
SIP (2020), page 1 of 27 © The Authors, 2020.
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike
license <http://creativecommons.org/licenses/by-nc-sa/3.0/>. The written permission of Cambridge University Press must be obtained for commercial re-use.
doi:0000000000

Recent Advances in End-to-End Automatic
Speech Recognition

JINYU LI

Recently, the speech community is seeing a significant trend of moving from deep neural network based hybrid modeling to
end-to-end (E2E) modeling for automatic speech recognition (ASR). While E2E models achieve the state-of-the-art results
in most benchmarks in terms of ASR accuracy, hybrid models are still used in a large proportion of commercial ASR systems
at the current time. There are lots of practical factors that affect the production model deployment decision. Traditional
hybrid models, being optimized for production for decades, are usually good at these factors. Without providing excellent
solutions to all these factors, it is hard for E2E models to be widely commercialized. In this paper, we will overview the
recent advances in E2E models, focusing on technologies addressing those challenges from the industry’s perspective.
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I. INTRODUCTION

The accuracy of automatic speech recognition (ASR)
has been significantly boosted since deep neural network
(DNN) based hybrid modeling [1] was adopted a decade
ago. This breakthrough used DNN to replace the traditional
Gaussian mixture model for the acoustic likelihood evalua-
tion, while still keeping all the components such as acoustic
model, language model, and lexicon model, etc., as the
hybrid ASR system. Recently, the speech community has
a new breakthrough by transiting from hybrid modeling to
end-to-end (E2E) modeling [2–9] which directly translates
an input speech sequence into an output token sequence
using a single network. Such a breakthrough is even more
revolutionary because it overthrows all the modeling com-
ponents in traditional ASR systems, which have been used
for decades.

There are several major advantages of E2E models over
traditional hybrid models. First, E2E models use a sin-
gle objective function which is consistent with the ASR
objective to optimize the whole network, while traditional
hybrid models optimize individual components separately,
which cannot guarantee the global optimum. Therefore,
E2E models have been shown to outperform traditional
hybrid models not only in academics [10] but also in the
industry [11, 12]. Second, because E2E models directly
output characters or even words, it greatly simplifies the
ASR pipeline. In contrast, the design of traditional hybrid
models is complicated, requiring lots of expert knowledge
with years of ASR experience. Third, because a single net-
work is used for ASR, E2E models are much more compact
than traditional hybrid models. Therefore, E2E models can
be deployed to devices with high accuracy.
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While E2E models achieve the state-of-the-art results in
most benchmarks in terms of ASR accuracy, hybrid mod-
els are still used in a large proportion of commercial ASR
systems at the time of writing because the ASR accuracy
is not the only factor for the production choice between
hybrid and E2E models. There are lots of practical fac-
tors such as streaming, latency, adaptation capability, etc.,
which affect the commercial model deployment decision.
Traditional hybrid models, optimized for production for
decades, are usually good at these factors. Without pro-
viding excellent solutions to all these factors, it is hard for
E2E models to be widely commercialized. To that end, in
this paper, we overview popular E2E models with a focus
on the technologies addressing those challenges from the
perspective of the industry.

II. END-TO-END MODELS

The most popular E2E techniques for ASR are: (a) Connec-
tionist Temporal Classification (CTC) [13], (b) Attention-
based Encoder-Decoder (AED) [14, 15], and (c) recurrent
neural network Transducer (RNN-T) [16]. Among them,
RNN-T provides a natural solution to streaming ASR with
high accuracy and low latency, ideal for industrial applica-
tion. These three most popular E2E techniques are illus-
trated in Figure 1. In this section, we will give a short
overview of them.

A) Connectionist Temporal Classification
The Connectionist Temporal Classification (CTC) tech-
nique for ASR [2] was designed to map the speech input
sequence into an output label sequence. Because the length
of output labels is smaller than that of the input speech
sequence, a blank label is inserted between output labels
with allowable repetition of labels to construct CTC paths
that have the same length as the input speech sequence.
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(a) CTC (b) AED

(c) RNN-T

Fig. 1.: Architectures of three popular end-to-end tech-
niques [17]

Figure 2 shows an example of three CTC paths for the word
“team”.

Figure 1a shows the architecture of CTC. We denote
the input speech sequence as x, the original output label
sequence as y, and all of the CTC paths mapped from
y as B−1(y). The encoder network is used to convert
the acoustic feature xt into a high-level representation
henct . The CTC loss function is defined as the negative
log probabilities of correct labels given the input speech
sequence:

LCTC = −lnP (y|x), (1)

with
P (y|x) =

∑
q∈B−1(y)

P (q|x), (2)

where q is a CTC path. With the conditional independence
assumption, P (q|x) can be decomposed into a product of
frame posterior as

P (q|x) =

T∏
t=1

P (qt|x), (3)

where T is the length of the speech sequence.

Fig. 2.: Example CTC paths for the word “team”. A blank
label 〈b〉 is inserted between every character. The blue path
is (〈b〉, 〈b〉 , t, 〈b〉 , e, a, m, m). The green path is (〈b〉, t, e,
a, a, 〈b〉, m, 〈b〉). The red path is (t, 〈b〉, e, 〈b〉, 〈b〉, a, 〈b〉,
m).

CTC is the first E2E technology widely used in ASR
[3, 5, 18–22]. However, the conditional independence
assumption in CTC is most criticized. One way to relax
that assumption is to use the attention mechanism [23, 24]
which can introduce implicit language modeling across
speech frames. Such attention-based CTC models implic-
itly relax the conditional independence assumption by
improving the encoder without changing the CTC objective
function, and therefore enjoy the simplicity of CTC model-
ing. By replacing the underlying long short-term memory
(LSTM) [25] with Transformer [26] in the encoder, which
allows a more powerful attention mechanism to be used,
CTC thrives again in recent studies [27]. It gets further
boosted by the emerged self-supervised learning technolo-
gies [28–31] which can learn a very good representation
that carries semantic information.

B) Attention-based Encoder-Decoder
The attention-based encoder-decoder (AED) model is
another type of E2E ASR model [4, 6, 7, 32, 33]. As shown
in Figure 1b, AED has an encoder network, an attention
module, and a decoder network. The AED model calculates
the probability as

P (y|x) =
∏
u

P (yu|x,y1:u−1), (4)

where u is the output label index. The training objective is
also to minimize −lnP (y|x).

The encoder network performs the same function as
the encoder network in CTC by converting input feature
sequences into high-level hidden feature sequences. The
attention module computes attention weights between the
previous decoder output and the encoder output of each
frame using attention functions such as additive attention
[6] or dot-product attention [7], and then generates a con-
text vector as a weighted sum of the encoder outputs. The
decoder network takes the previous output label together
with the context vector to generate its output to calculate
P (yu|x,y1:u−1), which is operated in an autoregressive
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way as a function of the previous label outputs without the
conditional independence assumption.

While the attention on the full sequence in AED is a
natural solution to machine translation which has the word
order switching between source and target languages, it
may not be ideal to ASR because the speech signal and out-
put label sequence are monotonic. In order to have better
alignment between the speech signal and label sequence,
the AED model is optimized together with a CTC model
in a multi-task learning framework by sharing the encoder
[34]. Such a training strategy greatly improves the con-
vergence of the attention-based model and mitigates the
alignment issue. It becomes the standard training recipe for
most AED models [10, 35–41]. In [42], a further improve-
ment was proposed by combining the scores from both the
AED model and the CTC model during decoding.

Most commercial setups need ASR systems to be
streaming with low latency, which means ASR systems
should produce the recognition results at the same time as
the user is speaking. In vanilla AED models, the attention
is applied to the whole utterance in order to achieve good
performance. The latency can be significant because such
a setup needs to obtain the full utterance before decoding,
and it is impractical for streaming ASR scenarios where
the speech signal comes in a continuous mode without seg-
mentation. There are lots of attempts to build streaming
AED models. The basic idea of these methods is applying
attention on the chunks of the input speech. The difference
between these attempts is the way the chunks are deter-
mined and used for attention. Figure 3a shows the full
attention of AED, which spreads attention weights across
the whole utterance. One major school of streaming AED
models is to use monotonic attention. In [43], a mono-
tonic attention mechanism was proposed to use integrated
decision for triggering ASR. Attention is only on the time
step corresponding to the trigger point as shown in Figure
3b. The method was improved in [44], where a mono-
tonic chunkwise attention (MoChA) method was proposed
to stream the attention by splitting the encoder outputs
into small fixed-size chunks so that the soft attention is
only applied to those small chunks, as shown in Figure
3c. Adaptive-size instead of fixed-size chunks were used
in [45]. Recently, monotonic infinite lookback (MILK)
attention [46] was proposed to attend the entire sequence
preceding the trigger point, as shown in Figure 3d. Another
popular streaming AED method is triggered attention [47]
which uses CTC segments to decide the chunks and is
applied to lots of AED models [48–50].

While all these methods can achieve the goal of stream-
ing ASR to some extent, they usually do not enforce
low-latency which is another important factor for commer-
cial ASR systems. This challenge was addressed in [51],
which proposed to train low-latency streaming AED mod-
els by leveraging the external hard alignment. In [52], a
scout network was used to predict word boundary which is
then used by the ASR network to predict the next subword
by utilizing the information from all speech frames before
it for low latency streaming.

(a) full attention (b) monotonic attention

(c) MoChA (d) MILK

Fig. 3.: Attention methods for AED. The time step goes
from left to right, and the label sequence goes from bot-
tom to top. Every circle represents an attention weight. The
darker the circle is, the larger the attention weight is.

All streaming AED models need some complicated
strategies to decide the trigger point for streaming. A
comparison of streaming ASR methods was conducted in
[53] which shows RNN Transducer has advantages over
MoChA in terms of latency, inference time, and train-
ing stability. AED models also cannot perform well on
long utterances [54, 55]. Therefore, although there are still
many activities [40, 49, 56–64] in the area of streaming
AED models, the industry tends to choose RNN Trans-
ducer introduced next as the dominating streaming E2E
model while AED has its position in some non-streaming
scenarios.

C) RNN Transducer
RNN Transducer (RNN-T) [16] provides a natural way
for streaming ASR because its output conditions on the
previous output tokens and the speech sequence until the
current time step (i.e., frame) as P (yu|x1:t,y1:u−1). In
this way, it also removes the conditional independence
assumption of CTC. With the natural streaming capabil-
ity, RNN-T becomes the most popular E2E model in the
industry [9, 11, 12, 17, 65–69].

Illustrated in Figure 1c, RNN-T contains an encoder
network, a prediction network, and a joint network. The
encoder network is the same as that in CTC and AED,
generating a high-level feature representation henct . The
prediction network produces a high-level representation
hpreu based on RNN-T’s previous output label yu−1. The
joint network is a feed-forward network that combines henct

and hpreu as

zt,u = ψ(Qhenct + Vhpreu + bz), (5)

where Q and V are weight matrices, bz is a bias vector,
and ψ is a non-linear function (e.g., RELU or Tanh). zt,u is
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Fig. 4.: Example alignment paths of RNN-T.

connected to the output layer with a linear transform

ht,u = Wyzt,u + by, (6)

where Wy and by denote a weight matrix and a bias vector,
respectively. The probability of each output token k is

P (yu = k|x1:t,y1:u−1) = softmax(hkt,u). (7)

The loss function of RNN-T is also −lnP (y|x), with

P (y|x) =
∑

a∈A−1(y)

P (a|x) (8)

as the sum of all possible alignment paths that are mapped
to the label sequence y. The mapping from the alignment
path a to the label sequence y is defined as A(a) = y. 1

In Figure 4, three example alignment paths are plot-
ted for speech sequence x = (x1,x2, ......,x8) and label
sequence y = (〈s〉, t, e, a,m), where 〈s〉 is a token for sen-
tence start. All valid alignment paths go from the bottom
left corner to the top right corner of the TxU grid, hence the
length of each alignment path is T + U . In an alignment
path, the horizontal arrow advances one time step with a
blank label by retaining the prediction network state while
the vertical arrow emits a non-blank output label.

The posteriors of the alignment grid composed by the
encoder and prediction networks need to be calculated
at each grid point. This a three-dimensional tensor that
requires much more memory than what is needed in the
training of other E2E models such as CTC and AED. Eq.
(8) is calculated based on the forward-backward algorithm
described in [16]. In [70], to improve training efficiency,
the forward and backward probabilities can be vectorized
with a loop skewing transformation, and the recursions can
be computed in a single loop instead of two nested loops.
Function merging was proposed in [66] to significantly
reduce the training memory cost so that larger minibatches
can be used to improve the training efficiency.

It is worth noting that ASR latency is a very impor-
tant metric that affects user experience. If the latency is
large, users will feel the ASR system is not responding.
Therefore, practical systems need to have a small latency
in order to give users a good experience [71]. Shangguan et

1Note this mapping is different from the CTC mapping B in Eq. (2).

al. recently gave a very good study of the factors affecting
user perceived latency in [72]. In [73], RNN-T is designed
to generate end of sentence (EOS) token together with
the ASR transcription. The latency of EOS detection is
improved in [74] with early and late penalties. While RNN-
T is now the most natural E2E model for streaming, the
vanilla RNN-T still has latency challenges because RNN-T
tends to delay its label prediction until it is very confi-
dent by visiting more future frames of the current label.
The green path in Figure 4 is an example alignment of
such a delayed decision. In order to ensure low latency
for RNN-T, constrained alignment [75, 76] was proposed
to restrict the training alignment within a delay thresh-
old of the ground truth time alignment and forbid other
alignment paths. Strict alignment between the input speech
sequence and output label sequence is enforced in [77] to
generate better alignment for streaming RNN-T. In addi-
tion to the benefit of latency, another advantage of all these
alignment restricted RNN-T methods is GPU-memory sav-
ing and training speed-up because less alignment paths are
used during training. FastEmit [78] was proposed to reduce
latency without the need of the ground truth alignment. It
encourages the emission of vocabulary tokens and discour-
ages the blank transition at all positions in the time-label
grid. Therefore, it pushes all alignment paths to the left
direction of the time-label grid. However, this operation is
a little aggressive at reducing latency, which can result in
recognition accuracy loss. In [79], a self-alignment method
was proposed to reduce latency in a mild way. It uses
the self alignment of the current model to find the lower
latency alignment direction. In Figure 4, the blue path indi-
cates a self-alignment path and the red path is one frame
left to the self-alignment path. During training, the method
encourages the left-alignment path, pushing the model’s
alignment to the left direction. The proposed method was
reported to have better accuracy and latency tradeoff than
the constrained-alignment method and FastEmit.

In addition to these three popular E2E models, there are
also other E2E models such as neural segmental model [80]
and recurrent neural aligner [81], to name a few.

III. ENCODER

In all E2E ASR models, the most important component
is the encoder which converts speech input sequences into
high-level feature representations.

A) LSTM
In early E2E ASR works, LSTM is the most popular model
unit. The encoder can be either a multi-layer unidirectional
LSTM-RNN as Eq. (9)

hlt = LSTM(xlt,h
l
t−1) (9)

or a multi-layer bidirectional LSTM (BLSTM)-RNN as Eq.
(10)

hlt = [LSTM(xlt,h
l
t−1),LSTM(xlt,h

l
t+1)], (10)
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where LSTM() denotes the standard LSTM unit with an
optional projection layer [82]. Here, hlt is the hidden output
of the l-th (l = 1...L) layer at time t and xlt is the input
vector for the l-th layer with

xlt =

{
hl−1
t , if l > 1

xt, if l = 1
, (11)

where xt is the speech input at time step t. The last layer
output, hLt , is used as the encoder output.

Because of the streaming request in most commercial
ASR systems, unidirectional LSTM is used more widely.
When the encoder is an LSTM-RNN, CTC and RNN-T
work in the streaming mode by default while AED still
needs streaming attention strategies in order to work in
the streaming mode. In contrast, when the encoder is a
BLSTM-RNN, all E2E models are non-streaming models.

There is a clear accuracy gap between the LSTM
encoder and the BLSTM encoder because the latter uses
the whole utterance information to generate the encoder
output. In order to reduce the gap, it is a natural idea to use
future context frames to generate more informative encoder
output with the methods such as latency controlled BLSTM
(LC-BLSTM) [83] or contextual LSTM (cLSTM) [12, 84].
LC-BLSTM works in an overlapped multi-frame chunk
mode. BLSTM is still used within a chunk, while the state
of the forward direction is carried across chunks. In con-
trast, cLSTM works in a frame-by-frame uni-directional
way by taking the lower layer’s output from future frames
as the input of the current frame.

B) Transformer
Although LSTM can capture short-term dependencies,
Transformer is much better at capturing long-term depen-
dencies because its attention mechanism sees all context
directly. Transformer was shown to outperform LSTM
[85–87] and is now replacing LSTM in all E2E models
[27, 85–89]. The encoder of Transformer-based E2E mod-
els is composed of a stack of Transformer blocks, where
each block has a multi-head self-attention layer and a feed-
forward network (FFN), as shown in Figure 5a. Residual
connections [90] and layer normalization [91] are used to
connect different layers and blocks. The input of a Trans-
former block can be linearly transformed to the query q,
key k, and value v vectors with matrices Wq, Wk, and
Wv, respectively. Self-attention is used to compute the
attention distribution over the input speech sequence with
the dot-product similarity function as

αt,τ =
exp(β(Wqxt)

T (Wkxτ ))∑
τ ′ exp(β(Wqxt)T (Wkxτ ′))

= softmax(βqTt kτ ), (12)

where β = 1√
d

is a scaling factor and d is the dimension of
the feature vector for each head. Then, the attention weights
are used to combine the value vectors to generate the layer

(a) Transformer (b) Conformer

Fig. 5.: The structures of Transformer and Conformer

output at the current time step

zt =
∑
τ

αtτWvxτ =
∑
τ

αtτvτ . (13)

Multi-head self-attention (MHSA) is used to further
improve the model capacity by applying multiple paral-
lel self-attentions on the input sequence and the outputs of
each attention module are then concatenated. By replacing
the LSTM modules with Transformer in the encoder, the
RNN-T model becomes Transformer Transducer [89, 92–
94] which has better accuracy than RNN-T due to the
modeling power of Transformer.

While Transformer is good at capturing global context,
it is less effective in extracting local patterns. To further
improve the modeling capability, convolutional neural net-
work (CNN) [95, 96] which works on local information is
combined with Transformer as Conformer [97] which is
plotted in Figure 5b. The conformer block contains two
half-step FFNs sandwiching the MHSA and convolution
modules. Although having higher model complexity than
Transformer, Conformer has been reported to outperform
Transformer in various tasks [97, 98].

Again, the self-attention on the full speech sequence
cannot be used for streaming ASR. In [93], a masking
strategy was proposed to flexibly control how attention is
performed. A binary attention mask mt,τ is introduced to
the self-attention in Eq. (12) as

αt,τ =
mt,τ exp(β(Wqxt)

T (Wkxτ ))∑
τ ′ mt,τ ′ exp(β(Wqxt)T (Wkxτ ′))

= softmax(βqTt kτ ,mt,τ ). (14)

Figure 6 shows several examples of how the binary mask
is used for different computational costs and latency con-
figurations when predicting the output for x10. The full
attention case is plotted in Figure 6a, where the recep-
tion field is the full sequence, and every element of the
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mask matrix is 1. For the strict streaming setup without any
latency, the attention should not be performed on any future
frame, as shown in Figure 6b. The major drawback of this
attention mechanism is that the memory and runtime cost
increases linearly as the utterance history grows. The con-
text operation [89] was proposed to address the issue by
working on a limited history at every layer. Shown in 6c,
because of context expansion, the model still can access
a very long history. If the attention operates on F history
frames at every layer and the model has L Transformer lay-
ers, then the model can access FxL history frames. In order
to improve modeling accuracy, it is better to also include
some future frames into the prediction. In [89], the same
context expansion strategy is applied to not only the history
but also the future frames. However, because of context
expansion, it needs a large amount of future frames when
there are many Transformer layers, introducing significant
latency. A better future access strategy was proposed in
[93, 99] where the input speech sequence is segmented into
fixed-size chunks. The frames in the same chunk can see
each other and each frame can see fixed numbers of the
left chunks so that the left reception field propagates. Plot-
ted in Figure 6d, this strategy helps to build high accuracy
models with a very small latency. In addition to these meth-
ods, there are lots of variations [49, 52, 59, 100–102] of
localizing full self-attention in order to have a streaming
Transformer encoder.

Another popular method is Gaussian soft-mask [103]
which changes the softmax calculation in self-attention in
Eq. (12) as

αt,τ = softmax(βqTt kτ +Mt,τ ), (15)

where Mt,τ is a mask. It can be either a hard mask which
sets all weights outside the band b to 0 as

Mt,τ =

{
0, if |t− τ | < b

2

−∞, otherwise
(16)

or a soft mask as

Mt,τ =
−(t− τ)2

2σ
, (17)

where σ is a trainable parameter. While both masks can
enforce the locality which is good for the speech signal, the
soft-mask method cannot reduce computational cost and
latency because it sill attends the full sequence, although
the weights of far-away time steps are small.

IV. OTHER TRAINING CRITERION

In addition to the standard training loss −lnP (y|x) for
E2E models, there are other losses used in the popu-
lar teacher-student learning and minimum word error rate
training.

(a) full attention

(b) attention on whole history

(c) attention with context expansion for history frames

(d) attention with context expansion for history frames and a future
chunk

Fig. 6.: Attention for different computational cost and
latency configuration when predicting the output for x10.
In every sub figure, the left side is the reception field, and
the right side is the attention mask matrix.

A) Teacher-Student Learning
The concept of teacher-student (T/S) learning was origi-
nally introduced in [104] but became popular from the deep
learning era. The most popular T/S learning strategy is to
minimize the KL divergence between the output distribu-
tions of the teacher and student networks, first proposed in
2014 by Li et al. [105]. Later, Hinton et al. [106] branded it
with a new name, knowledge distillation, by introducing a
temperature parameter (like chemical distillation) to scale
the posteriors.

In the context of E2E modeling, the token-level loss
function of T/S learning is

−
∑
u

∑
k

PT (k | y1:u−1,x) logPS(k | y1:u−1,x), (18)

where PT and PS denote the posterior distributions of the
teacher and student networks, respectively. The most pop-
ular usage of T/S learning in E2E modeling is to learn a
small student E2E model from a large teacher E2E model
[107–110].
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Another usage is to learn a streaming E2E model from
a non-streaming E2E model [111–115]. It is a little tricky
here because the streaming E2E models usually generate
delayed decisions. For example, the streaming CTC and
non-streaming CTC have different output spike patterns.
Therefore, delicate work has been done in order to make
the non-streaming E2E models generate friendly output
spikes that can be learned by the streaming E2E models
[112, 114]. Another way to circumvent the spike mismatch
is to train the streaming E2E model by using the ASR
hypotheses generated from decoding the unlabeled data
with a non-streaming E2E model [116].

T/S learning can also be used to adapt an E2E model
from a source environment to a target environment if
the target-domain acoustic data x̂ can be paired with the
source-domain acoustic data x either by recording at the
same time or from simulation [117, 118]. The loss function
in Eq. (18) is re-written as

−
∑
u

∑
k

PT (k | y1:u−1,x) logPS(k | y1:u−1, x̂). (19)

While standard T/S learning follows a two-step process
in which we first train a teacher model and then use the T/S
criterion to train a student model, there are recent studies
[119–122] that train the teacher and student models at the
same time. Such a co-learning strategy not only simplifies
the training process but also boosts the accuracy of student
models.

B) Minimum Word Error Rate Training
The minimum word error rate (MWER) training criterion
tries to mitigate the discrepancy between the training cri-
terion and the evaluation metric of a speech recognition
model. Instead of minimizing the negative log loss of the
probability P (y|x), MWER minimizes the expected word
errors [123] as

LMWER =
∑
hi

P̂ (hi | x)R(hi,h
r), (20)

where P̂ (hi | x) denotes the posterior probability of an
hypothesis hi, R(·) denotes the risk function which mea-
sures the edit-distance between the hypothesis hi and
the reference transcription hr at word-level. While the
exact posterior probability is computationally intractable,
in practice, an N-best list of hypotheses from beam search
decoding are used to compute the empirical posterior
probability [124] as

P̂ (hi | x) =
P (hi | x)∑
hi
P (hi|x)

, (21)

where P (hi | x) is the probability of an hypothesis hi,
computed in Eq. (4) for AED models or Eq. (8) for RNN-T
models.

MWER has been shown to improve the accuracy of
AED models [124, 125], RNN-T models [126, 127],

and hybrid autoregressive transducer (HAT) models [128].
However, the gain is not as significant as what has been
reported in hybrid models. One possible reason is that
the MWER training of hybrid models follows the cross-
entropy training which is frame-based. In contrast, E2E
models have already been optimized with sequence-level
training, therefore further sequence-level MWER training
gives less gain.

V. MULTILINGUAL MODELING

Building a multilingual ASR system with traditional hybrid
models is difficult because every language usually has
its own language-specific phonemes and word invento-
ries. Most hybrid multilingual works focus on building an
acoustic model with shared hidden layers [129–131], while
every language has its own lexicon model and language
model. In contrast, it is very easy to build a multilingual
E2E ASR system by simply taking a union of the token
(e.g., character, subword, or even byte) sets of all languages
as the output token set and then training an E2E model with
all the data [132–136]. Such an E2E model is a univer-
sal ASR model which is capable of recognizing the speech
from any language as long as that language has been used
during training. However, pooling all languages together
to train a multilingual model is a double-edged sword.
Although it is simple and maximizes the sharing across lan-
guages, it also brings confusion between languages during
recognition.

If the multilingual model can condition on the language
identity (LID), significant improvement can be obtained
over the universal multilingual model without LID because
the one-hot LID guides the ASR model to generate the
transcription of the target language by reducing the con-
fusion from other languages [134, 137–141]. However,
such a multilingual E2E model with LID relies on the
prior knowledge of which language the user will speak for
every utterance, working more like a monolingual model.
To remove the dependency on knowing one-hot LID in
advance, one way is to estimate the LID and use it as the
additional input to E2E multilingual models. However, the
gain is very limited, especially for streaming E2E models,
because the estimation is not very reliable [142, 143].

Because there are more multilingual users than monolin-
gual users [144], there is an increasing demand of building
multilingual systems which can recognize multiple lan-
guages without knowing in advance which language each
individual utterance is from. One solution is to build a
corresponding multilingual E2E model for any set of lan-
guage combinations. However, this is impractical because
the number of possible language combinations is huge
given so many languages in the world. Zhou et al. proposed
a configurable multilingual model (CMM) [145] which is
trained only once by pooling the data from all languages,
but can be configured to recognize speeches from any com-
bination of languages. As shown in Figure 7, the hidden
output of CMM is calculated as the weighted sum of the
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Fig. 7.: Diagram of configurable multilingual model
(CMM). Uni denotes a universal multilingual module, and
Li denotes the ith language.

output from a universal module and the outputs from all
language-specific modules. At runtime, the universal mod-
ule together with corresponding language-specific modules
are activated based on the user choice. Because multilin-
gual users usually speak a few languages, CMM reduces
the language confusion space from dozens to a few. There-
fore, it performs much better than the multilingual model
without LID, and can serve the multilingual users well.

There are several factors to be considered when design-
ing multilingual E2E models. When scaling the multilin-
gual model to cover a large amount of languages (e.g.,
50 languages in [140]), the data from those languages is
heavily imbalanced, which usually leads to a model per-
forming well on resource-rich languages while failing on
low-resource languages. To solve that issue, data sam-
pling is usually used to balance the training data amount
[138, 140]. The model capacity should also be expanded
to recognize a large amount of languages. In [140, 146],
multilingual models are scaled to billions of parameters.

Because there are differences across languages, it may
not be optimal if a simple E2E structure is used to blindly
model all the multilingual data. In [138], language-specific
adapt layers are used to further boost the multilingual
model performance. Similar ideas are used with the mix-
ture of expert structure for multilingual models [147, 148].

While E2E models have achieved remarkable success in
multilingual modeling, an even more challenging topic is
the ASR of code-switching (CS) utterances which contain
mixed words or phrases from multiple distinct languages.
There are two categories of CS: one is intra-sentential
CS where switches happen within an utterance and the
other is inter-sentential CS where switches occur between
utterances with monolingual words inside each utterance.
The former one is more difficult, attracting most studies.
In [149], synthetic utterance-level CS text was generated
to improve the AED model’s ASR accuracy on inter-
sentential CS utterances. The challenge of intra-sentential
CS to E2E models was addressed in [150] by using the LID

model to linearly adjust the posterior of a CTC model, fol-
lowed by lots of recent studies (e.g., [94, 151–157]). One
major challenge to CS ASR is the lack of the CS data
while E2E models are more data hungry. Therefore, meth-
ods have been studied to effectively leverage monolingual
data. A constrained output embedding method [151] was
proposed to encourage the output embedding of monolin-
gual languages similar in order to let the ASR model easily
switch between languages. In [94, 153], a bi-encoder which
has a separate encoder for each language is used to train the
model from monolingual data. This was further extended
with both language-specific encoder and language-specific
decoder to recognize CS speech [158].

VI. ADAPTATION

The performance of ASR systems can degrade significantly
when the test conditions differ from training. Adaptation
algorithms are designed to address such challenging issues.
A comprehensive overview of adaptation technologies in
ASR can be found in [159]. In this section, we highlight
some adaptation technologies for E2E models.

A) Speaker Adaptation
Speaker adaptation adapts ASR models to better recog-
nize a target speaker’s speech. It is a common practice
to adapt the acoustic encoder of CTC [160, 161], AED
[162, 163], RNN-T [164, 165] and Conformer Transducer
[166]. Another popular methodology is to augment the
input speech with speaker embeddings [38, 167, 168].

The biggest challenge of speaker adaptation is that the
adaptation data amount from the target speaker is usually
very small. There are several ways to address such a chal-
lenge. The first one is using regularization techniques such
as Kullback-Leibler (KL) divergence regularization [169],
maximum a posteriori adaptation [170], or elastic weight
consolidation [171], to ensure the adapted models do not
overfit the limited adaptation data [160, 162–164]. The
second approach is multi-task learning. E2E models typ-
ically use subword units as the output target in order to
achieve high recognition accuracy. Sometimes, the num-
ber of subword units is at the scale of thousands or even
more. These units usually cannot be fully observed in
the limited speaker adaptation data. In contrast, the small
number of character units usually can be fully covered.
Therefore, multi-task learning using both character and
subword units can significantly alleviate such sparseness
issues [160, 163]. The third approach is to use multi-
speaker text-to-speech (TTS) to expand the adaption set
for the target speaker [164, 165]. Because the transcription
used to generate the synthesized speech is also used for
model adaptation, this approach also alleviates the hypoth-
esis error issue in unsupervised adaptation when combining
the synthesized speech with the original speech from the
target speaker.
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It is desirable to use E2E models on devices because
of the compact model size. There are interesting works
[172, 173] which study how to do secure adaptation on
devices with continuous learning so that the user data
never leaves devices. Several engineering practices were
described in order to deal with the limited memory and
computation power on devices.

B) Domain Adaptation
Domain adaptation is the task of adapting ASR models to
the target domain which has content mismatch from the
source domain in which the ASR models were trained.
Because E2E models tend to memorize the training data
well, their performance usually degrades a lot in a new
domain. Such a challenge attracts much more works on
domain adaptation than speaker adaptation. This is not
a severe issue for hybrid models because their language
model (LM) is trained with a much larger amount of text
data than that is used in the paired speech-text setup for
E2E model training. The big challenge of adapting E2E
models to a new domain is that it is not easy to get enough
paired speech-text data in the new domain, which requires
transcribing the new-domain speech. However, it is much
easier to get text data in the new domain. Therefore, the
mainstream of domain adaptation methods for E2E models
focuses on the new-domain text only.

A widely adopted approach to adapt E2E models to a
new domain is fusing E2E models with an external LM
trained with the new-domain text data. There are several
LM fusion methods, such as shallow fusion [174], deep
fusion [174], and cold fusion [175]. Among them, the sim-
plest and most popular method is shallow fusion in which
the external LM is log-linearly interpolated with the E2E
model at inference time [176].

However, shallow fusion does not have a clear proba-
bilistic interpretation. As an improvement, a maximum a
posteriori based decoding method [177, 178] was proposed
for the integration of an external LM for CTC. A density
ratio approach based on Bayes’ rule was proposed in [179]
for RNN-T. During inference, the output of the E2E model
is modified by the ratio of the external LM trained with the
new-domain text data and the source-domain LM trained
with the transcript of the training set which has the paired
speech-text data for E2E model training. Another similar
model is the hybrid autoregressive transducer (HAT) model
[180] designed to improve the RNN-T model. In the HAT
model, the label distribution is derived by normalizing the
score functions across all labels excluding blank. Hence, it
is mathematically justified to integrate the HAT model with
an external LM using the density ratio method.

In [181], an internal LM estimation (ILME)-based
fusion was proposed to enable a more effective LM inte-
gration. During inference, the internal LM score of an E2E
model is estimated by zeroing out the contribution of the
encoder and is subtracted from the log-linear interpola-
tion between E2E and external LM scores. An internal
LM training (ILMT) method [182] was further proposed

to minimize an additional internal LM loss by updating
only the components that estimate the internal LM. ILMT
increases the modularity of the E2E model and alleviates
the mismatch between training and ILME-based fusion.

Tuning the LM weights on multiple development sets is
computationally expensive and time-consuming. To elim-
inate the weights tuning, the MWER training with LM
fusion was proposed in [183, 184] where the LM fusion is
performed during MWER training. During inference, LM
weights pre-set in training enables a robust LM fusion on
test sets from different domains.

Because LM fusion methods require interpolating with
an external LM, both the computational cost and footprint
are increased, which may not be applicable to ASR on
devices. With the advance of TTS technologies, a new trend
is to adapt E2E models with the synthesized speech gener-
ated from the new-domain text [12, 164, 185, 186]. This is
especially useful for adapting RNN-T, in which the predic-
tion network works similarly to an LM. It was shown that
such domain adaptation method with TTS is more effective
than LM fusion methods [12].

The TTS-based adaptation method also has its draw-
backs. The first is that TTS speech is different from the real
speech. It sometimes also degrades the recognition accu-
racy on real speech [187]. This issue was alleviated in [188]
by inserting a mapping network before the encoder network
when the input is TTS audio in both the training and adap-
tion stage. This mapping network works as feature space
transformation to map the space of TTS audio to the space
of real speech. During testing with real speech, the map-
ping network was removed. The second is that the speaker
variation in the TTS data is far less than that in the large-
scale ASR training data. The third is the cost of training
a multi-speaker TTS model and the generation of synthe-
sized speech from the model is large. These issues were
solved by a spliced data method [189] which was used to
adapt E2E models with better performance than the TTS-
based adaptation method. For any text sentence in the new
domain, the method randomly extracts the corresponding
audio segments from the source training data, and then con-
catenates them to form new utterances. Figure 8 gives an
example of how this spliced data method works. Similar
ideas have been used for data augmentation by replacing
some word segments in an utterance with new word seg-
ments from another utterance to train a general E2E model
[190, 191].

Both the TTS-based adaptation and the spliced data
method need to synthesize audios from text, and then
update E2E models. Recently, a fast text adaptation method
[192] was proposed to adapt the prediction network of
RNN-T by treating it as an LM and then using the text from
the new domain to update it. In [193], ILMT [182] was used
to ensure that the internal LM inside RNN-T behaves simi-
larly to a standalone neural LM, and then it can be adapted
with text only data.

However, as shown in [194], the prediction network in
RNN-T does not fully function as an LM. Chen et al.
showed this is because the prediction network needs to
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Fig. 8.: An example of the spliced data method. It gen-
erates “Cortana close door” from 3 utterances from the
source training data by extracting the audio segments of
“Cortana”, “close”, and “door” out and then concatenating
them.

Fig. 9.: Flowchart of factorized neural transducer model
which separates the prediction of blank and normal tokens
in the vocabulary. The superscript v and b denote the
vocabulary and blank, respectively.

predict both normal tokens and blank, and therefore pro-
posed a factorized neural transducer which separates the
prediction of normal tokens and blank [195]. As shown in
Figure 9, the modules in the dashed box function exactly
as an LM, predicting the probability P (yu|y1:u−1). There-
fore, it can be updated with the text from the new domain
by using any well-established neural LM adaptation meth-
ods. Finally, the adapted factorized neural transducer with
the branch output P (yu|x1:t,y1:u−1) is used to recognize
the speeches from the new domain with large accuracy
improvement [195].

While these domain adaptation technologies are pow-
erful, it is desirable that the adaptation of E2E models to
the new domain does not degrade the models’ performance
on the source domain. Therefore, it is worth looking at the
concept of lifelong learning which enables E2E models to
learn new tasks without forgetting the previously learned
knowledge [196]. If the source-domain data is available,
it can be mixed with the new-domain data for adaptation

[189]. Otherwise, the popular solution is to use regulariza-
tion that prevents the adapted model from moving too far
away from the source model [193].

C) Customization
Different from speaker adaptation which adjusts a speaker
independent E2E model toward the speaker audio and
domain adaptation which lets an E2E model recognize the
content of a new domain better, customization here specif-
ically refers to the technologies that leverage context such
as contacts, location, music playlist etc., of a specific user
to significantly boost the ASR accuracy for this user. For
example, an English ASR system usually cannot recog-
nize the contact names of a Chinese person well. However,
if the English ASR system is presented with the contact
list of this Chinese person, the ASR output can be biased
toward the contact names. Such biasing is even more effec-
tive when designed with context activation phrases such as
"call", "email", "text", etc.

While it is relatively easier for hybrid systems to do
so with the on-the-fly rescoring strategy which dynami-
cally adjusts the LM weights of a small number of n-grams
which are relevant to the particular recognition context, it
is more challenging to E2E systems. One solution is to
add a context bias encoder in addition to the original audio
encoder into the E2E model, which was first proposed in
[197] to bias a keyword spotting E2E model toward a spe-
cific keyword. The idea was then extended into a contextual
LAS (CLAS) ASR model [198], plotted in figure 10. LAS
(Listen, Attend and Spell) [7] is one particular instantia-
tion of AED. Compared to the standard AED model in
figure 1b, CLAS adds the context encoder in the bottom
right of the figure which takes the context list z1:N as the
input, where zi denotes the i-th phrase. An attention mod-
ule is used to generate the contextual vector czu as one of
the inputs to the decoder. In this way, the network output
conditions not only on the speech signal and previous label
sequence but also on the contextual phrase list. It was fur-
ther extended into a two-step memory enhanced model in
[199]. It is common that a contextual phrase list contains
rare words, especially names which are not observed dur-
ing training. In such a case, E2E models have not learned
to map the rare words’ acoustic signal to words. This issue
can be alleviated by further adding a phoneme encoder in
addition to the text encoder for the contextual phrase list
[200, 201]. The same idea has also been applied to RNN-T
[202].

However, as shown in [198], it becomes challenging for
the bias attention module to focus if the biasing list is too
large (e.g., more than 1000 phrases). Therefore, a more
popular way to handle a large contextual phrase list is shal-
low fusion with the contextual biasing LM [203, 204]. A
challenge for the fusion-based biasing method is that it usu-
ally benefits from prefix which may not be available all
the time. In [205], class tags are inserted into word tran-
scription during training to enable context aware training.
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Fig. 10.: Flowchart of Contextual LAS [198]

During inference, class tags are used to construct contex-
tual bias finite-state transducer. In [206], trie-based deep
biasing, WFST shallow fusion and neural network LM con-
textualization are combined together to reach good biasing
performance for tasks with and without prefix. As dis-
cussed in Section VI.B, density ratio and HAT perform
better than shallow fusion when integrating an external
LM. Contextual biasing with density ratio and HAT were
also shown to have better biasing performance [71, 207].

The most challenging part of context biasing is how
to deal with a very large bias list which contains more
than 1000 phrases. Wang et al. [208] provided a nice solu-
tion by extending spelling correction [209] to contextual
spelling correction (CSC), which is shown in Figure 11.
Both the embeddings of the ASR hypothesis and the con-
textual phrase list are used as the input to the decoder,
which generates a new word sequence. A filtering mech-
anism based on the distance between ASR hypothesis and
contextual phrases is used to trim the very large phrase list
to a relatively small one so that the attention can perform
well. Such filtering is the key to the success which can-
not be done inside ASR models such as CLAS because the
filtering relies on the ASR decoding results.

VII. ADVANCED MODELS

In this section, we discuss several advanced models.

A) Non-Autoregressive Models
While most E2E models use autoregressive (AR) modeling
to predict target tokens in a left-to-right manner as Eqs. (4),
there is a recent trend of using non-autoregressive (NAR)
modeling which generates all target tokens simultaneously
with one-shot or iteratively without replying on predicted
tokens in early steps [27, 210–215]. These NAR methods
root from the assumption that the feature sequence gen-
erated by the acoustic encoder contains not only acoustic
information but also some language semantic information.
However, such an assumption is not very strong, resulting

Fig. 11.: Flowchart of Context Spelling Correction

in worse performance of NAR modeling compared to AR
modeling in general. The biggest advantage of NAR mod-
els is that its decoding speed is much faster than that of
AR models because there is no dependency on previous
tokens. All target tokens can be predicted in parallel while
the decoding of AR models is more complicated because
of the token dependency.

A typical way to generate all target tokens is described
in [210]. The target token sequence length L is predicted or
set as a constant value. Then the NAR model assumes that
each token is independent of each other as

P (y|x) =

L∏
u=1

P (yu|x). (22)

At decoding time, the predicted token at each position is
the one with the highest probability.

The independence assumption in Eq. (22) is very strong.
The token sequence L is also hard to predict usually. Mask
CTC [27] was proposed to solve these issues. It predicts a
set of masked tokens ymask, conditioning on the observed
tokens yobs = y \ ymask and the input speech sequence x
as

P (ymask|yobs,x) =
∏

y∈ymask

P (y|yobs,x). (23)

Figure 12 shows an example of how Mask CTC works. The
target sequence was first initialized with the CTC outputs.
Then tokens with low confidence scores are masked and are
iteratively optimized conditioning on the unmasked tokens
and input speech sequence. The length of the final token
sequence generated by Mask CTC is the same as the length
of the CTC initial output, therefore Mask CTC can only
deal with the substitution error. In [215], the length of a
partial target sequence is predicted to enable Mask CTC’s
ability of handling deletion and insertion errors.
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Fig. 12.: An example of Mask CTC [27]. The CTC model
generates a token sequence “C A T” in which “A” has a
low confidence score. Then “A” is masked. The speech
sequence and unmasked tokens are used to predict the
token “U”.

B) Unified Models
The most significant component in E2E models is the
encoder, which is well studied in literature. There are
lots of encoder designs depending on the requirements of
streaming, latency, and computational cost in different tar-
get scenarios. The development cost is formidable if we
train a separate E2E model for each application scenario.
Therefore, an emerging trend is to train a single unified
model which can be configured with multiple streaming,
latency, and computational cost setups during decoding. In
[120], a dual E2E model was proposed with shared weights
for both streaming and non-streaming ASR. In order to
have a dual-mode Conformer encoder, the authors designed
dual-mode modules for the components such as convolu-
tion, pooling, and attention layers inside Conformer. An
in-place T/S learning was used to train the student stream-
ing mode from the full-context non-streaming mode. Such
training even brought accuracy and latency benefits to the
streaming ASR. Another model unifying streaming and
non-streaming modes was proposed in [216] which decom-
poses the Transformer’s softmax attention into left-only
causal attention and right-only anti-causal attention. For the
streaming scenario, it just uses the causal attention while
the non-streaming mode uses both attentions.

There are several studies working on a unified model
with dynamic computational cost during inference. In
[119], a dynamic sparsity network is used as the encoder
of RNN-T. It only needs to be trained once and then can be
set with any predefined sparsity configuration at runtime
in order to meet various computational cost requirements
on different devices. An even more direct way to have a
dynamic encoder was proposed in [217]. During training,

(a) training with
layer dropout

(b) pruned encoder
in decoding

(c) dynamic
encoder in decoding

Fig. 13.: The training and decoding of dynamic encoder
[217]

layer dropout is applied to randomly drop out encoder layer
as shown in Figure 13a. The pruned model can be used to
decode full utterances for constant low computational cost
as shown in Figure 13b. An example of advanced usage
of the dynamic encoder is plotted in Figure 13c, where
the dynamic encoder is configured with a small number of
layers in the beginning of the utterance, and then config-
ured with full layers in the remaining. The idea of having
different computational costs within an utterance was also
studied in [218] for RNN-T. The model has a fast encoder
and a slow encoder. An arbitrator is used to select which
encoder should be used given an input speech frame.

It requires a small latency for applications such as voice
search and command control, while the applications such
as dictation and video transcription usually can afford a
larger latency. Variable context training [219–221] was pro-
posed to build a unified model which can be configured
for different latency requirements at runtime. During train-
ing, the Transformer encoder is provided with different
right context lengths which correspond to different the-
oretic latency. In [220], the alignment constraint method
[76] was also used to flexibly set latency thresholds for
different tasks. A task ID is used at runtime to configure
the Transducer model with different encoder segments and
latency.

C) Two-pass Models
Although a single E2E model can already achieve very
good ASR performance, its performance can be further
improved with a second-pass model. Spelling correction
methods [209, 222] were proposed by using TTS data to
train a separate translation model which is used to correct
the hypothesis errors made by the first-pass E2E model.
The spelling correction model is a pure text-to-text model
without using the speech input. As E2E models need to be
trained with paired speech-text data, the language model-
ing power is always a concern of E2E models. Wang et
al. proposed a two-pass RNN-T model in which the first-
pass RNN-T transcribes speech into syllables while the
second-pass RNN-T converts syllable sequences into char-
acter sequences [223]. Because the second-pass RNN-T
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Fig. 14.: An RNN-T model with a cascaded encoder.

uses text instead of speech as input, therefore it can lever-
age a much larger amount of text data to build a more
powerful capability for language modeling.

The second-pass processing with decoding hypothesis
only cannot leverage the speech input. In [224], a two-
pass model was proposed to use an AED decoder to
attend the encoder output of a streaming RNN-T model.
In this way, the first-pass RNN-T model provides immedi-
ate recognition results while the second-pass AED model
can provide better accuracy with small additional perceived
latency. This work was extended as the deliberation model
which uses an LSTM AED decoder [225] or a Transformer
AED decoder [226] to attend both the encoder output and
first-pass decoding hypothesis.

However, AED models cannot perform well on long
utterances [54]. Therefore, an RNN-T model with the cas-
caded encoder was proposed [227] as shown in Figure 14.
Such a model can also be considered as a unified model
which provides both streaming and non-streaming solu-
tions, and is a special case of Y-model [219] which has both
streaming and non-streaming branches in a Y-shape. The
causal encoder output hct is fed into a non-causal encoder
to generate hnct . Depending on applications, a switch is
used to let hct or hnct go to the joint network. In the con-
text of two-pass modeling, the causal output hct is used in
the first pass and the non-causal output hnct is used in the
second pass. Such a cascaded model is trained in one stage,
while the first-pass and second-pass models in deliberation
are trained in two stages. Another advantage of the RNN-T
model with a cascaded encoder is its better performance on
long utterances because the RNN-T decoder better handles
long utterances than the AED decoder.

Note that the second-pass model brings additional
latency and computational costs to ASR systems, there-
fore, careful designs have been studied to hide these costs
in commercial systems [71, 228, 229].

D) Multi-talker Models
While ASR systems have achieved very high recognition
accuracy in most single-speaker applications, it is still very

difficult to achieve satisfactory recognition accuracy in sce-
narios with multiple speakers talking at the same time. A
common practice in the industry is to separate the over-
lapped speech first and then use an ASR model to recognize
the separated speech streams [230]. The biggest challenge
to multi-talker overlapping ASR is the permutation prob-
lem which occurs when the mixing sources are symmetric
and the model cannot predetermine the target signal for its
outputs. Deep clustering [231] and permutation invariant
training (PIT) [232] were proposed to address such a chal-
lenge to separate overlapping speech signals. Specifically,
PIT is simpler to implement and easier to be integrated
with other methods. Therefore, it becomes the most pop-
ular speech separation method. Instead of the two-stage
processing, Yu et al. [233] proposed to directly optimize
the ASR criterion with a single model using PIT without
having an explicit speech separation step.

The first E2E model for overlapping speech was pro-
posed in [234] with PIT loss in the label level without
using the source signal from each speaker. It was further
extended in [235] without pretraining, in [236] for multi-
channel input and multi-channel output, and in [237] with
Transformer. Figure 15a shows the network architecture
of these methods. The overlapping speech goes through a
mixture encoder for separation followed by two branches
which generate the recognition results from two speakers.
Most modules are shared between two branches except the
attention module and speaker encoder. For the overlapping
speech with S speakers, the training loss is calculated by
considering all possible speaker permutation Φ(1, ..., S) as

LPIT = min
φ∈Φ(1,...,S)

S∑
s=1

CE(ys, rφ[s]), (24)

where CE() is the cross entropy function with the s-th
output ys and the permuted reference rφ[s].

There are three theoretical limitations in the models
with PIT-ASR loss in Eq (24). First, the number of out-
put branches is the same as S, the number of the speakers.
After the model is trained, it cannot handle the overlap-
ping speech with more speakers. Second, the training cost
is O(S3) using the Hungarian algorithm, which prevents
it from being applied to scenarios with a large number of
speakers. Third, there is possible leakage with duplicated
decoding hypothesis between output branches because the
outputs in different branches do not have a direct depen-
dency. To address these limitations, Kanda et al. proposed
a simple but effective serialized output training (SOT)
method [238] which uses a single AED model to predict
the merged label sequence Ψ(1, ..., S) from all speakers
as in Figure 15b. A 〈sc〉 symbol is inserted between the
reference label sequences of speakers to represent speaker
change. Furthermore, the reference label sequences are
ordered according to their start time in a first-in first-
out manner. In this way, the training loss is significantly
simplified as

LSOT = CE(y,Ψ(1, ..., S)). (25)
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(a) multi-talker AED model with PIT

(b) multi-talker AED model with SOT.
〈sc〉 is a symbol representing speaker
change inserted between label sequences
of speakers.

(c) streaming multi-talker RNN-T model with HEAT

Fig. 15.: Architecture of E2E models to recognize overlap-
ping speech

Given the large demand of streaming ASR in the indus-
try, the backbone model of multi-talker ASR is also moving
from the non-streaming AED model to the streaming RNN-
T model. Although RNN-T was used in [239] for multi-
talker ASR, it’s encoder is a bi-directional LSTM which is a
non-streaming setting. In [240, 241], the Streaming Unmix-
ing and Recognition Transducer (SURT) was proposed as
in Figure 15c. A mask-based unmixing module is used to
estimate masks in order to separate the speech input into
two branches for recognition with RNN-T. Although PIT
ASR loss in Eq. (24) can be used, it will introduce large
computational cost due to the label permutation. There-
fore, Heuristic Error Assignment Training (HEAT) [240]
was proposed by ordering the label sequences based on
the utterance start time into the set Ω(1, ..., S). The loss
function can be written as

LHEAT =

S∑
s=1

CE(ys, rω[s]), (26)

where ω[s] stands for the s-th element of Ω(1, ..., S).
HEAT clearly reduces the training cost without losing accu-
racy [240]. It is even more important to use Eq. (26) in the
continuous streaming setup where it is formidable to have
all the permutations in a long conversation [242].

E) Multi-channel Models
Beamforming is a standard technique for improving distant
ASR system accuracy using microphone arrays with multi-
channel inputs [243, 244]. The most popular beamforming
technology for ASR is signal processing based superdi-
rective beamforming, while there is a trend to replace it
with the neural beamforming for joint optimization with
the backend hybrid models [245–248]. The joint optimiza-
tion is more direct when the backend model is an E2E
model [249, 250], and can be applied with even more front
end components [251, 252]. While all these methods still
work on good neural beamforming modules, some recent
studies try to bypass the beamforming module design by
using a single E2E network to preform ASR directly on
multi-channel inputs. Thanks to the power and flexibility
of Transformer, the multi-channel Transformer ASR works
[253–255] replace the well-established beamformer with a
multi-channel encoder which consumes the multi-channel
inputs from microphone arrays. Figure 16 shows an exam-
ple of a multi-channel encoder which consists of multiple
blocks of cascaded within channel-wise self attention layer
and cross-channel attention layer. The channel-wise self
attention layer models the correlation across time within
a channel while the cross-channel attention layer tries to
learn the relationship across channels. The multi-channel
encoder can then be plugged into any E2E model. Such
E2E models do not need the conventional knowledge of
beamformer design and were reported to perform better
than the standard beamforming method followed by an
ASR model [253–255].
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Fig. 16.: An example of multi-channel encoder [253]

VIII. MISCELLANEOUS TOPICS

E2E modeling is a huge research topic. Due to the limit of
space, we can only cover the most important areas we think
about from the industry point of view. There are more areas
worth mentioning. First of all, great toolkits [256–261] are
indispensable to the fast development of E2E ASR tech-
nologies. Among them, ESPnet [257] is the most popular
E2E toolkit widely used in the speech community although
some companies have their own in-house E2E model train-
ing tools. We will continue to witness the growth of E2E
toolkits which benefit the whole speech community.

Model unit selection is a very important area in E2E
modeling. While most units (characters [2, 3], word-piece
[262–266], words [18, 22, 267], or even phrases [268]) are
purely derived based on text and word-piece unit is the
dominating one, there are also studies working on phoneme
units [269–272]. As ASR is unique with the underlying
acoustic signal, it should be better to build units bridging
between the text and phoneme worlds. To that end, the
pronunciation guided unit [273–275] is worth studying.

Trained with paired speech-text data, E2E models are
more data hungry than hybrid models. If the training
data size is small, the performance of E2E models drops
significantly. There are lots of ways to address the chal-
lenge of building E2E models for low-resource languages.
First, regularization technologies such as dropout [276]
can be used to prevent E2E models from overfitting to
limited training data [277]. Data augmentation methods
such as SpecAugment [278] and speed perturbation [279]
are also very helpful. In addition, there are also methods
such as adversarial learning [280] and meta-learning [281].
The most popular solution is to first pre-train E2E mod-
els either with multilingual data or with self-supervised
learning (SSL), and then fine-tune with the low-resource
labeled data. A multilingual E2E model already captures
lots of information across languages, which makes the
transfer learning using the target language data very effec-
tive [135, 282–285]. SSL is even more powerful because
it does not need any labeled data for pre-training, natu-
rally solving the low-resource challenge. Therefore, SSL

is becoming a new trend which especially works very well
for ASR on resource limited languages [28–31, 286–289],
with representative technologies such as wav2vec 2.0 [28],
autoregressive predictive coding [287], and HuBERT [31].
While most SSL studies focus on very limited supervised
training data (e.g., 1000 hours), there are also recent stud-
ies showing promising results on industry-scale tens of
thousand hours supervised training data [290, 291].

When training E2E ASR models, separate utterances
are usually presented to the trainer. Therefore most ASR
models are designed to recognize independent utterances.
When the model is used to recognize a long conversation, a
common practice is to segment the long conversation into
utterances and then recognize them independently. How-
ever, the context information from previous utterances is
useful to recognize the current utterance. In [50, 292, 293],
audio and decoded hypotheses from previous utterances
are concatenated as the additional input to the model when
processing the current utterance.

When deploying E2E models to production, it is impor-
tant to have an efficient decoding strategy, which was
explored in [294, 295]. Because the prediction network
does not fully function as an LM as discussed in Section
VI.B, the LSTM/Transformer in the RNN-T prediction
network was recently replaced with a simple and cheap
embedding with very limited context, which can be used
to significantly reduce decoding cost and model size [71,
296]. When deployed to small-footprint devices, model
compression [108, 110, 297], quantization [298, 299], and
the combination of multiple technologies [300] should
be considered. Confidence measure and word timing are
sometimes required for practical E2E systems. For exam-
ple, in a video transcription system, confidence score is
used to indicate which word may be recognized wrongly
and then the user can listen to the video corresponding
to that word using its timestamp. Examples of confi-
dence measure work for E2E systems are [189, 301–303],
and examples of word timing work for E2E systems are
[75, 189].

Almost all E2E models take Mel filter bank feature
which is extracted from speech waveform as the input.
In order to do the recognition really from end to end,
speech waveform as the input to E2E models was studied
in [8, 304–307], especially in recent influential wav2vec
series work [28, 286]. Because both E2E models and
hybrid models have their own advantages and different
error patterns, some works try to combine them together
via rescoring [308], minimum Bayes’ risk combination
[309], or two-pass modeling [310]. It is also very easy for
E2E models to integrate inputs with multi-modality espe-
cially audio and visual signal together. There are plenty of
works showing the benefits of visual signal for E2E ASR
[311–318].

Robustness is always an important topic to ASR [319].
E2E models tend to fit training data and should have even
severe robustness challenge due to the mismatch between
training and testing. However, there is not too much activ-
ity in addressing such mismatch [320, 321]. T/S learning
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Table 1. Representative non-streaming E2E works on Librispeech

work with key technologies year model encoder test-clean/other WER
Deep Speech 2: more labeled data, curriculum learning [325] 2016 CTC bi-RNN 5.3/13.2
policy learning, joint training [326] 2018 CTC CNN+bi-GRU 5.4/14.7
Shallow fusion, BPE, and pre-training [33] 2018 AED BLSTM 3.8/12.8
ESPRESSO recipe: lookahead word LM, EOS thresholding [258] 2019 AED CNN+BLSTM 2.8/8.7
SpecAugment [278] 2019 AED CNN+BLSTM 2.5/5.8
ESPnet recipe: SpecAugment, dropout [86] 2019 AED Transformer 2.6/5.7
Semantic mask [327] 2019 AED Transformer 2.1/4.9
Transformer-T, SpecAugment [89] 2020 RNN-T Transformer 2.0/4.6
Conformer-T, SpecAugment [97] 2020 RNN-T Conformer 1.9/3.9
wav2vec 2.0: SSL with unlabeled data, DataAugment [28] 2020 CTC Transformer 1.8/3.3
internal LM prior correction, EOS modeling[328] 2021 RNN-T BLSTM 2.2/5.6
w2v-BERT: SSL with unlabeled data, SpecAugment [329] 2021 RNN-T Conformer 1.4/2.5

Table 2. Representative streaming E2E works on Librispeech

work with key technologies year model encoder test-clean/other WER
stable MoChA, truncated CTC prefix probability [330] 2019 AED LC-BLSTM 6.0/16.7
triggered attention [48] 2019 AED time-delayed LSTM 5.9/16.8
triggered attention, restricted self-attention, SpecAugment [49] 2020 AED Transformer 2.8/7.2
Transformer-T, restricted self-attention, SpecAugment [89] 2020 RNN-T Transformer 2.7/6.6
scout network, chunk self-attention, SpecAugment [52] 2020 AED Transformer 2.7/6.4
dual casual/non-casual self-attention, SpecAugment [331] 2021 AED Conformer 2.5/6.3

was used to adapt a clean-trained E2E model to a noisy
environment [117]. Noise-invariant feature was learned
to improve robustness in [322, 323]. Data augmentation
[324] is another effective way to expose more testing
environments to E2E models during training.

Last but not least, it is always beneficial to examine tech-
nologies using a public database. There are lots of E2E
works evaluated on Librispeech [332], pushing the state-
of-the-art (SOTA) forward. Table 1 and Table 2 give some
representative works on Librispeech with non-streaming
and streaming E2E models, respectively 2. It is amazing
to see how significantly WER is reduced within only a few
years, thanks to fast developing technologies. There are two
clear trends: from CTC to AED/RNN-T in the model aspect
and from LSTM to Transformer in the encoder aspect.
As achieving SOTA results on Librispeech is the goal of
most works, there are much more non-streaming E2E stud-
ies. Because Librispeech only has 960 hours of labeled
data, methods helpful to limited resource scenarios such as
SSL and data augmentation are essential to boost the ASR
accuracy on Librispeech.

IX. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, we gave a detailed overview of E2E mod-
els and practical technologies that enable E2E models to
not only surpass hybrid models in academic tasks but also

2Factors such as model size and latency are not listed in the Tables.
They all affect the final word error rate (WER) of E2E models, especially
streaming E2E models. Therefore, a method obtaining lower WER than
another does not always mean that method is superior.

potentially replace hybrid models in the industry. Although
CTC is revived with advanced encoder structures, the most
popular E2E models are AED and RNN-T. Because of
the streaming nature, research has been gradually shifted
from AED to RNN-T. The encoder is the most impor-
tant module in E2E models, and attracts most research.
The trend is also very clear – the encoder structure has
shifted from LSTM to Transformer and its variants. Mask-
ing strategy is used to design efficient transformer encoders
with low latency and small computational costs for indus-
try application. In order to serve multilingual users well,
multilingual E2E models are trained by pooling all the lan-
guage data together. However, there is still a clear accuracy
gap between the multilingual models with and without lan-
guage ID. A configurable multilingual model can fill in
the gap by training the model once and being configured
based on the language selection by any multilingual user.
Adaptation may be the most important area to work on
in order to enable E2E models to replace hybrid models
in the industry because of the huge accuracy improve-
ment with adaptation for new speakers and new domains.
Specifically, there is more research on domain adaptation
and customization than speaker adaptation. The success-
ful domain adaptation technologies usually have better use
of text only data from the new domain while the success-
ful customization methods can deal with the challenge of
a very large context biasing list. In addition to the stan-
dard E2E model training criterion, T/S training is used to
either learn a small student model approaching the perfor-
mance of a large teacher model or learn a streaming student
model approaching the performance of a non-streaming
teacher model. MWER training is to ensure E2E models are
optimized with the training criterion consistent with ASR
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evaluation metrics. Recently, there is a trend of developing
advanced models such as non-autoregressive models which
have much fast decoding speed by doing inference with one
shot; unified models which are trained once but can be flex-
ibly configured to meet different runtime requirements; and
two-pass models which can leverage the advantages of both
streaming and non-streaming models.

A few years ago, there were very few people who
believed E2E models would replace hybrid models which
have lots of features designed for commercial ASR prod-
ucts. Within a very short time, we have witnessed that E2E
models not only surpass hybrid models in terms of accuracy
but also catch up with the practical features in commercial
ASR systems. Because of the power of E2E modeling, the
trend is not only building E2E models to replace traditional
ASR models but also unifying speech processing modules
such as speech separation, signal processing, and speaker
identification into a single E2E ASR model. Multi-talker
E2E models and multi-channel E2E models are examples
of such a direction. The multi-talker E2E modeling was fur-
ther extended with identifying speakers [333, 334]. There
are also works of joint ASR and speaker diarization using
E2E models by inserting speaker category symbols into
ASR transcription [335–337]. As E2E ASR models directly
map speech signals into target word sequences, they can be
extended to E2E speech translation models when the target
word sequence is from another language [338–340]. The
major challenge for E2E speech translation is how to get
enough training data with paired speech in the source lan-
guage and text in the foreign language. The amount of such
speech translation data is much smaller than the amount of
ASR training data. Another challenge is how to handle the
word reordering [341].

Although E2E modeling has already become the dom-
inating ASR technology, there are still lots of challenges
to be addressed before E2E models fully replace tradi-
tional hybrid models in both academic and industry. First,
in hybrid modeling, paired speech-text data is used to build
an acoustic model while a very large amount of text only
data is used to build LM. In contrast, general E2E models
are only built with paired speech-text data. How to lever-
age the text only data to improve the accuracy of E2E
models instead of simply doing LM fusion is a future direc-
tion to explore. In [342], a multi-modal data augmentation
method was proposed by having two separate encoders:
one for acoustic input and the other for text input, shar-
ing the same attention and decoder modules. There are
some cycle-consistency works using unpaired speech-text
data to improve ASR accuracy [343, 344]. Because the
amount of text only data is much larger than that of the
paired speech-text data, the cost is formidable to generate
TTS audio from such large scale text only data for indus-
try application although it is doable for small scale. TTS
audio sometimes also degrades the recognition accuracy on
real speech [187]. Therefore, although using TTS audio for
domain adaptation is a good practice, it may not be a good
way to build an industry-scale E2E model by synthesiz-
ing TTS audio from the text data used for LM training. In

[345, 346], a joint acoustic and text decoder was proposed
to leverage the text data by synthesizing TTS audio from
the text to improve the decoder in AED. This was simpli-
fied in [347] by using multitask training with text only data.
In [348, 349], an LM trained on large scale text is used as
a teacher model to generate soft labels as the regularization
of the AED model training. One promising way is the fac-
torized neural transducer work [195] in Figure 9 which has
a standalone block working as a neural LM. Therefore, that
LM-function block can be trained with large-scale text data
efficiently.

Another challenge is how to integrate knowledge into
a single E2E model. For example, it is very easy for an
E2E model with display format output to generate “5:45”
when a user says “five forty five”. However, it is very hard
for an E2E model to output “5:45” when a user says “a
quarter to six” because standard E2E models do not have
the knowledge unless the training has seen such examples.

In hybrid models, it is very easy to continuously add
any new word not seen during training. However, this
is very challenging for E2E models. The customization
work described in Section VI.C provides a way to bias
the ASR results towards a contextual phrase list. This is
different from expanding the E2E models’ capability of
recognizing new words without biasing the ASR results.
Although there are few works that allow injecting any
out-of-vocabulary word into the vocabulary of acoustic-to-
word E2E models during inference via subword-to-word
embedding [350, 351], this problem is far from being
solved.

Finally, it is always challenging to train good E2E mod-
els with low-resource languages. Given, the recent success
of SSL which does not need any labeled data to pre-train
a representation for downstream tasks, we predict that SSL
will be closely coupled with E2E models in the near future.
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