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Abstract

Explaining the behaviour of intelligent systems will get increasingly and perhaps intractably challenging as models grow in
size and complexity. We may not be able to expect an explanation for every prediction made by a brain-scale model, nor can
we expect explanations to remain objective or apolitical. Our functionalist understanding of these models is of less advantage
than we might assume. Models precede explanations, and can be useful even when both model and explanation are incorrect.
Explainability may never win the race against complexity, but this is less problematic than it seems.
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1. The explosive growth of model
complexity

The revival and spectacular success of connectionism has
created a regime where dataset size, model complexity (as
measured by the number of parameters or weights), and
computation time are king. The explosive improvement
in the performance of deep learning models has been
accompanied by an equally explosive growth of model
complexity and computational expense.

There are some arguments that these large, expen-
sive models may not actually be necessary. The lottery
ticket hypothesis [1] postulates that larger models per-
form better because they are more likely to have pock-
ets of parameters that are advantageously placed at the
random initialization. Thus a randomly-initialized net-
work is likely to contain a much smaller subnetwork that,
trained in isolation, can match the performance of the
original network. Pruning these models is an active area
of research and debate [2, 3].

Nonetheless, the empirically superior performance of
larger models has led prominent researchers to conclude
that “general methods that leverage computation are ulti-
mately the most effective” (Sutton’s ‘bitter lesson’ [4]).

The ‘scaling hypothesis’ posits that once a suitable
basic architecture has been found, we can generate arbi-
trary levels of intelligence simply by instantiating larger
versions of that architecture. The manipulation and ar-
ticulation of neural network structures has therefore be-
come a prime preoccupation of the machine learning
research community, albeit not without its criticisms.
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Rahimi critiques this turn of his own field, likening it

o “alchemy” [5]. The web comic XKCD lampoons the
practice of developing these models, describing them as
an activity where you “pour the data into this big pile of
linear algebra, then collect the answers on the other side”,
pausing to “stir the pile until [the answers] start looking

right” [6].

2. Explanations as translation and
compression

There are many forms of explanation. Some are con-
cerned with explaining the structure of the model: de-
scriptions of its mechanisms (how does it work?), its
capabilities and limitations (what can and can’t it do?).
Others about its construction: what data it was trained
on, who built it and for what purpose. Explanations of
these kinds aim to deliver intelligibility, fairness, account-
ability, and transparency [7, 8, 9]. Explanations can also
be used as a mechanism to control for adverse outcomes,
help improve models, and discover new knowledge [10].

However, the term ‘explanation’ is most commonly
associated with individual predictions. Why did the
model predict this (and why not that)? How ‘confident’
is the model, and how confident should a consumer of
the model feel about this prediction?

Explanations of individual predictions aim to engender
trust, but also help calibrate the use of such a model as an
instrument within a decision support system. For exam-
ple, the ASSESS MS system used by clinical neurologists
to assess multiple sclerosis is part of a wider process in-
volving multiple tools, procedures, and performances of
expert judgment [11]. Just as they would seek to under-
stand magnetic resonance imaging (MRI) as part of their
process — the strengths, limitations and idiosyncrasies
of the tool, and develop the ‘professional vision’ [12] re-
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quired to effectively read MRI images through the lenses
of technical and medical knowledge — so too did they
seek to understand how the predictions of an Al model
could be incorporated into the process of diagnosis, a
finding replicated in other clinical contexts [13].

Explanations of individual predictions are therefore
attempts to translate from the language of computation
to the language of practice.

Explanations translate, but they also compress and
abstract. An early discovery in explanation research,
subsequently replicated in several contexts, is that too
much information overwhelms the user and thus under-
mines the explanation [14]. A ceiling to the information
content of an explanation implies that as models grow,
explanations must perform ever greater compression.

Within the modest room that explanations have for
growth, alternative representations can help. In some do-
mains, visual explanations can convey more information
than textual ones while requiring less cognitive effort to
process. Visual explanations are particularly natural in
image classification problems, where saliency or atten-
tion highlighting [15], counterfactual images [16], and
latent attribute visualisations [17] are popular forms of
explanation. Despite the potential for alternative repre-
sentations to improve the information bandwidth of ex-
planations, it must be conceded that holding the form of
an explanation constant, the compression ratio increases
with model size.

Moreover, explanations derived from the model predic-
tion process are a form of lossy compression, as anything
short of a complete listing of parameters, activations (and
perhaps more) would not capture the full information
content of the ‘decision-making’ behind an individual
prediction. Thus as the number of parameters within a
model grows, the explanation must lose more detail and
nuance, and become further removed from the underly-
ing prediction.

3. Lessons from human
explanations

The trend for model growth and explanation can be ex-
trapolated in many ways, but one obvious extension is
that models will approach levels of complexity compara-
ble to human behaviour (i.e., ‘brain-scale’ models). The
interpretation of consciousness, and the differences be-
tween software and wetware, are both cans of worms that
shall remain unopened in this paper. Rather, by exam-
ining the issues of explaining human reasoning we may
foresee the explainability issues of brain-scale models.
The first and most important issue is the fundamental
unknowability of the mind to others, and to the self. The
conventional account of philosophy of mind, and the intu-
ition that our language creates, is that we cannot observe

the thoughts and qualitative experience of others, but
come to know them only through what they say and do
(the problem of ‘other minds’ [18]). The unknowability
of the mind to others is the dominant account because
it aligns so well with the way we have organised our
interactions and our language, although there are alter-
native perspectives (notably Wittgenstein’s [19], which
questions whether ‘knowing’ can even be said to be done
of minds).

Likewise, we cannot even fully reason about our own
minds. We cannot sample the activations of our own
neurons, our memories are imperfect, there are innumer-
able environmental influences that we do not perceive or
account for, and many of our thoughts and actions are
performed unconsciously.

Second, people have agency and politics and therefore
every explanation is subject to rhetoric, argumentation,
and deception. Every explanation is given with an in-
tended outcome. There is no such thing as a ‘neutral’
or ‘objective’ explanation, yet this is the unstated expec-
tation of machine explanations. An explanation with a
mathematical definition can be said to be objective in
the sense that the content of the explanation is indepen-
dent of the observer, but this is a relatively weak form
of objectivity, akin to saying that human explanations
are objective because the words being said are the same
irrespective of who hears them. It ignores the fact that
the choice of the mathematical definition itself is a po-
litical one, as is the interpretation of the explanation.
Currently the politics of the explanation can be said to
come from, and be within control of, the human creators
and consumers of the models, but in a future scenario, it
is not difficult to imagine a brain-scale model developing
a bias towards explanations that ensure its continued sur-
vival. For example, a model might learn to manipulate
users towards maximal engagement through intention-
ally adapted explanations for its recommendations.

For these two reasons, we may not be able to expect a
uniformly satisfactory explanation for every prediction
made by a brain-scale model. There may be conditions
in which the behaviour can be satisfactorily explained,
as well as those in which it cannot.

Despite these problems, for a great deal of human
behaviour, we are capable of generating and giving sat-
isfactory explanations to each other. An employee can
explain why they were late (“Because my bus was can-
celled and I had to walk”). A child can explain why he ate
his brother’s share of dessert (“Because he stole a sausage
from me first!”). A man can explain why he bought flow-
ers for his husband (“Because they are beautiful and they
remind me of you.”). None of these explanations requires
bottomless introspection and psychoanalysis, and they
serve the purpose of the explanation perfectly well.

Human explanations are produced in response to an
implicit understanding of the context. The mother poised



to admonish her child, in asking “Why did you do this?”,
which could be interpreted and answered in any number
of ways (e.g., “Because I am hungry”, “Because I wanted
to eat it”, “Because I am supposed to eat dessert after
dinner”), is really asking the child to provide an explana-
tion of the form of a contrastive and moral justification
with respect to the intended state of affairs (that the two
children would each have their own desserts).

Situations in which explanations are demanded from
people are saturated with context. This context is ab-
sorbed by interlocutors, usually effortlessly and uncon-
sciously, and the episode culminates in the production of
a satisfactory explanation.

What we have begun to uncover by examining these
examples has been explored at length by Miller, who
synthesises perspectives on human explanation from
philosophy, social science, and cognitive science [20].
The findings are first, that human explanations are con-
trastive (i.e., “sought in response to particular counterfac-
tual cases”); second, that they are selected in a ‘ ‘biased
manner” from a “sometimes infinite number of causes”;
third, that explaining an event in terms of the statistical
likelihood of the outcome is “not as effective as referring to
causes”; and finally, that explanations perform the social
function of knowledge transfer, “presented relative to the
explainer’s beliefs about the explainee’s beliefs”.

Requesting satisfactory explanations from brain-scale
models will therefore require some notion of the context
in which the question “why did you do this?” is being
asked. With the question being so imprecise and reliant
on context, users of these models may need a new form
of language, or interaction technique, that allows them
to specify localised areas of interest within the infinite
space of possible valid explanations.

4. Our understanding of machine
learning may not help

Unlike with human reasoning, we can at least expect to
have a full functionalist understanding of the reasoning
in brain-scale models. In theory, we should be able to
reproduce any given decision and inspect the model’s
reasoning process with arbitrary detail. But as we are
already finding with much smaller models, parameters
and activations themselves are not sufficient for explana-
tions; they must be summarised, contextualised, and ex-
ternalised. We can fail to predict the emergent behaviour
of a system despite having a complete functional under-
standing of its constituent elements. To borrow an exam-
ple from Physics, we cannot predict states of the three
body problem by solving Newton’s equations [21]. There
are particular solutions but not general ones. In gen-
eral, we cannot solve the problem analytically but only
through numerical approximations. While behaviour

might be easy to explain using the theoretical model
(“the mass is here at time ¢ because of these equations”),
results derived from numerical approximations do not
precisely follow those equations and therefore cannot
accurately be explained in those terms. They must be
explained in their own terms, which involves explaining
their many iterations and instantiated parameters.

Explanations discard and aggregate information across
multiple parts of a neural network; knowing individual
parameters and activations may not even be necessary if
they are at the wrong level of abstraction. This can be
thought of in terms of another Physics analogy: we can
model many aspects of fluid dynamics with the Navier-
Stokes equations [22], if initial or boundary conditions
are available, despite the fact that they ignore the par-
ticulate nature of fluids. Indeed, many explanation tech-
niques, such as the popular LIME [23] deliberately avoid
inspecting the internal structure of the model (the ‘M’
in LIME stands for ‘Model-agnostic’). Entire families of
explanation techniques that rely on surrogate models,
model distillation, and rule extraction [24, 10] are based
on the premise that we can explain a model’s behaviour
by proxy, without direct reference to its actual computa-
tions. This is not without contention. Some reject these
approaches outright for the precise reason, among oth-
ers, that there are no guarantees that such explanations
actually reflect what the model is doing [25].

Moreover, we cannot always expect to have an un-
derstanding of the training data. Datasets are already
large enough that no individual can explore every item
within them. ImageNet [26], one of the most widely
used machine learning research datasets, contained sev-
eral racist, homophobic, ableist, ageist, and misogynist
‘classes’ of image [27]. It contained hundreds of images
of real people labelled “s**stic”, “f**ker”, “f**got”, “loser”,
“kept woman”, and so on. It is hard to imagine any con-
scientious researcher intentionally building a model us-
ing these labels, but the sheer size and complexity of
the dataset meant that these were overlooked until the
dataset became the focus of targeted research. As of
this writing many such class labels have been removed
from the official dataset, but for years they remained,
being incorporated into the models built by thousands
of researchers. There is also the issue that different peo-
ple have different views of what ought to be considered
harmful or objectionable.

There is no guarantee that more issues with ImageNet
will not be discovered. To verify the labels of each of its
14 million images, it would take a team of fifty people
nearly 300 days, if they worked continuously for 8 hours
a day, spending 30 seconds on each image. It would take
an individual over 40 years. The OpenAI GPT-3 model
[28] was trained on nearly 500 billion byte-pair encoded
tokens, or approximately 245 billion words (assuming,
conservatively, two tokens per word). It would take an



army one-thousand strong nearly 4 years to read this
much text, working 8 hours a day, continously reading
350 words per minute. The astronomical sizes of these
datasets render them fundamentally unknowable at hu-
man scale.

At the time of deployment, the training data may not
even be available. For reasons of privacy, security, and
intellectual property ownership, the training data may
be withheld from the users of a model or even destroyed.
Explanations of brain-scale models therefore cannot be
consistently expected to refer to the extrinsic influence
of their training data, and may therefore be forced to
internalise the blame for any error, and make ‘original’
reasoning indistinguishable from regurgitation of train-
ing data [29].

In the absence of data, we are faced with the absurd
challenge of explaining why models do what they do,
without being able to explain why they are the way they
are. This is like trying to explain the course of a river only
in terms of the motion of the water within it, ignoring
the topography of the valley through which it runs.

Model parameters and activations are neither neces-
sary nor sufficient for explanation. We do not always
have access to the training data and when we do it can be
so large as to be impossible to inspect comprehensively.
These facts imply that our functionalist understanding
of Al models may be of little advantage when it comes to
explaining their behaviour, in comparison to explaining
human behaviour.

5. Useful models precede
explanations

While it is possible to develop models with explainability
as a prerequisite, there is no fundamental obligation to
do so. Thus, models usually precede the invention of
mechanisms to explain them. In the period between
the development of a model and the development of its
explanation, the model may well be useful.

5.1. Correctness, explainability, and
usefulness

Correctness and explainability have, perhaps frustrat-
ingly to some, an insecure relationship. We might wish
that all correct models are explainable, and that all expla-
nations are for correct models. But neither is the case:
correct models may go unexplained, and incorrect mod-
els can have explanations. Furthermore: to be useful, a
model needs to be neither correct nor explainable.
Before we proceed it is worth discussing the notion
of an ‘incorrect model’. The phrase may call to mind
British statistician George E.P. Box’s observation that

“all models are wrong, but some are useful”, or Polish-
American philosopher Alfred Korzybski’s that “a map
is not the territory”. By design, models aim to condense
and simplify the complexity of (part of) the world so
that it may be understood and predicted, and this neces-
sarily incurs a loss in detail. It is this loss that for Box,
makes all models “wrong” to a greater or lesser extent.
However, these aphorisms are more accurately viewed
as statements about the incompleteness of these models
with respect to their referents, and their inequality to
them, than about their incorrectness.

I suggest that a more helpful way to define an incorrect
model is one which assumes or implies ontological and
epistemic positions that contradict those of the domain
being modelled. That is to say, in creating the model,
we assume or predict the presence of nonexistent things,
or the absence of existent things.1 Or, we build and
interpret the model with a different set of rules about
knowledge-making than those with which we come to
know its referent. Often, a model that is incorrect in this
way can only be recognised as such after a ‘paradigm
shift’ in the way the referent is understood, which can
take generations of thinkers [30]. Thus if models usually
precede the invention of mechanisms to explain them,
they almost always precede the discovery that they might
be incorrect.

Models may be incorrect in this deeper sense and still
be useful. For example, the theory of epicycles, which
dominated astronomy for centuries, allowed highly accu-
rate predictions of the movements of the planets despite
having a fundamental difference from the domain being
modelled: the assumption of geocentrism. Newtonian
dynamics is a similar story [30]. These models are no-
table for having compelling and satisfactory explanations
despite being incorrect, and still useful for practitioners
of those disciplines.?

Without explanation, too, an incorrect model can be
useful. A relatable and contemporary example might be
that of end-user programmers fighting abstraction [31].
When trying to automate a repetitive task, such as fixing
spelling errors in a document, the end-user programmer
may not care that the program does not handle edge
cases, such as errors in domain-specific jargon, since she
can manually inspect and correct those. So the program
(model) that only accounts for words in its dictionary is
incorrect, but useful.

!Note that a model in which some feature of its referent is
absent, which is common, is not the same as a model that assumes or
asserts the absence of said feature. The former is merely incomplete,
whereas the latter is incorrect.

“While it may take years to detect an incorrect scientific model,
literary writing makes abundant use of incorrect models that can
be immediately understood as being incorrect, and yet which are
extremely effective and useful. These incorrect models are better
known as metaphors.



5.2. Explanations are not free

Another force causes a tendency away from explana-
tions: explanations have a cost. Not only are they costly
in terms of labour: it costs the time of scientists and pro-
grammers to develop the explanation mechanism, but
they are also costly in terms of computation. Programs
for explanation need to be stored at additional expense,
and they cost compute cycles when run. Via computa-
tion, explanations incur energy costs, which, depending
on the energy mix used to power computation, can result
in increased carbon emissions. These material costs of
explanation can be justified in terms of their benefits, and
also in comparison to the material and immaterial costs
of non-explanation, which may well be greater.

However, the dominant pricing model for machine
learning is pay-as-you-compute [32]. Cloud and intelli-
gence service providers such as Amazon AWS, Microsoft
Azure, and the OpenAI API all charge in proportion to
the amount of computation performed. Under this pric-
ing model, explanations incur capital expenditure. Thus,
even when the costs of explanation can be justified, they
cannot always be borne. When access to capital mediates
the relationship between users and explanations, we risk
access to explainable models becoming yet another facet
of the socio-digital divide [33].

Moreover, not all models require explanation. When
we think of explanations for AI we often tend to fixate
on and romanticise extreme applications, such as au-
tonomous vehicles, recidivism prediction, and disease
diagnosis. Yes, these are important areas and the costs
of errors are high, and therefore explanation is key. But
we tend to lose sight of the fact that most technology,
most of the time, is used for relatively low stakes and
mundane work, and Al is unlikely to be an exception. In
many of these cases, incorrect models are useful, unex-
plainable models are useful, and the costs of building a
‘correct’ or explainable model are prohibitive. Interviews
and diary studies of media recommender systems and
search query autocompletion assistants have shown that
users can achieve comprehension without explanation,
that the costs of consuming explanations can outweigh
the benefits, and that people rarely desire explanations
in the daily use of these systems [34].

Many applications of brain-scale models will fall into
the ‘low stakes’ category and therefore many models
will continue to be produced which may be incorrect
and unexplainable but still useful. At the same time, the
trend is for larger models to be more general, and so the
same model may be applied in a mix of high and low
risk roles. Commercial offerings built upon brain-scale
models may promote the explainability of the model as a
competitive edge or as a premium offering, but if history
is any indication, customers will prefer a cheaper or more
performant model over a more explainable one.

6. The explainability crisis and
grief

It therefore appears that explainability is indeed a race
against model complexity, if we take together the ob-
servations that larger models are more performant, that
explanations of larger models must necessarily compress
to a greater degree and lose more detail in comparison to
explanations of smaller models, that there are fundamen-
tal challenges to explainability when models approach
human-scale reasoning and our functionalist understand-
ing is of little help, and that explanations are costly and
models may be developed and usefully applied before
they are explainable.

It is clear we are headed for an explainability crisis,
which will be defined by the point at which our desire
for explanations of machine intelligence will eclipse our
ability to obtain them. Explanation is a wicked problem
[35], perhaps the wicked problem of artificial intelligence
research. The problem of explanation eludes definition,
it does not have a stopping rule, solutions are not true or
false, nor is there a definitive test of a solution. There are
many possible approaches to the problem of explanation,
and all explanation scenarios are essentially unique.

The research community, and society more broadly, ap-
pears to be dealing with the onset of this problem by griev-
ing. Perhaps the most well-known account of grief is the
Kiibler-Ross model, the ‘five stages of grief’, namely: de-
nial, anger, bargaining, depression, and acceptance [36].
While contemporary psychiatrists consider the model to
be outdated and unhelpful in explaining the grieving pro-
cess, the distinctions between the Kiibler-Ross stages are
uncannily analogous to the various approaches proposed
to deal with the explainability crisis.

Some deny there is a crisis. Breiman contends that
there cannot be an accuracy-interpretability tradeoff be-
cause a more accurate model is, in some senses, inher-
ently more informative [37]. However, the very moti-
vation for seeking and preferring ‘interpretable’ models
demonstrates that explainability does not follow from
informativeness. Proponents of inherently intrepretable
models uphold the demonstrable success of their models
as evidence that accuracy does not have to be sacrificed
for interpretability. Rudin proposes that many models
can be made explainable by design with careful effort in
feature engineering and data preprocessing [25]. How-
ever, it is not at all clear that it is always possible to put
this design philosophy into practice [8].

Some react to unexplainable models with ‘anger’, or
perhaps more accurately, passion. This is particularly
acute when it comes to high stakes applications. Baecker
advocates simply to avoid such ‘risky’ applications of Al
altogether [38]. In such cases the loss of explainability is
potentially too costly to justify the benefit of applying the



system. In the works of researchers at the intersection
of social justice and Al such as Timnit Gebru and Kate
Crawford, evocative phrases demonstrate their passion
for this situation. In an article for the New York Times,
Crawford writes [39]: [...] algorithmic flaws aren’t easily
discoverable: How would a woman know to apply for a job
she never saw advertised? How might a black community
learn that it were being overpoliced by software? We need
to be vigilant about how we design and train these machine-
learning systems, or we will see ingrained forms of bias |[...]
we risk constructing machine intelligence that mirrors a
narrow and privileged vision of society, with its old, familiar
biases and stereotypes.”

The bargaining approach seeks middle ground. Some
avoid complex models, focusing on simpler and more in-
herently interpretable models, such as the hospital read-
mission models developed by Caruana [40], or the SLIM
models for sleep apnea screening developed by Ustun and
Rudin [41]. Others propose to build in structural inter-
ventions into these large models that guarantee (a form
of) explainability. One example of such an intervention
is the concept bottleneck model [42], which attempts to
force the model to learn in terms of human-interpretable
concepts.

Legislative approaches seem to bargain with the prob-
lem of explanation while simultaneously denying its ex-
istence. Recital 71 of the European Union’s General Data
Protection Regulation (GDPR) is commonly known as
the ‘right to explanation’ [43]. It states that a “decision
which is based solely on automated processing and which
produces legal effects” entitles the subject of that deci-
sion to “the right [...] to obtain an explanation of the
decision”. It is a bold statement of the principle while at
the same time weak and underspecified. The French Loi
pour une République numérique (Digital Republic Act)
is marginally more potent [44], stipulating more clearly
the minimal contents of an explanation, such as the data
used and its source. However, legal scholarship notes
that the ‘right to explanation’ approach has “serious prac-
tical and conceptual flaws” [45, 44], such as placing the
burden on users to challenge bad decisions, and that data
and weights, however accurately disclosed, may not be
sufficient to show bias, unfairness, or deceit.

While the formal and reserved nature of academic writ-
ing precludes outright expressions of depression, there
is no shortage of depression and anger in popular me-
dia and other societal expressions. Gig workers, long at
the forefront of highly opaque and highly consequential
automation, constantly strike with the demand that com-
panies explain their algorithms [46]. For consumers of
social media and recommender systems, their unexplain-
able nature is intimately bound up in their other harms,
their capacity for disinformation [47], the destruction of
mental health [48], and the destabilisation of democracy
[49]. “T’ve had enough of the bad feelings machine”, writes

Sirin Kale for the Guardian [50], “Won’t somebody switch
it off? Please? Can we switch it off ?”

Finally, some accept that it may not always be possi-
ble to produce satisfactory explanations, or explanations
with any formal guarantees of correctness. Some treat
explanation, as humans do, as a metacognitive outcome
resulting from introspection, and build metamodels that
can explain the behaviour of these larger models, with
either a white-box or black-box view into their inference
process [51, 52]. Yet another approach is to treat inter-
action with Al as precisely that: an interaction design
problem, and taking a cue from end-user programming
research, focus on the ways in which users of these sys-
tems are not passive recipients of their predictions but
play active roles in shaping their behaviour [31, 52]. This
approach can be seen as having a Stoic focus on the ele-
ments of the system within our control, or it can simply
be seen as reflecting the pragmatic focus on getting the
job done that is a tenet of end-user programming.

In response to an earlier version of this paper, which
did not draw an analogy between the Kiibler-Ross model
and the approaches proposed to tackle the explainability
crisis, a reviewer remarked: “Only the end of the paper,
where a variety of paths to mitigate the race against model
complexity for high-risk applications are briefly discussed,
leaves me personally a little unsatisfied. I am not entirely
convinced about their effectiveness, given our experience
with explanations so far with ‘below-brain-scale’ models.”
Such, often, is the nature of grief: it leaves us unsatisfied
and unconvinced.? Grief is our response to an irreversible
event. In grieving, our objective is not to ‘solve’ the event
(we cannot), but to reposition ourselves in relation to it,
and to move forward in a different world.

7. Conclusion

The title of this paper asks the question: “Is explainable
Al a race against model complexity?” By examining sev-
eral fundamental barriers to the explanation of artificial
intelligence, we come to the unsettling conclusion that
it probably is, but also that this may not be as problem-
atic as it seems. We could attempt to avoid complexity
by labelling its risks as too great, we could attempt to
tame it through structural interventions, we could try to
legislate and agitate for more explanations, or we could
try to improve the end-user programmability of such
models. None of these approaches can definitively ‘win’
us the race, but taken together, they can help us act in a
post-explainability world.

%I must apologise to my kind reviewer for taking their words
slightly out of context for rhetorical impact. They were not actually
critiquing the paper at this point, subsequently writing: “However,
don’t see this as a weakness of the paper, but rather as a good entry
point for interesting discussions.”
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