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ABSTRACT

Self-supervised learning (SSL) is a long-standing goal for
speech processing, since it utilizes large-scale unlabeled data
and avoids extensive human labeling. Recent years have
witnessed great successes in applying self-supervised learn-
ing in speech recognition, while limited exploration was
attempted in applying SSL for modeling speaker character-
istics. In this paper, we aim to improve the existing SSL
framework for speaker representation learning. Two methods
are introduced for enhancing the unsupervised speaker infor-
mation extraction. First, we apply multi-task learning to the
current SSL framework, where we integrate utterance-wise
contrastive loss with the SSL objective function. Second,
for better speaker discrimination, we propose an utterance
mixing strategy for data augmentation, where additional
overlapped utterances are created unsupervisely and incor-
porated during training. We integrate the proposed methods
into the HuBERT framework. Experiment results on the
SUPERB benchmark show that the proposed system achieves
state-of-the-art performance in universal representation learn-
ing, especially for speaker identification oriented tasks. An
ablation study is performed verifying the efficacy of each
proposed method. Finally, we scale up the training dataset to
94 thousand hours of public audio data and achieve further
performance improvement in all SUPERB tasks.

Index Terms— Self-Supervised Learning, Pre-Training,
Speaker

1. INTRODUCTION

Self-supervised learning has achieved great successes in nat-
ural language processing, which utilizes a large amount of
unlabeled data to learn universal representation. The repre-
sentation enjoys outstanding generalizability, re-usability, and
effectiveness, thus brings significant performance improve-
ments when employed by various downstream tasks. Moti-
vated by this, a series of work in speech processing have been
proposed to leverage unlabeled audio for representation learn-
ing.
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Self-supervised learning methods are categorized into dis-
criminative methods [1, 2, 3, 4, 5, 6, 7], generative methods
[8, 9, 10, 11, 12, 13], and multi-task learning methods [14].
The typical generative method is Autoregressive Predictive
Coding (APC) [8, 9], where the model is similar to the autoen-
coder architectures except that the network is trained to pre-
dict features for future time steps. The discriminative meth-
ods usually employ contrastive learning [5] or classification
on weak clustering label [6] to pre-train an encoder network
with large-scale unsupervised data. Recently, the discrimi-
native methods achieved great successes in automatic speech
recognition (ASR), which outperforms the best system for the
Librispeech dataset in 2019 with significantly less supervised
data. The improved performance on different speech tasks in
the SUPERB benchmark [15] also verifies the effectiveness
of pre-training.

Although achieving numerous successes, most pretrain-
ing methods for speech application focus on the extraction
of spoken content information, i.e., learning representation
optimized for tasks such as speech recognition and key-
word spotting. Limited exploration was carried out on other
speech characteristics. As the speech signal contains multi-
fold information, e.g. content, identity and presentation,
optimization with respect to one aspect might lead to sub-
optimized representation for other tasks. Interestingly, even
trained with ASR-oriented objective function, the represen-
tation learnt by unsupervised pre-training shows excellent
performance in speaker identification related tasks, such as
speaker verification, diarization etc., in the SUPERB chal-
lenge. However, whether the speaker tasks’ performance can
be further boosted, when provided embedding from matched
pre-training, is still an open question.

To answer this question, we investigate the unsupervised
speaker pre-training methods that encourage the preservation
of speaker identity. Specifically, we proposed two train-
ing methods: 1) We integrate the utterance-wise contrastive
loss with the unsupervised representation learning, where
the aggregated embedding from each utterance is employed
for affinity computation, and a speaker-wise pseudo label
is applied as reference. 2) We propose an utterance-mixing
training strategy, where a partially overlapped signal is con-



structed for each training sample, by mixing it with a ran-
domly selected speech piece, while the training objective
remains the same. We integrate our proposed training method
in the HuBERT framework [6], and conduct experiments on
the Speech processing Universal PERformance Benchmark
(SUPERB) [15]. Experimental results show that our method
significantly improves speaker identification, speaker verifi-
cation, speaker diarization, and emotion recognition, while
maintaining the same speech recognition performance. Fi-
nally, we extend our pre-training network to 94k hours of
public English audio data, consisting of LibriVox [16], Gi-
gaSpeech [17], and VoxPopuli [18], which further increases
performance on speaker tasks compared to previous work
using 60k LibriVox data only.

The contributions of the paper are summarized into three-
folds. 1) We propose a speaker aware pre-training method
which is complementary to current ASR oriented pre-training.
2) We empirically evaluate the model performance on the
SUPERB benchmark and achieve state-of-the-art perfor-
mance in the overall evaluation. 3) We release our model at
https://github.com/microsoft/UniSpeech.

2. BACKGROUND

We first overview HuBERT [6] for universal speech represen-
tation learning, which serves as our baseline model. HuBERT
has the state-of-the-art performance for several representa-
tion learning benchmarks [15]. The main idea of HuBERT is
to learn the representation by iterative clustering. HuBERT
firstly conducts an offline clustering step based on MFCC
(Mel-Frequency Cepstrum Coefficient) of input signal, where
the cluster center of each frame is indexed as the pseudo-label
for later steps. Then, a Transformer model with a CNN as a
feature extractor is trained on the MFCC and pseudo-labels
to form the representation for the first iteration. A mask pre-
diction loss is used as training criteria, where the network is
required to predict the pseudo-label of a masked region from
the input sequence, with the features from unmasked parts
as input. Specifically, given a speech utterance with T feature
frames, the corresponding labels are Z = {zt}Tt=1, the feature
sequence X = {xt}Tt=1 is extracted from the utterance with
CNN Encoders. We denote M ⊂ {t}Tt=1 as the set of masked
indices in {t}Tt=1, X̃ = r(X,M) as the corrupted X where
each xt is replaced by a random-initialized mask embedding
x̃t if t ∈ M . Then the Transformers model f(·) is trained
to predict each labels corresponding to the masked indices
{zt|zt ∈ Z, t ∈ M} given the corrupted feature sequence X̃
with the cross-entropy loss LContent =

∑
t∈M log f(zt|X̃, t).

The combination of clustering and network training is
considered as one iteration. Starting from the second itera-
tion, instead of MFCC feature, the embeddings generated by
the network from the last iteration are used as the input for
clustering and network step. Presumably both the pseudo-
label and the embedding are refined through iterations.

3. UNISPEECH-SAT

We propose Universal Speech representation learning with
Speaker Aware pre-Training (UniSpeech-SAT), which is
shown in Figure 1. On top of HuBERT model, two ap-
proaches are proposed, namely the utterance-wise contrastive
learning and the utterance mixing augmentation. The former
is applied to enhance the single speaker information extrac-
tion to improve downstream tasks like speaker verification
and speaker identification. The latter mainly benefits the
multi-speaker tasks such as speech diarization problem.

3.1. Utterance-wise Contrastive Learning

We combine the utterance-wise contrastive loss to enhance
unsupervised speaker information modeling. Two assump-
tions are made for this integration: 1. Each training utterance
contains one active speaker. 2. Each utterance in the training
batch belongs to a different speaker, i.e., there is no speaker
having two utterances in one batch. Given that the dataset is
collected from various sources, we believe the two assump-
tions are mostly satisfied.

In proposed contrastive loss, embeddings within the utter-
ance are considered as positive instances, while the negative
instances consists of embedding from other utterances in
the same batch. Suppose that the input feature sequence
is {X̃b}Bb=1, where B is the batch size. ∀X̃b, we obtain
the latent representation Lb = {lbt}Tt=1 from the output of
an intermediate Transformer encoder layer. Then we dis-
cretize the latent representation Lb to a finite set of speech
representations Qb = {qbt}Tt=1 with a quantization mod-
ule [5]. Suppose the quantization module has G codebooks
with V entries, we firstly linear transform each latent rep-
resentations l to logit l′ ∈ RG×V and then use Gumbel
softmax [19] to choose one discrete entry e from each code-
book. The probability for choosing the v-th entry from
g-th codebook is pg,v =

exp(l′g,v+nv)/τ∑V
k=1 exp(l′g,k+nk)/τ

, where τ is

a non-negative temperature, nu = − log(− log(u)), and u
is uniform sampled from U(0, 1). Then we concatenate the
selected vectors as [e1, . . . , eG], and linear transform it to
the quantized representation q. For the latent representa-
tion lbt centered over mask step t in the b-th utterance, the
model is trained to identify the true quantized representations
from the same utterance Q̂b = {qbt |qbt ∈ Qb, t ∈ M b}
in a set of quantized candidate representations that are
uniformly sampled from all the masked time steps in all
the utterances within the training batch Q̂ = ∪Bb=1Q̂

b.
The utterance-wise contrastive loss among lbt and Q̂ is de-
fined as: LContrastive =

∑
qbt∈Q̂b log

exp(sim(lbt ,q
b
t )/κ)

exp(sim(lbt ,q
b
t )/κ)+1

−∑
qbt∼Q̂\Q̂b log 1

exp(sim(lbt ,q
b
t )/κ)+1

, where sim(a, b) denotes
the cosine similarity between the latent representations and
quantized representations a>b/‖a‖‖b‖. The utterance-wise
contrastive loss is augmented by a codebook diversity loss
to encourage the equal use of all the codebook entries



Fig. 1: An illustration of our method. We conduct contrastive loss in the intermediate layer, and use mixed utterance as input.

Ld = − 1
GV

∑G
g=1

∑V
v=1 p̄g,v log p̄g,v , where p̄g,v is the aver-

aged pg,v across the batch of utterances. Finally, the speaker
information modeling is trained with the loss: LSpeaker =
LContrastive + αLd , where α is a pre-defined hyperparameter.
Our model will learn the combination of speaker loss and
content loss by LUniSpeech-SAT = LSpeaker + βLContent , where
β is a pre-defined hyper-parameter.

3.2. Utterance Mixing Augmentation

We introduce utterance mixing strategy to further boost
speaker information modeling in pre-training, especially for
multi-speaker tasks such as speaker diarization etc. The ut-
terance mixing method aims to simulate the multi-speaker
speech for self-supervised pretraining when only single-
speaker pretraining data is available. Specifically, as shown in
Algorithm 1, given a batch of speech utterances U = {ui}Bi=1

with batch size B, we randomly choose S utterances {ui}Si=1

from the batch. Then for each utterance u, we randomly
choose an utterance from the batch ub ∈ U , crop a chunk
of random length from ub, and mix it with u in a random
region. With the utterance mixing method, the model is
trained to extract the information of the main speaker from
the mixed audio with the single-speaker information mod-
eling loss (Section 3.1), and predict the content information
corresponding to the main speaker with the content infor-
mation modeling loss (Section 2). Note that we constrain
the mixing portion in each utterance to be less than 50%,
avoiding potential label permutation problem.

3.3. Large and Diverse Pre-training Data

We also propose to leverage large-scale unsupervised data
from diverse domains to improve the robustness of our model.
Previous works use Librispeech [20] or Librivox [16] datasets
for pre-training, which limits the pre-training model since the
input data are all extracted from the audiobook. We extend the
training dataset with (1) 10K hours the Gigaspeech data [17],

Algorithm 1 Utterance Mixing

1: given a batch of speech utterances U = {ui}Bi=1 with batch size B and
length L, mixing probability p

2: Choose S utterances US ⊂ U by Bernoulli sampling with probability p
3: for u in US do
4: Sample a utterance ub from discrete uniform distribution with proba-

bility P (ub = x) = 1
B
, x ∈ U

5: Sample the mix length l from discrete uniform distribution with prob-
ability P (l = x) = 2

L
, x ∈ {1, · · · , L

2
}

6: Sample a start position s of u from discrete uniform distribution with
probability P (s = x) = 1

L−l
, x ∈ {1, · · · , L− l}

7: Sample a start position sb of ub from discrete uniform distribution
with probability P (sb = x) = 1

L−l
, x ∈ {1, · · · , L− l}

8: u[s : s+ l]← mixing(u[s : s+ l], ub[sb : sb + l])
9: return U

which is collected from audiobooks, podcasts and YouTube,
covering both read and spontaneous speaking styles, and a
variety of topics, such as arts, science, and sports. (2) 24K
hours VoxPopuli data [18]), which from European Parliament
(EP) event recordings including plenary sessions, committee
meetings and other events. Finally, we have 94k hours of
data, including LibriVox, VoxPopuli, and Gigaspeech. We be-
lieve the diverse dataset can improve model performance on
all tasks, because it contains diverse audio background, more
speakers, and different contents of speech.

4. EXPERIMENT

4.1. Implementation Details
We implement and pretrain our UniSpeech-SAT model fol-
lowing previous work [6]. We pretrain the UniSpeech-SAT
Base model for 400k steps on LibriSpeech 960 hours audio
[20] using the label generated by clustering the 6-th trans-
former layer output of the first iteration model of HuBERT
Base model. The UniSpeech-SAT Base+ and UniSpeech-SAT
Large model is pretrained for 400k steps on 94K large-scale
diverse data (Section 3.3) using the label generated by clus-



Table 1: Universal speech representation evaluation on SUPERB benchmark.The overall score is computed by ourselves: we
multiply the QbE score with 100, replace each error rate score with (1 - error rate), and average the scores of all tasks.

Method #Params Corpus
Speaker Content Semantics ParaL Overall

SID ASV SD PR ASR (WER) KS QbE IC SF ER
Acc ↑ EER ↓ DER ↓ PER ↓ w/o ↓ w/ LM ↓ Acc ↑ MTWV ↑ Acc ↑ F1 ↑ CER ↓ Acc ↑ Score ↑

FBANK - - 8.5E-4 9.56 10.05 82.01 23.18 15.21 8.63 0.0058 9.10 69.64 52.94 35.39 44.2
PASE+ [14] 7.83M LS 50 hr 37.99 11.61 8.68 58.87 25.11 16.62 82.54 0.0072 29.82 62.14 60.17 57.86 57.5
APC [8] 4.11M LS 360 hr 60.42 8.56 10.53 41.98 21.28 14.74 91.01 0.0310 74.69 70.46 50.89 59.33 67.6
VQ-APC [10] 4.63M LS 360 hr 60.15 8.72 10.45 41.08 21.20 15.21 91.11 0.0251 74.48 68.53 52.91 59.66 67.2
NPC [11] 19.38M LS 360 hr 55.92 9.40 9.34 43.81 20.20 13.91 88.96 0.0246 69.44 72.79 48.44 59.08 67.0
Mockingjay [12] 85.12M LS 360 hr 32.29 11.66 10.54 70.19 22.82 15.48 83.67 6.6E-04 34.33 61.59 58.89 50.28 56.1
TERA [13] 21.33M LS 360 hr 57.57 15.89 9.96 49.17 18.17 12.16 89.48 0.0013 58.42 67.50 54.17 56.27 64.2
modified CPC [2] 1.84M LL 60k hr 39.63 12.86 10.38 42.54 20.18 13.53 91.88 0.0326 64.09 71.19 49.91 60.96 65.1
wav2vec [3] 32.54M LS 960 hr 56.56 7.99 9.90 31.58 15.86 11.00 95.59 0.0485 84.92 76.37 43.71 59.79 71.5
vq-wav2vec [4] 34.15M LS 960 hr 38.80 10.38 9.93 33.48 17.71 12.80 93.38 0.0410 85.68 77.68 41.54 58.24 69.3
wav2vec 2.0 Base [5] 95.04M LS 960 hr 75.18 5.74 6.02 6.08 6.43 4.79 96.23 0.0233 92.35 88.30 24.77 63.43 80.3
HuBERT Base [6] 94.68M LS 960 hr 81.42 5.11 5.88 5.41 6.42 4.79 96.30 0.0736 98.34 88.53 25.20 64.92 82.0
UniSpeech-SAT Base 94.68M LS 960 hr 85.76 4.31 4.41 5.40 6.75 4.86 96.75 0.0927 98.58 88.98 23.56 66.04 83.0
− contrastive loss 94.68M LS 960 hr 84.74 4.61 4.72 5.22 6.80 5.17 96.79 0.0956 98.31 88.56 24.00 65.60 82.8
− utterance mixing 94.68M LS 960 hr 85.97 4.35 5.87 5.06 7.04 5.05 96.88 0.0866 98.10 88.50 24.52 65.97 82.7

UniSpeech-SAT Base+ 94.68M CD 94k hr 87.59 4.36 3.80 4.44 6.44 4.88 97.40 0.1125 98.84 89.76 21.75 68.48 84.0
wav2vec 2.0 Large [5] 317.38M LL 60k hr 86.14 5.65 5.62 4.75 3.75 3.10 96.6 0.0489 95.28 87.11 27.31 65.64 82.1
HuBERT Large [6] 316.61M LL 60k hr 90.33 5.98 5.75 3.53 3.62 2.94 95.29 0.0353 98.76 89.81 21.76 67.62 83.5
UniSpeech-SAT Large 316.61M CD 94k hr 95.16 3.84 3.85 3.38 3.99 3.19 97.89 0.0836 99.34 92.13 18.01 70.68 85.6

tering the 6-th transformer layer output of the HuBERT Base
model. As for the model architecture and training configura-
tions, we use the same hyperparameters as [6].

4.2. Universal Representation Evaluation
We evaluate our models on SUPERB, which is designed to
provide a standard and comprehensive testbed for pretrained
models on various speech tasks. It covers ten tasks, includ-
ing Speaker Identification (SID), Automatic Speaker Verifi-
cation (ASV), Speaker Diarization (SD), Phoneme Recogni-
tion (PR), Automatic Speech Recognition (ASR), Keyword
Spotting (KS), Query by Example Spoken Term Detection
(QbE), Intent Classification (IC), Slot Filling (SF), Emotion
Recognition (ER). The tasks can be grouped into four aspects
of speech: speaker, content, semantics, and paralinguistics.
We follow the policies created by SUPERB. 1) The design of
task specific layers follows the rules of SUPERB. 2) Trans-
former model is frozen to limit the space of fine-tuning hyper-
parameter search. 3) The task specific layer uses the weighted
sum results of hidden states from different layers.

Table 1 shows the evaluation results. There is a signifi-
cant improvement on the speaker diarization task in both base
and large setting, where the diarization error rate (DER) is
reduced by over 25%. The results demonstrate that the pro-
posed utterance mixing method is very effective for the multi-
talker task. Moreover, positive results are observed in speaker
identification and speaker verification, which is attributed to
the utterance contrastive loss. Surprisingly, our model also
obtains substantial gain on emotion recognition. One possible
explanation is that the task also requires utterance level infor-
mation rather than content information. However, our model
shows a degradation on ASR without LM. The word error rate
of our large model is 9% worse than the baseline, while the
gap becomes less than 2% in the base setting. Our explanation
is speaker information and content information are orthome-
tric, and the content information is sacrificed given that the
model capacity is limited.
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Fig. 2: Weight Analysis.

Table 2: Results of UniSpeech-SAT Base+ with various mix-
ing ratios on 94k hours training data.

Method Ratio
Speaker Content Semantics ParaL

SD ASR (WER) IC ER
DER ↓ w/o ↓ w/ LM ↓ Acc ↑ Acc ↑

HuBERT Base [6] - 5.88 6.42 4.79 98.34 64.92

UniSpeech-SAT Base+
0.0 5.04 6.39 4.76 99.24 66.32
0.2 3.80 6.44 4.88 98.84 68.48
0.5 3.73 6.65 5.18 99.29 67.36

4.3. Analysis

Weight Analysis: Figure 2 shows the layer contribution to
different tasks. For speaker verification and diarization, shal-
low layers contribute more, while for ASR and intent classi-
fication, the top layers are more important. This phenomenon
indicates the shallow layers learn speaker information while
the top layers learn content and semantic information.

Mixing ratio: We explore different ratios of mixing ut-
terances and test the performance of mixing 0%, 20%, 50%
utterances, shown in Table 2. For 94k hours setting, utterance
mixing is still effective. It is a trade-off between speaker and
content. We use 20% for our UniSpeech-SAT Base+ model.

5. CONCLUSION
In this work, we integrate contrastive loss and utterance mix-
ing to existing framework for unsupervised speech represen-
tation learning, with a goal of improving the speaker discrim-
ination in learnt embedding. The evaluation on the SUPERB
benchmark shows our model achieves state-of-the-art perfor-
mance and outperforms other baselines by a large margin.
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