-regularized compressed spectral loss

As a standard spectral distance-based loss function LSD , we use the
complex compressed loss [12, 14], which outperformed other spec-
tral distance-based losses in [15], given by

LSD =
1

σcs

(
λ
∑
κ,η

∣∣∣Sc−Ŝc∣∣∣2 + (1−λ)
∑
κ,η

∣∣∣|S|c−|Ŝ|c∣∣∣2) , (4)

where here the spectra S(κ, η) = FL {s(t)} and Ŝ(κ, η) =
FL {ŝ(t)} are computed with a STFT operation with independent
settings from FP {·} in (2), Ac = |A|c A|A| is a magnitude compres-
sion operation, and the frequency and time indices κ, η are omitted
for brevity. The loss for each sequence is normalized by the active
speech energy σs [16], which is computed from s(t) using a voice
activity detector (VAD). The complex and magnitude loss terms are
linearly weighted by λ, and the compression factor is c = 0.3. The
processing STFT FP and loss frequency transform FL can differ in
e. g. window and hop-size parameters, or be even different types of
frequency transforms as shown in Fig. 1. In the following subsec-
tions, we propose several extensions to the spectral distance loss
LSD to potentially improve quality and generalization.

Optional frequency weighting Frequency weightings for sim-
ple spectral distances are often used in perceptually motivated evalu-
ation metrics and have been tried to integrate as optimization targets
for speech enhancement [17]. While we already showed that the
AMR-wideband based frequency weighting did not yield improve-
ments for the experiments in [15], here we explore another attempt
applying a simple equivalent rectangular bandwidth (ERB) weight-
ing [18]. We applied 20 ERB filters, spaced 2 bands per octave, to
the spectra in (4) before summing over frequency κ.
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4.2. Additional cepstral distance term

The cepstral distance (CD) [19] is one of the few intrusive objec-
tive metrics that is also sensitive to speech distortion artifacts caused
by speech enhancement algorithms, in contrast to most other met-
rics, which are majorly sensitive to noise reduction. This motivated
adding a CD term LCD to (4) by

LCD = βLSD(s, ŝ) + (1− β)LCD(s, ŝ) (5)

where β = 0.001 was found optimal by preliminary optimization.

4.3. Non-intrusive speech quality and ASR weighted loss

Secondly, we explore the use of non-intrusive estimators for mean
opinion score (MOS) [20] and word error rate (WER) [21]. The
MOS predictor has been re-trained with subjective ratings of vari-
ous speech enhancement algorithms, including the MOS ratings in-
cluded in the three DNS challenges. Note that both are blind (non-
intrusive) estimators, meaning they give predictions without requir-
ing any reference, which makes them also interesting for unsuper-
vised training, to be explored in future work. To avoid dependence
of a hyper-parameter when extending the loss function by additive
terms (e.g., λ in (4)), we use the predictions to weight the spectral
distance loss for each sequence b in a training batch by

LMOS,WER =
∑
b

nWER(ŝb)

nMOS(ŝb)
LSD(sb, ŝb), (6)

where sb(t) is the b-th sequence, nWER() and nMOS() are the
WER and MOS predictors. We also explore MOS and WER only
weighted losses by setting the corresponding other prediction to one.

4.4. Multi-task embedding losses

As a third extension, similiar to [6], we add a distance loss using pre-
trained embeddings on different audio tasks, such as ASR or sound
event detection (SED), by

Lemb =
∑
b

LSD(sb, ŝb) + γ
‖u(sb)− u(ŝb)‖p
‖u(sb)‖p

(7)

where u(sb) and u(ŝb) are the embedding vectors from the target
speech and output signals, respectively, and we use the normalized
p-norm as distance metric. This differs from [6], where a L1 spectral
loss was used for LSD . We verified a small benefit from the normal-
ization term and chose p according to the embedding distributions in
preliminary experiments.

In this work, we use two different embedding extractors u(): a)
the PANN SED model [7] that was the only embedding that showed
a benefit in [6], and b) an ASR embedding using wav2vec 2.0 mod-
els [22]. For PANN, we use the pre-trained 14-layer CNN model
using the first 2-6 double CNN layers with p = 1 and γ = 0.05.
For wav2vec 2.0, we explore three versions of pre-trained mod-
els with p = 2 and γ = 0.1 to extract embeddings, which could
help to improve ASR performance of the speech enhancement net-
works: i) the small wav2vec-base model trained on LibriSpeech, ii)
the large wav2vec-lv60 model trained on LibriSpeech, and iii) the
large wav2vec-robust model trained on Libri-Light, CommonVoice,
Switchboard, Fisher, i. e. , more realistic and noisy data. We use the
full wav2vec models taking the logits as output. The pre-trained
embeddings extractor networks are frozen while training the speech
enhancement network.
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Fig. 3. Sensitivity of embedding losses to various degradations.
Losses are normalized per embedding type (column).

Understanding the embeddings To provide insights into how
to choose useful embedding extractors and reasons why some em-
beddings work better than others, we conduct a preliminary experi-
ment. We show the embedding loss terms for a selection of signal
degradations, corrupting a speech signal with the same noise with
three different SNRs, a 3 kHz lowpass degradation, and the impact
of a delay, i. e. a linear phase shift. The degradations are applied
on 20 speech signals with different noise signals and results are av-
eraged. Fig. 3 shows the PANN embedding loss using a different
number of CNN layers, and the three wav2vec models mentioned
above. The embedding loss is normalized to the maximum per em-
bedding (i.e., per column) for better visibility, as we are interested in
the differences created by certain degradations.

We observe that the PANN models are rather non-sensitive to
lowpass degradations, attributing it a similar penalty as a background
noise with 50 dB SNR. The wav2vec embeddings are much more
sensitive to the lowpass distortion, and rate moderate background
noise with 25 dB SNR comparably less harmful than the PANN em-
beddings. This might be closer to a human importance or intelligi-
bility rating, where moderate background noise might be perceived
less disturbing than speech signal distortions, and seems therefore
more useful in guiding the networks towards preserving more speech
components rather than suppressing more (probably hardly audible)
background noise. We consequently choose the 4-layer PANN and
wav2vec-robust embeddings for our later experiments.

5. EVALUATION

5.1. Test sets and metrics

We show results on the public third DNS challenge test set consist-
ing of 600 actual device recordings under noisy conditions [2]. The
impact on subsequent ASR systems is measured using three sub-
sets: The transcribed DNS challenge dataset (challenging noisy con-
ditions), a collection of internal real meetings (18h, realistic medium
noisy condition), and 200 high quality high SNR recordings.

Speech quality is measured using a non-intrusive P.835 DNN-
based estimator similar to DNSMOS [23] trained on the available
data from the three DNS challenges and internally collected data.
We term the non-intrusive predictions for signal distortion, back-
ground noise and overall quality from P.835 DNSMOS nSIG, nBAK,
nOVL. The P.835 DNSMOS model predicts SIG with > 0.9 correla-
tion and BAK, OVL with > 0.95 correlation per model. The impact
on production-grade ASR systems is measured using the public Mi-
crosoft Azure Speech SDK service [24] for transcription.

998



1.25 1.3 1.35 1.4

nBAK

-0.2

-0.15

-0.1

-0.05
n

S
IG

0.0
0.1

0.2 0.3
0.4

0.5

0.6

0.7

0.8 0.9

1.0

Fig. 4. Controlling the speech distortion - noise reduction tradeoff
for (4) using the complex loss weight λ, where λ = 1 gives the
complex loss term only, and λ = 0 gives the magnitude only loss.

5.2. Experimenal settings

The CRUSE processing parameters are implemented using a STFT
with square-root Hann windows of 20 ms length, 50% overlap, and
a FFT size of 320. To achieve results in line with prior work, we
use a network size that is on the larger side for most CPU-bound
real-world applications, although it still runs in real-time on standard
CPUs and is several times less complex than most research speech
enhancement architectures: The network has 4 encoder conv layers
with channels [32, 64, 128, 256], which are mirrored in the decoder,
a GRU bottleneck split in 4 parallel subgroups, and conv skip con-
nections [8]. The resulting network has 8.4 M trainable parameters,
12.8 M MACs/frame and the ONNX runtime has a processing time
of 45 ms per second of audio on a standard laptop CPU. For ref-
erence, the first two ranks in the 3rd DNS challenge [2] stated to
consume about 60 M MACs and 93 M FLOPs per frame. The net-
work is trained using the AdamW optimizer with initial learning rate
0.001, which is halved after plateauing on the validation metric for
200 epochs. Training is stopped after validation metric plateau of
400 epochs. One epoch is defined as 5000 training sequences of
10 s. We use the synthetic validation set and heuristic validation
metric proposed in [8], a weighted sum of PESQ, siSDR and CD.

5.3. Results

In the first experiment, we study the not well understood linear
weighting between complex compressed and magnitude compressed
loss (4). Fig. 4 shows the nSIG vs. nBAK tradeoff when changing
the contribution of the complex loss term with the weight λ in (4).
The magnitude term acts as a regularizer for distortion, while higher
weight on the complex term yields stronger noise suppression, at the
price of speech distortion. An optimal weighting is therefore found
as a trade off. We use λ = 0.3 in the following experiments, which
we found to be a good balance between SIG and BAK.

Table 1 shows the results in terms of nSIG, nBAK, nOVL and
WER for all losses under test, where DNS, HQ, and meet refer to the
three test sets described in Sec. 5.1. The first three rows show the
influence of the STFT resolution FL {·} used to compute the end-
to-end complex compressed loss (4), where we used Hann windows
of {20, 32, 64}ms with {50%, 50%, 75%} overlap. The superscript
of LSD indicates the STFT window length. We can observe that
the larger windows lead to improvements of all metrics. This is an
interesting finding, also highlighting the fact that speech enhance-
ment approaches implemented on window sizes or look-ahead are
not comparable. With the decoupled end-to-end training, we can im-
prove performance with larger STFT resolutions of the loss, while
keeping the smaller STFT resolution for processing, to keep the pro-
cessing delay low. Similar to many other frequency weightings, the
ERB-weighted spectral distance did not work well, showing a sig-

loss nSIG nBAK nOVL WER (%)
dataset DNS DNS HQ meet

noisy 3.87 3.05 3.11 27.9 5.7 16.5
L20
SD (20 ms, 50%) 3.77 4.23 3.50 31.0 5.9 18.7
L32
SD (32 ms, 50%) 3.79 4.26 3.53 30.6 5.9 18.6
L64
SD (64 ms, 75%) 3.79 4.28 3.54 30.1 5.9 18.4
L64
SD-ERB 3.73 4.22 3.46 31.9 6.0 18.6
L64
SD-CD (5) 3.79 4.26 3.53 30.4 5.8 18.1
L64
SD-MOS (6) 3.78 4.27 3.53 30.2 6.0 18.0
L64
SD-WER (6) 3.79 4.27 3.53 30.5 5.8 18.2
L64
SD-MOS-WER (6) 3.79 4.26 3.53 30.1 5.8 18.4
L64
SD-PANN4 (7) 3.79 4.27 3.54 30.4 5.8 18.5
L64
SD-wav2vec (7) 3.79 4.26 3.53 30.3 5.9 18.6

Table 1. Impact of modifying and extending the spectral loss on
perceived quality and ASR. Top two results are printed bold.

nificant degradation compared to the linear frequency resolution.
Contrary to expectations, the additive CD term did not help to

improve SIG further, but slightly reduced BAK. It did however im-
prove the WER for the high quality and meeting test data. Disap-
pointingly, the non-intrusive MOS weighting did not improve any
MOS metrics over the plain best spectral distance loss, and shows
no clear trend for WER. A reason could be that overall MOS is
still emphasizing BAK more, whereas we would need a loss that im-
proves SIG to achieve a better overall result. The non-intrusive WER
weighting shows a minor WER improvement for the high-quality
and meeting data, with small degradation of DNS testset compared
to L64

SD only. As the ASR models to train the non-intrusive WER
predictor were trained on mostly clean speech, this could be a reason
for the WER model not helping the noisy cases. The MOS+WER
weighting ranks in between MOS and WER only weighted losses.

Tab. 1 shows results for the PANN-augmented loss using the 4-
layer PANN only, which also does not show an improvement. Using
more PANN layers or a higher PANN weight γ > 0.05 resulted in
worse performance, and could not exceed the standalone LSD loss.
Possible reasons have already been indicated in Fig. 3. The wav2vec
ASR embedding loss term shows also no significant improvement
in terms of WER or MOS. Note that the P.835 DNSMOS absolute
values, especially nOV L are somewhat compressed. The CRUSE
model with L20

SD achieved ∆SIG = −0.17, ∆BAK = 1.98,
∆OV L = 0.85 in the subjective P.835 tests [25].

6. CONCLUSIONS

In this work, we provided insight into the advantage of magnitude
regularization in the complex compressed spectral loss to trade off
speech distortion and noise reduction. We further showed that an in-
creased spectral resolution of this loss can lead to significantly better
results. Besides the increased resolution loss, modifications that also
aimed at improving signal quality and distortion, e. g. integrating
pre-trained networks could not provide a measurable improvement.
Also, loss extensions that introduced knowledge from pre-trained
ASR systems showed no improvements in generalization for human
or machine listeners. The small improvements in signal distortion
and WER indicate that there is more research required to improve
these metrics significantly.
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