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ABSTRACT

Notebooks provide an interactive environment for programmers

to develop code, analyse data and inject interleaved visualisations

in a single environment. Despite their flexibility, a major pitfall

that data scientists encounter is unexpected behaviour caused by

the unique out-of-order execution model of notebooks. As a result,

data scientists face various challenges ranging from notebook cor-

rectness, reproducibility and cleaning. In this paper, we propose a

framework that performs static analysis on notebooks, incorporat-

ing their unique execution semantics. Our framework is general in

the sense that it accommodates a wide range of analyses, useful for

various notebook use cases. We have instantiated our framework

on a diverse set of analyses and have evaluated them on 2211 real

world notebooks. Our evaluation demonstrates that the vast major-

ity (98.7%) of notebooks can be analysed in less than a second, well

within the time frame required by interactive notebook clients.

CCS CONCEPTS

• Theory of computation → Program analysis; • Software

and its engineering → Integrated and visual development

environments.
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1 INTRODUCTION

Notebooks have become an increasingly popular development en-

vironment for data science. In 2020, JetBrains reported 10M note-

books on GitHub [1], an increase from 200K in 2015 [5]. Notebooks

provide a dynamic read-eval-print-loop (REPL) experience where

developers can rapidly prototype code while interleaving data vi-

sualizations including graphs, textual descriptions, tables etc. A

notable peculiarity of notebooks is that the program i.e., notebook,

is divided into non-scope inducing blocks of code called cells. Cells
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can be added, edited and deleted on demand by the user. Most im-

portantly, cells, regardless of their order in the notebook, can be

executed (and re-executed) by the user in any given sequence. This
provides a level of incrementalism that improves productivity and

flexibility. At the same time, such execution semantics make note-

book behaviour notoriously difficult to predict and reproduce. This

observation is highlight in [17]. Here the difficulty of reproducing

notebook results is investigated, concluding that from a large set

of notebooks, only 25% of notebooks could be executed without an

error and less than 5% were trivially reproducible. Moreover, in [18]

it was observed that there is an abundance of code smells and bugs

in real world notebooks. Thus, the authors of this study argue for

more code analysis tooling to improve the quality of notebooks. To

understand the source of this phenomena, consider the example

below.

Example 1.1 (Motivating Example). Consider the notebook in

Figure 1 comprising of 5 cells. Each numbered from 1 to 5, indicated

by the left hand side number in square brackets. In a script, the

execution proceeds as if the cells were merged into a single cell and

each statement is executed as dictated by the regular program

control flow i.e., statements in cell 1 are executed sequentially,

followed by cell 2, cell 3 and so on. However, in notebooks any

given cell can be executed at any given time by the user. This

produces a potentially infinite space of possible execution paths

due to a lack of constraints on the order in which cells can be

executed in. In the example notebook, cell 1 and cell 3 read data

from a file into a data frame. In cell 2 data in variable d is normalized

and in cell 4 the data is split into test and training segments. In

cell 5 the model is trained, tested and assessed for accuracy. It is

apparent that several legitimate executions exist in this notebook.

For example, one could start by executing cell 3, cell 4 and cell 5.
Another execution sequence is cell 1, followed by cell 2, cell 4 and
cell 5. Note, it is common to have several alternate executions in a

notebook for reasons of experimentation etc.

Now consider the following scenario: suppose the user executes

the sequence of cells 1, 2, 4, and 5. While this may not seem par-

ticularly ominous, it will in fact result in a data leak bug [12] as

the function in cell 2 normalizes the data and yet cell 4 splits the
data in to train and test data after the normalization, thus result-

ing in a what is know in data science as a data leak. Now, lets

suppose the user, after some investigation, identifies this problem.

They re-execute cell 1, skipping cell 2 (to avoid normalization) and

execute cell 4 and cell 5. The user may be perplexed as the same

issue re-occurs. The problem is that the user executed cell 4 which
referred to variable x , which was previously computed by cell 2,
resulting the using an old (or stale) value. One can see how a user
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can quickly get into a confusing situation, even for this relatively

simple notebook
1
.

Each of the bugs above demonstrate the ease at which a seem-

ingly simple data science program can result in unforeseen be-

haviour in a notebook environment. Moreover, establishing the

root cause is similarity difficult without engaging in time consum-

ing post-mortem debugging that cannot prevent future bugs, or

generalize the cause of the bug. On the other hand, if we were to

restrict the notebook execution semantics, we would be removing

precisely the flexibility that has made notebooks so popular in the

last few years.

In this paper, we argue for the use of static analysis as an ante-

mortem debugging mechanism. Our technique co-exists with the

unique notebook execution flexibility, and yet reducing errors and

debugging efforts by warning users ahead of time of hypothetical
erroneous and safe actions. Due to the semantics of notebooks,

standard static analysis tools cannot be directly applied, and to the

best of our knowledge general static analyzers targeting notebooks

have not been proposed in the literature. Moreover, the interactive

nature of notebooks requires analyzers that are able to produce

feedback within a second [4] to not disrupt the flow of the user

experience. To this end, we propose NBLyzer, a static analysis

framework that provides notebook users the ability to perform a

what-if static analysis on given notebook actions. Notebook actions
constitute opening a notebook, code changes, cell executions, cell

creation, deletion etc. Our framework soundly reports potential

issues that may occur for a given action within the time bounds

required for users not to notice a disruption. For instance, consider

the notebook in Example 1.1, as shown in Figure 1b, our framework

will warn the user that the event of executing cell 1 can lead to a

data leakage by executing cells 2, 4 and 5 in milliseconds. Moreover,

as shown in Figure 1c, it will warn in milliseconds that the event of

executing cell 1 can result in a stale state if cell 4 is executed before

cell 2. Conversely, our framework can recommend the execution

of the sequencecell 3, 4, 5 to be safe to execute after cell 1 is exe-
cuted. Our framework supports a wide range of static analyses

2
.

In Section 4 we present several analyses implemented in NBLyzer,

particularly targeting data science notebooks. Using these analyses,

we facilitate the automation of several other important notebook

development use cases including notebook correctness, notebook

debugging, notebook reproducibility, notebook auditing, and note-

book cleaning.

NBLyzer employs the theory of Abstract Interpretation [6] to

perform intra-cell static analyses i.e., on individual cells, and thus in-

cell termination is guaranteed for the price of an over-approximate

analysis result. The key idea is to over-approximate the notebook

semantics and computational state σ and instead produce an ab-

stract state σ ♯
which comprises of an element of an abstract domain

that encodes the analysis property of interest. When analyses are

triggered by an event, an inter-cell analysis is performed by propa-

gating the analyses results (abstract state) to valid successor cells in

the notebook. To select valid successors, we introduce the notion

of cell propagation dependencies, which prunes away unnecessary

1
in fact this example is based on a real life notebook sourced from stackoverflow,

where a user was experiencing a data leak

2
that can be expressed as an abstract interpretation

sequences of cell executions on-the-fly, parametrized by the cur-

rent abstract state. In this way, the abstract state is propagated

efficiently while ensuring soundness and termination via both an

intra and inter-cell termination criteria. We evaluate NBLyzer on

2211 real world notebooks and several instantiated analyses to

demonstrate its utility and scalability. NBLyzer is able to analyze

98.7% of notebooks within a second. Overall, we claim the following

contributions:

(1) A novel static analysis framework specifically for notebooks

(2) Several instantiated industrial static analyses implemented

in NBLyzer, including a novel data leakage analysis that to

the best of our knowledge, has not been presented before in

the literature or implemented in any static analyzer.

(3) An extensive performance evaluation of NBLyzer that demon-

strates its adequate performance based on [4] to perform

only-the-fly static analysis within the notebook environment

without degrading the user notebook experience.

2 OVERVIEW

In this section we give an overview of the NBLyzer static analysis

framework for notebooks.

The high-level operation of the framework is depicted in Figure 2.

A user performs actions on a notebook such as opening notebooks,

adding cells, changing cells, executing cells, deleting cells among

others. For each event, the user may want to initiate a what-if

analysis, essentially asking NBLyzer what can occur if I execute
cell 1? This allows the user to ahead of time avoid putting the

notebook in a state that will lead to an error. Conversely, the user

may ask NBLyzerWhat executions are safe if I execute cell 1? This
allows the user to choose from a set of possible safe execution paths.

Other examples of what-if questions includeWhich cells will become
isolated if I rename d to x cell 2?, Which cells will become redundant
in the notebook I opened? etc.

Each of these what-if questions can be useful for use cases in-

cluding reproducibility, security auditing, notebook cleaning and

simplification, debugging and education, among others.

From a systems perspective, a what-if analysis is a notebook

event that is associated/configured to a set of analyses. For example,

asking about notebook safety will entail a certain set of analyses,

and asking about notebook cleanliness will entail a distinct set of

analyses. NBLyzer therefore intercepts an event from the notebook

client and determines the appropriatemode of operation. Themodes

of operation are described below.

Maintenance mode. In the case that the event is a cell execu-

tion and the user has not attached analyses to this event, i.e., a

what-if analysis is not triggered, then NBLyzer will perform cell

maintenance for the executed cell. Since a cell execution will re-

sult in the concrete notebook state being updated, NBLyzer needs

to ensure that the corresponding abstract state for all future in-

voked analyses is maintained. In addition, code summaries that

enable faster analyses must also be updated. NBLyzer performs

maintenance by updating (if the code has changed) all intermediate

program representations including parsing the cell code into an

abstract syntax tree (AST), converted the AST to a control flow

graph (CFG) and producing use definition (U-D) chains. If the cell

code has not changed, these are retrieved from a cache. Using the
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Figure 1: Example Notebook
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Figure 2: Overview of NBLyzer

CFG the static analyses are performed to update the notebook’s ab-

stract state, i.e., the resultant state from a static analysis required to

perform future static analyses in the future. In the case the event is a

non-execution event an abstract state may not need to be computed

and only summary, AST, CFG and U-D information is updated. In

Section 3.2.1 we provide a detailed account of the maintenance

process.

Propagation mode. In the case of a what-if analysis, i.e., an

event with a subset of analyses associated with it, an inter-cell anal-

ysis is performed. Here starting from the global notebook abstract

state, a set of possible abstract states are computed corresponding

to the set of possible executions up to a limit K depth or a fixpoint

is reached on all branches. This process for each cell checks which

other cells have a dependency and propagates the computed ab-

stract state to the dependent cells, for which the incoming abstract

state is treated as an initial state. For each cell, the abstract state

is checked for correctness criteria, if an error is found a report is

updated which serves as instruction for notebook clients to alert the

user to the consequences of the event (e.g., by cell highlighting etc.).

In Section 3.2.2 we provide a detailed account of the maintenance

process.

3 TECHNICAL DESCRIPTION

In this section we provide a technical description of the NBLyzer

framework.

3.1 Notebook Program Model

3.1.1 Notebook. A Notebook N consists of a set of cells ci ∈ N .

A cell ci consists of a sequence of code statements st ij (l , l
′) from a

location l to location l ′ in a control flow graph (CFG) where i refers
to the cell number and j the index of the statement in the cell. As

an abuse of notation we allow ci to be also used as a label.

3.1.2 Cell Execution. An execution of a cell ci over a state space
Σ = V → D where V is the set of notebook variables and D is

the concrete domain of execution, is denoted by σi+1 = Jci+1K(σi ),
assuming the execution of ci+1 terminates. Here σi+1 ∈ Σ is the

output state and σi ∈ Σ is the input state previously computed by

a cell ci in the execution sequence. We denote access into a state

as σ (v) where v ∈ V and we denote updating a state as σ [v 7→ d]
where v ∈ V and d ∈ D.

3.1.3 Notebook Execution. A notebook execution is a potentially

infinite execution sequenceσ0 →ci σ1 →c j . . . where ∀k ≥ 0, ck ∈

N ,σk ∈ Σ and i = j∨i , j . The choice of the next cell in a execution
sequence is determined by the user from the space of all cells in a

notebook.

3.2 Analysis Framework

3.2.1 Intra Cell Analysis.

Events and Analyses. The inter-cell analysis is triggered by an

event e ∈ Event . An event is attached to a set of analyses A′ ⊂ A
by an mapping M : Event → ℘(A). An analysis a is a tuple of a

abstraction label abs and condition cond . The condition cond is an

assertion on an abstract state of the analysis of type abs .

Abstract state computation. From the sequence of statements in a

cell, we construct a control flow graph (CFG), a directed graph that

encodes the control flow of the statements in a cell. We define a

CFG as ⟨L,E⟩ where an edge (l , st , l ′) ∈ E reflects the semantics of

the cell statement st associated with the CFG edge from locations l
to l ′ in the cell.

A sound over-approximation σ ♯
of a state σ is computed by itera-

tively solving the semantic fixed point equationσ ♯ = σ
♯
0
⊔Js̄tK♯(σ ♯)

using the abstract semantics Js̄tK♯ for statements s̄t in a cell and

the initial abstract state (σ
♯
0
). At the cell level this computation is

defined as Fci which we refer to a abstract cell transformer. Fci takes
an abstract state and computes a fix-point solution [13, 14] in the

abstract domain.

Since a what-if analysis may not be triggered on every event,

and yet a cell is executed by the user, it is of small cost to maintain

the abstract state along with the concrete state, as our analyses are

designed to be faster than performing a concrete execution (See

Section 6). We therefore maintain an abstract state σ ♯
which is

updated each time a cell is executed, in parallel to the concrete
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executions of a notebook cell. At each execution, a cell transformer

Fci for a cell ci is applied with the current global state, returning

an updated new global state i.e., Fci (σ
♯) = σ ♯′

. We perform this

maintenance for two reasons: Firstly, we may want to perform a

static analysis just before cell execution, blocking execution if an

error was found. Secondly, the global abstract state is needed to

initiate a what-if analyses, once it’s triggered by a user.

To analyze a cell, we reduce the static analysis problem to the

computation of the least solution of a fix-point equation σ ♯ =

Fci (σ
♯), σ ♯ ∈ Σ♯ where Σ♯ is a domain of abstract properties, and

Fci is the abstract transformer for the cell, i.e., a composition of

abstract statements transformers in the cell fix-point computation

to solve the static analysis problem. We refer to [6] for a compre-

hensive background on abstract interpretation.

Within the abstract interpretation framework several analyses

can co-exist by constructing an independent product of abstract
domains. We denote executing several transformers in parallel for

cell ci as F
A
ci where A is a set of analyses. We refer the reader to [7]

on literature on combining abstract domains with independent

products.

Cell summary computation. Apart from computing the abstract

state, we compute pre-summaries. Pre-summaries are intra-cell com-

puted pre-conditions on a cell that are used to act as a pre-condition

guard on if an abstract state should be propagated to that cell. We

compute pre-summaries for each cell at notebook initialization time

and during cell code changes.

In order to compute a pre-summary preci for cell ci we construct
use-def (U-D) structure using standard data-flow techniques [9]. U-

Ds provide a mapping between variable usages and their definitions.

A variable is a defined if it is used as a right-hand-side expression in

a assignment statement or if it is a function st . A variable is used if

it is in a left-hand-side of an assignment statement or in a function

st . Thus, given a cell c we can define the following sets of variables

that define definitions and usages.

de f (c) ={v | ∀ st ∈ c s.t. v is defined in st} and

use(c) ={v | ∀ st ∈ c s.t. v is used in st}

The U-D structure is computed using a reaching definitions data-

flow analysis [9] and provides a mapping use-def for all symbols

v ∈ V in the cell. If a v ∈ use(c) has no definition, it is mapped

to ⊥. Using the U-D structure we compute the set of all unbound

variables in a cell:

preci = { v | v ∈ use(ci ) ∧ use-def(v) = ⊥}

Depending on the analysis we may want to expand the definition

of preci . For example, for access violation we may want to ignore

variables in cells where no access patterns occur and a variable

is never used to change and propagate information e.g., simply

printing data.

3.2.2 Inter Cell Analysis.

State propagation. The inter-cell analysis computes a set of ab-

stract states for the entire notebook up to a depth K or to a global

fixpoint solution (fixpoints on all active paths). The abstract state

from a source cell is propagated to other cells if and only if there

preci
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Figure 3: Inter Cell Analysis

exists an edge that satisfies a cell propagation dependency. When

the propagation occurs, an intra-cell analysis computation is per-

formed that treats the incoming cell abstract state as the initial

state.

The inter-cell analysis propagation is depicted in Figure 3. Here

the what-if analysis is triggered by an event e for a source cell ci .
A pre-defined value of K ∈ {1, . . . ,∞} is defined where K = ∞

meanswe compute until a fix-point, that determines the depth of the

analysis. The dependency is defined by determining if the abstract

state σ ′
ci of the cell ci can be combined with the pre-summary

prec j of another cell c j (which may be cell ci itself). If there is a
dependency, the unbound variables in c j consume their values from

σ ′
ci . This propagation is continued until all paths terminate either

by reaching the K limit, by achieving a fixpoint or by ϕ not holding

for all cells in the notebook.

We formalise cell dependencies in the form of a graph defini-

tion. Note, in our technique the graph is constructed lazily during

abstract state propagation phase.

Definition 3.1 (Cell Propagation Dependency Graph). We assume

the sequence of cells form a directed dependency graph G = ⟨N ,D⟩
where N is a finite set of cells, and (ci ,R, c j ) ∈ R defines an arc

from cell ci ∈ N to c j ∈ N iff ϕ(σ
♯
ci ,prec j ). How ϕ(σ

♯
ci ,prec j ) is

defined is analysis specific. In Section 4 we provide examples of

how analyses can be defined to fit into the NBLyzer framework.

Fixpoint pruning. The control-flow from inter-cell execution can

result in cycles. For example, a cell can be re-executed as the de-

pendency ϕ repeatedly holds in a given sequence. For analyses

with K = ∞ this can cause non-termination. Even, in the case for

bounded K values, ignoring fixpoints is a source of inefficiency.

Firstly, by fixpoint we mean that the state σ
♯
ci = σ

♯′

ci , that is, in an

analysis path (note many paths exist as shown in Figure 3), the

state resulting from first execution of cell ci does not change after
its next execution. There may or may not be execution of cells in

between. Regardless, this implies that we can prune this execution

path as other execution paths arising from the first execution of ci
will subsume any further executions from the second execution of

ci . For analyses with high or infinite lattices, extrapolation opera-

tors are needed for force convergence. Therefore, we detect when

we re-visit a cell and terminate the exploration on that path if a
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fixpoint is detected after the re-execution. In the case of high or in-

finite abstract domains, we extrapolate the fixpoint using standard

widening techniques [6] for the given abstract domain.

Observation 3.1 (Fixpoint Subsumption). Given a fixpoint on
a cell execution path p = ⟨ci , . . . , ci+k ⟩ such that ci = ci+k and
σ
♯
ci = σ

♯
ci+k , any cell c j not in p executed after ci will produce the

same abstract state as being executed after ci+k .

Proof. Since the ci and ci+k are the same cell and since we

have a fixpoint i.e., σ
♯
ci = σ

♯
ci+k , due to the monotonicity of the

transformers no cell in p changed the state, therefore executing

any cell c j after ci+k will be the same as executing it after ci and
therefore we can stop execution after p. □

Algorithm 1 Event_Handler(code, ci , e,K )

1: global variables

2: σ ♯
(global abstract state)

3: pre (cell to pre-summary mapping)

4: cfg (cell to cfg mapping)

5: end global variables

6: A′ =M(e)
7: if A′ = ∅ ∧ e = execute then
8: σ ♯

:= Maintain(code, ci ,σ ♯ ,A)
9: else

10: report := InterCell(σ ♯ , ci ,K , [],A
′,η)

11: return report

3.2.3 Algorithmic Implementation. Our technique is described al-

gorithmically, starting with Algorithm 1 which receives an event

and determines if the computation should proceed in maintenance

mode or what-if analysis mode. Given an event e occurs, we ob-
tain the source cell code code , identifier ci , event e and global ab-

stract state. At line 6, we determine if there exist any analyses

A′ ⊆ A that are attached to the event e . If not, we perform a main-

tenance in line 8 by calling Maintain(code, ci ,σ ♯ ,A) and updating

the global. Otherwise, we proceed with a what-if analysis by call-

ing InterCell(σ ♯ , ci ,K , [],A
′,η) in line 10 and return the results of

the analysis to the notebook. Here apart from the global state σ ♯
,

cell label ci , and the analyses A′
, the K parameter is passed, along

with a report which is initialized to an empty list [] (to simplify

the algorithm description we represent the report as simply a list),

and a mapping η : N → Σ♯ which maps each cell label to its last

computed abstract state. This is required to detect fixpoints in the

analysis paths.

In Algorithm 2 we describe intra-cell analysis, namely cell main-

tenance. The function Maintain first checks to see if a code change

occurred. If so, the pre-summary preci is re-built and an intra cell

static analysis Fci (cfgci ,σ
♯) is performed to produce a new abstract

state σ ♯
. If the code has not changed, since the abstract state may

have changed in the meantime, we perform an intra-cell analysis

i.e., FAci (cfgci ,σ
♯) for all analyses in A. Note, that we cache CFGs,

U-Ds, and pre-summaries to avoid unnecessary re-computation.

The InterCell algorithm described in Algorithm 3 performs the

what-if analysis. Here analyses in A′
are executed on cells, starting

Algorithm 2 Maintain(code, ci ,σ
♯ ,A)

1: if code not changed then

2: σ ♯′
:= FAci (cfgci ,σ

♯)

3: return σ ♯′

4: ast := parse(code)
5: cfgci := дetC f д(ast)
6: ud := getUD(cfg)
7: preci := getPre(ud)

8: σ ♯′
:= FAci (cfgci ,σ

♯)

9: return σ ♯′

with the source cell ci in lines 2 and 5 and propagating the abstract

state to cells that have a dependency i.e., satisfy ϕ(σ ♯′,prec j ) as
shown in lines 7 and 8. If K = 0 (line 1), meaning we have reached

the required depth or a fixpoint is detected (line 3) we terminate.

The algorithm worst case complexity is O(nK ) in the number of

cells n for a given K .

Algorithm 3 InterCell(σ ♯
, ci , K , report , A

′
, η)

1: if K = 0 then return report
2: σ ♯′

:= FA
′

ci (c f дci ,σ
♯)

3: if σ ♯′ = ηci then return []

4: ηci := σ ♯′

5: report ′ := Check(σ ♯′,A′, report)
6: for all c j ∈ N do

7: if ϕ(σ ♯′,preci ) then

8: report’ := report’ + InterCell(σ ♯′
, c j , K − 1, report’, A’, η)

return report’

An optional operation that we omit here, is to perform inter-cell

widening. Widening is required for analyses with potential slow

convergence such as interval analysis. Adding widening requires an

extra condition in the code that checks if the abstract state increases

on a given variable. If so, the value for that variable is added as the

top element. A narrowing pass can be also performed to improve

precision.

3.2.4 Analysis Criteria and Contracts. The Check function in Algo-

rithm 2 and 3 checks the abstract state after a cell execution and

depending on the criteria determine if a violation has occurred. For

standard built in analyses (see Section 4) this is hard coded into

NBLyzer. However, for the available abstract domains, a user can

define contracts on lines of code, pre or post conditions on cells or

on the global notebook. NBLyzer exposes the set of available ab-

stractions, which can be seen as schema for which users can define

queries in a logic-based DSL that can assert expected behaviour.

4 INSTANTIATED ANALYSES

In this section we give a brief outline of several instantiations of

our analysis framework which we later evaluate in Section 6.
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4.1 Use Case I: Code Impact Analysis

When a code change occurs users need to know what other code is

affected or unaffected by that change. This has a number of usages

including automating notebook execution, stale cell state detection,

cell cleanup and simplification, among others.

4.1.1 Abstract Semantics. We define an abstract domain that maps

a variable (including symbols, function names, etc. ) v to a Boolean

indicating which variable has changed or not. Practically, the ab-

stract domain is implemented as a set of variables v̄ ⊆ V . If a
variable is in the set it has changed, otherwise it has not. Thus, the

lattice is a standard powerset lattice ℘(V ) common in data flow

analyses [9]. When a variable on the left-hand-side of a statement

has changed, we insert the right-hand-side in the set. Below we

state the propagation semantics for selected statements. In the

implementation, more variations are covered.

(1) Assignment:

λσ ♯ .Jȳ = f (x̄)K =

{
σ ♯ ∪ {y} iff f ∈ σ ♯∨

∃x ∈ x̄ s.t. x ∈ σ ♯

}
(2) Functions:

λσ ♯ .Jf (x̄){ȳ}K =


σ ♯ ∪ { f } iff

∃x ∈ x̄ s.t. x ∈ σ ♯∨

∃y ∈ ȳ s.t. y ∈ σ ♯


Similarly, joins andmeets that arise from control flow are handled

by the join operations of the abstract domain, i.e., set union and

disjunction.

The ϕ operation in this case holds if the intersection of the vari-

able in σ ♯
and prec j are not null, i.e., there is at least one dependent

variable in c j to propagate to. More formally, we define ϕ as follows:

ϕ(σ
♯
ci ,prec j ) = {v : v ∈ σ

♯
ci } ∩ prec j , ∅

This analysis has many use cases including automating cell ex-

ecutions for a given change by following the dependencies; stale

cell execution where cells that have intermediate impacted cells

between them and the source cell, can potentially be stale. Typically,

we execute this analysis with a bounded e.g., K = 3 for stale cell

analysis but in principle can be unbounded. Both options result in

similar overheads due to fixpoint subsumption. Other variations

include fresh cell analysis that detects cells that cannot cause stale-

ness when changed and an isolated cell analysis that detects cells

without dependencies on other cells and thus can be potentially

cleaned. These cells are typically found during experimentation

phases of development and need to be identified when the notebook

program is converted to a production script. This analysis is only

performed on K = 1 due to its nature.

4.1.2 Analysis Example. Consider the example in Figure 1. Here

we can see that the execution of cell 1 followed by cell 4 will create

staleness. This is because cell 2 is fresh and is the intermediate cell

between cell 1 and cell 4 dependencies. Suppose we change the file

in cell 1 then the variable d is in our abstract domain. As before we

propagate this to cell 2 and hence x is also in our abstract domain.

When we further propagate to cell 4 (i.e., K = 2) we can report

that all the right-hand-side variables are stale if the cell execution

sequence 1, 4 is performed.

4.2 Use Case II: ML Data Leakage

Data Leakage [12] is a common bug specific to data science. In

machine leaning applications a model typically requires normaliza-

tion of the input data, especially neural networks. Commonly, data

is normalized by performing a division of the existing data by its

average or maximum. Likewise, data is typically split into training

and test subsets. If the normalization is performed using the overall
data set, then information from the test set will now be influencing

the training subset. For this reason, any normalization should be

applied individually to the test and training subsets.

While the Data leakage commonly occurs in data science scripts

it is even further exacerbated by the execution semantics of note-

books. To this end, we have implemented a light-weight analysis to

detect potential data leakages in notebooks. Our abstraction tracks

which variable points to which data source and if the variable has

been used to train or test a model. When an operation is performed

on data that can introduce a leak, e.g., normalization, extrapolation

etc. we reset the data source propagation. Otherwise, we propagate

the source dependencies of left-hand-side variables to right-hand-

side variables. When a variable is an argument to a function that

is marked as training or testing a model, the variable is marked as

such. We assert that no two variables that are marked as train and

test, respectively point to the same data source.

4.2.1 Abstract Semantics. We define an abstract domain that maps

a variable v to a data leakage abstract domain ⟨L, ⊏⟩ where L =
℘(v) × ℘({tr , ts}) such that L is partially ordered (⊏) point wise by
the subset relation ⊂ with meet ⊔ and join ⊓ are similarly defined

using point wise set union ∪ and intersection ∩, respectively. Thus,

an element in the abstract domain is a variable that maps to a set

of variables and an indicator if it has been an argument in a train

or test function (or both). We differentiate between which tuple

element in the product domain is access by σ ♯1
(first tuple element)

and σ ♯2
(second tuple element). We define a simplified abstract

semantics for three categories of operations below. Note, we do

not exhaustively cover all cases below for readability, and only

highlight the most important cases.

(1) reset:

λσ ♯ .Jȳ = f (x̄)K =
{ ∀y ∈ ȳ.σ ♯[y 7→ (x̄ , ∅)]

iff f ∈ KBreset

}
(2) propagate:

λσ ♯ .Jȳ = f (x̄)K =
{ ∀y ∈ ȳ.σ ♯[y 7→ σ ♯(y) ⊔

⊔
x ∈x̄ σ

♯(x)]
iff f < KBreset,KBtest,KBtrain

}
(3) sinks:

λσ ♯ .Jf (x̄)K =


∀x ∈ x̄ .σ ♯[x 7→ (σ ♯1(x),σ ♯2(x) ⊔ {tr })]
iff f ∈ KBtrain
∀x ∈ x̄ .σ ♯[x 7→ (σ ♯1(x),σ ♯2(x) ⊔ {ts})]
iff f ∈ KBtest


The reset operations (1), occur when a function f is marked as

a reset function in the knowledge base KB. This is library specific

and rely on the data scientists to specify which functions may

cause leakage. Here we map each right-hand-side variable y to the

variables that are arguments to the reset function while resetting

its markings of test or train usage to ∅.
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In the case (2), we simply propagate information by joining all

abstract states of right-hand-side variables to the left-hand-side

variables existing abstract state.

Finally in the case of (3), we mark each argument with a {tr}

element if it is an argument to a train function, and {ts} if it is an

argument to a test function. If a variable marked as {tr} points to

the same source as a function marked as {ts} we issue a warning.

To enable inter-cell propagation, we define the rule:

ϕ(σ
♯
ci ,prec j ) =prec j ⊆ {v : (v 7→ x) ∈ σ

♯
ci ∧ x , ⊥}

∧ prec j , ∅

Here we make sure the successor cells pre is not empty and is a

subset of the incoming cells abstract state variables that are reach-

able (not mapped to ⊥ = (∅, ∅)). This analysis can be performed on

a variety of sizes of K , however in practice we rely on our fixpoint

subsumption and keep K unbounded.

4.2.2 Analysis Example. Consider the example in Figure 1. Recall

in example, a potential data leakage is shown. Depending on the

execution order of the cells i.e., if cell 2 is executed before cell 4 and 5.

We now describe how our analysis will detect this violation. Assume

a what-if analysis is triggered for the event of executing cell 1. In
other words, we ask what can happen in future executions if cell 1 is
executed? We first compute an abstract state for cell 1which is σ ♯

c1
=

d 7→ ({data.csv}, ∅). Now using abstract state and preconditions of

other cells we asses the value of ϕ(σ
♯
c1
,prec j ) for all cells c j in the

notebook. We find ϕ holds for cell 2. Next, we compute the abstract

state for cell 2 with the abstract state of cell 1 as the initial state,
obtaining σ

♯
c2
= d 7→ ({data.csv}, ∅),x 7→ ({d}, ∅) as we apply

rule (2) as fit_transform ∈ KBr eset . We evaluate ϕ(σ
♯
c2
,prec j ) for

all cells c j in the notebook and find that cell 4 holds. Here all split
variables map to d applying rule (1). Again we find that we can only

propagate to cell 5. Here we have a function in fit ∈ KBtrain so

we have that x_train 7→ (d, {tr }) and y_train 7→ (d, {tr }). Next, we
have a function predict ∈ KBtest and so we have x_test 7→ (d, {ts}).
Since we have 2 or more variables that point to d and have {tr }
and {ts} we flag cell 5 asserting that the following conditions is

violated: no arguments of train and test functions can point to the
same data. With this analysis condition, NBLyzer warns the user

that the execution sequence of cells executions ⟨1, 2, 4, 5⟩ will result

in a data leakage in cell 5.

5 INTEGRATION AND APPLICATIONS

We have implemented our technique as a notebook server and

Microsoft visual code extension. Our implementation currently

targets a subset of the python language. It parses the code into

an AST from which it constructs a CFG and U-D chains. These

low-level code representations are used to perform the analyses

implemented in our framework. The user can manually trigger the

what-if analysis and pre-select which built-in analyses are turned

on for what event. We warn the user of potential violations through

use of cell highlighting and messages. The user interface varies

with the clients used.

The standard use case is to use NBLyzer as a development time

what-if advisor that detects potential bugs before they occur. How-

ever NBLyzer can be used for notebook cleaning, where erroneous,

idle and isolated cells are flagged for removal; notebook repro-

ducibility where safe execution paths that lead to acceptable results

are extracted from the notebook; auditing where security violations

for e.g., GDPR compliance [2]; education where the tool can help

data scientists write quality code.

6 EVALUATION

In this section, we evaluate NBLyzer on a set of real world note-

book benchmarks and on the instantiated analyses in Section 4. The

evaluation aims to (1) validate the adequacy of the NBLyzer’s

performance for our notebookuse cases and to (2) investigate

performance bottlenecks and configuration tuning required

to maximize in the performance of NBLyzer. As a universal

service level agreement (SLA) model for user experiences, i.e., the

acceptable delays the analyses may exhibit in the notebook envi-

ronment we refer to the RAIL model [4].

6.1 Experimental Setup

All experiments were performed in an Intel(R) XeonW-2265 CPU@

3.50 GHz with 64 GB RAM running a 64 bit Windows 10 operating

system. Python 3.8.8 was used to execute NBLyzer. We evaluate

the execution-time of our static analyses running within NBLyzer

on the full set of Kaggle notebooks.

6.1.1 Static Analyses. We perform the static analyses instantiated

in our framework below. For each analysis type we perform an

analysis over all notebooks, where each cell is a source.

• Code Impact Analysis (CIA): the following variations of the anal-

ysis discussed in Section 4.1:

– Isolated Cell Analysis (IsC)

– Fresh Cell Analysis (FrC)

– Stale Cell Analysis (StC)

• Data Leakage Analysis (DlK): the analysis discussed in Section 4.2

6.1.2 Benchmark Characteristics. We use a benchmark suite con-

sisting for 2211 executable real world notebooks from the Kaggle

competition[3] that has previously been used to evaluate data sci-

ence static analyzers [11]. The benchmark characteristics are sum-

marized in Table 1. We emphasise that this is a fair reflection of

typical notebook code.

We see on average, the notebooks in the benchmark suite have

24 cells, where each cell on average has 9 lines of code. In addition,

on average branching instructions appear in 33% of cells. Each note-

book has on average 3 functions and 0.1 classes defined. We note

that these characteristics of low amount of branching, functions

and classes is typically advantageous for static analysis precision.

We found that every second notebook had a cell that could not be

parsed and analyzed due to a syntax errors in it. Overall, this af-

fected 4% of cells in the benchmarks. 2.1 of variables were unbound,

from an average of 8.2 variables per cell.
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Characteristic Mean SD Max Min

Cells (per-notebook) 23.58 20.21 182 1

Lines of code (per-cell) 9.12 13.55 257 1

Branching instructions (per-cell) 0.43 2.49 76 0

Functions (per-notebook) 3.33 7.11 72 0

Classes (per-notebook) 0.14 0.64 11 0

Non-parsing cells (per-notebook) 0.5 0.98 20 0

Variables (per-cell) 8.2 2.3 552 0

Unbound variables (per-cell) 2.1 1.06 12 0

Table 1: Kaggle Notebook Benchmark Characteristics

6.2 Code Impact Analysis

We evaluate the performance of the code impact analyses for note-

book usage. Recall the CIA analyses reason about change propa-

gation in notebook cells. Also recall that many of these analyses

by definition have a fixed K . For the included evaluations, we also

evaluate stale cell analysis for various values of K including K = ∞,

since it can be run with such a parameter value. For each evaluation

of CIA analysis, we perform a random change in an source cell and

compute the analysis result. We do this for all cells in a notebook,

and for all notebooks in the benchmark suite. We omit notebook

cells that do not parse.

6.2.1 Isolated Cells. In Figure 7 the average analysis executions

per-notebook are shown. Overall, the results how that the aver-

age isolation analysis on a notebook takes 2.499 milliseconds. The

average analysis time, including the maximum outliers, are well

under the threshold for humans to notice a delay and does

not degrade the user experience. We were able to detect that 14%

of cells were in fact isolated and candidates for notebook clean-

ing or simplification. This highlights the need for automated

cleaning/simplification tooling for notebooks and the ability

of NBLyzer to detect such cells. Our manual observation of the

results could not detect any false positives.

6.2.2 Fresh Cell Analysis. In Figure 8 the average fresh cell analysis
executions are shown. The results show that the average fresh

cell analysis on a notebook takes 2.98 milliseconds. Similarity, the

analysis time for average and maximum outliers iswell under the

threshold for users to notice a delay and does not degrade the

user experience. The analysis found that 74% of cells are fresh and

no false positives were observed by our manual inspection.

6.2.3 Stale Cell Analysis. In Figure 9 the average and maximum

stale analysis executions are shown. We show maximum results

because we ran the experiments for K = 3 and thus a propagation

occurs. The results show that the average stale cell analysis on a

notebook takes 2.49 milliseconds. The average maximum analysis

per notebook take 22.1 milliseconds, with a global maximum of

472.99 milliseconds. The analysis time for average and maximum

cases are well under the threshold for users to notice a delay

and does not degrade the user experience. While the global maxi-

mum analysis time is above the unnoticeable threshold, it is still

well under the threshold of any degradation of the user ex-

perience. The analysis found that 24% of cells can cause staleness

from a random change, highlighting the significant possibility

of such bugs occurring and utility of this analysis. Our manual

inspection found no false positives. We conjecture this is due to the

simplicity of data science code. Note, we do not expect this to be

the case for general python code as our analysis does not model

dynamic semantics.

6.3 Data Leakage Analysis

We evaluate the performance and utility of the data leakage anal-

ysis. This analysis is run on K = ∞, however we investigate its

performance on various fixed K values. This analysis is also diverse

in its use cases. On one hand it can be used during development

time to warn users of potential bugs and on the other hand it can be

used in a batch mode for semantic reproducibility of notebooks [16].

We evaluate if the performance of this analysis is compatible with

these use cases.

In Figure 4 the average and maximum data leakage analysis

for K = ∞ executions are shown. The results how that the aver-

age data leakage analysis on a notebook takes 41.45 milliseconds.

The average maximum analysis per notebook take 880.9 millisec-

onds, with a global maximum of 233 seconds. The analysis time

for average case is well under the threshold for users to no-

tice any delay and does not degrade the user experience. The

average maximum recorded analysis time is above the im-

mediate fell threshold, but below the threshold for the task

feeling out of flow (1000ms). The global maximum does cause a

considerable delay and user degradation. Below we investigate the

cause and remedies for such cases but note they are not common

and only 4% of all analyses execute for more than 1000ms and only

1% for more than 5000ms.

6.3.1 Varying K Bounds. To demonstrate the affect of reducing

K in Figures 5a and 5b we show the effect of vary the K from ∞

to bounded values of K = 8, 4, 2 and 1. We note that the speedup

of the analysis with smaller K values is not significant enough

on average to result in major performance improvements

overall for either analysis. A major reason for this as shown in

Figure 5c is that our fixpoint subsumption optimization increases

for large values of K resulting in modest average maximum depths

as shown in Figure 5e. This is further corroborated by the Figures 5d

and 5f.

6.3.2 Propagation Rate. Another explanation for the achieved per-

formance is the rate at which propagation occurs to other cells.

Given a worst case scenario this propagation rate could be large

and result in an execution tree that is very wide and deep. In Fig-

ure 6 we plot the average and maximum propagation rates for each

notebook (where each cell was a source cell). Here we find that ϕ
holds on average 9% of the time and the maximum propagation

rate for each notebook is on average 13% of the time. This figure

coincides with our experience that a typical notebook has sev-

eral alternate executions but not to the extent that all cells

depend on each other.

6.3.3 Bottleneck Sources. Next we investigate the 4% of notebooks

that take more than 1000ms to execute to determine where the

bottleneck is occurring and what can be done to bring them under

1000ms. For the 103 notebooks with a maximum analysis execution

of larger than 1000ms, we reduce K = 4. Here we were able to

bring 33% (34 notebooks) of the notebook executions to under the

1000ms. Thus, we are able to compute 98.7% of notebooks in

under 1000ms. We note, that this reduction exclusively occurred

for notebooks with maximum execution times < 10 seconds. Of

the 4 cases > 100s we found that they in fact had no significant

speedups by reducing the K value. We have investigated these
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Figure 6: Data Leakage Analysis Avg. and Max. Propagation Rates

notebook in question and narrowed down the poor performance to

a single cells with very large number and depth of branching and

large number of lines of code. For example, one of the notebooks

had a cell with 257 LOC and 71% of these were branching statements

often deeply nested. We argue that such code is not characteristic

of regular notebooks and would cause a challenge to most static

analyzers for the time frames we target. To mitigate such cases

we would need to improve our rather standard intra-cell analysis

fixpoint iteration techniques and employ techniques such as [8]

which is left for future work.

7 RELATEDWORK

Compared to static analysis tools for data science scripts [15],

NBLyzer targets notebooks and incorporates their semantics in

the analysis. We do this by deciding on-the-fly which cell should

be analysed next depending on our cell propagation dependency

graph. The use of static provenance is related to our technique in

the sense that provenance information is propagated forward and

can be modeled as an abstract domain [11]. Unlike NBLyzer this

work targets scripts and is limited to loop free programs. The lin-

eage technique in [10] targets notebooks. Using this static lineage

information computed by data flow analysis and runtime time-

stamps the technique is able to perform stale state detections. This

technique relies on both runtime information and compile time

(liveness data-flow analysis). NBLyzer can perform such analyses

statically and does not require information at cell execution. More-

over, this technique is limited to a single analysis where NBLyzer

is a general static analysis framework and can incorporate various

abstract domains. The technique in [16] attempts to reconstruct

executions in notebooks by finding dependencies using syntactic

means on the AST. NBLyzer builds dependencies wrt. the abstract

domain and performs a semantic analysis. Regarding our ML data

leakage analysis, we have not found any static analysis method for

detecting data leaks in data science code.

8 CONCLUSION

In this paper we have described NBLyzer, a static analysis frame-

work that considers the execution semantics of notebook environ-

ments. We have instantiated several analyses in our framework,

with applications including notebook debugging, notebook veri-

fication, notebook cleaning, and notebook reproducibility. As far

as we are aware, we are the first to suggest a general abstract

interpretation-based static analysis framework specific for note-

book semantics.
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Figure 7: Isolated Cell Analysis Avg. Times
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Figure 8: Fresh Cell Analysis Avg. Analysis Times
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