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Abstract

Data visualization is the primary means by which data ana-
lysts explore patterns, trends, and insights in their data.
Unfortunately, existing visual analytics tools offer limited
expressiveness and scalability when it comes to searching
for visualizations over large datasets, making visual data
exploration labor-intensive and time-consuming. In this
work, we introduce the problem of visualization search
and highlight two underlying challenges of search enumera-
tion and visualization matching. To address them, we first
present our work on Zenvisage that helps enumerate large
collections of visualizations and supports simple visualiza-
tion matching with the help of an interactive interface and
an expressive visualization query language. For more fine-
grained and flexible visualization matching, including search
for underspecified and approximate patterns, we extend
Zenvisage to develop ShapeSearch. ShapeSearch supports
a novel shape querying algebra that helps express a large
class of pattern queries that are hard to specify with exist-
ing systems. ShapeSearch exposes multiple specification
mechanisms: sketch, natural-language, and visual regular
expressions that help users easily issue shape queries, while
applying query-aware and perceptually-aware optimiza-
tions to efficiently execute them within interactive response
times. To conclude, we discuss a number of open research
problems to further improve the usability and performance
of both Zenvisage and ShapeSearch.

1. INTRODUCTION

Data visualization is the primary means via which data
analysts—many of whom have limited programming skills—
explore their data. While the usability and visual encod-
ing capabilities of data visualization tools such as Tableau
and Excel have undergone a massive evolution over the
years, when it comes to searching for patterns, trends,
and insights in large and complex datasets, these tools
are severely limited. The state of the art for data analysts,
especially non-programmers, is to load their data into
a visualization tool and repeatedly generate visualiza-
tions until the desired patterns or insights are identified.
Unfortunately, this repeated process of manual exami-
nation to scour for desired insights becomes painful,
tedious, and time consuming as the size and complexity
of datasets increase. Even on moderately sized datasets,
a data analyst may need to examine as many as tens of
thousands of visualizations, all to test a single hypothesis,
a severe impediment to data exploration. We characterize
this problem of visualization search using examples from
genomics data analysis.

Motivating example. Genomic researchers often study genes,
for example, how genes affect clinical trial outcomes, how the
behavior of genes gets affected on specific medications. As an
example, given a dataset consisting of clinical trial outcomes
(positive vs. negative), researchers often want to find genes that
can visually explain the differences in these outcomes. To
do so, current tools require researchers to manually generate
tens of thousands of scatter plots—with the x- and y-axes each
referring to a gene, and each outcome depicted as a point in the
scatterplot—to determine whether the outcomes can be clearly
distinguished in the scatter plot.

Similarly, researchers study changes in gene expression
while investigating the impact of drugs on disease treatment.
For doing so, they often explore trendline visualizations, one
corresponding to each gene, with the x-axis as days, and the
y-axis as the expression values. For example, when influenced
by an external factor, a gene can get induced (up-regulated), or
repressed (down-regulated), or can have both patterns within
a certain time window. Based on their domain understanding,
researchers first hypothesize the expected change in expres-
sion that an affected gene should depict. They, then, generate
thousands of visualizations, one for each gene, and manually
inspect them for the hypothesized patterns.

We have seen similar examples across a plethora of other
domains such as astronomy, material science, and pub-
lic health, where analysts manually peruse thousands of
visualizations to search for each insight. In most of these
scenarios, the common theme is the manual examination
of a large number of generated visualizations to match a
specific visual pattern. As depicted in Figure 1, there are
two challenges to this visualization search problem. First,
it is hard for users to specify the search space of visualiza-
tions they are interested in, which forces them to manu-
ally generate a large collection of visualizations. The space

Figure 1. Two components of the visualization search problem.
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of visualizations is determined by the number of possible
attributes for X and Y axes, aggregation functions, and pos-
sible subsets of data (denoted by the symbol Z in Figure 1a).
This space grows exponentially as the size and the number
of attributes in the data increase. The second component
deals with visualization matching. Given a specific pattern
of interest, users are typically interested in a subset of visu-
alizations that closely match this pattern. Unfortunately,
existing visualization tools are not expressive enough to
capture either of the two components.

Our first attempt to address these challenges resulted in
a visual data exploration system, Zenvisage.® '” ¥ Zenvisage
takes as input a high-level specification of what the user
wants and automatically identifies the relevant visualiza-
tions. It supports an interactive interface that allows users
to quickly search for simple patterns via sketching. For
expressing more complex search enumeration and match-
ing, Zenvisage supports ZQL—an expressive visualization
exploration language that lets users operate over a collec-
tion of visualizations using a core set of primitives (e.g.,
comparison, filtering, sorting) based on visual patterns.
With ZQL, users can express a complex visualization search-
ing task using two or three lines.

While Zenvisage is an useful first step in solving the
visualization search problem, the underlying challenge
of visualization matching remains unsolved. In particu-
lar, Zenvisage uses standard similarity measures (e.g.,
Euclidean distance) for matching, thereby lacking suffi-
cient flexibility to support search when the desired pattern
is under-specified or approximate, for example, finding
products whose sales is decreasing over some 3-month
window, without specifying when, or those whose sales
have many increasing and decreasing portions, without
specifying when these portions occur, their magnitude, or
their width. We note that such pattern-matching tasks are
hard to express in most of the visual querying systems.

To support more flexible querying needs, we developed
ShapeSearch,' ?° a pattern searching system that supports
multiple mechanisms for helping users express and search
for desired visual patterns. ShapeSearch incorporates an
expressive shape query algebra consisting of shape-based
primitives and operators for expressing a large variety of
patterns in trendlines. We developed this algebra after discus-
sions with domain experts, including those from astronomy
and genomics, as well as studying a large corpus of pattern
queries collected via Mechanical Turk.

ShapeSearch supports multiple specification mecha-
nisms that are internally translated to a shape query
algebra representation: ShapeSearch supports a natural
language interface, coupled with a sophisticated parser
and translator for translating them into the algebra.
ShapeSearch also supports a sketching interface for simpler
patterns and returns visualizations that precisely match
the drawn trends. To support more complex needs, the
system provides a visual regular expression language for
issuing queries that cannot be easily expressed via natural
language or sketching. The three interfaces can be used
simultaneously and interchangeably, as user needs and
pattern complexities evolve.
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Finally, for ensuring interactive response times on ad hoc
queries, ShapeSearch leverages a pattern-matching engine
that relies on minimal preprocessing or indexing. Directly
generating and processing a large collection of visualiza-
tions, where each visualization has thousands of values,
can lead to a long response time. Instead, ShapeSearch uses
perceptually-aware pattern scoring mechanisms and query-
aware optimizations—which help prune a large number of
visualizations and/or parts of visualizations, for effective
and efficient pattern matching.

Outline. The rest of our paper is organized as follows.
We first discuss our experiences from our prior work on
Zenvisage that motivated us to develop ShapeSearch, describ-
ing a simple interactive interface and ZQL (Section 2). We
then give an overview of ShapeSearch, discussing how it
addresses the limitations of Zenvisage (Section 3). Next, we
dive into the details of shape algebra that makes the core
of ShapeSearch (Section 4). We then describe efficient algo-
rithms for executing shape queries (Section 5). We discuss
how we support natural language queries in ShapeSearch
(Section 6). Finally, we discuss future directions to further
improve the usability and performance of both Zenvisage
and ShapeSearch (Section 7).

2. ZENVISAGE

Zenvisage is a visual analytics system that supports an inter-
active interface for searching for visualization with simple
patterns, along with an expressive query language for more
complex queries. We briefly discuss each of these modes
and then describe the findings from our user evaluation.

2.1. Interactive search interface
Figure 2 shows the interactive search interface of Zenvisage
loaded with a real estate dataset.

Attribute selection. The first step is attribute selection
(Box1).Here, theuser can specifythe desired X-axis attribute,
and the desired Y-axis attribute for the visualization(s)
that the user is interested in. In this case, the user has
specified the X axis as quarters (in other words, time)
and the Y axis as the real estate sold price. Additionally,
the user specifies the category: this is a variable indexing
the space of candidate visualizations the user is operating
over. Here, the selected category is “metro”—indicating a
metro area or township. We depicted the category as “Z”
in Figure 1a.

Figure 2. Zenvisage interactive visual query interface.
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Summarization of typical and outlier trends. As soon as the
user selects the X, Y, and category, immediately, Zenvisage
populates Box 2 with typical or representative trends across
categories, and outliers. In this case, there are three typical
trends that were found across different metros (i.e., catego-
ries): one corresponding to a spike in the middle (Panama
City), one to a gradual increasing trend (San Jose), and one
to a trend that increased and then decreased (Reno)—most
of the other trends were found to be similar to one of these
three. The outlier visualizations (Pittsburgh, Peoria, Cedar
Rapids) have a large number of seemingly random spikes.

Drawing or drag-and-drop canvas. Then, in Box 3, the
editable canvas, the user can either draw a shape that they
are looking for, or alternatively drag and drop one of the dis-
played visualizations into the canvas. In this manner, the
user indicates that they would like to see a similarity search
starting from the shape or pattern that they have drawn or
dragged onto the canvas. The user is also free to edit the
drawn pattern. In this figure, the user has drawn a trend,
which is gradually increasing up and then gradually decreas-
ing after that.

Similarity search results. As soon as the user completes
an interaction in Box 3, Box 4 is populated with results cor-
responding to visualizations (on varying the category) that
are most similar to the trend in Box 3, ordered by similarity.
The system allows users to choose between three different
similarity metrics. Currently, the three metrics Zenvisage
provides are Euclidean Distance, DTW, and Segmentation.'®

Overall, this interactive search interface satisfies simple
pattern search needs via sketching and drag-and-drop, and
provides context via representative and outlier patterns.
However, it offers limited expressiveness when it comes to
more complex data exploration needs. For instance, it is dif-
ficult to search for visualizations across a wide range of
X and Y attributes (recall that before sketching, we need to
set the X and Y axis to specific attributes) or compare two
visualizations without using the drawing canvas (e.g., finding
2 products that have similar revenue and profit trends over
years). Furthermore, one cannot specify multi-step queries
involving search for multiple patterns simultaneously, for
example, finding products with increasing sales trend in
Europe but decreasing sales trend in the US. For supporting
these more complex needs, we introduced a second mode,
called ZQL, short for Zenvisage Query Language, that users
can specify in Box 5 in Figure 4.

2.2, ZQL: A visualization querying language

ZQL is a high-level language that automates the manual
data exploration process by allowing users to specify their
desired visualization objective in a few lines. Instead of pro-
viding the low-level data retrieval and manipulation opera-
tions, users operate at the level of sets of visualizations, and
compare, sort, filter, and transform visualizations as well as
attributes—eventually visualized on either the X or Y axis, or
used to select the set of data that is visualized.

We describe the capabilities of ZQL via two examples
(depicted via Tables 1 and 2). Consider the first example
where we want to find the states where the soldprice trend
is most similar to the soldpricepersqft (i.e., sold price per

Table 1. A ZQL query retrieving visualizations for a state where the
soldprice over year trends are most dissimilar to the soldpricepersqft
trend.

Name X Y z Process

fl year soldprice z1 <-'state’"™

2 year soldpricepersqgft z1 72 <- argmax,,
[k=1]D(f1,f2)

*3 year {soldprice, z2

soldpricepersqft}

Table 2. A ZQL query retrieving two different visualizations (among
different combinations of x and y) for states of CA and NY that are the
most dissimilar.

Name X Y 4 Process
fl x1<=* yl<-* ‘state’'CA'
2 x1 yl ‘state’’'NY’ X2,y2 <—argmax

X1yl

[k=1]D(f1,f2)

*f3 x2 y2 ‘state’{'NY’, 'CA}

square foot) trend. Table 1 depicts a 3-line ZQL query for
this task. We first compose two collections of visualizations.
The first row composes the first collection with X = year,
Y = avg(soldprice), and Z = state.*, consisting of one visual-
ization for each possible state. The Z column corresponds to
the Category header in the previous section, indicating the
space of visualizations over which the user is operating—in
this case, the Z column is fairly simple, there is a single visu-
alization, corresponding to each state. Similarly, the second
row composes the second collection with X and Z column
stay similar and Y is set to avg(soldpricepersqft).

Once we have composed the two visualization collections
(referred via f1 and f2), the Process column is used to com-
pare, sort, and filter the visualizations between the collec-
tions. In this example, we iterate the visualizations for each
state (notice the variable z1) in f1 and f2 and compare them
using a functional primitive D, computing distance, via
D(f1, f2). Then, argmin is a sort-filter primitive that sorts the
states based on distance scores and selects the top 1 state
with minimum scores. Finally, in row 3, we output the over-
all sales over year visualizations for the selected products as
bar charts. The * in *f3 indicates that these visualizations are
to be output to the user.

As another example, say we are interested in finding a
pair of X- and Y-axes where the visualizations for two specific
states “NY” and “CA” differ the most. For doing this, we write
a ZQL query depicted in Table 2. In the first line, we fetch
all visualizations for the states “NY” that can be formed by
having different combinations of X- and Y-axes. Similarly
in the second row, we retrieve all possible visualizations for
the product “stapler.” In the process column, we iterate over
the possible pairs of X- and Y-axis values, compare the cor-
responding visualizations in f1 and 2, and finally select the
pair of X and Y axis values where the two products differ the
most. In the last two rows, we output these visualizations.

Overall, ZQL can capture a wide range of visual exploration
queries, including drill-downs and filtering based on specific
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patterns. We formally describe the expressive power of ZQL
using a visual exploration algebra in our full paper."’

2.3. Takeaways from Zenvisage

Our findings from user studies'” and case studies with collabo-
rators in domains such as genomics, astronomy, and battery
science” * demonstrate that Zenvisage enables faster and
more accurate exploration compared with existing visual-
ization tools such as Tableau, which require considerable
manual exploration for finding visualizations with specific
patterns. Users who had worked with MATLAB, Python, and
R said that ZQL can lead to faster initial exploration of data
without requiring to write a lot of code. Those having experi-
ence with SQL found ZQL a lot less complicated, less verbose,
and faster when it comes to comparing subsets of data.”
Similarly, our collaborating researchers have used Zenvisage
for various findings, including the fact that a dip in a light
curve was caused by malfunctioning equipment (for astron-
omy), the fact that a relationship between two specific physi-
cal properties of electrolytes was independent of a third one
(for battery science), and for reproducing of characteristic
gene expression profiles from a recent paper (for genetics).?

While Zenvisage offers a promising first step to the prob-
lem of painful manual exploration of visualizations, the
underlying challenge of visualization search is far from
solved. We discovered two main challenges. One pertains
to the usability of ZQL. In order to leverage ZQL, domain
experts need to learn a new querying language, a major hin-
drance to its broader adoption. Domain experts with prior
experience with computational notebooks often expressed
a need for transitioning between writing code and using
ZQL abstractions. Additionally, instead of writing their que-
ries in one step, users often intended to construct them in
an incremental manner using prior queries as context. In
Section 7, we discuss these issues and potential solutions in
more detail, highlighting another system LUX’ that partially
addresses these issues.

The second challenge with Zenvisage deals with how visu-
alizations are matched. For the rest of the paper, we focus
on this challenge and present a new system ShapeSearch to
address it.

The problem of flexible shape matching. Zenvisage as
well as other visual querying tools> !> offer limited flexibil-
ity in terms of how a visualization is matched. For instance,
visualization search often involves pattern matching where
the desired pattern of interest is underspecified and approxi-
mate, for example, finding stocks whose prices are decreas-
ing for some time, followed by a sharp rise, with the position
and intensity of movements being left unspecified, or when
the desired shape is complex, for example, finding gene
expression profiles where there is an unspecified number of
peaks and valleys followed by a flattening out. We highlight
the key characteristics of such pattern-matching tasks below.

Fuzzy matching. Domain experts (i) typically search for
patterns that are approximate and are often not interested
in the specific details or local fluctuations as much as the
overall shape, and (ii) they often do not specify or even know
the exact location of the occurrence of patterns. For exam-
ple, biologists routinely look for structural changes in gene
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expression, for example, rising and falling at different times
(Figure 3a), characterizing internal biological processes
such as the cell cycle or circadian rhythms, or external per-
turbation, such as the influence of a drug or presence of a
disease.

Searching multiple simple patterns. We notice that domain
experts often describe complex patterns using a combina-
tion of multiple simple ones. Each individual pattern is typi-
cally described using words such as “increasing,” “stable,”
“falling” that are easy to state in natural language but hard
to specify using existing query languages. Moreover, pattern-
matching tasks often go beyond finding a sequence of
patterns, requiring arbitrary combinations, for example,
disjunction, conjunction, or quantification, with varying
location or width constraints. Examples include finding
stocks with at least 2 peaks within a span of 6 months, for
example, the so-called “double/triple top” patterns that
indicate future downtrends.’

Ad hoc and interactive querying. Pattern-based queries
are often defined on-the-fly during analysis, based on other
patterns observed. For instance, biologists often search for
a pattern in a group of genes similar to a pattern recently
discovered in another group.® Similarly, astronomers moni-
tor the shape of the luminosity trends of stars over time to
search for and characterize new planetary objects (Figure 3c).
For example, a dip in brightness often indicates a planetary
object passing between the star and the telescope.

To support these characteristics, we developed
ShapeSearch, described next.

3. SHAPESEARCH

ShapeSearch provides powerful yet flexible mechanisms for
users to search for trendline visualizations with a desired
shape. In this section, we first present an overview of
ShapeSearch along with user experience.

ShapeSearch supports an interactive interface for com-
posing shape queries. Figure 4 depicts this interface, with an
example query on genomics data discussed in the introduc-
tion. Here, the user is interested in searching for genes that
get suppressed due to the influence of a drug, depicted by
a specific shape in their gene expression—first rising, then
going down, and finally rising again—with three patterns:
up, down, and up, in a sequence. To search for this shape,
the user first loads the dataset! via form-based options on
the left (Figure 4, Box 1), and then selects the space of visu-
alizations to explore by setting the x-axis as time, the y-axis
as expression values, and the category as gene. Each value
of the category attribute results in a candidate visualization
with the given x- and y-axis. Thus, the category attribute

Figure 3. Shapes characterizing real-world phenomena.
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defines the space of visualizations over which we match the
shape. ShapeSearch supports three mechanisms for shape
specification—natural language, regular expressions (regex
for short), and sketching on a canvas:

Sketching on Canvas. By drawing the desired shape as a
sketch on the canvas (Figure 4, Box 2a), the user can search
for visualizations that are precisely similar (using a distance
measure such as Euclidean distance or dynamic time warp-
ing). After the user finishes sketching, ShapeSearch outputs
visualizations that are similar to the drawn sketch in the
results panel (Figure 4, Box 4).

Natural language (NL). For searching for visualizations
that approximately match patterns, users can use natural
language. For instance, as in Figure 4 Box 2b, the desired
shape in the aforementioned genomics example can be
expressed as “show me genes that are rising, then going down,
and then increasing.” Similarly, scientists analyzing cosmologi-
cal data can easily search for supernovae (bright stellar explo-
sions) using “find objects with a sharp peak in luminosity.” We
describe in Siddiqui et al.?> how ShapeSearch translates natu-
ral language queries to a structured internal representation.

Regular expression (regex). For queries that involve com-
plex combinations of patterns that are difficult to express
using natural language or sketch, the user can issue a regu-
lar expression-like query that directly maps to the structured
internal representation, consisting of ShapeSearch primi-
tives and operations, described in detail in Section 4.

During exploration, users can choose specification mech-
anisms interchangeably based on the complexity of the
query. For both NL and regex, ShapeSearch additionally sup-
ports an auto-complete functionality to guide users toward
their target query. We use the term user query to refer to the
submitted query using any of the specification mechanisms.

The ShapeSearch back-end parses and translates the user
query into a ShapeQuery, a structured internal representa-
tion of the query consisting of operators and primitives sup-
ported in our algebra (Section 4). The back-end supports an
ambiguity resolver that uses a set of rules for automatically
resolving syntactic and semantic ambiguities, as well as

Figure 4. ShapeSearch interface, consisting of six components. (1) Data
upload, attribute selection, and applying filter constraints, (2) query
specification: (2a) sketching canvas, (2b) natural language query
interface, and (2c) regular expression interface, (3) correction panel,
and (4) results panel.

2b

Correction Panel

| |

Attribute Selection

Regular expression-based Querying

ShapeSearch Components Overview Search Results

forwards the parsed query to the user for further corrections
and validation (Figure 4, Box 3). The validated query is finally
optimized and executed by the execution engine (Section
4.3), and the top visualizations that best match the Shape-
Query are presented to the user in the result panel (Figure 4,
Box 4). Next, we discuss a ShapeQuery algebra that makes the
core of ShapeSearch.

4. SHAPE ALGEBRA

ShapeQueries help express a large variety of patterns over
trendlines with a minimal set of primitives and operators.
A ShapeQuery represents a shape as a combination of mul-
tiple simple patterns. A simple pattern can either be precise
with specific location constraints, for example, matching y =x
between x = 2 to x = 6, or fuzzy, for example, roughly increas-
ing, where the notion of the pattern is approximate and its
location unspecified. Each simple pattern along with its
precise or imprecise constraints is called a Shape-Segment.
Complex shapes, for example, rising and then falling, are
formed by combining multiple ShapeSegments using one
or more operators. One can search for multiple patterns in
a sequence (CONCAT, ©) or matching the same subregion of
the trendline (AND, (=), or one of many patterns matching a
subregion (OR, ), described later.

As an example, “rising from x = 2 to x = 5 and then falling”
can be translated into a ShapeQuery [x.s=2,x.e=5, p=up]
@ [p=down] consisting of two ShapeSegments separated by
a @ operator. The first ShapeSegment captures “rising from
x=2tox="5";the second expresses a “falling” pattern. Since
the second must “follow” the first, the two ShapeSegments
are combined using the CONCAT operator, denoted by ®. We
now describe the shape primitives and operators that con-
stitute the ShapeQuery algebra. Table 3 lists these primitives
and operators.

4.1. Shape primitives and operators

A ShapeSegment is described using two high-level primi-
tives: LOCATION and PATTERN. The LOCATION values can
be skipped in order to match the PATTERN anywhere in the

Table 3. Primitives and operators in ShapeQuery.

Symbol Name Type
X.S START X VALUE Location sub-primitive
y.s START Y VALUE Location sub-primitive
x.e END X VALUE Location sub-primitive
y.e END Y VALUE Location sub-primitive
v SKETCH Location sub-primitive
ITERATOR Location sub-primitive
o PATTERN Primitive
S POSITION Pattern sub-primitive
m MODIFIER Primitive
> MORE Modifier value
>2 ATLEAST 2X Modifier value
= SIMILAR Modifier value
® CONCAT Operator
O] AND Operator
OR Operator
! OPPOSITE Operator
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trendline. Similarly, users can input the exact trendline to
match or the endpoints of the ShapeSegments to match with-
out specifying the PATTERN.

Specifying LOCATION. LOCATION defines the endpoints
of the subregion of the trendline between which a pattern
is matched: starting X/Y coordinate (x.s/v . s), ending X/Y
coordinate (x.e/y.e). For example, [x.s=2,x.e=10,
y.s=10, vy.e=100]is a simple Shape-Query to find trend-
lines whose trend between x = 2 to x = 10 is similar to the
line segment from (2, 10) to (10, 100). Users can also draw a
sketch to find trendlines similar to the sketch, a functional-
ity supported in other tools alluded to in the introduction.>
7 Shape-Search translates the pixel values of the user-drawn
sketch to the domain values of the X and Y attributes, and
adds the transformed vector of (x, y) values as a vector v in the
ShapeQuery.

Specifying PATTERN. PATTERN defines a trend or a seman-
tic feature in a subregion of the trendline. A number of basic
semantic patterns, commonly used for characterizing trend-
lines, are supported, such as up, down, flat, or the slope ()
in degrees. For example, [p=up] finds trendlines that are
increasing, [p=45] finds trendlines that are increasing with
a slope of about 45°; and [x.s=2,x.e=10, p=up] finds
trendlines that are increasing from x=2 to 10. Finally, one
can use p=+ to match any pattern and p=empty to ensure
that there are no points over the subregion.

Combining PATTERNSs. ShapeQuery supports three opera-
tors to combine ShapeSegments:

* CONCAT (®) specifies a sequence of two or more
ShapeSegments. For example, using [p=up]® [p=down]
one can search for genes that are first rising, and then
falling. Note that @ is one of the most frequently used
operations, and we sometimes omit ® between
ShapeSegments, for example, [p=up] [p=down], to
make it succinct to describe.

* AND (©) simultaneously matches multiple patterns in
the same subregion of the trendline. Unlike CONCAT,
all of the patterns must be present in the same subre-
gion. For example, one can look for genes whose expres-
sion values rise twice but do not fall more than once
within the same subregion.

* OR () searches for one among many patterns in the
same subregion of the trendline, picking the one that
matches the subregion best. For example, one can
search for genes whose expressions are either up- or
down-regulated.

Comparing patterns. In some cases, one may want to
compare the pattern in a ShapeSegment with the preceding
or succeeding ShapeSegments. To support such use cases,
ShapeSearch (i) allows a ShapeSegment to refer to the previ-
ous or the next Shape-Segment using $+ or $-, respectively,
and (ii) compare patterns between the current and referred
ShapeSegment using operations >, <, or =. For example,
astronomers can issue a ShapeQuery [p=up]® [p < $—.p]with
x=time and y=luminosity (brightness) to search for celestial
objects that were initially moving rapidly toward earth, but
after some point either slowed down or started moving away.
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[p < S-.p]ensures that the slope of brightness over time is less
than that in the previous subregion [p=up].

Expressing complex patterns. The aforementioned basic
primitives and operators are powerful enough to express
more complex ShapeSearch use cases. For instances, users
may want to find specific shapes of specific width irrespec-
tive of their start location, for example, searching for cit-
ies with the steepest rise in temperature over a width of 3
months. To express such queries, ShapeSearch supports the
ITERATOR (.), for example, [x.s=. ,x.e=x.s+3, p=up]that
iterates over all points in the trendline, setting each point
as the start x position, with the x end position set to 3 units
ahead. Internally, foratrendline of length n, this querycan be
rewritten as an OR operation over (1 — 3 + 1) ShapeSegments,
where, for the ith Shape-Segment, x . s=1 and x.e=1+3.

Similarly, one can search for trendlines where a pat-
tern occurs a specific number of times using quantifiers,
denoted by g. For example, [p=up,g={1, 2}] can be used to
search for trendlines where there is an increasing pattern at
least once and at most twice. Quantifiers can be internally
rewritten using an OR of one or more CONCAT operations.
For example, the above query is rewritten as ([p=»]®[p=up]
@lp=+])[p=+]2[p=up]=[p=+]@[p=up]=[p=+]). We discuss
more complex patterns that can be expressed using
ShapeQuery in our extended version.*

4.2. Semantics

A ShapeQuery Q operates on one trendline, V, at a time, and
returns a real number, called score, between -1 and +1. It
operates on V, with the help of ShapeSegments (S, S,, ..., S )
and operators (0,,0,, ...,0, ). Each ShapeSegment S, operates
on V7, a subregion of V, starting at p = x.s and ending at
g = x.e and returns a score, € [-1, 1] using scoring functions
we describe subsequently. One or more ShapeSegments
are combined using operators such as ®, ©, <. Formally, an
operator O, takes as input the scores score,, score,, ..., score,
from its n input ShapeSegments and outputs another score,
using scoring functions that capture the behavior of the
operators.

For both efficiency and effectiveness, ShapeSearch
approximates each subregion with a line, using the slope to
quantify how closely it captures any given ShapeSegment. As
depicted in Table 4, ShapeSearch uses different scoring func-
tions for each pattern primitive that transforms the slope to
avalue in [-1, 1] using a tan™ function. For example, for an
up pattern, the function returns a score between [0, 1] for a
trendline with a slope from 0° to 90°, and a score of [-1, 0]
for a slope of less than 0° (opposite of up).

For execution, ShapeSearch takes the entire trendline, the
Abstract Tree Representation (AST) of ShapeQuery, and the
list of scoring functions ScrFunc as in Tables 4 and 5 as inputs.
If the root node of the ShapeQuery tree is a ShapeSegment,
ShapeSearch directly computes the score of ShapeSegment
on the specified part of the trendline. If the root node is
or 1, ShapeSearch invokes each of the operands (i.e., child
subtrees) to compute their scores on the subregion indepen-
dently, combining the scores as per operator’s functions.
However, if the root node is a CONCAT with k operands, that
is, child subtrees, ShapeSearch segments L into all possible



k subregions: L, L,, ..., L, and then, for each segmentation,
invokes the ith operand on ith segment. Finally, the maxi-
mum score across all segmentations is output.

4.3. Fuzzy ShapeQueries

A common subclass of ShapeQueries are fuzzy ShapeQueries,
consisting of at least one ShapeSegment with missing
or multiple possible values for x.s or x.e. Thus, for fuzzy
ShapeQueries, a naive approach is to try all possible values
of p and ¢, selecting the subregion that leads to the best
score. This becomes prohibitively expensive as the number
of points in the trendline increases. For a CONCAT with
k operands, the exhaustive approach creates n*" segmenta-
tions, where 7 is the number of points in the trendline.

The dynamic programming algorithm. We observe that
for the CONCAT operation, the scoring of an operand on a
given subregion is independent of scoring of other operands
on other subregions.?* We use this idea to develop a faster
dynamic programming algorithm (DP) for scoring CONCAT
operations over Shape-Segments. Formally, let OPT(1,
t, (1 :j -1)) be the best score corresponding to the optimal
segmentation over the subregion between x =1 and x = ¢ for
the first j-1 operands, and SC(t+1, i, J) be the score of the jth
operand over the subregion between x=¢+ 1 and x =i. Then,
the optimal segmentation OPT(1, i, (1 :j)) for the first j oper-
ands over x =1 and x =i can be computed using the following
recursion:

-1 PT (1, ¢, (1: j-1 t+1,4, j
OPT(1,i,(1,j))=M1t4X{U JXOPT (1, ¢, (1: j ~1)) + SC(t + ,z,m}

J
Unfortunately, even though the DP algorithm is orders of

magnitude faster than the exhaustive approach, for trendlines
with a large number of points, even a ShapeQuery with a single

Table 4. Pattern scores.

P Score
up 2.tan" (slope)
™
down 2-tan” (slope)

™

flat 1o 4 . tan™ (slope)
s
0=x ) gl
-tan “(slope — x
(7=l tan™(x))
* 1
empty -1
% L, norm (configurable)
Table 5. Operator scores.
Operator Score
CONCAT = score/ k
AND min(score,, ..., score,)
OR max(score,, ..., score,)

CONCAT operation can be slow, because of its quadratic com-
plexity. We, next, discuss optimizations to further decrease the
runtime of CONCAT operation on ShapeSegments.

A pattern-aware bottom-up approach. The DP-based
optimal approach scores all possible subregions for each
operand in the CONCAT operation. We observe that a more
efficient approach could be to select end points to be those
where the slope (or pattern) changes drastically. We first
illustrate our intuition and then describe an algorithm that
performs segmentation in a pattern-aware manner.

Intuition. As depicted in Figure 5, consider two subre-
gions A on the left and B on the right for the trendline L. Say
the trendline in subregion A4 is inverted V-shaped, that is,
increasing until a point P and then decreasing. Now, for all
possible segmentations where [p=up]’s subregion lies com-
pletely in A, there are the following possibilities for x . e of
[p=up]: 1) [p=up]’s x. e point is before P. 2) [p=up]'s x.e
pointis after P. 3) [p=up]’s x . e point is at P.

Since [p=down] follows [p=up], we can see that option
1 that sets [p=up]’s x.e < P is less likely to be optimal as
that will lead to scoring of a part of [p=down] on an increas-
ing trend. Similarly, x . e > P is less optimal as that will lead
to scoring of a part of [p=up] on a decreasing trend. Thus,
if we have to (greedily) select one point in subregion 4 for
[p=up]’s x. e, Pislikely a better choice. We call such a point
as locally optimal point (LOP).

A bottom-up algorithm. Based on the above intuition,
we develop a much faster algorithm that uses the following
assumption to reduce the number of segmentations.

Assumption 4.1 (Closure). If a point is not locally optimal for
any of the sub-expressions in the CONCAT operation (that is, a
CONCAT on a sub-sequence of the operands), it cannot be x. s
or x. e of a ShapeSegment in the optimal segmentation.

That is, local optimality leads to global optimality.
Because of this assumption, our proposed algorithm is
approximate. However, our empirical results show that
despite this assumption, the accuracy of the algorithm is
very close to that of DP, while taking orders of magnitude
less time.

At a high level, the algorithm starts by dividing the trendline
into smaller contiguous subregions. Next, it selects locally opti-
mal points (LOPs) over small subregions, followed by a bottom-
up merging step that uses LOPs over small subregions to find
LOPs over larger subregions. We discuss both the steps below.

Selection of LOPs. A point P is an LOP in a subregion
for the sub-expression S, if it is either the x.e of the first

Figure 5. Pattern-aware selection of LOPs.

A B
P / N
A4
Option 1 [p=up] [p=down] [p=flat]
Option 2 [p=up] [p=down] [p=flat]
Option 3 [p=up] [p=down] [p=flat]
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ShapeSegment or x.s of the last ShapeSegment of S. For
instance, in the above example, the LOP (P) in subregion 4 is
the x.e value of [p=up]in the optimal segmentation of [p=up]
@ [p=down]in A. Since a CONCAT operation with k operands
can have (k*) sub-sequences, there can be a maximum of 2.k>
LOPsin A.

Merging. Next, we incrementally merge nodes in a
bottom-up fashion to select LOPs over larger subregions.
For example, in Figure 6, node 4 depicts the subsequences
formed by combining subsequences from nodes 1 and 2, and
node 5 depicts the subsequences formed by combining sub-
sequences from nodes 3 and 4. When multiple subsequences
in the children nodes generate the same subsequence in the
parent node, we select the one with maximum score after
concatenation (i.e., the one with the most optimal segmen-
tation), thereby pruning out LOPs corresponding to non-
selected subsequences. For example, at node 5, a®b can be
computed from 1) a from node 3 and b from node 4, 2) acb
from node 3 and b from node 4, and 3) a from node 3 and
a®@b from node 4. Among these three concatenations, we
pick the one that gives the maximum score. This merging
process is repeated at each intermediate node. Finally, at the
root node, we select the points that result in the maximum
score for the entire sequence of operands. More details can
be found in ShapeSearch extended version.'

Given the closure assumption, we prove in ShapeSearch
extended version™ that the merging process leads to opti-
mal segmentation and that the bottom-up algorithm
with k& CONCAT operands is optimal with a time complex-
ity of O(nk?), that is, linear in the number of points in the
trendlines.

5. NATURAL LANGUAGE TRANSLATION

A key component of ShapeSearch is the natural language
parser that allows users to express ShapeQueries using
natural language. We provide a brief overview of the three
key steps involved in parsing and refer readers to Siddiqui
et al.”® for more details. We use the following natural lan-
guage phrase for illustration: “show me the trendlines that
are increasing from 2 to 5 and then decreasing.”

Step 1. Primitives and operators recognition. Given a
natural language query, the first step is to map words to
their corresponding shape primitives and operators. For
example, the above query is tagged as “show (noise) me
(noise) the (noise) trendlines (noise) that (noise) are (noise)
increasing (p) from (noise) 2 (x.s) to (noise) 5 (x.¢) and then

Figure 6. Bottom-up scoring of ShapeQuery.

6
® ®
5
[a,a®b,a®c,cod,a® ®d) | b,ash,aec,ced,(beced), ¢
3
[a,a@b,aec] [a,b,a@b,a®c,cod,boced] [-][abashascced, l
=] | I Il | [ L] [ bd ]
v . Iy T
T -+ <+
— 2
3 -
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(®) decreasing (p).” In order to do so, we learn a linear-chain
conditional-random field model (CRF)° and train it on
the same 250 natural language queries we collected via
Mechanical Turk (described in Shapesearch extended ver-
sion®) for understanding query characteristics. For each
word, we use its part-of-speech (POS) tags along with word-
level context as features.

Step 2. Identifying pattern value. For each of the words
predicted of type p, for example, increasing and decreasing
in the above query, we additionally map them to the corre-
sponding semantic pattern supported in ShapeSearch, for
example, “increasing” is mapped to p=up. For this mapping,
ShapeSearch computes the similarity between the specified
word and synonyms of the supported patterns, first using
edit distance and then using wordnet. The semantic pattern
with the highest similarity between any of its synonyms and
the specified word is selected.

Step 3. ShapeQuery generation and ambiguity resolution.
Next, we group primitives and operators into a ShapeQuery,
first grouping all primitives between two operators into a sin-
gle Shape-Segment. For the example query, the primitives are
grouped as follows: [increasing (p=up), 2 (x.s), 5 (x.¢) Jand then
(®) [ decreasing (p=down)]. In some cases, this leads to incor-
rect grouping of primitives, for example, two patterns in the
same ShapeSegment. There could further be semantic ambi-
guity because of wrong entity tagging, for example, decreas-
ing (p=up) from 5 (y.s) to 10 (y.c) where x.s and x.c values are
wrongly tagged as y.s and y.e, respectively. ShapeSearch uses
rule-based transformations that try to reorder and change the
types of entities to get a correct and meaningful ShapeQuery.?

The parsed ShapeQuery is sent to the front end (Box 4 in
Figure 4) for users to edit or further refine it if needed. The
validated query is then executed to generate the matching
trendlines.

6. OPEN CHALLENGES

We now discuss open research directions for improving
the usability and performance of both Zenvisage and
ShapeSearch.

6.1. Search enumeration + shape matching

In ShapeSearch, users currently need to specify the X and Y
attributes before issuing ShapeQueries. However, in certain
scenarios, users may not know the X and Y attributes in
advance or may want to search for the same shape over dif-
ferent combinations of attributes. Additionally, users may
want to issue a multistep query involving multiple shapes at
the same time, finding states with decreasing listing price
trends but increasing soldprice trends of houses. To support
such complex data exploration needs, we envision integrat-
ing ZQL with ShapeQuery. One simple option is support
ShapeQuery as a functional primitive as part of the process
column in ZQL. For instance, Table 6 depicts an integrated
query for the above example for finding states with decreas-
ing listing prices trends but increasing soldprice trends.
Combining ZQL and ShapeQuery also adds to expressive-
ness and efficiency of ZQL—functional primitives are cur-
rently treated as black boxes and thus not optimized in
Zenvisage. By adding support for Shape-Query, Zenvisage can



Table 6. Example of a ZQL query using ShapeQuery as a functional
primtive within Process column. The query finds states with
decreasing listprice but increasing sold price over trends of houses.

Name X Y z Process

fl year listprice z1 <-'state’”  z2<-argany,
[p=down](f1)

2 year soldprice z1 z3 <-argany
[p=up](f2)

*3 year ({listprice, soldprice} z2 && z3

leverage the shape matching algorithms discussed earlier
for efficient processing of visualizations.

6.2. In-database support for fuzzy matching
ShapeSearch performs shape matching outside relational
databases; consequently as the size of the dataset increases,
the data transfer and serialization/deserialization overheads
tend to dominate, resulting in an increase in latency. On the
other hand, recognizing patterns in a sequence of rows inrela-
tional databases has been widely desired but only supported
by a few vendors. For instance, Oracle Database 12¢ supports
a MATCH RECOGNIZE" clause for pattern matching in native
SQL. SQL-TS (Simple Query Language for Time Series)" is
another proposal on SQL extensions for pattern queries.
Nevertheless, none of these extensions support fuzzy matching
capabilities; instead, they require users to define the patterns
(e.g., up, down) using values of matching columns—making
the specification quite tedious and verbose.

In order to support fuzzy shape queries, we envision
developing new database extensions that take as input a
ShapeQuery as part of the SQL query and leverage shape
matching algorithms for efficiently executing the ShapeQuery
within the database kernel. For instance, the following query
depicts potential extensions for supporting ShapeQuery
within the SQL syntax.

SELECT *
FROM Ticker T,
(MATCH BY symbol ON price
USING PATTERN [p=+]®p=down]® [p=up]l®[p=+] AS
score
ORDER BY score DESC
LIMIT 1) S
WHERE T.symbol = S.symbol
Given a table Ticker, the aforesaid query finds a stock sym-
bol (specified via MATCH BY clause) with the closest match-
ing V-shaped trend on the values of column price (specified
via ON clause) and outputs its corresponding tuples.

6.3. Mixing code and interaction

To accelerate data exploration, an important next step is
to integrate visualization search abstractions supported
via ZQL and ShapeQuery with existing data science libraries
such as Pandas. This will allow users to seamlessly transition
between writing code (for example, for data cleaning, and
transformation); getting recommendations via search speci-
fications, and performing interactions on visualizations—all

in one place. As a step in this direction, LUX® a recent Python
library, combines partial user specifications with best prac-
tices from visual data analysis to recommend interesting
visualizations for guiding users toward next steps. It further
displays visualizations as a widget in situ within a Jupyter
notebook to support easier transitions between code and
interaction. Providing these capabilities “for free” for users
has led to a lot of adoption in the open source, with over
50,000 downloads.* While specification in LUX is inspired
from ZQL, adding natural language or regex-based pattern
searching functionalities, as supported in ShapeQuery, can
further enhance the power of such libraries.

7. RELATED WORK

Our work draws on prior work in visual querying, as well
as symbolic pattern mining. Visual querying tools'* ">
help users search for visualizations with a desired shape
by taking as input a sketch of that shape. Most of these
tools perform precise point-wise matching using measures
such as Euclidean distance or DTW. A few tools such as
TimeSearcher? let users apply soft or hard constraints on
the x and y range values via boxes or query envelopes, but
do not support mechanisms for specifying shape primi-
tives beyond location constraints. ShapeSearch introduces a
novel algebra that improves extensibility by acting as a com-
mon “substrate” for various input mechanisms, along with
an optimization engine that efficiently matches patterns
against a large collection of trendlines.

Symbolic sequence matching papers approach the prob-
lem of pattern matching by employing offline computa-
tion to chunk trendlines into fixed-length blocks, encoding
each block with a symbol that describes the pattern in that
block.**%1¢ Since these work operates on pre-chunked-and-
labeled trendlines, the problem is one of matching regular
expressions against string sequences (one per pre-labeled
trendline). Most of these papers only return a Boolean
score for whether the pattern matches the string sequence.
Moreover, since the trendlines are pre-labeled and indexed,
they do not support on-the-fly pattern matching where the
same trendline can change shapes based on filters or aggre-
gation constraints. ShapeSearch, on the other hand, adopts
a more online query-aware ranking of trendlines without
requiring precomputation and is thus more suited for ad hoc
data exploration scenarios.

8. CONCLUSION

In this work, we described ShapeSearch, a pattern-matching
system that complements our prior system Zenvisage by
providing expressive and flexible mechanisms for domain
experts to effortlessly and efficiently search for trendline
visualizations. We described the ShapeQuery algebra that
forms the core of ShapeSearch and helps express a large vari-
ety of patterns with a minimal set of primitives and opera-
tors. The algebra is backed by a shape matching engine that
enables on-the-fly and scalable pattern matching. Overall,
together with Zenvisage, ShapeSearch offers a promising
first step toward substantially simplifying and improving
the process of interactive data exploration for novice and
expert analysts alike.
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