Check for
Updates

TIPSY: Predicting where traffic will ingress a WAN

Michael Markovitch
Brown University, USA
mmarkovi@cs.brown.edu

Sharad Agarwal
Microsoft, USA
sagarwal@microsoft.com

Chuanji Zhang
Microsoft, USA
chuazhan@microsoft.com

ABSTRACT

In addition to consumer workloads, public cloud providers host en-
terprise workloads such as video conferencing and AI+ML pipelines.
Enterprise workloads can, at times, overwhelm the available ingress
capacity on individual peering links. Traditional techniques to ad-
dress this problem in the consumer setting do not always apply
here, such as use of CDN caches in eyeball networks.

Ingress congestion events necessitate shifting traffic to other
peering links at short timescales. While content providers use such
techniques in the egress direction, ingress is inherently a different
and more challenging problem. Once a packet leaves an enterprise
network, it is subject to opaque routing policies that influence the
path to the cloud provider.

We present TIPSY, a statistical-classification-based system for
predicting the peering link through which a flow will enter a WAN.
TIPSY’s predictions are used to safely operate a congestion miti-
gation system that injects BGP withdrawal messages to redirect
traffic away from congested peering links. We train TIPSY on traffic
data from the Azure WAN, and we demonstrate 76% accuracy in
predicting through which 3 peering links (out of thousands) a flow
will enter the network after BGP withdrawals.

CCS CONCEPTS

« Networks — Network reliability; Network management; Network
monitoring; Public Internet; « Computing methodologies — Su-
pervised learning by classification; Ensemble methods.

KEYWORDS
WAN, peering, BGP, statistical classification

ACM Reference Format:

Michael Markovitch, Sharad Agarwal, Rodrigo Fonseca, Ryan Beckett, Chuanji
Zhang, Irena Atov, and Somesh Chaturmohta. 2022. TIPSY: Predicting where
traffic will ingress a WAN. In ACM SIGCOMM 2022 Conference (SIGCOMM
'22), August 22-26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3544216.3544234

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08...$15.00
https://doi.org/10.1145/3544216.3544234

Irena Atov
Microsoft, USA
iratov@microsoft.com

233

Ryan Beckett
Microsoft, USA
rybeckett@microsoft.com

Rodrigo Fonseca
Microsoft, USA
rofons@microsoft.com

Somesh Chaturmohta
Microsoft, USA
someshch@microsoft.com

1 INTRODUCTION

Large cloud and content providers operate wide-area networks
(WANSs) with hundreds or thousands of peering links with other
networks. Such pervasive connectivity with the rest of the Internet
improves the performance of traffic that is exchanged with these
WANSs. However, widespread peering connectivity also comes with
challenges and risks. WAN operators must stay ahead of peering
link outages and provision sufficient capacity elsewhere to avoid
cascading outages. Moreover, as the traffic profile changes over
time, operators have to identify new peering opportunities and
decommission others. With more peering, operators face increased
costs, management complexity, attack surface area, and number
of outages. With less peering, users may face increased latency as
their traffic traverses longer Internet paths.

Despite careful planning and provisioning of WAN peering,
changing application workloads can at times overwhelm the avail-
able capacity in the ingress direction on individual WAN peering
links. For instance, onboarding new enterprise customers to the
cloud as well as increased demand for video conferencing, docu-
ment hosting, and video AI+ML workloads from existing customers
can result in large data transfers concentrated over individual peer-
ing links at times. When congestion happens, it can lead to high
packet loss and, as a result, degraded user experience.

Congestion incidents for ingress traffic necessitate quickly shift-
ing some traffic from an overwhelmed peering link to other peering
links. Unfortunately, unlike in the egress direction, WAN operators
have few mechanisms available to control the path that ingress
traffic takes to reach their network. While BGP offers some crude
mechanisms to signal preferred ingress points (e.g., the multi-exit
discriminator attribute or AS path prepending (e.g., [33]), these
mechanisms are both coarse grained and heuristic — they may just
be ignored by ASes (Autonomous Systems) along the path.

One way to mitigate ingress congestion in a WAN is through the
selective withdrawal of BGP advertisements to peers. Large cloud
and content providers rely heavily on BGP anycast to advertise their
IP address blocks globally. Withdrawing a prefix from one or more
peers will re-route traffic through the Internet to an alternative
peering link — one that ideally has spare capacity. However, blindly
withdrawing BGP advertisements can lead to chaos; if the shifted
traffic moves to other peering links that do not have sufficient spare
capacity, then those links may themselves become congested.

To enable congestion mitigation for ingress traffic, in this paper
we present TIPSY,! a system that predicts where traffic will enter a

!Traffic Ingress Prediction SYstem

https://doi.org/10.1145/3544216.3544234
https://doi.org/10.1145/3544216.3544234
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544216.3544234&domain=pdf&date_stamp=2022-08-22

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

WAN with high accuracy. Despite not having all the private infor-
mation needed to build a deterministic model of Internet routing,
despite large WANs having thousands of peering links over which
a flow can arrive, and despite individual ASes spreading their traffic
over hundreds of peering links, we find that it is possible for a large
cloud provider to predict how traffic will enter their WAN.

At the heart of TIPSY is a system for statistical classification,
which is used to identify the most likely ingress peering links for a
given flow. TIPSY handles extensive data collection, has a scalable
processing pipeline, and produces output to operators to identify
which peering links they need to focus on and why. Note that TIPSY
predicts the outcome of provided flows and does not predict what
the future traffic matrix will be. The latter is a separate problem
that prior works have addressed (§ 7).

TIPSY is integrated with the Azure WAN’s congestion mitigation
system that injects BGP withdrawals to a specific peer when it
detects that a peering link is being overwhelmed by ingress traffic.
By predicting the most likely new ingress links, TIPSY ensures that
the system will only inject such withdrawal messages when, with
high probability, the mitigated traffic will shift to new peering links
with sufficient spare capacity to handle the increased traffic volume.

To summarize, our contributions in this paper are:

o We provide an overview of the traffic ingress prediction problem
for WANSs, and motivate its use in addressing ingress peering
link congestion through prefix withdrawals.

o We build and evaluate TIPSY, a system that uses statistical classi-
fication to solve this prediction problem for the Azure WAN. We
demonstrate accuracy in predicting the top three links through
which 76% of bytes will enter the WAN after BGP withdrawals.

o Using TIPSY, we identify high-risk events that could result in
spillover traffic exceeding the provisioned capacity of other peer-
ing links on the Azure WAN.

In addition, we consider outages of peering links as degenerate
cases where all prefixes are withdrawn at those links. We use these
situations as evaluation points and argue that operators can also
use TIPSY in capacity planning to address inevitable peering link
outages. We expect TIPSY to be applicable to other large WANS as
well. However, it is very likely overkill for small networks with few
peering links, as the prediction challenge there is trivial.

We believe this is the first work to address this problem. Pre-
dicting where traffic will ingress a large WAN is non-trivial. Once
an Internet-bound packet leaves its source, it is subject to a vari-
ety of opaque routing policies, connectivity constraints, and traffic
engineering strategies in different ASes that influence the path it
takes. Detailed information about AS-level policies is typically con-
fidential and not available outside that AS. Given the difficulty of
predicting ingress Internet paths, to date researchers have largely
focused on the problem of traffic engineering within the WAN or
of egress traffic [6, 8, 9, 11, 16, 17, 20, 21, 23, 27, 35, 39, 40].

This work does not raise any ethical issues.

2 BACKGROUND & MOTIVATION

Large cloud and content providers operate networks with wide
peering surfaces and significant egress traffic from customer and

234

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

first-party services. Cloud providers also have significant traf-
fic in the ingress direction, due to onboarding of enterprise cus-
tomers, large-scale hosted storage services, sensor and video ana-
lytics pipelines, among others.

Traffic engineering is constantly required to avoid congested
links, manage upgrades and maintenance, and to mitigate adverse
events. This is a hard problem given the large number of peers and
peering links, the diversity of customers, the constant changing
nature of traffic, and the asymmetric nature of the control knobs in
both directions. While solutions exists to effectively steer traffic in
the egress direction towards an external destination [35, 40], the
ingress direction poses a much harder problem [33].

With many possible ingress peering points, cloud providers make
heavy use of BGP anycast, advertising internal prefixes on most or
all peering links. At each AS hop of an incoming flow, there can be
multiple routes to take, and the final routes result from independent
decisions of each AS in the path. When there is inbound congestion
on a link, the most effective solution for the affected network may
be to selectively stop advertising one or more prefixes on the af-
fected peering. However, this may trigger a new set of independent
decisions by the ASes on the path, causing the traffic to go to other
links, which may, in turn, become themselves congested.

This is a significant problem. In the Azure WAN, for example, in
the second semester of 2021, we experienced enough ingress conges-
tion events that resulted in a few hundred BGP prefix withdrawals
per week, on average. In some of these, withdrawals from one peer-
ing link caused cascading congestion that led to a succession of
other withdrawals until traffic was sufficiently dispersed.

Predicting the effect of one or more prefix withdrawals on other
links can be an enormous aid to operators, as there are usually
multiple alternative actions that they can take, such as simultaneous
withdrawals in multiple peering links, withdrawals of alternative
prefixes, or, in a longer time frame, guide capacity planning.

Techniques to spread user requests over multiple servers, such as
DNS-based load balancing, are used effectively by content providers
(e.g. [30]), but are insufficient to fully address ingress congestion for
cloud providers. Enterprise workloads include long-lived flows [30]
with significant ingress bytes, especially with widespread use of
IPSec and VPN tunnels to extend on-prem enterprise networks into
the public cloud. Those connections cannot be terminated at static
CDN caches deep inside ISP networks, and DNS load balancing
does not shift flows already in flight. Hence a solution is needed
at the routing layer, while DNS-based solutions can continue to be
used complementarily for CDN traffic and new flows.

Cascading Ingress Congestion Example On 04 January 2022,
around 21:00, a peering link 11 with 400 Gbps capacity with peer AS
B inlocation L1 in the US hit 90% utilization in the ingress direction.
A simplified topology is shown in Figure 1. To mitigate this conges-
tion, a BGP withdrawal was issued for a /10 anycast prefix at I1.
Utilization subsequently dropped to about 18%. However, peering
link 12, also with 400 Gbps capacity with the same peer in the same
geographic location, took on some of that load and it then exceeded
80% ingress utilization. Another BGP withdrawal was issued for
the same prefix at I2. This caused peering links I3 and I4 with the
same peer but with only 100 Gbps capacity each in location L2 in
the US to hit 97% and 85% utilization. Additional BGP withdrawals

TIPSY: Predicting where traffic will ingress a WAN

—> Congested link
—> BGP withdrawal
» BGP advertisement

Peers

Ingress
links

L

Our WAN

AN

Figure 1: Ingress congestion incident. Green arrows represent
BGP advertisements for an example destination D to a source
S. Red arrows represent congestion events on ingress links,
and purple arrows represent manual BGP withdrawals to
relieve link congestion. Blue Numbers indicate the order of
events leading to the incident. After withdrawing advertise-
ments from location L1, traffic shifts and congests location
L2, which has less peering capacity.

were then issued for that prefix at I3 and I4, at which point that
load was spread diversely enough to not exceed safe utilization.

Ingress congestion events can last for long periods due to time
spent detecting congestion from network measurement data and
waiting for BGP convergence in one or multiple withdrawal actions.
We have observed events lasting many minutes, to hours, to even
days (§6). Congestion eventually dissipates due to traffic being
shifted to links with sufficient capacity, or the source of the flows
reducing traffic load, sometimes in response to poor performance.

TIPSY was not operational at the time of this incident. Predicting
the likely outcome of prefix withdrawals in this incident is non
trivial. There are hundreds of transit peering connections that the
traffic from AS B could have theoretically arrived on. Just focusing
on the direct peering connections with AS B still yields 60 different
routers in 31 locations across the world. Even if focusing within
the same country of US, there are many direct peerings with AS B
at 7 different geographic locations.

In post-incident analysis, we trained a TIPSY model on 90 days
of data ending on 03 January 2022 and queried it against the flows
that arrived on I1 to the prefix that was withdrawn. TIPSY correctly
identified I2 as being at highest risk, getting 50 Gbps additional
load, followed by I3 and I4 getting 47 Gbps of additional load.
It also identified 22 additional links, but each expected to receive
fewer than 4 Gbps of additional load. Armed with this information,
the operator would have had better options. They could have with-
drawn the prefix from I1, 12, I3, I4 simultaneously at the start of the
incident and avoid the cascade of congestion events that resulted
in lengthy packet delays and drops. They could have focused on
other prefixes that would not have resulted in a cascade and would
still shift sufficient traffic to mitigate congestion on I1.

235

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

This example also demonstrates why this problem cannot be
solved by waiting for all ASes to deploy egress traffic engineering
(TE). There may not be sufficient additional peering capacity that
a neighbor has with the Azure WAN to shift traffic under conges-
tion or outages, but a different neighbor may. Other links that the
neighbor has may be less optimal than what a different neighbor
has from a path length or latency point of view.

Ingress Traffic Prediction To enable effective ingress traffic en-
gineering, we focus on the problem of predicting the ingress link
that traffic will use. Consider a large cloud provider network, such
as the Azure WAN, which has thousands of peering links across
many different ASes. The Azure WAN connects to some small ASes
via a single peering link [5], while larger ASes may have many
peering links with the Azure WAN spread over multiple metro
regions around the world. Figure 1 shows a high-level depiction
of how packets from a source S, in a remote AS A, find a route to
server D in the Azure WAN. The ingress path taken from S to D is
constrained by the advertisements made by the Azure WAN, but
each AS along the path to AS A also makes independent choices as
to which path to select and re-advertise. Using BGP anycast, the
Azure WAN may advertise the prefix for D on multiple, typically all,
peering links. Predicting the ingress link for traffic is a challenging
problem for a number of reasons:

(1) Many possibilities: As shown in Figure 1, the combination
of BGP anycast with the increasingly densely connected AS topol-
ogy [7] results in a large diversity of Internet paths that traffic may
take from any given source. Moreover, determining the exact path
that will be taken would require knowledge of all the inter-domain
and intra-domain policies and traffic engineering systems used by
each AS along the path(s) from the source to the WAN.

(2) Asymmetry of control: Unlike with egress traffic, where
operators can select on which outgoing links to send traffic [35, 40],
there is very little that operators can do to steer ingress traffic
beyond coarse mechanisms such as BGP MED [18] or selective
advertising. Even then, it is hard to predict the outcomes of these
measures, as they depend on independent decisions by other ASes.

(3) Lack of visibility: Peering agreements between ASes are not
necessarily public, nor always visible through BGP announcements.
Even state-of-the-art Internet topology research [22] is based on
incomplete data gathered from BGP listeners (and it has limited
information about multiple peerings between the same ASes at
different locations). Furthermore, BGP advertisements provide in-
formation about reachability in a single direction (egress) and there
is no guarantee or even likelihood of symmetry.

(4) Constant change: Lastly, the Internet topology is constantly
changing, due to intentional changes (peering and de-peering, traf-
fic engineering, etc.), and un-intentional changes (BGP route flap-
ping, fiber cuts, etc.).

To quantify the difficulty of the ingress prediction problem, we
analyzed the Internet topology using BGP Monitoring Protocol
(BMP) [4] data, and inbound traffic using Internet Protocol Flow
Information Export (IPFIX) [3] data, collected from edge routers in
the Azure WAN. Details on this data and time window are in §4.1.

We examine the AS topological distance between the Azure WAN
and the source of traffic entering our network. We expect that the

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

=
o
!

o
©
A

o
o
!

Fraction of Bytes
from ingress flows
o
~

©
[N}
)

o
o

3 4 5 6 7
Length of shortest path

sy
N

Figure 2: CDF of Bytes by distance of source AS.

1.0
[V}
o
$ & 0.8
i3
kel
a0 0.6
5%
g8 —— ASDist = 1
£%0.2- AS Dist = 2
2 —— AS Dist =3
0.0 | | . . .
0 100 200 300 400 500

Number of ingress links for traffic from AS

Figure 3: CDF of Bytes from source ASes against the number
of our peering links that received it, grouped by AS distance.

further away a source AS is, the more intermediate ASes impose
their opaque policies on the route announcements that the Azure
WAN makes. Figure 2 shows the CDF of all the bytes that ingressed
the Azure WAN during the time period we considered compared to
the number of AS hops away the source is 2. In agreement with past
observations that the Internet topology is flattening [7], almost 60%
of the bytes come from an AS that peers directly with the Azure
WAN, and 98.2% come from ASes at most 3 AS hops away.

We might assume from this finding that the closer a source is to
the Azure WAN, the fewer paths the source selects to reach us, as
fewer route selection decisions are made. However, Figure 3 shows
that this is not the case. For every source AS that sent us traffic, we
calculated how many unique peering links their traffic arrived on,
and plotted the distribution of ingress bytes across all source ASes,
grouped by how many hops away the source AS is. It shows, for
example, that 50% of the bytes coming from ASes that are one hop
away are sprayed across up to 182 peering links. Many of these
peering links are not direct peering links with the neighbor AS,
hence it is not accurate to assume that traffic will arrive only on
the closest direct peering link. Interestingly, the further away the
source is, the fewer peering links will receive their traffic.

We believe part of the reason for this unexpected finding is that
large CDNSs that we peer with have isolated pockets of their network
across the globe that can only reach us through public connectivity,
because they lack a global WAN backbone. Additionally, other large

2We use the shortest, valley-free [37] route in the AS-level graph inferred from our
BMP data. The source AS may not actually use this path to reach the Azure WAN, but
for the purposes of Figure 2, this is a useful approximation.

236

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

ASes that we peer with may employ routing policies to avoid the
use of their private long-haul links in favor of public connectivity.

These two characteristics combine to make the problem non-
trivial. Despite this difficulty, we next define the problem more
precisely, and then demonstrate that simple statistical-classification-
based learning can achieve good results in predicting the ingress
link for traffic. Later in §5, we show how operators can leverage
these learning models to simulate “what-if” scenarios to assist with
the challenging task of mitigating ingress congestion.

3 TRAFFIC INGRESS PREDICTION

In this section, we first describe the traffic ingress prediction prob-
lem, then frame the problem as a statistical classification problem,
and finally define the classification models we will use throughout
the rest of the paper.

3.1 Problem definition

The goal of the traffic ingress prediction problem is to predict, for
a given traffic flow f, through which (of the possibly thousands)
peering links f will enter the network. In this work, we refer to
a peering link at the granularity of an individual eBGP session —
it may be running on a virtual interface comprised of a bundle of
physical links, or it may be running on a virtual interface that is
one of many on a physical interface. While we are interested in
the ingress peering link, predicting the coarser-grained AS- or PoP-
level Internet path [14, 26, 28, 36] is a related, but different problem.
Ours is a more feasible problem, and yet still provides substantial
value for important WAN operational tasks such as congestion
mitigation. We consider flows at the granularity of source and
destination prefixes, since BGP operates at that granularity. We
define these flow aggregates in §3.2 and §4.2.

We say that a flow f enters a WAN through peering link /, written
as ingress(f) = I. The goal of the prediction problem is then, given
a set of peering links £ for a network, and a flow f, to produce a

set of k predicted links L}J: ={l,....,lt} € L, which maximizes

the probability: P(ingress(f) € .Cf]:). Specifically, we allow for the
selection of multiple links as a knob that operators can turn in order
to trade off prediction accuracy and operational utility. Increasing
the parameter k can increase prediction accuracy but provides less
actionable information. In addition, a flow may enter the network
at multiple links (due to load balancing, or multiple flows being
combined into a flow aggregate, or a flow shifting over time), and
reducing k will limit how many of these multiple links can be
predicted, with the probability value predicting what fraction of
the flow’s bytes will arrive on that link.

3.2 Feature engineering for learning

We can view the traffic ingress prediction problem as a learning
problem. Given real observations about where traffic has entered
the network in the past, we use this information to build a model
of WAN ingress to make predictions about where future or unseen
traffic will arrive. As noted before, TIPSY does not attempt to predict
the future traffic matrix, which is a complementary problem.

A key design issue with any learning task is choosing the right
features for the problem. In this work, features must be derived

TIPSY: Predicting where traffic will ingress a WAN

from the sampled ingress traffic and combined with information
about the network. We focus on features related to the IP layer,
(e.g., source prefix) as they are the most likely to influence routing
decisions.? Specifically, we use the following features:

e Source AS: AS number where the packet originated, based on the
source IP address of the sampled flows and BGP advertisements
observed at the collecting router.

e Source prefix: All traffic entering the Azure WAN is from a
source IP address on the Internet. Using the entire /32 bits of IPv4
addresses significantly increases the feature space. Instead, ag-
gregating to the announced routing blocks sizes may hide useful
information, especially if BGP Route Aggregation is enabled by
ASes. In this trade-off between resolution and feature space, we
use the /24 prefix of the source IP as the feature. Our intuition
is that /24 is the widely accepted limit on routable prefix length
and inter-domain routing policies could operate at that boundary,
which would influence which peering link traffic arrives on.

o Source location: The source prefixes feature has a large feature
space — we see over 13M /24 prefixes in our dataset. Therefore
we choose to also use mappings from source IP addresses to
coarse geo-location (at the level of large metropolitan areas). Our
intuition is that traffic originating in the same AS and geographic
area with the same destination may share paths.

Destination region: All traffic entering the Azure WAN is des-

tined to an endpoint in our network, such as a datacenter server.

We use the geographic location of the destination within our

network.

Destination type: This is the type of service provided by the

destination server (e.g., web service, storage). Our intuition is

that load balancing at the application layer (e.g., DNS) may in-
fluence how traffic shifts, and this behavior may depend on the
destination service.

We always use source AS (A) and both destination region and
type, and explore combinations with source prefix (P) and source
location (L). Table 1 shows the resulting combinations, together
with the number of unique values of the features at the bottom, and
the number of unique combinations on the right. Since there is only
one location per /24 prefix in our dataset, the APL combination
is equivalent to the AP combination, and we do not have to look
at it specifically. However, training a model without source prefix
but with source location (AL) allows for transfer learning between
flows that are arriving from the same geographic location, with a
different prefix. In our dataset, there are 564 unique source locations
and over 13.5M unique /24 source prefixes. §4.2 explains how we
encode these features.

3.3 Model selection

The next design challenge is to build learning models that fit our
problem definition and feature space, without unnecessary com-
plexity or long query time when addressing ongoing congestion.
As such, there are several relevant design considerations:

3ECMP and more sophisticated routing such as that proposed in SDX [19] can use
transport and application layer features such as protocol and port, but we leave it as
future work to look for evidence of their widespread influence on AS-level paths.

237

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Source Destination
Name AS Prefix Location Region Type #
A . . . ~9IM
AP ~ 400M
AL ~ 15M
~T72K ~13.6M ~600 ~ 125K ~ 200

Table 1: Feature sets used for the models, along with the
approximate number of unique items for each feature (‘#
line) or combinations (‘4’ column). Note that because in our
network there is only one source location per prefix, there is
no need to consider APL, as it is equivalent to AP.

e Large feature space: there are over 70K ASes and over 125K
internal destination locations in the dataset (defined in §4.1).
These features are categorical, with no obvious way to reduce
their dimensionality. Furthermore, there are over 13M source /24
prefixes. While the IP address space is hierarchical, it also has
growing fragmentation, and potentially arbitrary discontinuities.
The large categorical feature space makes it difficult to use certain
classification algorithms such as those based on decision trees
(e.g., random forest). In our early tests, using these features in a
random forest model generated very large and deep trees, which
were brittle and impractical.

e Large number of classes: there are thousands of peering links
in the network, each of which represents a separate prediction
class. A statistical classification model must assign, to each such
peering link, a probability for it being used as the ingress point
for a given flow.

e Dynamic/evolving network: the Azure WAN’s peering with
other networks changes over time, peering between other dis-
tant ASes also evolves, and routing policies at these networks
also change over time. All of these impact the routing behavior
of Internet flows. It is important that the learning models be
(re)trained quickly, even taking into account the large feature
space and the number of classes.

3.3.1 Models. Given the above design considerations, and after
testing several techniques including DNNs (of different depths and
widths), we converged on two types of simple statistical classifi-
cation models that combine fast, single-pass training with small
memory footprint, support explainability, and offer accuracy that
is close to that of an oracle (§5): Naive Bayes models and a class of
Historical Models. Both also allow for weighting of training samples
by traffic volume. Weighting training samples is necessary to (1)
provide relative importance to larger flows within a flow aggregate
as defined in Table 1, (2) ignore a random stray packet of a flow that
arrives on a very different peering link; (3) predict what fraction
of a flow will arrive on one link, and what fraction on a second
link, and so on; and (4) make adversarial attacks against the models
more challenging. Because the results from the historical model
dominate those from Naive Bayes, here we describe and evaluate
the historical model, and leave Naive Bayes for Appendix A

Historical models: Our intuition is that Internet routing policies
are (usually) slow-changing and hence the likelihood that traffic
with the same characteristics will arrive at an ingress link that was
used in the past is high. With this in mind we design a Historical

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

model (Hist) that relies on arrivals in training data to predict the
ingress link for a flow.

Let B(-) represent the total bytes seen in training for a given
condition (-). For example, B(AS = 3,1 = 129) is the number of
bytes seen on all flows from AS 3 on link 129. For a given flow
f ={fi,fa,.--, fn), represented by a subset of the features above
(e.g., f1 = source AS, f, = source prefix, etc), the model computes
the probability that ingress(f) = I, which we write as p(I|f):

B(f.D)
B(f)

is then simply the set of the top-k peering

plf) =

Given this definition, .E{;
links sorted by p(I|f).

We train a Historical model by (i) collecting all the unique combi-
nations of features seen during training (feature tuples), (ii) finding
all the ingress links used for each tuple, and (iii) ranking the peer-
ing links according to how much traffic belonging to the tuple was
measured. We use the ranks of the links as priorities when using
the model to predict a peering link.

The most significant limitation of the historical model is that
there is no transfer learning between tuples: if an ingress link
was not traversed for a given tuple during training, it cannot be
predicted for that tuple. This limitation also means that if a tuple
was not seen during training the model cannot predict an ingress
link. However, on the flip side, this limitation allows the model to
prevent independent flows from affecting each other. However, the
larger the flow aggregate, such as in AL, the more specific flows
will comprise it, and we expect some transfer learning between
those specific flows within a single flow aggregate.

We trained and evaluated three Historical models, according to
the feature sets from Table 1: Hist4, Hist4p, Hist 47 . Because there
is only one location per prefix, Hist4py is equivalent to Histgp.

Ensemble models: We also trained and evaluated sequential en-
sembles of the above models, to leverage their complementary
strengths. In our notation, A/B means sequential composition of
the models: we resort to model B if there is no prediction for a
flow in model A. We examined the following ensemble models:
Histqp/ar/4, and Histar/ap; 4. In doing so, our motivation is to
overcome the limitation of transfer learning in historical models.
A model that uses a more specific flow definition will first provide
predictions, and subsequently a model with a less specific flow def-
inition will provide predictions. In this way, our hope is the most
accurate prediction is provided first, followed by those that incor-
porate more transfer learning. For this reason we use ensembles
sequentially instead of other schemes such as majority voting.

Geographic distance of peering: Finally, there are flow aggre-
gates for which we do not see k alternative ingress links, even
though they may exist. In these cases, we added a simple strategy
that uses geographic distance to find alternate peering links. We
take the peering AS A and ingress location [for the best match
(k = 1), and rank the other peering interfaces from A by geographic
distance to I. The model then uses this ranked list to complete the
list of interfaces returned. We evaluated this strategy on top of the
AL models (as it was the best for unseen withdrawals), and call it
AL + G in the rest of the paper.
Table 2 summarizes the complete set of models we used.

238

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

Type Name Features
Hist4 AS, Dest
Historical ~ Histap AS, Prefix, Dest
Hist 41, AS, Source Location, Dest
Ensemble H%stAP/AL/A H?stAp then H-istAL then H?stA
Histarjap/a Histar then Histap then Hist
+ Distance Histar+g Histar, + Geographic Distance

Table 2: Summary of the models trained and evaluated in
this work. Dest means both destination features.

Ingress Predictions
T
Prefix Selector &
BGP Updater Withdrawal Simulator
BGP Congestion Mitigation Congestion
Withdrawals System Events

E ! databricks
IPFIX

collec‘tm 74":"1

- »E. : Spark
BMP | Internal Big MLlib

collector | Data System

Data Collection ; Aggregation Processing

TIPSY System

Figure 4: Overview of TIPSY architecture

4 SYSTEM OVERVIEW

We have built and integrated the learning models from §3.3 into
a system called TIPSY. Figure 4 shows the high-level architecture,
consisting of several components including data collection, aggre-
gation / pre-processing, learning / inference, and integration with
a congestion mitigation system (CMS).

We designed TIPSY to run online as a prediction service and to re-
train its models daily. Given the timescale of the actions that TIPSY
enables, we found this to be a good trade off of accuracy and cost -
this allows it to make fast predictions for the congestion mitigation
system while also maintaining accurate prediction models and
reducing compute cost.

When asking TIPSY for a prediction, it is given a set of traffic
flows (tuples and bytes) arriving at the prefixes that will be with-
drawn, and at which peering links they will be withdrawn. TIPSY
operates on those input flows as is and does not predict future traf-
fic volumes. In practice, the list of flows and volumes from recent
past peak times tends to be sufficient.

4.1 Data collection

We utilize three pieces of data.

(1) BMP: We use the BGP Monitoring Protocol (BMP) [4] data
collected from the Azure WAN. BMP exports all the announcements
and withdrawals that a router has received from any neighbor,
even if those advertisements do not impact the forwarding table.

TIPSY: Predicting where traffic will ingress a WAN

BMP data listeners are spread across the Azure WAN, connect to
BGP routers including all peering routers, store advertisements
in a large data lake, and use automatic mechanisms to recover
from failures. TIPSY does not use this data to train any models
nor execute any models. Rather, this data is used for debugging
purposes and producing non-operational analysis such as Figures 2
and 3. We do not use BMP data from other ASes, as those are not
available to us.

(2) IPFIX: We use IP Flow Information Export (IPFIX) [3] data
collected from the Azure WAN. IPFIX exports flow level informa-
tion for data-plane packets that traverse a router interface. Due
to the massive amount of traffic traversing the Azure WAN, IP-
FIX data collection is configured to sample 1 out of every 4096
packets at random. While that reduces the likelihood of capturing
short-lived or low throughput flows, all of the use cases for TIPSY
concern shifts in large volumes of traffic. Similar to BMP, the Azure
WAN has distributed collectors that consolidate the flow data into
a conceptually central data lake. TIPSY processes only the ingress
flows recorded at all the peering routers. The important fields in
the IPFIX data that we use include source address prefix, source
ASN, destination address prefix, timestamp, and number of bytes
scaled up by the sampling rate.

(3) Metadata: We also rely on network metadata to augment
our BMP and IPFIX data. The destinations of all the IPFIX flows that
TIPSY processes are all inside the Azure WAN. We identify which
cloud service (e.g. storage or e-mail) and which metropolitan region
the flows are destined to. We use a comprehensive internal Geo-IP
database to identify in which country and metropolitan region the
external source prefix originates. BMP and IPFIX data have the
identity of the router and interface that the data was collected from,
and we look up which peer that link connects to and in which
geographic region it is.

Explicit attempts at ingress traffic engineering by altering out-
bound BGP route announcements (e.g., by AS path prepending)
can alter the "normal" flow of ingress traffic. Such human-induced
meddling could have adverse effects on the prediction accuracy of
TIPSY. For the time periods we evaluate in this paper, we identified
all the prefixes that were involved in any kind of ingress traffic
engineering. These prefixes accounted for 0.7% of all the prefixes
announced by the WAN and none of these prefixes were present in
the destination addresses in the IPFIX flows. We believe that these
prefixes were used for measurement experiments with minuscule
amounts of traffic. As part of future work, we plan to consider
explicit signaling from ingress traffic engineering systems to TIPSY
to enable better predictions for such traffic, if the volume of such
traffic becomes significant.

We have trained and evaluated TIPSY on many time windows
across many months and observed consistent accuracy. In this paper,
we present results from 10 November 2021 to 6 December 2021 for
training and testing our models.

4.2 Data aggregation

We store all our data in a large, geographically-distributed data lake
that is accessible to our compute systems. The volume of data is
large — the BMP and IPFIX data each consume TBs of storage per
day. To allow our learning system to train and test on weeks of

239

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Model Training One prediction Model size

Hista O(n) o(1) O(JA])
Histap O(n) o(1) O(]AP|)
Histaz O(n) o(1) O(JAL])

Table 3: Model costs in terms of training, prediction, and
memory complexity. n is the number of data points; | the
number of peering links; |A|,|AP|, and |AL| are the number of
unique combinations of the features defined in Table 1.

data, we have implemented a multi-stage pipeline. We aggregate
and compress the data prior to feeding it to our learning system.
We aggregate the IPFIX data into hour long chunks, indexed by
only the features that TIPSY uses (defined in §3.2).

Aggregating flows into hour-long chunks does not limit the abil-
ity of TIPSY to predict for flows at smaller or larger time windows,
as the aggregation merely sums the bytes received for a flow. Ag-
gregating flows by some features does limit TIPSY to not being
able to distinguish between two flows that are identical in those
features but different in features that we ignore (such as port num-
bers). However, for the purposes of addressing ingress peering link
congestion, that fidelity serves no purpose in calculating how many
bytes will shift to where, as a result of prefix withdrawals.

We join this IPFIX data with metadata to add additional salient
information as previously described. We compress the features in
this data by using a simple dictionary (i.e., ordinal encoding).

We run the aggregation for TIPSY on a performant, internal,
big data processing system that is optimized to scale for relatively
simple tasks, such as filtering and joining, but is not flexible enough
to support more complex tasks such as machine learning. We imple-
mented the aggregation component of the pipeline in an SQL-like
framework. After aggregation, the IPFIX data is 2% of the original
size and the BMP data is 0.07% of the original size.

4.3 Model execution

To train and execute the learning algorithms from §3.3, we use a
dedicated Databricks cluster, consisting of 6 worker nodes with
640GB RAM and 80 cores each and NVMe storage, and a driver
node with 256GB RAM and 64 cores. We use the Databricks 10.2
runtime, which includes Apache Spark 3.2.0 and Scala 2.12.

The models we selected only require one pass on the data to
train. Table 3 summarizes the runtime and memory costs of training
and prediction with the different models we use.

When training the historical model, it is necessary to group all
the measured ingress traffic by the respective flow tuples (as defined
in Table 1) and ingress link, which requires memory and processing
linear with the number of measurements (after the aggregation
stage). Then for each flow tuple the peering links are ranked by
bytes, keeping only the top k links. This requires memory and
processing linear with the number of unique flow tuples in the data
(the number of peering links per tuple is relatively very small). The
resulting historical models are linear in size with the number of
unique flow tuples in the training data. Using the historical model
for predictions is essentially a lookup in the model table, which
in Spark is done efficiently as a join between the list of flows of
interest and the model table.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

The memory cost of the ensemble models is the sum of the costs
of the components models; their runtime is a weighted sum of the
runtimes of the component models, where the weights depend on
whether the queries are satisfied by an earlier model.

4.4 Congestion Mitigation System

TIPSY is integrated with an in-house congestion mitigation system
(CMS) that leverages traffic ingress predictions to strategically shift
traffic away from congested peering links.

CMS monitors ingress peering link utilization. When it observes
that traffic volume has exceeded a fixed threshold (greater than 85%
link utilization for at least 4 minutes), it identifies in the IPFIX data
the fewest destination prefixes (top prefixes by traffic volume) at
the affected peering links that if shifted, would bring utilization
back down to acceptable levels.

Several tradeoffs are involved in picking the triggering utilization
threshold and time window. They include wanting to detect con-
gestion quickly, avoid unnecessary withdrawals if the congestion is
very short lived, and limit how much traffic is dropped or delayed.
In practice, 85% utilization for at least 4 minutes has worked well,
but both parameters can be easily modified.

CMS considers prefixes at the same size granularity as what is
being advertised in our BGP sessions. In theory, it could break apart
a large prefix into smaller prefixes and selectively withdraw some
of them, but does not do so in an effort to balance the tradeoffs
between fine-grained TE, increasing the BGP table sizes of our
neighbors, and route convergence time.

CMS then queries TIPSY to determine which other peering links
these flows would likely shift to if CMS were to withdraw each
of those prefixes. With these predictions, CMS determines which
prefixes are safe to shift, will not overload other peering links, and
yet will shift sufficient traffic away from the congested peering link.
CMS then injects BGP withdrawal messages into the edge router for
these prefixes. Later, when traffic volumes have returned to normal,
those prefixes are re-announced at the original peering link.

Prior to TIPSY, CMS would issue a withdrawal for prefixes, not
knowing which other links would receive their traffic, and if those
links had capacity. When new links became overloaded, CMS would
issue additional withdrawals on those other links, just as in the
example in §2.

5 EVALUATION OF TIPSY

In evaluating TIPSY, our goal is to address several questions that
are pertinent to a WAN operator:

o How do we define the prediction accuracy of these models?

e How accurate and close to optimal are different models?

e How accurate are different models at predicting traffic ingress
during normal operations vs. for BGP withdrawals?

e How long should the training window be?

e How long is a trained model useful for?

e What is the best model, considering accuracy, generality, and
complexity?

o How effective is TIPSY in identifying at-risk peering links?

240

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

5.1 Methodology

5.1.1 Training data. Ideally we would evaluate the accuracy of
TIPSY on withdrawal events, and verify if the bytes from affected
flows would indeed enter the network through the interfaces pre-
dicted by TIPSY. If we were to evaluate the accuracy of TIPSY’s
predictions on the outcome of only those prefix withdrawals that
CMS determines to be safe based on TIPSY’s predictions, it could
bias the results. It would eliminate from the accuracy calculation
those withdrawals that were deemed unsafe and not executed by
CMS on the basis of predictions by TIPSY.

Instead, we examine another source of prefix withdrawals that
occur in network operation — peering link outages. Peering link
outages are similar to local prefix withdrawals since the BGP session
is terminated and traffic must seek alternative routes into the Azure
WAN. However, unlike with individual prefix withdrawals, peering
link outages provide a massive source of additional data as to where
ingress traffic will be redirected since all advertised prefixes are
effectively withdrawn for the duration of the outage. We observe
that over a year most links have at least one outage (§5.3).

To evaluate TIPSY, we examine previous peering link outages
that last for any contiguous period between 1 hour and 24 hours.
We do not consider outages that last longer than 24 hours as those
tend to represent exceptional cases (e.g., decommissioning peering,
or natural disaster). We do not consider outages that last less than 1
hour because TIPSY processes massive quantities of data and one of
the techniques we use to scale is to aggregate data into hour-long
windows before it reaches the training component.

We infer outages from IPFIX data - if a peering link received
no bytes in a one-hour window, we consider it to have an outage.
While using IPFIX data to find outages may not seem intuitive, it
is the ground truth about the operating state of the network. We
found that other sources, such as SNMP, were far less reliable. Both
for training and evaluation, for each flow (or aggregate) that was
in a link with an outage, we look at all the links where the flow
appears during the outage.

For our evaluation we use three-week training periods of ingress
traffic data for TIPSY to learn from and test on one week of unseen
traffic ingress data. For our main results we used training data from
November 10-30, 2021, and tested on traffic data from December
1-6, 2021. The justification for three-week training and one-week
testing time periods were derived empirically (see Appendix B).

5.1.2 Prediction accuracy. As explained in Figure 3, we have ob-
served traffic from some source ASes entering the WAN at as many
as a few hundred different peering links. Given some aggregate
of traffic from Table 1 in the testing data, and the need to predict
where that traffic will arrive on the WAN in the future, the indi-
vidual predictions are numerous. A model would identify which
peering link will receive the most bytes, followed by which other
link will receive the second most bytes, and so on for hundreds
of links. The accuracy of a model is the sum of all the bytes that
it correctly matched to the actual links that received the traffic in
testing data, divided by the sum of all the bytes for all flows.
However, training a model to provide accuracy at the hundredth
and beyond possible link that can receive traffic for a flow tuple, and
calculating such predictions is both computationally inefficient and
unnecessary. While traffic from an AS may be spread across many

TIPSY: Predicting where traffic will ingress a WAN

1.0 A1 _I_'r

0.9 1

0.8 1
—— Oracles

Oracleap
—— Oraclea.

0.7 1

Fraction of Bytes matched

0.6 T

10° 10! 102

Figure 5: Prediction accuracy of oracle as a function of the
number of ingress links predicted.

peering links, individual flows might arrive at fewer links. The CMS
needs to know which peering link(s) will receive large volumes
of traffic in different situations, and small amounts of bytes are
immaterial to that need. How many links per ingress flow should
our models be trained for and evaluated against?

We answer that question with Figure 5. We define an oracle
as one that has perfect knowledge of the testing data - it knows
exactly which link receives how many bytes for every ingress flow.
However, we limit it to providing a maximum number of predictions
per flow. For example, when k=10 in Figure 5, the oracle gives the
identity of the link and the number of bytes it received, for each of
the ten links that receive the most traffic for each ingress flow in
the testing data. We calculate the accuracy of the oracle for each of
the three definitions of tuples from Table 1.

At the tail end of graph, where the oracle is unrestricted, it
provides perfect prediction accuracy of 100%. When restricted to
predicting how many bytes arrive at only the top 1 link for a flow
(the left most point), it can provide only 65-85% accuracy and misses
what happens to 15-35% of the traffic. Worse, if that one link for a
flow is unavailable (due to a link outage or prefix withdrawal), it
can provide no answer.

We pick the top-3 link prediction accuracy as the main metric. At
k=3, the Oracle4p and Oracle 41 versions of the oracle demonstrate
that 97% of bytes are theoretically predictable. Later, we present
prediction accuracy results for k=1, k=2, and k=3, with the target
benchmark being k=3. Note that this top-3 prediction metric does
not mean that a model gets three guesses and if one of them is
correct, then it gets perfect accuracy. Rather, to get perfect accuracy,
it has to predict exactly how many bytes arrive at each of the 3
links that will receive the most bytes for a flow, and there should
be no other bytes arriving on any of the other links. Also note that
Figure 5 shows the CDF across every individual flow — the total
number of peering links that a model needs to consider is still large.

5.2 TIPSY prediction accuracy

Table 4 shows the prediction accuracy for future traffic for the
different models and the oracles. Our target benchmark is Top 3
(k = 3) accuracy as a percentage, but we include the two lower
values for k as well. The main conclusion is that accuracies for the
AP and AL models are very high - above 93% in all cases, and close
to the relevant oracle accuracy. The accuracy results for January
2021 in the Appendix (§D) are even higher (closer to 98%).

241

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Model Top1% Top2% Top3%
Oracle4 61.74 84.03 90.55
Hist 4 59.36 82.07 89.02
Oraclesp 80.66 98.13 99.46
Hist4p 75.62 95.28 97.09
Oracle4] 72.31 93.81 97.34
Histay 69.62 91.85 95.73
Histar+c 69.62 91.93 95.86
Histap/ar/a 76.02 95.95 97.88
HiStAL/AP/A 69.64 91.87 95.76

Table 4: Overall prediction accuracy, with 3 weeks of train-
ing and 1 week of testing. Numbers in bold show the best
accuracy for each k across all models.

° o © o
N > o o
) |))

Fraction of peering links

°

2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01
Date of first outage

Figure 6: Earliest time in calendar year 2020 that a peering
link was down.

5.3 Prediction accuracy for withdrawals

Given our use of peering link outages as a proxy for BGP route
withdrawals from §4, we collected data to better understand the
frequency with which peering link outages occur for the Azure
WAN. Specifically, we used IPFIX data collected over the entire
calendar year for 2020 and inferred peering link outage events based
on our description in §4. From this data, we made two observations:

(1) Most links have an outage at least once in the year: As
seen in Figure 6, the rate of new outages (outages on peering links
that did not experience a outage previously) grows almost linearly
over time and covers about 80% of all the peering links that were
active during that period. Note that we include all peering links,
both direct peering as well as Internet exchanges. The vast majority
of our peering links are direct peering.

(2) Some links had a recent outage: To complement the anal-
ysis of the first time an outage was seen we also checked the last
time an outage was seen (Figure 7): looking back from the first day
after the period, how long ago was the last time the link was down.
Like in the forward direction, looking back we see a mostly even
spread of unique outages over time with roughly a third of links
experiencing an outage within the previous 50 days.

In summary, peering link outages are an operational fact - they
happen frequently. Despite their frequency, we cannot assume that
past history is a perfect template of what will happen in the future,
for two reasons. First, we would have to go far back in history
to capture all link outages, even further back than the data we

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

1.0 1
0.8 A
0.6

0.4 1

Fraction of
links with outages

0.2 4

0.0

0 50 100 150 200 250 300 350
Days since last time down

Figure 7: Days since the last time a peering link was down.

Model Top1% Top2% Top3%
Oracle 4 78.67 86.16 92.35
Hista 55.69 62.92 67.45
Oracleap 94.25 98.41 99.56
Histap 58.93 62.88 64.08
Oraclear, 86.04 93.4 97.33
Histar, 60.74 67.54 70.65
Histar+c 62.71 71.12 76.42
HiStAp/AL/A 64.64 70.18 73.44
HiStAL/Ap/A 60.84 67.73 71.58

Table 5: Prediction accuracy, all link outages: with 3 weeks
of training and 1 week of testing, only for traffic that would
have arrived on a failed peering link. Best results in bold.

currently have which is for 1 year. IPFIX data for our network
consumes PBs per day, and is growing rapidly. To store a year’s
data on high performance storage that is replicated across compute
clusters for such analysis, would cost almost $10M USD annually
at public cloud rates, and even that is insufficient to capture all
outages. Second, even if we capture all the necessary data, if a link
outage happened at a low load time for the link, it may not reflect
what would happen at a peak time. Furthermore, traffic patterns
for the Azure WAN change over time.

5.3.1 All withdrawals. We now examine the accuracy of TIPSY
models specifically for traffic in the testing periods that were im-
pacted by BGP withdrawals initiated by peering link outages. Here,
we consider only those flows where the top 1 link that received
traffic during training was unavailable during testing, and only that
duration of time during testing when the link was unavailable. To
evaluate each model, it is given the prior of which peering links
are unavailable for which time periods. Hence those are not valid
choices, and the model will provide which link has the next highest
likelihood of receiving traffic. The prediction accuracy is shown
in Table 5. From the table, we make the following observations for
top k = 3 prediction accuracy:

e Models using source location (AL) outperform those without (A,
AP) — i.e., Histy, is more accurate than Hist4 and Hist4p. The
AL models allow for better generalization than AP, and make
effective use of more information than A models.

242

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

Model Top1% Top2% Top3%
Oracle 4 82.04 89.34 92.69
Histy 77.25 82.82 85.42
Oracleap 95.59 99.01 99.89
Histap 88.02 91.08 92.52
Oracleas 90.15 96.35 98.52
Histar, 84.49 89.61 91.97
Histar+c 84.62 89.77 92.43
Histap/ar/a 89.25 92.82 94.57
HiStAL/AP/A 84.52 89.66 92.04

Table 6: Prediction accuracy, seen outages: 3 weeks of training
and 1 week of testing, only for traffic that would have arrived
on a peering link with an outage, where the outage was also
experienced during training. Best results in bold.

Model Top1% Top2% Top3%
Oracle 4 76.14 83.78 92.09
Hista 39.52 47.99 53.97
Oraclep 93.25 97.97 99.31
Hist 4p 37.1 41.73 4275
Oraclear 82.95 91.19 96.44
Histay 42.92 50.99 54.66
Histar+g 46.33 57.31 64.56
Histap/aL/a 46.17 53.2 57.6
HiStAL/Ap/A 43.07 51.27 56.23

Table 7: Prediction accuracy, unseen outages: 3 weeks of train-
ing and 1 week of testing, only for traffic that would have
arrived on a peering link with an outage, where the outage
was not experienced during training. Best results in bold.

o Using geographical heuristics to complement learned traffic pat-
terns improves the accuracy significantly. Histar+G performs
better than the other models — hot potato routing is not uncom-
mon for outages.

e The best models are Histar,, Histar+G, Histar /ap/a, and Histapap -

Even though geolocation can be imprecise [31], it is quite useful
in TIPSY. For the purposes of learning the behavior of hot potato
routing policies, precise geolocation is often not necessary — it need
only be as precise as the difference in IGP weights between alternate
paths on an AS’es backbone, and in our experience, metro-level pre-
cision is sufficient. We rely on a proprietary Microsoft geolocation
database that aggregates information from many sources [12]. It
has sufficiently broad coverage and precision for TIPSY. Finally, in
Hist 47+ which relies on the location of peering links, we know
precisely where every peering link on the Azure WAN is, down to
the exact street address.

5.3.2 Seen and unseen withdrawals. To dissect the accuracy of our
models for traffic impacted by BGP withdrawals due to link outage
periods, we split the results into seen and unseen link outages.
Table 6 shows the accuracy for only those flows and time windows
where the primary receiving link had an outage in testing, and
the same outage was also experienced during training. In contrast,
Table 7 shows the accuracy for only those flows and time windows

TIPSY: Predicting where traffic will ingress a WAN

where the primary receiving link had an outage in testing, and
the same outage was not experienced during training. The number
of outages experienced during this time window are in line with
Figures 6 and 7. The total bytes affected by unseen outages was
about 57% of total bytes affected by all outages. We find that:

o TIPSY can predict the ingress for traffic experiencing a with-
drawal that was not previously experienced with surprisingly
good accuracy — about 65% for the best model. Despite the with-
drawal not having been experienced during training, even under
normal circumstances many flows arrive on multiple peering
links over time, either due to load balancing or other routing
variations on the Internet. Hence there is opportunity for models
to learn other likely links that flows will arrive on.

e Source location was not helpful for predicting traffic ingress
during seen link outages, however was quite useful in unseen
outages. We believe this is because for seen outages, past behavior
of how flows were re-routed is still valid, especially since we are
using only a 3-week training window, and hence more specific AP
models do well. For withdrawals caused by unseen link outages,
the geographic location of the source is useful in AL models as it
accounts for hot potato routing in picking the next best link.

e This is also why the most accurate model is different between
Table 4 and Table 5. In the former case, most traffic continues
to arrive on the same links as previously observed, while the
majority of traffic in the latter case involves unseen link outages.

e Geographic heuristics are effective for unseen outages. This pro-
vides strong evidence for hot potato routing in peering networks.

e Considering the accuracy for traffic impacted by both seen and
unseen link outages and overall accuracy for top k = 3, simplicity
of implementation, and training and execution overhead, we
consider the best TIPSY models to be Histar+ and Histsp/ar /-
We expect that for higher values of k, longer ensembles may
provide more value.

e These accuracy results are similar to what we see in other time
periods, some of which can be found in the appendix.

6 EXPERIENCE WITH TIPSY IN AZURE

As explained in § 5.1.1, we focused our quantitative evaluation
on peering link outages rather than prescribed BGP withdrawals.
Nonetheless, we have examples of TIPSY’s accuracy in real prefix
withdrawal incidents. §2 described one. Here we describe a few
more. In each case, we use a 3-week training window prior to the
incident with Hist414G. The accuracy of TIPSY in peering link
outages and these incidents below show that it is effective for both
wholesale route withdrawals as well as selective route withdrawals.

On 06 September 2021, a peering link in East Asia hit high utiliza-
tion. CMS withdrew two /24 prefixes. As a result, thousands of flows
were shifted, with about a hundred that were over 10Mbps each.
The goal was to shift about 10Gbps — just enough traffic to bring
down utilization to acceptable levels on this peering link, without
shifting too much traffic. In post-incident analysis, we ran a TIPSY
model trained on traffic prior to the incident. It identified three links
that the traffic would shift to, with two different transit providers,
two in the same metropolitan region and one in a different country
in East Asia, with the first two links absorbing the majority of the
traffic. All three links had sufficient capacity to absorb the traffic.

243

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

After CMS issued prefix withdrawals, traffic shifted as predicted to
those links. 2 hours after the withdrawals, traffic levels had dropped
sufficiently that the prefixes were re-announced by CMS.

On 15 November 2021, a similar incident occurred in a different
peering link in East Asia. Again, in post-incident analysis, flows
impacted by prefix withdrawals were correctly identified by TIPSY
as shifting to other peering links, both in the same metropolitan
region and another country, involving multiple ASes including
transit providers.

Earlier in 2021, in northern Europe, a peering link was congested
in the ingress direction. CMS issued prefix withdrawals, but this
caused another peering link with the same peer in the same location
to become overloaded. CMS then issued additional withdrawals
from the second link resulting in other peering links with the same
peer in a different city to become overloaded. After a third round
of prefix withdrawals, traffic was sufficiently spread out to other
peering links with the same peer in other countries. This series
of congestion incidents lasted about 2 days. Even though TIPSY
was not deployed at the time of this incident, we later ran it on
the affected flows and interfaces. TIPSY correctly identified the
cascade of traffic shifts on multiple links across the three withdrawal
incidents. If CMS were armed with this knowledge, it could have
issued prefix withdrawals simultaneously on all three sets of links
from the very start, reducing the congestion window.

In our experience, we have not noticed any side-effects of CMS’s
prefix withdrawals, such as other ASes doing egress TE in reaction
to our BGP withdrawals. Once traffic has calmed down, CMS re-
announces those prefixes. Since these congestion events last for
minutes to a few days, the withdrawals do not cause long term
impact to capacity planning.

As shown in Table 5, there are situations where TIPSY does not
correctly predict where a flow will arrive. In our experience running
TIPSY, we have observed this happening in two types of situations:

o The flow has previously arrived on one of several links, with
no discernable pattern to identify which of the several links it
will arrive on. The actual link it arrives on during an outage
isin a k > 3 prediction position.

o The flow has previously arrived on only one link, other flows
similar to it (same source AS and location and destination)
have also arrived on only that link, and that link is the only
peering connection with the neighbor AS.

The first situation requires additional work, such as considering a
larger k, which comes at the risk of making the decision by CMS
more complicated. The second situation should resolve itself over
time, as TIPSY observes the flow’s behavior when a prefix with-
drawal is issued.

There are two additional scenarios that are possible, which we
have not yet observed:

e There are significant changes to the topology or routing
policy of a neighbor AS.

e A neighbor AS has only one peering link with the Azure
WAN and uses default routing, in that it will always send all
traffic to that specific peering link.

In the first scenario, we again expect that TIPSY will recover in time
as it observes new routing behavior. When running in the Azure
WAN, TIPSY is re-trained daily to incorporate the latest observed
flow arrivals. In the second scenario, TIPSY will have no prediction

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

if CMS withdraws prefixes on the peering link, which is the correct
answer as there is no alternative path. Note that if some distant
AS uses default routing, but intermediate ASes do not, then TIPSY
will still provide useful predictions as those intermediate ASes still
have multiple paths to the Azure WAN that they can use.

Given how CMS uses TIPSY (§4.4), the penalty of an incorrect
prediction is low. If TIPSY predicts too few flows on a link, CMS
may have to issue additional withdrawals later, no different than
what it did prior to TIPSY. If TIPSY predicts too many flows on a
link, it will eliminate what should have been a safe withdrawal by
CMS, leading it to choose a different safe withdrawal. In the worst
case where all withdrawals are deemed unsafe, CMS has no choice
but to revert back to its original behavior prior to TIPSY.

7 PRIOR WORK

To the best of our knowledge, TIPSY is the first work to both de-
fine the problem of traffic ingress prediction, leverage its use in
congestion mitigation and capacity planning, and to solve it using
a learning approach. Nonetheless, there are several lines of work
related to TIPSY, namely topology modeling, traffic engineering
(TE) and traffic matrix (TM) prediction, which are complementary
to the goal of predicting ingress traffic locations.

Topology modeling: Many previous works have addressed the
problem of predicting Internet paths [14, 26, 28, 29, 36], usually
through a combination of traceroute measurements and BGP topol-
ogy information. TIPSY is concerned with the related but different
problem of predicting the ingress interface to a single large WAN,
not the entire paths. It also does not have access to AS paths from
the point of view of the sources. More importantly, TIPSY uses all
observed traffic as training data to predict likely volumes of traffic
in different possible interfaces, overcoming biases from BGP data,
and insufficient coverage from data plane measurements [10].

Traffic engineering: Pujol et al. [32] propose mechanisms for
eye-ball networks to inform peer content-provider networks about
the best ingress links to reach internal customers, based on their
internal topology. This is complementary to the problem of predict-
ing how arbitrary sources will send traffic in current and potential
network conditions. Such mechanisms are also not sufficient, as
they would not cover ASes beyond the first hop. Further, given the
number and diversity of peer ASes to the Azure WAN, it likely that
many such peers would not participate.

Researchers have extensively studied the problem of TE in the
context of WANS. Solutions are divided into offline and online sys-
tems depending on the frequency of re-optimization. Offline ones
include TEAVAR [9], INITE [17], COPE [39], and METL [6]. Online
systems can be further classified into centralized vs. distributed
solutions. TE solutions such as the proposal by Uhlig and Bonaven-
ture [38], RCP [11], B4 [21], SWAN [20], Espresso [40], and Edge
Fabric [35] optimize the network from a centralized vantage point,
while other solutions, e.g., MPLS-TE [8], TexCP [23], MATE [16],
and HALO [27], perform distributed TE.

While TE solutions may improve network performance (latency,
utilization), these systems rely on measured or predicted traffic
information (e.g., traffic matrix, application demand, etc.). TIPSY is
complementary to TE work in that it predicts wide-area network
ingress traffic locations, which is useful for TE, among other tasks.

244

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

Researchers have also proposed TE with migration [24] using
a technique called "router grafting". It would allow a network to
migrate BGP peering sessions to other locations and thereby alter
the TM to a more desirable state. Since the remote network is
unaffected, and may not even be aware of such a change, there is
limited impact to routing upstream. In contrast, when considering
BGP withdrawal, routing changes propagate outward leading to
the prediction problem that we solve in this paper with TIPSY.

Traffic prediction: Predicting the volume of traffic on individual
links or in a TM is yet another complementary line of work [13,
25, 34]. Such techniques are useful for planning to stay ahead of
traffic growth. While some use cases may overlap with those of
TIPSY, these techniques do not answer "what-if" questions, such as
what happens after a BGP withdrawal. Rather than predict demand,
TIPSY focuses on the highly challenging problem of predicting
per-prefix ingress peering links for large WANSs.

8 CONCLUSIONS

Predicting where traffic will enter a WAN is a challenging problem.
The size and complexity of the Internet topology, routing policies
and preferences employed by many networks, and the large peer-
ing surface areas of content provider and public cloud WANS all
contribute to making this problem complex. In this paper, we have
defined the WAN ingress prediction problem, identified a simple
learning-based approach to solve it, and demonstrated 76% accuracy
in predicting the 3 peering links that will receive the most bytes of
a flow for the Azure WAN after BGP withdrawals. Such accuracy is
sufficient to drive “what-if” analysis of candidate BGP route with-
drawals and enables TIPSY’s use in a congestion mitigation system
that safely steers traffic away from congested peering links.

While we focus on this one operational need, there are other
useful tasks that can benefit from TIPSY. We can analyze the risk
of any single peering link outage or single router or single site
outages, described in Appendix C. We have started to use TIPSY to
identify suspicious ingress traffic, where it is exceedingly unlikely
that a flow would arrive on a peering link. For example, we have
identified traffic supposedly from US national labs on peering links
in countries far away from the US. Operators could send such
spoofed traffic through DoS scrubbers. We could also use TIPSY for
de-peering. In the course of maintaining a large WAN, it is natural
to consider de-peering to reduce cost and operational overhead
with peers that add low value.

Going forward, active WAN manipulation, such as by commercial
SDWAN products [1, 2] and by systems such as Google Espresso [40]
and Facebook Edge Fabric [35], could increase the diversity of
ingress that a flow takes to reach a network. This is an interesting
problem that we plan to study in the future. To the extent that such
systems are driven by performance improvements, perhaps TIPSY
can also incorporate performance data to detect such manipulation
and consider performance in identifying the likely ingress.

ACKNOWLEDGEMENTS

We thank our shepherd, Oliver Hohlfeld, and the anonymous re-
viewers for helping us improve our paper.

TIPSY: Predicting where traffic will ingress a WAN

REFERENCES

[10]

[11]

[12]

[13

[14]

(15

[16]

[17]

(18]

[19

[20

[21

oo
0

Arista Software Defined Cloud Networking.
solutions/software-defined-networking.
Barracuda CloudGen WAN. https://www.barracuda.com/products/cloudgenwan.
IETF RFC 7011: Specification of the IP Flow Information Export (IPFIX) Protocol
for the Exchange of Flow Information. https://tools.ietf.org/html/rfc7011.

IETF RFC 7854: BGP Monitoring Protocol. https://tools.ietf.org/html/rfc7854.
Microsoft Azure Peering Policy. https://docs.microsoft.com/en-us/azure/internet-
peering/policy.

Sharad Agarwal, Antonio Nucci, and Supratik Bhattacharyya. Measuring the
Shared Fate of IGP Engineering and Interdomain Traffic. In Proceedings of the
13TH IEEE International Conference on Network Protocols, ICNP °05, pages 236245,
Washington, DC, USA, 2005. IEEE Computer Society.

Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios Giotsas,
and Ethan Katz-Bassett. Cloud Provider Connectivity in the Flat Internet. In
Proceedings of the ACM Internet Measurement Conference, IMC *20, pages 230-246,
New York, NY, USA, 2020. Association for Computing Machinery.

D. Awduche, J. Malcolm, J. Agogbua, M. O]jell, and J. McManus. Requirements
for Traffic Engineering Over MPLS. RFC 2702, RFC Editor, 9 1999.

Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjerner,
Asaf Valadarsky, and Michael Schapira. TEAVAR: Striking the Right Utilization-
availability Balance in WAN Traffic Engineering. In Proceedings of the ACM
Special Interest Group on Data Communication, SIGCOMM ’19, pages 29-43, New
York, NY, USA, 2019. ACM.

Randy Bush, Olaf Maennel, Matthew Roughan, and Steve Uhlig. Internet optom-
etry: Assessing the broken glasses in internet reachability. In Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement, IMC *09, page 242-253,
New York, NY, USA, 2009. Association for Computing Machinery.

Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,
and Jacobus van der Merwe. Design and implementation of a routing control
platform. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI'05, pages 15-28, Berkeley,
CA, USA, 2005. USENIX Association.

Matt Calder, Manuel Schroder, Ryan Gao, Ryan Stewart, Jitu Padhye, Ratul Ma-
hajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. Odin: Microsoft’s
scalable fault-tolerant cdn measurement system. In USENIX NSDI, April 2018.
G. Choudhury, D. Lynch, G. Thakur, and S. Tse. Two use cases of machine learning
for SDN-enabled IP/optical networks: traffic matrix prediction and optical path
performance prediction [Invited]. IEEE/OSA Journal of Optical Communications
and Networking, 10(10):D52-D62, Oct 2018.

Italo Cunha, Pietro Marchetta, Matt Calder, Yi-Ching Chiu, Brandon Schlinker,
Bruno V. A. Machado, Antonio Pescapé, Vasileios Giotsas, Harsha V. Madhyastha,
and Ethan Katz-Bassett. Sibyl: A practical internet route oracle. In NSDI, March
2016.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification and scene
analysis, volume 3. Wiley New York, 1973.

A.Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: MPLS adaptive traffic engineering.
In Proceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.01CH37213), volume 3, pages 1300-1309 vol.3, April 2001.
Ruomei Gao, Constantinos Dovrolis, and Ellen W. Zegura. Interdomain Ingress
Traffic Engineering Through Optimized AS-Path Prepending. In Proceedings of
the 4th IFIP-TC6 International Conference on Networking Technologies, Services,
and Protocols; Performance of Computer and Communication Networks; Mobile
and Wireless Communication Systems, NETWORKING’05, pages 647-658, Berlin,
Heidelberg, 2005. Springer-Verlag.

Timothy Griffin and Gordon T. Wilfong. Analysis of the MED Oscillation Problem
in BGP. In Proceedings of the 10th IEEE International Conference on Network
Protocols, ICNP *02, pages 90-99, USA, 2002. IEEE Computer Society.

Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P. Donovan, Brandon
Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan
Katz-Bassett. SDX: A Software Defined Internet Exchange. SIGCOMM Comput.
Commun. Rev., 44(4):551-562, August 2014.

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving High Utilization with Software-
driven WAN. SIGCOMM ’13, pages 15-26, New York, NY, USA, 2013. ACM.
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla,
Urs Holzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a Globally-
deployed Software Defined WAN. SIGCOMM ’13, pages 3-14, New York, NY,
USA, 2013. ACM.

Yuchen Jin, Colin Scott, Amogh Dhamdhere, Vasileios Giotsas, Arvind Krish-
namurthy, and Scott Shenker. Stable and Practical AS Relationship Inference
with ProbLink. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 581-598, Boston, MA, February 2019. USENIX
Association.

https://www.arista.com/en/

245

[23

[24

[25

IS
S

[27]

[28

[29

[30]

[31

[32

(34

[35

[36

[37

[38

(39]

[40

[41

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the
tightrope: Responsive yet stable traffic engineering. SIGCOMM ’05, pages 253~
264, New York, NY, USA, 2005. ACM.

Eric Keller, Michael Schapira, and Jennifer Rexford. Rehoming edge links for
better traffic engineering. SIGCOMM Comput. Commun. Rev., 42(2):65-71, March
2012.

Nandini Krishnaswamy, Mariam Kiran, Kunal Singh, and Bashir Mohammed.
Data-Driven Learning to Predict WAN Network Traffic. In Proceedings of the
3rd International Workshop on Systems and Network Telemetry and Analytics,
SNTA ’20, pages 11-18, New York, NY, USA, 2020. Association for Computing
Machinery.

Harsha Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas Anderson,
Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An information plane
for distributed services. In 7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 06), Seattle, WA, November 2006. USENIX Association.
N. Michael and A. Tang. Halo: Hop-by-hop adaptive link-state optimal routing.
IEEE/ACM Transactions on Networking, 23(6):1862-1875, Dec 2015.

Wolfgang Miithlbauer, Anja Feldmann, Olaf Maennel, Matthew Roughan, and
Steve Uhlig. Building an AS-Topology Model That Captures Route Diversity. In
Proceedings of the 2006 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SSIGCOMM ’06, page 195-206, New
York, NY, USA, 2006. Association for Computing Machinery.

Wolfgang Miihlbauer, Steve Uhlig, Bingjie Fu, Mickael Meulle, and Olaf Maennel.
In search for an appropriate granularity to model routing policies. In Proceedings
of the 2007 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SSGCOMM ’07, page 145-156, New York, NY, USA,
2007. Association for Computing Machinery.

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni, and
Theophilus A. Benson. Zero downtime release: Disruption-free load balancing of
a multi-billion user website. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM °20, page
529-541, New York, NY, USA, 2020. Association for Computing Machinery.
Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba
Gueye. Ip geolocation databases: Unreliable? SIGCOMM Comput. Commun. Rev.,
41(2):53-56, apr 2011.

Enric Pujol, Ingmar Poese, Johannes Zerwas, Georgios Smaragdakis, and Anja
Feldmann. Steering hyper-giants’ traffic at scale. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And Technologies,
CoNEXT ’19, pages 82-95, New York, NY, USA, December 2019. Association for
Computing Machinery.

Bruno Quoitin, Cristel Pelsser, Olivier Bonaventure, and Steve Uhlig. A per-
formance evaluation of BGP-based traffic engineering. International Journal of
Network Management, 15(3):177-191, 2005.

F. Schimbinschi, X. V. Nguyen, J. Bailey, C. Leckie, H. Vu, and R. Kotagiri. Traf-
fic forecasting in complex urban networks: Leveraging big data and machine
learning. In 2015 IEEE International Conference on Big Data (Big Data), pages
1019-1024, Oct 2015.

Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering Egress with Edge Fabric: Steering Oceans of Content to the
World. In SIGCOMM, pages 418-431, New York, NY, USA, 2017. ACM.

Rachee Singh, David Tench, Phillipa Gill, and Andrew McGregor. Predictroute:
A network path prediction toolkit. Proc. ACM Meas. Anal. Comput. Syst., 5(2), jun
2021.

L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz. Characterizing the
Internet hierarchy from multiple vantage points. In Proceedings.Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies,
volume 2 of INFOCOM, pages 618-627 vol.2. IEEE, 2002.

Steve Uhlig and Olivier Bonaventure. Designing BGP-based outbound traf-
fic engineering techniques for stub ASes. SIGCOMM Comput. Commun. Rev.,
34(5):89-106, oct 2004.

Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert
Greenberg. Cope: Traffic engineering in dynamic networks. SIGCOMM 06,
pages 99-110, New York, NY, USA, 2006. ACM.

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma,
Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius,
Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. Taking the
Edge off with Espresso: Scale, Reliability and Programmability for Global Internet
Peering. In SIGCOMM, pages 432-445, New York, NY, USA, 2017. ACM.

Harry Zhang. The optimality of Naive Bayes. In Valerie Barr and Zdravko Markov,
editors, Proceedings of the Seventeenth International Florida Artificial Intelligence
Research Society Conference, Miami Beach, Florida, USA, pages 562-567. AAAI
Press, 2004.

https://www.arista.com/en/solutions/software-defined-networking
https://www.arista.com/en/solutions/software-defined-networking
https://www.barracuda.com/products/cloudgenwan
https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc7854
https://docs.microsoft.com/en-us/azure/internet-peering/policy
https://docs.microsoft.com/en-us/azure/internet-peering/policy

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

APPENDICES

These appendices contain all of our additional data, experiments
and motivation for TIPSY that was too long to include in the main
paper. This may serve as a reference for the interested reader.

A NAIVE BAYES

Here we present additional learning models for ingress traffic pre-
diction that are based on Naive Bayes machine learning classi-
fiers. As in the Historical Model defined in 3.3.1, for a given flow
f={,fo..., fn), where f; is a feature (e.g., fi = source AS, f =
source prefix, etc), the Naive Bayes classifier (NB) [15] computes
the probability that ingress(f) = I, which we write as p(I|f). Using
Bayes rule:
pULf) < p(fIDp(D).

As with the Historical model, .Cf; is then simply the set of top-k
peering links according to p(I|f).

Under a strong independence assumption among the features,
then p(f|l) = [Ti2; p(fill), and we can compute each p(f;|l) from
the training data by counting the observed ingress traffic and
weighting it by the observed traffic volume for each feature. For
example, if B(-) represents the total bytes seen in training for a
given condition (-), then:

B(AS = 3,1 = 129)
B(l =129)

While the independence assumption is often violated in practice,
and in our setting in particular, others have found this model to
achieve surprisingly good performance in many settings [41]. It
has an advantage in that it can compute predictions on flows that
are not present in training, from the features of similar flows and
can easily handle weighting.

For training and testing Naive Bayes models we used Apache
Spark’s implementation (MLIib package). We were not able to train
a NB model using source prefix as a feature (NB4p), as that model
exceeded Databricks memory limitations, due to massive model
size (see Table 11). Using the subsets of tuples described in Table 1,
we trained and evaluated two NB models: NB4 and NB4; (Table 8).

p(AS = 3|l = 129) =

Type Name Features
NB NB4 AS, Dest
NB4a;r AS, Source Location, Dest

Table 8: The two Naive Bayes models we evaluated.

We tested Naive Bayes models and an ensemble of the Historical
model with location and the Naive Bayes with location, using older
data than the used in the evaluation section: 3 weeks of training
(October 1-21, 2020), and one week of testing (October 22-28, 2020).
The overall accuracy is shown in table 9, and accuracy for outages
is shown in table 10. While the top-3 accuracies are high, the per-
formance of the Naive Bayes models is inferior to the historical
models, while being orders of magnitude more expensive.

Model Costs As the Historical Model, it only requires one pass on
the data to train. Table 11 summarizes the runtime and memory
costs for the NB models.

246

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

Model Topl1% Top2% Top3%
Oracle4 66.29 86.10 91.84
Hista 63.21 83.47 89.98
NB4 60.11 80.55 87.48
Oracle s p 77.05 94.82 97.60
Histap 73.54 92.88 96.01
Oracle sy, 75.69 94.96 98.02
Histar, 70.21 90.74 94.39
NBT 67.25 88.56 93.29
Hist 41 /NB 4L 70.85 91.65 95.47
HiStAP/AL/A 73.70 93.24 96.41
HiStAL/AP/A 71.04 91.82 95.63

Table 9: Overall prediction accuracy, with 3 weeks of training
and 1 week of testing.

Model Top1% Top2% Top3%
Oracley 57.10 80.84 86.87
Hist4 34.17 51.18 66.53
NB4 29.68 45.67 51.87
Oraclep 68.70 90.54 93.57
Histap 30.01 51.00 71.00
Oracleay, 68.19 90.64 94.71
Histar, 41.46 59.81 73.82
NBa; 38.50 56.08 65.07
Hist47 /NBar 38.97 59.08 74.74
Histap/aL/a 37.48 59.14 79.54
HiStAL/AP/A 41.63 60.75 75.76

Table 10: Prediction accuracy, all outages: with 3 weeks of
training and 1 week of testing, only for traffic that would
have arrived on a failed peering link

Model Training One prediction Model size

NBs O(n) O(llogl) O(- (JAS|+|DR| +|DT|))
NBap O(n) O(llogl) O(l- (|AS| + |Pr|+|DR| + |DT]))
NBa; O(n) O(llogl) O(l- (JAS| +|SL| + |DR| + [DT|))

Table 11: Costs in terms of training, prediction, and memory
complexity for the Naive Bayes models. n is the number of
data points; [the number of peering links; |A|,|AP|, and |AL|
are the number of unique combinations of the features de-
fined in Table 1; |AS|,|Pr|,|SL|,|DR|, and |DT| are the number
of different ASes, prefixes, source locations, destination re-
gions, and destination types, respectively.

For training the Naive Bayes model, processing and memory
are linear with the number of measurements (as the features are
assumed to be independent). The resulting model is linear in size
with the cardinality of each feature times the number of classes
(all ingress peering links, over 1,000). For models with a large
feature space, the size of the Naive Bayes model actually exceeds
the size of the historical model, as the number of measured feature
combinations is smaller than the number of features times 1, 000.

Predictions with the Naive Bayes model are significantly more
expensive than with the historical model. For each flow tuple the
model computes the probability of each peering link given each
feature, and then sorts the links by their probability. This can be

TIPSY: Predicting where traffic will ingress a WAN

Period Training / Testing x Periods
1 32/7x4
2 ___ 21/19x 4
3 —_— — 28/1x28
10/‘1/20 11/1‘/20 12/‘1/20

Figure 8: Time periods between October and December 2020
used for training and testing in tuning and evaluating our
models. Training and testing windows are measured in days.

1.0

0.9 A :
§ —— Top 3
§ 0.8 1 Top 2
< —' Top 1

0.7 1 H

0.6 T T T T T

0 5 10 15 20 25 30

Training period length (days)

Figure 9: Accuracy of Hist,; /4p/4 given the number of train-
ing days. Line shows average and shaded area represents
minimum to maximum. The graph for Hist,; is similar.

done in parallel for each flow tuple of interest. As opposed to the
historical model, the Naive Bayes model allows querying for flow
tuples that were not observed in the training data, as long as there
was at least one tuple in the training period for each value of a
feature in the desired tuple.

B TRAINING AND TESTING TIME PERIODS

We performed an empirical analysis to determine the best lengths
of time for training the models. We want to balance having enough
training data and avoiding stale data.

For training and testing periods, we select two months in the last
half of 2020 for the purpose of our evaluation, depicted in Figure 8.

B.1 Length of training window

To identify the appropriate training window length, we fixed the
testing period start date and built models using training data going
back in time for varying number of days. Since the accuracy of mod-
els depends on the testing period, we selected 4 non-overlapping
testing periods, and for each period built models using multiple
training period lengths. The training and testing periods are period
1 in Figure 8.

Figure 9 shows the average accuracy of Histaz;ap/4 across the 4
non-overlapping testing periods, at varying training period lengths.
The 4 different testing start days are spaced 1 week apart from

247

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

1.0 1

0.9 H
§ —— Top 3
5 0.8 1 Top 2
v
1%
<<

0.7 A

0.6 T T T T T T

0 5 10 15 20 25 30

Time since end of training period (days)

Figure 10: Daily accuracy of Hist,;/4p/ 4 after training. Line
shows average and shaded area represents minimum to max-
imum. The graph for Hist4y, is similar.

Top 1 accuracy for outages Top 3 accuracy for outages

1.0 1 _ _]
0.8]
> J
g 0.6 | °
=1
ot
< 041 _
0.2 1 o °
1 (o]
0.0 - T T T T ? T
All Seen Unseen All Seen Unseen

Figure 11: Accuracy of Hist/4p/4 for 28 training and test-
ing time windows. The graphs for Hist,4; are very similar.
Whiskers follow Tukey’s definition.

each other, and each testing period is 7 days. We pick 21 days as the
training period for TIPSY, as it provides high accuracy for top 3 with
low variability.

B.2 Length of testing window

The routes that traffic take to reach the Azure WAN change over
time, due to changes in the Internet topology, or changes in router
configurations at various networks. New flows may arrive that have
properties never seen before (e.g. from a new AS). We expect those
changes to happen at timescales of days. For how many days is a
TIPSY model valid?

In Figure 10, we use a 3-week training period, followed by testing
on individual days that are progressively further out. Accuracy is
calculated for non-overlapping windows of 24 hours. As before, we
pick 4 different times, and show the average and the min and max.
We observe an almost linear degradation of accuracy over time.
The training and testing periods are period 2 in Figure 8.

We pick 7 days as an appropriate testing window. A one-week pe-
riod covers commonly observed diurnal and weekly traffic patterns
and does not have a significant loss in accuracy.

SIGCOMM ’22, August 22-26, 2022, Amsterdam, Netherlands

Algorithm 1: Identify peering links at risk

forall hours in the testing window do
forall peering links A do

forall flows that ingress on link A in that hour do
predict which other links that flow will arrive on if

link A has an outage
end
end
sum up the bytes on each link in that hour (both actual ingress
and outage induced ingress

end

select only those links where average utilization in any hour is
predicted to be >=70%, and would have been <70% if there was no
outage and sort the resulting list by the number of hours where the
link has average utilization >=70%

B.3 Sensitivity to outages in training

The impact of BGP withdrawals from seen and unseen link outages
on accuracy varies greatly depending on what happened during the
training window and during the testing window. To quantify this
range, we trained 28 different models, each tested on 1 day of traffic,
with training for the preceding 21 days, and none of these testing
days overlapped. Figure 11 shows the distribution of accuracy for
different outage types. The training and testing periods are period
3 in Figure 8).

C PREDICTING PEERING LINKS AT RISK

While TIPSY’s main use is in mitigating ongoing congestion on
peering links, the ability to predict the ingress peering link for traffic
is useful in other situations as well. For instance, by leveraging
TIPSY, we can identify peering links that may be at risk of overload
when other peering links fail. This information is useful for capacity
planning and analyzing fault tolerance of the WAN. Specifically, if a
peering link A has an outage, do the flows that would have arrived
on peering link A now get shifted to other peering links, where
of them, some peering link B is subsequently at risk of overload?
Provisioning sufficient additional capacity on link B in advance
requires weeks or more of effort, and has financial implications.

We use TIPSY to identify such links at risk of overload on any
other link outage, as defined in Algorithm 1. Though we pick 70%
as an arbitrary threshold, we consider it to be exceedingly high
because during a one-hour window with average utilization of
70%, due to the bursty nature of traffic, there will likely be a lot of
queueing delays and packet drops.

In Table 12, we list four of our findings for the fourth week of Oc-
tober 2020 (the testing week). These examples are operationally sur-
prising — normally, they rarely experience high utilization, however,
if a particular other link has an outage, these links will experience
high utilization. For the first link, if there is an outage of L1-b CPN1
in any one of 73 particular hours of the week, there will be high
utilization on L1-a CPN1. Some findings are obvious in retrospect —
if one link has an outage, the next closest link with the same peer
will overload. However, others such as the third example are not
obvious, both because the peers are different but also because the
two router locations are far apart. In prioritizing which links the

248

Markovitch, M., Agarwal, S., Fonseca, R., Beckett, R., Zhang, C., Atov, ., and Chaturmohta, S.

Router Peer BW >70% hours Affecting
Typical Predicted Router Peer BW
Ll-a CN1 10G 0 73 L1-b CN1 10G
L2-a ISP1 10G 0 28 L3-b ISP1 10G
L4-a CN2 20G 3 12 L5-a EXCH1 100G
Lé6-a CP1 100G 0 12 Lé6-b CP1 100G

Table 12: Four actual peering links at risk of overload on
individual link outage, using Hist,; model. “Typical >70%
hours” are the number of hours in the week when utilization
actually exceeded 70%, “Predicted >70% hours” are the extra
number of such hours under a single peering link outage,
and “Affecting” are the details of which peering link outage
causes this. CN = Content Network, CP = Cloud Provider,
EXCH = Peering Exchange.

Model Topl1% Top2% Top3%
Oracley 68.60 87.73 92.91
Hista 68.54 87.70 92.88
Oracleap 78.99 95.80 98.03
Histp 78.90 95.77 98.01
Oraclear 78.19 96.01 98.44
Histay, 78.10 95.98 98.42
HiStAP/AL/A 78.90 95.77 98.01
Histar ap/a 78.14 95.98 98.42

Table 13: Overall prediction accuracy, with 3 weeks of train-
ing and 1 week of testing.

Model Topl1% Top2% Top3%
Oracle 4 66.28 82.17 90.40
Histg 66.00 77.88 90.40
Oraclegp 82.54 92.71 97.27
Histap 81.77 89.15 97.17
Oracleas 81.68 93.14 98.07
Histar, 80.76 90.70 98.03
Histap/ar/a 81.77 89.15 97.17
Histar/ap/a 80.76 90.70 98.03

Table 14: Prediction accuracy, all outages: with 3 weeks of
training and 1 week of testing, for traffic that would have
arrived on a peering link with an outage.

operator should increase capacity on, we also consider how many
different affecting links cause an impact.

D TIPSY PREDICTION ACCURACY FOR
JANUARY 2021

To show results of TIPSY in another time period, Tables 13 and 14
summarize TIPSY accuracy for January 2021. The first 3 weeks
of the month were used for training and the 4th week as testing
(period 1). We skipped the Naive Bayes models in this analysis.
These accuracy numbers are significantly higher than those for
December 2021 in Tables 4 and 5, almost on par with the relevant
oracle. For this January 2021 time period, all outages in the testing

TIPSY: Predicting where traffic will ingress a WAN

Router Peer BW >70% hours Affecting
Typical Predicted Router Peer BW
L7-a ISP2 30G 1 56 L7-b CN3 100G
L8-b CN1 20G 9 35 L38-b ISP3 30G
L4-a CN2 20G 0 30 L5-a EXCH1 100G
L3-b ISP1 10G 0 4 L2-a ISP1 10G

Table 15: Four actual peering links at risk of overload on
individual link outage, using Hist,; model. “Typical >70%
hours” are the number of hours in the week when utilization
actually exceeded 70%, “Predicted >70% hours” are the extra
number of such hours under a single peering link outage,
and “Affecting” are the details of which peering link outage
causes this. CN = Content Network, CP = Cloud Provider,
EXCH = Peering Exchange.

249

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

period were seen in the training period. Hence this time period
represents a best-case scenario.

Table 15 shows some of the links TIPSY identifies as at risk of
overload for January 2021, similar to Table 12. We make a number
of observations. We continue to see examples that are operationally
surprising, such as the first three rows where very different peer
types are involved. We also see examples such as the third row, that
we saw in the previous time period, that continue to be at risk.

	Abstract
	1 Introduction
	2 Background & motivation
	3 Traffic Ingress Prediction
	3.1 Problem definition
	3.2 Feature engineering for learning
	3.3 Model selection

	4 System overview
	4.1 Data collection
	4.2 Data aggregation
	4.3 Model execution
	4.4 Congestion Mitigation System

	5 Evaluation of TIPSY
	5.1 Methodology
	5.2 TIPSY prediction accuracy
	5.3 Prediction accuracy for withdrawals

	6 Experience with TIPSY in Azure
	7 Prior work
	8 Conclusions
	References
	A Naïve Bayes
	B Training and testing time periods
	B.1 Length of training window
	B.2 Length of testing window
	B.3 Sensitivity to outages in training

	C Predicting peering links at risk
	D TIPSY prediction accuracy for January 2021

