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ABSTRACT
The wide spread of fake news has caused serious societal issues. We
propose a subgraph reasoning paradigm for fake news detection,
which provides a crystal type of explainability by revealing which
subgraphs of the news propagation network are the most important
for news verification, and concurrently improves the generaliza-
tion and discrimination power of graph-based detection models by
removing task-irrelevant information. In particular, we propose a
reinforced subgraph generation method, and perform fine-grained
modeling on the generated subgraphs by developing a Hierarchical
Path-aware Kernel Graph Attention Network. We also design a
curriculum-based optimization method to ensure better conver-
gence and train the two parts in an end-to-end manner. Extensive
experiments show that our model outperforms the state-of-the-art
methods and demonstrate the explainability of our method.
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1 INTRODUCTION
As social media facilitates efficient information sharing, it has also
proven to be Petri dishes for fake news [4, 43]. The rapid, uncon-
strained spread of fake news becomes a global societal issue and
has caused serious consequences, such as damaging public health,
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Figure 1: A motivating example for subgraph reasoning.

negatively impacting environment protection, and even causing
death [37]. Meanwhile, people often find it hard to intercept fake
news due to their deliberately fabricated content and complex dis-
semination patterns [4, 8], which highlights the importance of
automatic detection of fake news.

Recently, researchers have found that the news propagation
structure on social networks provides crucial information for detect-
ing fake news [28]. Methods have been proposed tomodel the propa-
gation network based on neural networks such as Recurrent Neural
Networks (RNNs) or Graph Neural Networks (GNNs) [12, 28, 54].
While these works have shown the effectiveness of propagation net-
works in improving the accuracy of fake news detection, they over-
look the capability of propagation networks in enhancing explain-
ability. Explainability is crucial for stopping the spread of fake
news detection. Research on human cognition has found that mis-
information continues to spread even if it has been detected, as peo-
ple keep on believing in debunked falsehoods [20]. Thus, it is very
important to educate people and provide deep insights for under-
standing the propagation of fake news [37]. While explainability is
critical for insight discovery, it is currently under-explored. Pioneer-
ing efforts in explainable fake news detection either show which
high-level statistics about the propagation networks (e.g., commu-
nity density) are important for fake news detection [54], or provide
simple, list-wise explanations, like a list of important posts on social
media [15, 39]. Since the detailed information about topological
connections are lost, it is difficult for them to provide a deep insight
with convincing details, and answering fundamental questions like
what propagation structures are the key indicators for fake news.

https://doi.org/10.1145/3534678.3539277
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To address these issues, we propose a novel paradigm called
subgraph reasoning. As shown in Fig. 1, subgraph reasoning pro-
vides a crystal type of interpretability by explaining about which
subgraphs in the propagation network are important for fake news
detection. The key subgraphs are supposed to contain the most
important propagation edges (e.g., reply or retweet) as well as the
associated nodes (e.g., posts and users), which form a group of con-
nected evidence for news verification. These subgraphs endow a
deep reasoning about how fake news propagates, as well as how we
may detect them. For example, Fig. 1(a) shows an interesting prop-
agation pattern of fake news: an unverified user writes posts to at-
tack the major organization involved in the fake news in diversified
ways, including posting original tweets (A), retweeting a post writ-
ten by himself (B), and replying tweets posted by celebrities (C). His
tweets eventually trigger many retweets. Fig. 1(b) shows another
subgraph important for verifying that the news is fake: a celebrity
with many followers posts a tweet to question the authenticity of
the news (D), which triggers many replies that involve proofs for
fake news. These proofs are interconnected with clues like “filing"
and “search". The reply hierarchy is relatively deep and involves
multiple verified users with a relatively large number of followers.

In addition to explainability, subgraph reasoning also provides
opportunities to further enhance the generalization and discrimina-
tion power of the detection model. First (generalization), propaga-
tion networks often contain many task-irrelevant nodes and edges,
for example, posts that are not discussing about the authenticity
of the news article [15]. When applying graph neural networks on
such noisy structures, task-irrelevant information will be mixed
into a node’s neighborhood, which is known to reduce the general-
ization power of the subsequent classifier [53]. Detecting fake news
based on key subgraphs alleviates this problem by removing po-
tentially task-irrelevant nodes and edges. Second (discrimination),
removing a large number of irrelevant nodes enables us to perform
fine-grained modeling with an acceptable GPU memory cost. For
example, we can determine the information to be propagated in the
graph by carefully comparing every pair of features (e.g., tokens) in
every pair of nodes. Such fine-grained feature-level modeling has
been proven effective in extracting subtle clues that are essential
for fact verification [15, 25], but is usually applied only on small
graphs (e.g., with 5 nodes) due to limited GPU memory. Generating
subgraphs enables us to perform fine-grained modeling with high
discrimination power on large and noisy propagation networks.

While subgraph reasoning is promising, it also poses three ma-
jor technical challenges. The first challenge pertains to subgraph
generation (C1). There are a super-exponential number of can-
didate subgraphs and no ground-truth labels for key subgraphs.
Thus, it is challenging to identify high-quality key subgraphs in
tractable time. Second, how to perform fine-grained modeling on
multiple heterogeneous subgraphs remains unclear (C2). Current
fine-grained, feature-level graph neural networks typical focus on
a single homogeneous graph [25]. It is unclear how they can be
extended to thoroughly model heterogeneous connections between
multiple types of nodes (e.g., posts and users), or modeling inter-
subgraph and intra-subgraph connections in a unified manner. The
last challenge is about joint optimization (C3), namely, how does
one jointly optimize subgraph generation and fine-grained model-
ing in an end-to-end framework.

We solve these challenges by proposing a Subgraph reasoning
framework for fake news detection (SureFact)1. The framework
contains two major parts. In the first part, subgraph generation, a
policy network is designed to effectively search candidate solutions
based on both the topology information and features of a node (C1).
In the second part, we design a Hierarchical Path-Aware Kernel
Graph Attention Network (HP-KGAT) to accurately detect fake
news based on multiple heterogeneous subgraphs (C2). Finally, we
propose a curriculum-based optimization method that gradually
enables end-to-end joint training of the two parts with the help of
heuristically constructed pseudo labels (C3).

In summary, we make the following technical contributions.
• We propose a novel subgraph reasoning framework for fake news
detection, which achieves superior explainability and improves
accuracy by enhancing the generalization and discrimination
power of fake news detection models.

• We design a Hierarchical Path-Aware Kernel Graph Attention
Network, which accurately detects fake news by performing
fine-grained modeling on multiple heterogeneous subgraphs.

• We introduce a curriculum-based optimization method that en-
sures convergence to a better solution by gradually increasing
the learning difficulty and ensuring end-to-end training.

2 METHOD
2.1 Problem Formulation
Given a propagation network𝐺 of a news article, subgraph model-
ing predicts a label 𝑦 for the news, and outputs a set of subgraphs
𝑔1∼𝑀 that are important for the prediction.
Model input. The input propagation network is represented by
𝐺 = {V, E}, whereV denotes the node set and E is the edge set.
Following the paradigm of fact verification [25], we consider two
parts of data: claims from the news article, and evidence from the
social media for verifying the claims, as shown in Fig. 2(a).

Claims to be verified are the news article content. We represent
the claims at two levels to reason with both the overall context and
key details. The document-level claim 𝑑 ∈ 𝐶 is a node that denotes
the entire news with both the news title and body (Fig. 2(a)). A
sentence-level claim 𝑐 ∈ 𝐶 is a node that represents either the
news title or a sentence in the news body. 𝑑 is connected with
sentence-level claims with the edge type title or body.

Evidence for verifying the claims is from Twitter. We construct
the evidence graph by following the classic schema in microblog
retrieval [23]. In particular, three major types of evidence nodes
are social posts, users, and keywords. The posts 𝑃 include tweets,
replies for tweets, or retweets about the news article, which are
obtained from the fake news dataset [40]. The posts are connected
with the reply or retweet relationship. The users𝑈 are represented
by their features in the dataset, e.g., number of followers, as well as
pattern-driven features in [54], e.g., the number of times a user in-
volves in the discussion of fake news. Users are also connected with
reply or retweet relations. The keywords in 𝐾 are extracted with
topic models and connected with co-occurrence by following Jin
et al. [15]. The four types of nodes, claims, posts, users, and key-
words, are inter-connected according to the relations shown in

1Codes and data: https://anonymous.4open.science/r/SureFact-Submission-E38E/
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Figure 2: Our proposed SureFact framework for fake news detection.

Fig. 2(a). More details for constructing the propagation network 𝐺
are given in the supplement.
Model output. Given a propagation network 𝐺 , we output
• A label 𝑦 for the news, which can be fake (𝑦 = 1) or real (𝑦 = 0).
• A set of subgraphs 𝑔1∼𝑀 = {𝑔1 ..., 𝑔𝑀 }, which serves as the rea-

son for predicting the label 𝑦. Here, each 𝑔𝑚 ⊂ 𝐺 is a connected
subgraph of 𝐺 that is important for fake news detection.

2.2 Subgraph Reasoning Framework
To predict the label 𝑦 for a news article through subgraphs, we
propose a Subgraph reasoning framework for Fake News Detection
(SureFact). Mathematically, the framework is formulated as

P(𝑦 | 𝐺) ≈
∑︁

𝑔1∼𝑀 ={𝑔1 ...,𝑔𝑀 }
𝑔𝑚⊂𝐺

P(𝑦 | 𝑔1∼𝑀 )︸        ︷︷        ︸
Subgraph
Modeling

P(𝑔1∼𝑀 | 𝐺)︸         ︷︷         ︸
Subgraph
Generation

(1)

Accordingly, our framework contains two modules (Fig. 2):
The reinforced subgraph generation module estimates the

probability distribution P(𝑔1∼𝑀 | 𝐺) of important subgraphs by
maximizing the expected accuracy for fake news detection. This
module enables extracting the key parts of 𝐺 in the absence of
ground-truth labels for subgraphs. Moreover, it filters noise and
makes fine-grained modeling at the subsequent step possible.

The fine-grained subgraph modeling module learns P(𝑦 |
𝑔1∼𝑀 ) with our proposed Hierarchical Path-aware Kernel Graph
ATtention networks (HP-KGAT), which predicts the label 𝑦 by effec-
tively integrating the heterogeneous path information and jointly
modeling both intra-subgraph and inter-subgraph relations.

Finally, a curriculum-based optimizationmethod is developed
to effectively optimize the two modules in an end-to-end way. The
core is to gradually increase the learning difficulty and ensure end-
to-end refinement for both modules.

2.3 Reinforced Subgraph Generation
The key for generating subgraphs is to learn P(𝑔1∼𝑀 | 𝐺) without
ground-truth labels for subgraphs. We propose to generate sub-
graphs by maximizing the expected accuracy for fake news detec-
tion, which can be achieved by reinforcement learning (RL). Let us

denote the reward function that measure the accuracy for a predic-
tion 𝑦 as R∗ (𝑦). The reason why we can use RL to directly optimize
the first module (subgraph generation) is illustrated as follows:∑

𝑦∈{0,1} P(𝑦 | 𝐺)R∗ (𝑦) ≈ ∑
𝑔1∼𝑀 ⊂𝐺 P(𝑔1∼𝑀 | 𝐺)R(𝑔1∼𝑀 ), (2)

R(𝑔1∼𝑀 ) = ∑
𝑦∈{0,1} P(𝑦 | 𝑔1∼𝑀 )R∗ (𝑦) (3)

where Eq. (2) can be easily derived based on Eqs. (1)(3) (a proof
given in the supplement). In Eq. (2), the left side denotes the ex-
pected accuracy, and the right side represents the expected reward
for subgraph generation. It shows that when we set the reward R
for subgraph generation according to Eq. (3), we can optimize the
subgraph generation module with RL (maximize the right side) and
achieve approximate optimal expected accuracy for fake news de-
tection (maximize the left side). Next, we introduce our reinforced
subgraph generation method for optimizing reward R. We first
show how to generate one subgraph (𝑀 = 1) given a predefined
seed node 𝑥 for starting the generation. In particular, we define the
Markov Decision Process (Sec. 2.3.1) and design a policy network
for subgraph generation (Sec. 2.3.2). We then introduce how to
extend the method for generating multiple subgraphs (𝑀 > 1)
when no predefined seed nodes are given (Sec. 2.3.3).

2.3.1 Markov Decision Process (MDP). To maximize the expected
reward by using RL, we need to formulate the problem as an MDP.
An MDP is a 4-tuple (S,A,T ,R) [42], where S is the state space,
A is the action space, T : S × A → S is the state transition
function, and R is the reward function.
State. The state 𝑠𝑡 reflects the status of the subgraph generation
process at time 𝑡 , and is defined as 𝑠𝑡 = (𝑑, 𝜒𝑡 ,V𝑡 ), where 𝑑 is the
news document, 𝜒𝑡 is the subgraph generated at time 𝑡 , and V𝑡 de-
notes the newly absorbed nodes. The initial state 𝑠0 = (𝑑, {𝑥}, {𝑥}),
where 𝑥 is the seed node for generation.
Action. An action 𝑎𝑡 at time 𝑡 is defined as 𝑎𝑡 = V𝑡+1, whereV𝑡+1 is
the set of nodes to be absorbed if action 𝑎𝑡 is taken. The candidate
nodes to be absorbed Q𝑡+1 are the neighbors of V𝑡 , except the
historically visited ones: Q𝑡+1 = {𝑞 | (𝑣, 𝑒, 𝑞) ∈ 𝐺, 𝑣 ∈ V𝑡 , 𝑞 ∉ 𝜒𝑡 }.
To speed up the generation process, we constrain the action space
by following Liu et al. [22]. Specifically, a hyper-parameter receptive
field size (𝑁𝑟,𝑡 ) is set for each time 𝑡 , which constrains the number
of nodes to be absorbed for each node inV𝑡 . A self-loop is added
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to every node, and selecting the self-loops equals to absorbing a
number of nodes that is fewer than the given 𝑁𝑟,𝑡 .
Transition. Given state 𝑠𝑡 and action 𝑎𝑡 , the environment determin-
istically transits into the next state 𝑠𝑡+1: P(𝑠𝑡+1 = (𝑑, 𝜒𝑡+1,V𝑡+1) |
𝑠𝑡 , 𝑎𝑡 ) = 1. Subgraph 𝜒𝑡+1 is built by adding newly absorbed nodes
V𝑡+1 to subgraph 𝜒𝑡 , as well as all edges betweenV𝑡+1 and 𝜒𝑡 .
Reward. We consider only the terminal reward at the last time point
𝑇 , when the subgraph(s) 𝑔1∼𝑀 has already been generated. We set
the reward function R(𝑔1∼𝑀 ) according to Eq. (3), so that solving
the MDP with RL methods is equal to maximizing the expected
accuracy for fake news detection. Here, R∗ (𝑦) = I(𝑦 = 𝑦∗), which
is 1 (or 0) if 𝑦 is (or is not) equal to the ground-truth label 𝑦∗.

2.3.2 Subgraph Generation Policy. The generation policy 𝜋𝜃 (𝑎𝑡 , 𝑠𝑡 )
outputs the probability for taking action 𝑎𝑡 given the state 𝑠𝑡 :

𝜋𝜃 (𝑎𝑡 = V𝑡+1, 𝑠𝑡 ) =
∏

𝑣∈V𝑡+1

𝜋 ′
𝜃
(𝑣, 𝑠𝑡 ) (4)

The nodes to be selected are modeled independently, so that we
can select nodes with descending 𝜋 ′

𝜃
to achieve the optimal result.

𝜋 ′
𝜃
is defined by considering both the topology and node attributes:

𝜋 ′
𝜃
(𝑣, 𝑠𝑡 ) =

exp(𝑊0 ReLU (𝑊1 (o𝑣 ⊕ z𝑣 ⊕ s𝑡 )))∑
𝑞∈Q𝑡+1 exp(𝑊0 ReLU

(
𝑊1

(
o𝑞 ⊕ z𝑞 ⊕ s𝑡

) )
)

(5)

where ⊕ is the concatenation operator, o𝑣 and z𝑣 are the topological
and attribute embeddings of node 𝑣 , and s𝑡 is the state embedding.
We learn the topological embedding o𝑣 by using TransE [1]. When 𝑣
is a textual node (claim, post or keyword), z𝑣 is computed based on
their BERT representations [7]. When 𝑣 is a user, z𝑣 is computed by
concatenating 𝑣 ’s feature embeddings, each obtained through a look
up layer. The embeddings of different types of nodes go through a
different fully connected layer before assigning to z𝑣 , to ensure that
they are mapped into the same space. The state embedding s𝑡 of 𝑠𝑡 is

s𝑡 = d ⊕ 𝝌𝑡 ⊕ V𝑡 (6)

where d is the BERT embedding of the news article, 𝝌𝑡 is the
representation of the generated subgraph 𝜒𝑡 , and V𝑡 is the joint
representation of the newly added nodes𝑉𝑡 . To derive 𝝌𝑡 , the repre-
sentation of each node 𝑣 in the extracted subgraph 𝜒𝑡 is first refined
by aggregating information from its neighbors following [22]:

z′𝑣 = tanh(𝑊2 (o𝑣 ⊕ z𝑣 ⊕
∑︁

(𝑣,𝑒,𝑞) ∈𝜒𝑡
(o𝑒 + o𝑞) ⊕ z𝑞)) (7)

where 𝑞 is a neighbour of 𝑣 in 𝜒𝑡 and 𝑒 is their in-between edge.
Then, 𝝌𝑡 is calculated by aggregating z′𝑣 with an attention layer:

𝝌𝑡 =
∑
𝑣∈𝜒𝑡 𝛼𝑣z

′
𝑣, 𝛼𝑣 =

exp(𝑊3 ELU(𝑊4z′𝑣))∑
𝑞∈𝜒𝑡 exp(𝑊3 ELU(𝑊4z′𝑞))

(8)

where ELU is the exponential linear unit. The representation of the
newly added nodes V𝑡 is the average of node embeddings inV𝑡 :

V𝑡 =𝑊5 ELU(𝑊6

∑
𝑣∈V𝑡

o𝑣 ⊕ z𝑣
|V𝑡 |

) (9)

Given a sequence of actions 𝑎0, 𝑎1 ..., 𝑎𝑇 and states 𝑠0, 𝑠1 ..., 𝑠𝑇 that
lead to the generation of 𝑔1∼𝑀 , we can estimate the probability of
generating the subgraphs based on the policy network:

P(𝑔1∼𝑀 |𝐺) =
∏

𝑡 ∈[0,𝑇 ]
𝜋𝜃 (𝑎𝑡 , 𝑠𝑡 ) (10)

We introduce how the policy network can be effectively optimized
to achieve the maximum expected reward in Sec. 2.5.

2.3.3 Generating Multiple Subgraphs. We can generate multiple
subgraphs without predefined seed nodes by carefully designing𝐺
and slightly modifying the MDP. In particular, we start the genera-
tion process from node 𝑑 that represents the entire news, i.e., the
initial state 𝑠0 = (𝑑, 𝜒0 = {𝑑},V0 = {𝑑}). By designing 𝐺 so that 𝑑
is connected with all candidate seed nodes (in our implementation
news claims and tweets) and setting the receptive field size at time
𝑡 = 1 to𝑀 , we can use the policy network to automatically obtain
𝑀 seed nodes at time 𝑡 = 1. All the nodes absorbed when 𝑡 > 1 can
be assigned to one seed node, each corresponds to a subgraph. The
overlaps between𝑀 subgraphs are automatically avoided, since no
nodes will be selected twice.

2.4 Fine-Grained Subgraph Modeling
After generating subgraphs 𝑔1∼𝑀 , we conduct fine-grained model-
ing on the subgraphs to detect fake news. The key is to accurately
estimating P(𝑦 |𝑔1∼𝑀 ) by effectively modeling multiple heteroge-
nous subgraphs. We achieve this goal by extending Kernel Graph
Attention Network (KGAT) [25], which utilizes a kernel-based at-
tention to effectively concentrate on meaningful subtle clues, and
has been proved effective in fact verification [25]. However, it is de-
signed for a single graphwith one type of nodes (textual).We extend
KGAT to Hierarchical Path-aware Kernel Graph ATtention networks
(HP-KGAT), which integrates heterogeneous path information, and
applies the kernel attention hierarchically in both the node and
subgraph levels to jointly model inter-sugraph and intra-subgraph
connections (Fig. 2). Next, we introduce how we model the intra-
subgraph relations (Sec. 2.4.1), how to model the inter-subgraph
relations (Sec. 2.4.2), and how to combine the two levels to estimate
the probability distribution P(𝑦 |𝑔1∼𝑀 ) of the label 𝑦 (Sec. 2.4.3).

2.4.1 Intra-Subgraph Modeling with Node-Level KGAT. As shown
in Fig. 2(c), intra-graphmodeling outputs a subgraph representation
Ω(𝑔𝑚) for each subgraph𝑔𝑚 by effectively propagating information
within the heterogeneous subgraph. Specifically, our intra-subgraph
modeling consists of the following steps.

Step 1. Node representation initialization. The representation
of each node 𝑣 is initialized by using its attribute embedding z𝑣
(Sec. 2.3.2). In addition, each word token in a textual node is consid-
ered as a candidate subtle clue, for which we compute an embedding
by using BERT. Specifically, the hidden states h1

𝑣, h2
𝑣, ...h

|𝑣 |
𝑣 at the

last layer of BERT are used as the token embeddings, where h𝑖𝑣
denotes the embedding for the 𝑖-th token in node 𝑣 .

Step 2. Kernel match features between nodes. For each pair of tex-
tual nodes 𝑣, 𝑞, their fine-grained match features are extracted by
constructing a translation matrix 𝐿𝑞,𝑣 . An entry in 𝐿𝑞,𝑣 is the cosine
similarity between the token representations: 𝐿𝑖, 𝑗𝑞,𝑣 = cos(h𝑖𝑞, h

𝑗
𝑣).

Based on the translation matrix, Υ kernels are used to extract the
kernel match features between the 𝑖-th token in 𝑞 and node 𝑣 :

Ψ𝜏 (𝐿𝑖𝑞,𝑣) = log
∑
𝑗 exp(− (𝑙𝑖,𝑗𝑞,𝑣−𝜇𝜏 )2

2𝜎2
𝜏

) (11)

®Ψ(𝐿𝑖𝑞,𝑣) = {Ψ1 (𝐿𝑖𝑞,𝑣), . . . ,ΨΥ (𝐿𝑖𝑞,𝑣)} (12)
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Each Ψ𝜏 is a Gaussian kernel [6, 47], which counts the expected
number of similarity scores that fall into the region defined by mean
𝜇𝜏 and standard deviation 𝜎𝜏 . By combining Υ kernels, ®Ψ(𝐿𝑖𝑞,𝑣) sum-
marizes how matched the 𝑖-th token in 𝑞 is with all tokens in 𝑣 at
different similarity levels. Such kernel match features have been
shown effective in modeling subtle clues and verifying facts [15, 25].

Step 3. Path-aware token-level attention. KGAT computes the fine-
grained information to be propagated from textual node 𝑞 to 𝑣
by using a token-level attention layer. We extend the attention so
that it not only considers token-level kernel match features, but
also models all heterogeneous paths between 𝑞 and 𝑣 to effectively
integrate topological information. Such topological information
provides crucial information for fake news detection. For example,
given a post “I doubt it", it is important to know which post it
replies (edge) to correctly understanding whether it supports the
news is true. For two posts, it is important to know whether there
are susceptible users (connected nodes) involved in the discussion.
By designing a path-aware token-level attention, the model can
extract subtle clues (important tokens) by carefully considering
such information. Specifically, given the 𝑘-th path between nodes 𝑞
and 𝑣 , we compute the attention score 𝛼𝑖,𝑘𝑞,𝑣 for the 𝑖-th token in 𝑞 by

𝛼
𝑖,𝑘
𝑞,𝑣 = softmax𝑖 (𝑊7 ®Ψ(𝐿𝑖𝑞,𝑣) +𝑊8𝜁𝑘𝑞,𝑣 + 𝑏1) (13)

ẑ𝑞,𝑣 = 1
𝐾

∑
𝑖

∑
𝑘 𝛼

𝑖,𝑘
𝑞,𝑣 (h𝑖𝑞 ⊕ 𝜁𝑘𝑞,𝑣) (14)

where 𝐾 is the total number of paths between 𝑞 and 𝑣 in 𝑔𝑚 , 𝜁𝑘𝑞,𝑣 is
the embedding of the 𝑘-th path, and ẑ𝑞,𝑣 denotes the fine-grained
information to be propagated from node 𝑞 to 𝑣 . We derive the path
embedding 𝜁𝑘𝑞,𝑣 by concatenating the embeddings of its edges and
nodes, and encode the concatenated vector through a multilayer
perceptron: 𝜁𝑘𝑞,𝑣 = MLP(⊕𝑒o𝑒 ⊕𝑣′ z𝑣′), where 𝑒 and 𝑣 ′ are an edge
and a node in the path, respectively. We pad zeros in the concate-
nated vector to ensure that they are of the same length.

Step 4: Node-level attention. We then derive a final representation
𝜅𝑣 for node 𝑣 by attentively integrating ẑ𝑞,𝑣 into z𝑣 :

𝛾𝑞,𝑣 = softmax𝑞 (MLP (̂z𝑞,𝑣 ⊕ z𝑣)) (15)
𝜅𝑣 = (∑𝑞∈𝑔𝑚\𝑈 𝛾𝑞,𝑣 · ẑ𝑞,𝑣) ⊕ z𝑣 (16)

The kernel-based node representation 𝜅𝑣 aggregates token-level
subtle clues as well as the heterogeneous path information from
every textual node in 𝑔𝑚 . We then attentively aggregate the kernel-
based node representations to get a subgraph embedding Ω(𝑔𝑚):

Ω(𝑔𝑚) =
∑︁

𝑣∈𝑔𝑚\𝑈
𝛾 ′𝑣𝜅𝑣, 𝛾

′
𝑣 = softmax𝑣 (𝑊9 average𝑖 ®Ψ(𝐿𝑖𝑐,𝑣)) (17)

where ®Ψ(𝐿𝑖𝑐,𝑣) is the kernelmatch features that estimate howmatched
the textual node 𝑣 is with the news claims in 𝑔𝑚 . Specifically, 𝐿𝑖𝑐,𝑣
is a token-level translation matrix that measures cosine similari-
ties between a token in the claims and a token in 𝑣 . If 𝑔𝑚 does not
contain claims, we consider its claim as the entire news document 𝑑 .

2.4.2 Inter-SubgraphModeling with Subgraph-Level KGAT. As shown
in Fig. 2(c), inter-subgraph modeling propagates information be-
tween subgraphs to derive a representation Ω̂(𝑔𝑚 |𝑔1∼𝑀 ) for sub-
graph 𝑔𝑚 . This is achieved by applying KGAT at the subgraph level.
Specifically, we consider each subgraph 𝑔𝑚 as a node in the tra-
ditional KGAT, and treat each node in 𝑔𝑚 as a previous token. In

this way, we can effectively model inter-graph relations by compar-
ing every pair of nodes in given two subgraphs. Accordingly, the
inter-subgraph modeling consists of the following steps.

Step 1. Subgraph representation initialization. For each subgraph
𝑔𝑚 , its representation g𝑚 is initialized by using BERT. Specifically,
all the claims, posts, and keywords in 𝑔𝑚 are concatenated by using
the special token “[SEP]” and fed into BERT. The BERT embedding
for the “[CLS]” token is then used as g𝑚 . Each node 𝑣 in a subgraph
𝑔𝑚 serves as a candidate subtle clue, whose embedding ℎ̂𝑣𝑚 = z𝑣 .

Step 2. Kernel match features between subgraphs. Given two sub-
graphs 𝑔𝑚 and 𝑔𝑛 , their kernel match features are calculated based
on the translation matrix 𝐿̂𝑛,𝑚 . Each entry in 𝐿̂𝑛,𝑚 is the cosine simi-
larity between two nodes in different subgraphs: 𝑙̂𝑞,𝑣𝑛,𝑚 = cos(ℎ̂𝑞𝑛, ℎ̂𝑣𝑚),
where 𝑞 is a node in 𝑔𝑛 and 𝑣 is a node in 𝑔𝑚 . The kernel match
feature ®Ψ(𝐿̂𝑞𝑛,𝑚) is then derived according to Eqs. (11)(12).

Step 3. Node-level attention. Next, we compute a fine-grained rep-
resentation ĝ𝑛,𝑚 , which denotes the information to be propagated
from 𝑔𝑛 to 𝑔𝑚 , by using a node-level attention:

𝜌
𝑞
𝑛,𝑚 = softmax𝑞 (MLP(𝑊10 ( ®Ψ(𝐿̂𝑞𝑛,𝑚) + 𝑏2)) (18)

ĝ𝑛,𝑚 =
∑
𝑞∈𝑔𝑛 𝜌

𝑞
𝑛,𝑚ℎ̂

𝑞
𝑛 (19)

Step 4. Subgraph-level attention.We can then derive an enhanced
subgraph representation Ω̂(𝑔𝑚 |𝑔1∼𝑀 ) by attentively aggregating
all related information ĝ𝑛,𝑚 from other subgraphs:

𝜆𝑛,𝑚 = softmax𝑛
(
MLP

(̂
g𝑛,𝑚 ⊕ g𝑚 ⊕ d

) )
(20)

Ω̂(𝑔𝑚 |𝑔1∼𝑀 ) =
(∑
𝑚 𝜆𝑛,𝑚 · ĝ𝑛,𝑚

)
⊕ g𝑚 (21)

2.4.3 Joint Modeling. Given intra- and inter-subgraph representa-
tions Ω(𝑔𝑚) and Ω̂(𝑔𝑚 |𝑔1∼𝑀 ), we predict label 𝑦 for the news with

P(𝑦 | 𝑔1∼𝑀 ) = ∑
𝑚 P(𝑦 | 𝑔𝑚) · P(𝑔𝑚 | 𝑔1∼𝑀 ) (22)

P(𝑦 | 𝑔𝑚) = sigmoid(𝑊11 (Ω(𝑔𝑚) ⊕ Ω̂(𝑔𝑚 |𝑔1∼𝑀 )) + 𝑏3) (23)
P(𝑔𝑚 | 𝑔1∼𝑀 ) = softmax𝑚 (𝑊12 average𝑖 ( ®Ψ(𝐿̂𝑖𝑐,𝑚)) + 𝑏4) (24)

where P(𝑦 | 𝑔𝑚) is a prediction of the label from the perspective
of subgraph 𝑔𝑚 , and P(𝑔𝑚 | 𝑔1∼𝑀 ) is the relative importance of 𝑔𝑚
in fake news detection. Here, kernel match features ®Ψ(𝐿̂𝑖𝑐,𝑚)) are
derived by comparing the claims with evidence in 𝑔𝑚 . In particular,
𝐿̂𝑐,𝑚 is a node-level translation matrix that measures how similar
a claim node in 𝑔𝑚 is with an evidence node in 𝑔𝑚 .

2.5 Curriculum-Based Optimization
Subgraph generation and fine-grained modeling are closely en-
tangled. Ideally, the subgraph generation module would extract
informative subgraphs that the fine-grained modeling module can
utilize to verify the authenticity of the news story. However, as
the generation policy 𝜋𝜃 is far from optimal at the beginning, the
initially generated subgraphs may be uninformative and propagate
noise to fine-grained subgraph modeling, leading to sub-optimal
parameters in both modules. To tackle this challenge, we propose a
curriculum-based optimization strategy. The basic idea of curricu-
lum learning is to start from a simple task and gradually increasing
the difficulty, which usually leads to a convergence to better solu-
tions [29]. Following this idea, we first provide a simple task by
offering direct supervision signals, i.e., pseudo labels for important
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subgraphs (Sec. 2.5.1). The learning difficulty is low as the two mod-
ules are decoupled and are only required to perform supervised
learning instead of RL. Then, we gradually increase the collabo-
ration between the two modules with a curriculum-based joint
optimization that finally leads to an end-to-end training (Sec. 2.5.2).

2.5.1 Pretraining with Pseudo Labels. We first introduce how to
construct the pseudo labels for important subgraphs. Then, we
explain how to pretrain each module with the pseudo labels.

Saliency-based pseudo label construction. We construct the
pseudo labels ¤𝑔1∼𝑀 for subgraphs so that they contain important
claims and evidence, and at the same time are diversified. To this
end, we first compute a saliency score for each node in𝐺 by using an
unsupervised algorithm, mutual reinforcement ranking [9], which
extends PageRank [2] to better handle heterogeneous graphs. The
basic idea is to propagate saliency scores through edges, so that
the nodes (e.g., tweets) connected with (e.g., authored by) salient
nodes (e.g., important users) are also considered salient. Mutual
reinforcement ranking not only enables us to compute a reasonable
saliency score based on 𝐺 , but also increases the probability that
salient nodes are connected with each other (approximately form
subgraphs). After deriving the saliency scores, we then use diverse
sibling beam search [21] to extract diversified subgraphs ¤𝑔1∼𝑀
which achieve an approximately maximum average saliency score.

Subgraph generation pretraining. Given pseudo labels ¤𝑔1∼𝑀 ,
the subgraph generation policy 𝜋𝜃 is pretrained with behavior
cloning [35], in which the pseudo labels are considered as ground-
truth to guide the policy. This supervised paradigm is much easier
compared with RL, which is usually difficult to converge when
there are a super-exponential number of candidate solutions [22].

Fine-grained model pretraining. We pretrain the fine-grained
modeling module so that it detects fake news based on the pseudo
labels ¤𝑔1∼𝑀 . This is achieved by minimizing the cross-entropy loss:

L𝑐𝑒 ( ¤𝑔1∼𝑀 ) = 𝑦∗ log(P(𝑦 | ¤𝑔1∼𝑀 )) + (1 − 𝑦∗) log(1 − P(𝑦 | ¤𝑔1∼𝑀 )) (25)

where 𝑦∗ is the ground-truth label of the news.

2.5.2 Curriculum-Based Joint Optimization. Although pseudo la-
bels can effectively guide model training, their unsupervised and
heuristic nature can easily result in sub-optimal performance. More-
over, by using pseudo labels, the two modules are disconnected
during training, which causes a discrepancy between training and
testing. To solve these issues, we propose a method for jointly
optimizing the two modules in an end-to-end way.

Subgraph generation optimization. After pretraining, the
generation policy is trained to directly optimize the expected accu-
racy of fake news detection with reinforcement learning (Eq. (2)).
Here, we use the widely-adopted RL method REINFORCE with
baseline [42], which maximizes expected reward by minimizing

L𝑟𝑙 = −(R(𝑔1∼𝑀 ) − R(𝑔1∼𝑀 )) logP(𝑔1∼𝑀 |𝐺) (26)

where𝑔1∼𝑀 is generated by sampling nodes based on the generation
policy 𝜋𝜃 (𝑎𝑡 , 𝑠𝑡 ), and 𝑔1∼𝑀 is a baseline added to reduce variance,
which is created by taking the action 𝑎𝑡 that maximize 𝜋𝜃 (𝑎𝑡 , 𝑠𝑡 ).

Fine-grained model optimization. To further optimize the
fine-grained modeling module, we conduct curriculum learning, in

which ¤g1∼𝑀 and ḡ1∼𝑀 are treated as easy and hard material, respec-
tively. We gradually shift from easy to hard material by minimizing

L𝑐𝑟 = 𝜚L𝑐𝑒 ( ¤𝑔1∼𝑀 ) + (1 − 𝜚 )L𝑐𝑒 (𝑔1∼𝑀 ), 𝜚 ∼ Bernoulli(𝑝0) (27)

where 𝜚 is sampled from a Bernoulli distribution parameterized
by 𝑝0. By gradually shrinking 𝑝0 during training, the fine-grained
modeling module is exposed to more hard materials 𝑔1∼𝑀 , and
eventually learns to collaborate with the generation policy.

3 EXPERIMENTS AND RESULTS
3.1 Experimental Setup
3.1.1 Dataset. We evaluate our method by using two public bench-
mark datasets, PolitiFact andGossipCop [40], which contain 815 and
7,612 news articles, perspectively. Each data sample in the datasets
consists of a news article, its related posts on Twitter, metadata
about the authors of the posts, and a label “real” or “fake” annotated
by journalists and domain experts. We follow [10] to preprocess
the data. Statistics of the datasets are given in the supplement.

3.1.2 Baselines. We compare with 11 baselines from two groups.
Methods in the first group (G1) detect fake news based on the

textual content of the news and the external knowledge about
the textual content, e.g., relations between news entities in the
knowledge graphs. This group includes three methods. In particu-
lar, B-TransE [32] detects fake news based on knowledge graphs.
BERT-C uses BERT [7], a large pretrained bidirectional Trans-
former, to predict a label for the news article content. We start
with a pretrained BERT model and fine-tune it on our training set.
The final prediction is made by the document-level representation
“[CLS]”. RoBERTa-C follows an identical fine-tuning procedure as
BERT-C and uses RoBERTa [24] as its backbone.

Methods in the second group (G2) exploit social context of news
in addition to the news content. Specifically, DTC [3] is a decision-
tree-based method that classifies news based on users’ posting and
re-posting behaviors, as well as news content.RFC [19] detects fake
news by using a random forest model and structural and linguistic
features. GCAN [26] adopts Graph-aware Co-Attention Networks
to model the interactions between the textual and social informa-
tion. dEFEND [26] models both news content and user comments
with a sentence-comment co-attention network. For BERT-S and
RoBERTa-S, we follow Pelrine et al. [34] to first classify the social
posts and convert the predictions of the posts to the prediction
of the news through majority voting. BERTweet [30] is similar
with BERT-S, but before fine-tuning, it is pretrained on 850 million
tweets. FinerFact [15] uses bi-channel kernel graph network to
capture subtle clues between evidence.

3.1.3 Evaluation Criteria. We adopt five widely-used criteria for
evaluating the fake news detection performance: Precision (Pre),
Recall (Rec), F1 score (F1), Accuracy (Acc), and Area under the
ROC Curve (AUC). For each experiment, we conduct 5-fold cross-
validation and report the average results.

3.1.4 Implementation Details. For the baselines, we set most of
the hyperparameters by following the corresponding papers, and
carefully tune important hyperparameters (e.g., learning rate and
embedding size) to ensure optimal performance. We implement



Reinforcement Subgraph Reasoning for Fake News Detection KDD ’22, August 14–18, 2022, Washington, DC, USA.

Table 1: Comparison with baselines in terms of fake news detection performance. Best overall and baseline results are
highlighted with bold and underlined text. G1 represents content-based methods, and G2 refers to social-based methods.
Statistically significant improvement (t-test over 5 different dataset splits, p-value< 0.05) is marked by ∗.

PolitiFact GossipCop
Pre Rec F1 Acc AUC Pre Rec F1 Acc AUC

B-TransE 0.7739 0.7658 0.7641 0.7694 0.8340 0.7369 0.7330 0.7340 0.7394 0.7995
G1 BERT-C 0.8249 0.8465 0.8413 0.8327 0.8632 0.7863 0.7619 0.7628 0.8123 0.8371

RoBERTa-C 0.8904 0.8784 0.8759 0.8843 0.9179 0.8134 0.8092 0.8276 0.8154 0.8623

DTC 0.7397 0.7269 0.7362 0.7364 0.7618 0.7129 0.6794 0.6929 0.7156 0.7007
RFC 0.7536 0.7450 0.7422 0.7582 0.8082 0.6978 0.6833 0.6534 0.6845 0.7366

GCAN 0.8169 0.8208 0.8364 0.8372 0.8089 0.7824 0.8027 0.7757 0.7506 0.8066

G2 dEFEND 0.9016 0.8953 0.8879 0.8846 0.8904 0.7217 0.8015 0.7538 0.8098 0.8401
BERT-S 0.8243 0.9013 0.8453 0.8619 0.9131 0.8459 0.8516 0.8542 0.8475 0.8533

RoBERTa-S 0.8529 0.9052 0.8729 0.8804 0.9218 0.8441 0.8594 0.8397 0.8289 0.8625
BERTweet 0.8440 0.9028 0.8658 0.8781 0.9155 0.8508 0.8624 0.8626 0.8478 0.8619
FinerFact 0.9185 0.9043 0.9148 0.9088 0.9303 0.8609 0.8739 0.8657 0.8373 0.8644

Ours SureFact 0.9506∗ 0.9283∗ 0.9392∗ 0.9436∗ 0.9413∗ 0.8796∗ 0.8835∗ 0.8811∗ 0.8658∗ 0.8797∗

Figure 3: Results of ablation study on Politifact.

SureFact with PyTorch [33]. More implementation details are given
in the supplementary material.

3.2 Detection Performance
We first evaluate whether our method can more accurately detect
fake news compared with the state-of-the-art methods.

3.2.1 Overall Performance. Table 1 shows that our method per-
forms better than all 11 baselines significantly (p-value< 0.05) in
terms of five evaluation criteria on two benchmark datasets. For
example, our method improves over the most competitive base-
line, FinerFact, by 3.5% on PolitiFact and 3.4% on GossipCop in
terms of accuracy. This indicates that subgraph reasoning can ef-
fectively improve the generalization and discrimination power of
detection model. We also observe that social-based methods (G2)
tend to outperform content-based methods (G1), This demonstrates
the effectiveness of leveraging social data such as user comments
for news verification. Within G2, we observe that methods based
on fine-grained modeling of evidence (FinerFact) tends to achieve
better performance than more advanced pretrained language mod-
els, which demonstrates the usefulness of fine-grained modeling.
Among pretrained language models, BERTweet generally outper-
forms RoBERTa and BERT. This implies the usefulness of pretrain-
ing on domain-specific data (online posts) for better performance.

3.2.2 Ablation Study. We conduct an ablation study to demonstrate
the effectiveness of each major component in SureFact. Specifically,
we implement seven variants of our method: 1) SF\p removes the

pretraining step in curriculum-based optimization; 2) SF\j elimi-
nates the joint optimization step that enables end-to-end training; 3)
SF\h removes the path-aware information of HP-KGAT during fine-
grained subgraph modeling; 4) SF\r excludes the inter-subgraph
embedding Ω̂(𝑔𝑚 |𝑔1∼𝑀 ) from the final prediction; 5) SF\a elimi-
nates the intra-subgraph embedding Ω(𝑔𝑚); 6) SF\t excludes the
node attribute information from policy generation policy; 7) SF\d
replaces the diverse sibling beam search with traditional beam
search. As shown in Fig. 3, removing each major component results
in a decrease in detection accuracy, which illustrates their impor-
tance. Except for SF\p that removes pretraining with pseudo labels,
all variants perform better than the most competitive baselines
(FinerFact and BERTweet). This demonstrates that 1) pseudo-label-
based pretraining is crucial for the success of subgraph reasoning
and 2) our framework achieves a relatively robust improvement
when a major component (except for pretraining) is removed.

3.2.3 Parameter sensitivity analysis. Our method consistently per-
forms better than the baselines with different number of kernels,
which demonstrates the robustness of SureFact (Appendix II).

3.3 Explainability
Our method uses only a very limited number of nodes (receptive
field sizes 𝑁𝑟,1 × 𝑁𝑟,2 × 𝑁𝑟,3 = 64) for detecting fake news. Thus,
humans can easily understand which parts of the data the model
uses with a small cognitive load. When the model is very accurate,
the generated explanations not only enable the understanding of
the model itself, but also provides insights about the dataset, e.g.,
which propagation structures (subgraphs) are the key indicators
for detecting fake news. An interesting question is, given a user
with a limited cognitive budget, how well s/he can obtain insight?
To answer this question, we conduct an automatic quantitative
experiment (Sec. 3.3.1) and a user study (Sec. 3.3.2).

3.3.1 Detection Performance v.s. Cognitive Load. In this experiment,
we evaluate how the detection performance of different methods
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Figure 4: Detection performance v.s. cognitive load.
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Figure 5: A subgraph generated by SureFact in the user study

change given different levels of cognitive load. We control the cog-
nitive load for SureFact by setting the receptive field sizes, and filter
the input data for baselines with mutual reinforcement ranking
scores (Sec. 2.5.1). Fig. 4 shows the results of SureFact and the three
most competitive baselines. We can see that our method outper-
forms the baselines at different levels of cognitive load, and achieves
a good performance even when the cognitive load is relatively small.
We can also see that increasing the number of input nodes does not
necessarily lead to better performance. This aligns with the find-
ings of [53], i.e., integrating task-irrelavant nodes into the neural
networks may lead to overfitting.

3.3.2 User Study. To understand how much insight real-world
users can obtain from the explanations, we conduct a user study.
Specifically, we randomly sample 30 news articles from PolitiFact,
including 15 fake news articles and 15 real ones. For each example,
we generate 3 types of explanations. The first type is the explana-
tions provided by FinerFact, which consists of a list of 30 posts
and 30 users coming from 5 topics. The second type is the propaga-
tion network 𝐺 (PropagationNet), which is visualized by using
an open graph visualization platform Gephi2. We carefully adjust
the graph to ensure there are no overlaps. The third type is the sub-
graphs generated by SureFact, which are also visualized by using
Gephi. To ensure a fair comparison with FinerFact, we generate 5
subgraphs (correspond to 5 topics in FinerFact), each with 12 nodes.
An example subgraph we generated is given in Fig. 5. We recruit 6
participants to label the explanations. For each news, a participant
is shown one type of explanations and asked to 1) decide whether
the news is fake within 2 minutes and 2) give a confidence score

2https://gephi.org/

Table 2: Results of the user study. Best results are high-
lighted in bold. Statistically significant improvement (t-test,
p-value< 0.05) is marked by ∗.

F1 Acc Confidence Agreement

FinerFact 0.7500 0.7333 2.650 66.7%
PropagationNet 0.7586 0.7667 2.847 73.3%

SureFact 0.8136∗ 0.8167∗ 3.067∗ 83.3%∗

Improvement +7.2% +6.5% +13.6% +7.7%

about her/his adjustment according to a 5-point Likert scale. We
ensure that for each news article, only one explanation is given
to the user, so that the users label a news article only based on
this explanation. Different types of explanations are presented in
random orders to avoid potential bias.

The results of the user study are given in Table 2. By observing
the subgraphs generated by SureFact, human participants can much
more accurately decide whether a news article is fake. For example,
SureFact improves F1 and Acc by 7.2% and 6.5% compared with the
best baseline. This indicates that our subgraphs present more in-
sights for news verification. Moreover, participants tend to be more
confident about their labeling results. By comparing labels given
by different participants, we find that SureFact also results in better
label agreement, which is consistent with the high confidence.

4 RELATEDWORKS
The methods of fake news detection can be divided into two major
categories: content-based and social-based.

Content-basedmethods detect fake news by leveraging the tex-
tual and/or visual content of the news, or external knowledge about
the entities in the news [10, 14, 16, 19, 27, 32, 36, 45, 46, 50]. These
methods enable detecting fake news at an early stage, but they lack
a mechanism to model important auxiliary data such as the news
propagation pattern [48, 49], which may limit their performance.

Social-based methods further integrate useful auxiliary data
in the social media for fake news detection, such as user comments
about fake news [15, 26, 30, 39], user profiles [41], and user be-
havior features [3, 19, 38] like “posting” and “re-posting”, and user
stances [31]. Recently, the news propagation structure in the so-
cial media has been shown crucial for improving the detection
performance. For example, Ma et al. [28] show the effectiveness
of integrating a propagation structure with claims and reply rela-
tionships [17]. Yuan et al. [51] improve detection performance by
encoding both semantic and structural information. While these
methods have shown the effectiveness of propagation network
in improving accuracy, how to better enhance explainability is
under-explored. Existing works typically explain the prediction by
providing a list of important evidence (e.g., posts) or (statistical)
features [13, 15, 39, 54]. These method lack detailed information
about topological connections, which are crucial for reasoning over
graphs [11, 44, 52]. To the best of our knowledge, we propose the
first framework for news verification that generates graph-based
explanations, which provide connected groups of evidence with
convincing details. Our method not only enables a crystal type of
explainability, but also improves detection accuracy by increasing
the generalization and discrimination power of the detection model.
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5 CONCLUSION
We propose SureFact, a subgraph reasoning paradigm for fake news
detection. SureFact provides a crystal type of explainability by re-
vealing which subgraphs of the news propagation network are
the most important for news verification, and jointly improves
the generalization and discrimination power of graph-based detec-
tion models by removing task-irrelevant information. Extensive
experiments show that our model outperforms the state-of-the-art
methods and demonstrate the explainability of our method.
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SUPPLEMENTARY MATERIAL
Appendix I. Implementation Details
Here, we introduce the implementation details.

Construction of the propagation network 𝐺 . There are four
types of nodes in 𝐺 : claims, posts, users and keywords. Their inter-
nal connections are conducted by different relationships. Posts and
users are both connected by reply/retweet relationship. Users are
also connected by reply/retweet. Keywords are connected to each
other with co-occurrence in a same topic. As for the way the four
nodes are connected to each other. Claims are connected with the
posts, users, and keywords through edges of the type similarity, dis-
cuss, and mention, respectively. The posts are connected with users
and keywords by authorship and mention relationship. And users
are also connected with keywords through mention type edges.

Dataset statistics. The detailed statistics of the datasets are
shown in Table 3.

Hyperparameter settings. If not mentioned specifically, the
number of subgraphs𝑀 = 𝑁𝑟,1 is set to 8. The receptive field sizes
𝑁𝑟,2 and𝑁𝑟,3 at time points 2 and 3 are set to 4 and 2, respectively, so
that each subgraph has no more than 4 × 2 = 8 nodes. For diversity
sibling beam search, the the number of groups is set to 10 and a beam
size of 5, with a diverse rate 0.2. For joint optimization, the damping
factor in mutural reinforcement ranking is set to 0.85 following [2].
For subgraph modeling, we use the Adam optimizer [18] to update
parameters by back-propagation [5] with a learning rate of 5e-5.
Themaximum length of each post 𝑣 is set to 130, the same as [15, 22].
We use 10 kernels. One kernel with 𝜇𝜏 = 1 and 𝜎𝜏 = 1𝑒 − 3 is used
to model exact matches [6]. The other kernels all have 𝜎𝜏 = 0.1,
and their mean 𝜇𝜏 are evenly distributed within [−1, 1].

Appendix II. Parameter Sensitivity Analysis
Table 4 shows that ourmethod consistently performs better than the
two most competitive baselines with different number of kernels,
which demonstrates the robustness of SureFact. We also observe
that using 10 kernels leads to the best result, while using fewer or
more kernels potentially results in underfitting or overfitting.

Appendix III. Proof
Eq. (2) can be proved as follows: ∑︁

𝑦∈{0,1}
P(𝑦 | 𝐺)R∗ (𝑦) (28)

≈
∑︁

𝑦∈{0,1}

∑︁
𝑔1∼𝑀 ⊂𝐺

P(𝑦 | 𝑔1∼𝑀 )P(𝑔1∼𝑀 | 𝐺)R∗ (𝑦) (29)

=
∑︁

𝑔1∼𝑀 ={𝑔1 ...,𝑔𝑀 }
𝑔𝑚⊂𝐺

P(𝑔1∼𝑀 | 𝐺)
∑︁

𝑦∈{0,1}
P(𝑦 | 𝑔1∼𝑀 )R∗ (𝑦) (30)

=
∑︁

𝑔1∼𝑀 ⊂𝐺
P(𝑔1∼𝑀 | 𝐺)R(𝑔1∼𝑀 ) (31)

where the second line is derived based on Eq. (1) and the last line is
obtained by using Eq. (3).

Table 3: Statistics of the datasets.

# True # Fake # Total Avg. |V | Avg. |E |

PolitiFact 443 372 815 205 4,335
GossipCop 4,219 3,393 7,612 47 763

Table 4: Sensitivity analysis of number of kernels Υ. Under-
lined and bold text denote best baseline and overall results.

Politifact Gossipcop
F1 Acc F1 Acc

BERTweet 0.8658 0.8781 0.8626 0.8478
FinerFact 0.9148 0.9088 0.8657 0.8373

SureFact (Υ = 5) 0.9259 0.9403 0.8746 0.8703
SureFact (Υ = 10) 0.9392 0.9436 0.8811 0.8658
SureFact (Υ = 15) 0.9251 0.9310 0.8705 0.8656
SureFact (Υ = 20) 0.9213 0.9219 0.8671 0.8608
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