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ABSTRACT

The dynamic nature of AI technologies makes testing human-AI
interaction and collaboration challenging – especially before such
features are deployed in the wild. This presents a challenge for
designers and AI practitioners as early feedback for iteration is
often unavailable in the development phase. In this paper, we take
inspiration from integration testing concepts in software develop-
ment and present HINT (Human-AI INtegration Testing), a crowd-
based framework for testing AI-based experiences integrated with
a humans-in-the-loop workflow. HINT supports early testing of AI-
based features within the context of realistic user tasks and makes
use of successive sessions to simulate AI experiences that evolve
over-time. Finally, it provides practitioners with reports to evaluate
and compare aspects of these experiences.

Through a crowd-based study, we demonstrate the need for over-
time testing where user behaviors evolve as they interact with an
AI system. We also show that HINT is able to capture and reveal
these distinct user behavior patterns across a variety of common
AI performance modalities using two AI-based feature prototypes.
We further evaluated HINT’s potential to support practitioners’
evaluation of human-AI interaction experiences pre-deployment
through semi-structured interviews with 13 practitioners.

CCS CONCEPTS

•Human-centered computing→ Usability testing; Collabora-
tive and social computing; Interaction design process and methods;
Human computer interaction (HCI).
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1 INTRODUCTION

Artificial Intelligence (AI) is deployed in many real-world appli-
cations such as email clients, text processing software or content
curation platforms to augment human capabilities and catalyze
productivity [52, 53]. Success of AI in these applications crucially
hinges on successful Human-AI (HAI) collaboration. Fundamen-
tally, human-AI collaboration is a dynamic experience – users adapt
to the system as they repeatedly interact with it and build up ex-
perience. Likewise, the system can change and adapt to the user
as it gathers more interaction data. Moreover, due to the statis-
tical nature of AI models, failures in the predictions can happen
unexpectedly at any time during the collaboration. Many of these
failures in human-AI collaboration naturally require multiple in-
teractions to manifest are thus difficult to detect. Unfortunately,
isolated, offline testing of the AI which is an integral part of typical
workflows is also insufficient – higher offline performance of the AI
does not necessarily imply better collaboration outcomes [10, 15].

This increasingly presents a challenge to practioners working
on AI-based features who need to evaluate the impact of changes
to the AI’s behavior on human collaborators. Current evaluation
of AI-based features primarily centers around three main methods:
(1) offline performance evaluation metrics based on test sets, (2)
limited-scale user studies in the lab or (3) post-deployment A/B
tests [27]. However, when considering the cost against the insights
gained, these methods leave much to be desired.

Each evaluation method implicitly trades off costs to run (e.g.,
fidelity required, turnaround time, setup) with the costs to end-
users (e.g., inadequate predictions) as well as the scale and richness
(e.g., correlation with user satisfaction, granularity) of information
gained. This is sketched out in Table 1. For example, offline tests
of the AI alone give a statistically reliable estimate of the AI’s
accuracy (because of the typically large scale of offline datasets),
require no working system to interact with and therefore have a
low testing cost, and no cost implications to end-users. However,
they also give little to no insight into how end-users experience
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or adapt to the AI feature. Traditional A/B testing requires fully
functional systems that can be deployed to end-users, presents high
running costs (slow turnaround times) and can be costly to end-
users who are experiencing failures, but they can measure user
behavior at scale. Finally, lab-based user studies mitigate costs to
end-users by using a small set of recruited participants, but are
inherently costly to run. Lab-based user studies also trade off scale
in favor of more in-depth feedback from a limited set of users. These
limitations and tradeoffs of current techniques and the additional
challenges of testing human-AI collaborative experiences often lead
to unstructured ad-hoc testing or, in some cases, forgoing human
participant tests altogether [52].

We propose HINT (Human-AI INtegration Testing), a customiz-
able framework that addresses these drawbacks by allowing rapid
testing of human-AI collaborative experiences. HINT takes inspi-
ration from integration testing in software development [37] by
automating testing of AI models integrated within an application
and with humans-in-the-loop. HINT improves over offline testing
by evaluating the AI with humans together in the context of the
final application (system and interface) or application prototype.
Additionally, HINT offers a simple way to initiate and scale these
human participant tests by utilizing a crowdsourced test workflow.

HINT is designed to provide rich insights by capturing both
observed user behavior and subjective metrics over time. HINT then
distills its captured data into a structured test report that allows
practitioners to answer critical questions that they could previously
only answer post-deployment such as:What might be the impact

of a model update on my application’s users? How might users react

to improvements in my application’s behavior due to personalization

over time? How do my application’s users react and recover from

AI errors and what are the possible long-term consequences of those

errors?

To evaluate the usefulness of HINT, we created two prototypes
of AI-based features for an email management application. We
then simulated eight common scenarios motivated by the questions
above and ran them through HINT. Our results show that HINT
is able to surface distinct and evolving patterns of user behavior
under these scenarios. Finally, through semi-structured interviews
with real AI practitioners reviewing HINT generated reports, we
demonstrate HINT’s potential to support pre-deployment decisions
that take into consideration evolving user experiences with AI
systems.

In summary, this paper makes the following contributions:

• Human-AI INtegration Testing (HINT): a framework for rapid
pre-deployment testing of AI-based features with humans-in-
the-loop. The framework includes design of the testing setup, a
crowdsourced workflow to execute tests, and a report summariz-
ing information from user-centered (self-reported and measured)
and offline metrics (→ Section 3).

• Results from an extensive set of feasibility studies demonstrating
HINT’s ability to capture and reveal distinct and evolving user
behavior patterns. The studies use two AI-based feature proto-
types tested across eight test scenarios with diverse over-time
AI performance dynamics (→ Section 4).

• Results from semi-structured interviews with 13 AI practition-
ers reviewing HINT generated reports demonstrating HINT’s

potential to support pre-deployment evaluation of human-AI
collaboration (→ Section 5).

2 RELATEDWORK

Our work builds upon the long line of research on developing
interactive, intelligent systems that can assist humans in performing
complex tasks [19, 21]. AI-based features embedded in these systems
introduce new challenges in the testing process [1, 2, 53, 55] due
to (i) their probabilistic and non-deterministic nature, (ii) dynamic
changes in system behavior and changes in user behavior, and (iii)
higher likelihoods of being incorrect in practice because of training
vs. real-world distribution discrepancies. These challenges motivate
the HINT framework and the need for more human-centered tools
and techniques for testing of AI in general. Next, we position our
contributions in the context of traditional AI evaluation methods,
UX/UI testing methods, and testing human-AI collaboration.

2.1 Evaluating the AI

A common initial step for testing an AI-based feature is evaluating
the AI model itself as an independent component. Typically, this is
done via offline evaluation where AI performance is measured on
annotated ground truth datasets via a set of metrics (e.g., accuracy).
As AI outputs have become more complex and context dependent,
direct human evaluation of the AI system outputs is also increas-
ingly common [13] and frameworks to efficiently conduct such
evaluations such as MAISE [54] have been proposed in prior work.
Decoupled (or component level) evaluation indeed provides a way
for designers to quickly iterate on the AI itself.

However, decoupling the AI model from the actual application
during testing presents only a limited view into the potential per-
formance of the human and AI together as a collaborative system.
In fact, prior work has recognized this issue of mismatched metrics
and we will discuss them in more detail in Section 2.3.

Even putting these limitations aside, there are still major short-
comings in solely using offline evaluation. First, offline training/test
datasets or human evaluation tasks are often based on a surrogate
task (e.g., rating prediction) that the AI solves rather than the spe-
cific task (e.g., make good recommendations) and therefore can be
misaligned to real-world user behavior [22]. Datasets also often
contain artifacts of the annotation process used to create them [17],
further biasing evaluations. Second, offline metrics (e.g., accuracy,
F1, AUC, BLEU scores etc.) are only surrogate constructs and often
fail to predict user-centric outcomes of interest (e.g., user satis-
faction, intent to return) due to lack of expressivity in complex
tasks [3, 10]. While human evaluation can resolve some of these
issues, properly aggregating and understanding human evaluations
can be a challenging task [50].

Finally, offline-only evaluation is not sensitive to time-related
dynamics and cannot describe learning effects of either users adapt-
ing to the system and vice versa. While offline metrics evaluate
over large sets of outputs, in reality a user will only experience a
very small sample of the AI system’s possible outputs over their
sequential interactions. Good “average” performance on a test set
does not matter if a user ends up encountering a few AI failures
and proceeds to give up.
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Table 1: Conceptual space of testing techniques, illustrating different trade-offs between costs and informativeness of their

results.

Method System fidelity Cost to run Cost to users Scale of data Richness of data

Offline model tests – low – high low
A/B testing high medium high high low
In-lab user studies medium high low low high
Prototype walkthroughs low low low low high

HINT medium/high medium low medium high

One alternative to offline-only evaluation is A/B testing, which
is already commonly used for understanding user experiences in
both traditional and AI-based settings [16]. However, HINT and
A/B testing focus on different phases in the development process:
HINT testing supports more rapid iteration in the earlier phases
of developing AI-based features by surfacing rich user interaction
patterns without the long turnaround time and resource investment
in building high-fidelity implementations necessary for A/B testing.
A/B testing depends on natural user behavior which means collect-
ing sufficient amounts of data to draw observations could involve
long durations of waiting while HINT uses targeted tests scenarios
set up by the practitioner to focus on a specific envisioned use.
Pre-determined scenarios also allow practitioners to forgo instru-
mentation that would be necessary in A/B testing to understand
the users’ goals and intentions. While HINT and A/B testing share
some similarities, HINT does not aim to replace traditional A/B
testing that is done after development, but rather addresses the lack
of efficient but also in-depth evaluation of the effects of over-time
human-AI interaction during the development of AI-based features.

2.2 Evaluating the UX/UI

There is an abundance of prior work when it comes to understand-
ing performance of user interfaces and interactions (UI/UX) [35] and
one alternative is to treat the AI as a static aspect of the system and
use usability evaluation methods such as prototype walkthroughs
(low fidelity, pre-deployment) or in-lab user studies (medium to
high fidelity, pre-deployment) to understand potential performance
of human-AI collaborative features.

More recent work has also proposed a variety of systems and
frameworks that combine crowdsourcing (to recruit participants)
with remote usability testing [9, 11, 28, 31, 33, 57]. Studies have
also been able to demonstrate the validatity of these crowdsourced
testing methodologies by comparing them with parallel in-lab stud-
ies [28, 31]—while the authors observed methodological differences
between the techniques, they found similar effect sizes and mea-
surements, validating the effectiveness of the approach. Moreover,
systems like CrowdStudy [33] have illustrated how to technically
implement crowdsourced GUI tests for both large-screen andmobile
interfaces.

Using crowdworkers to test applications and features driven
by fixed AI model outputs has been proposed by prior work as
well [42, 46]. However, with HINT we aim to address the need
for understanding how users might adapt to a dynamic AI model,
where the behavior of the underlying AI can evolve or change over
time due to factors such as adaptation to users and model updates.

As such, HINT builds upon the body of prior work on crowdsourced
user testing to create a testing workflow that allows designers to
test scenarios where underlying AI models also evolve and change
over time. This fills a critical gap between offline evaluation of an
AI model and evaluation of the UI/UX only with fixed AI model
outputs.

2.3 Evaluating Human-AI Collaboration

Decoupled testing of AI-based systems has been widely recognized
to be insufficient, especially when AI is deployed to partner with a
human for problem-solving or decision-making tasks [4, 7, 32, 39].
In particular, experiments conducted in a collaboration context
testify that there exist other dimensions that impact team accuracy
rather than model accuracy alone:

• Facilitation of justified trust – The way how people build and

maintain trust with an automated agent impacts collaboration [20,
30]. Therefore, AIs with similar accuracy but different affordances
in helping users learn an accurate mental model of when and
how the AI fails, result in very different team performance [4,
26]. A more fundamental aspect of justified trust is confidence
calibration in predictive machine learning [34, 49] which has been
empirically shown to improve human decision-making [23, 56].
Most relevant to our work, Bansal et al. [5] have shown that more
accurate over-time updates can cause collaboration disruption
due to the introduction of newly, unexpected errors. In these
cases, updates that are less accurate but more consistent with the
human mental model of trust may be preferred to maximize the
accuracy of joint decision-making.

• Interpretability – Interpretability techniques have been exten-
sively studied as a way of improving and justifying developer
and/or user trust [8, 40]. However, numerous studies have iden-
tified issues when the AI model’s predictions are made more
interpretable, for example the risk of increasing user trust even
when the prediction is wrong [6, 29, 38] or interpretation unfaith-
fulness to models [45].

• Complementarity and human augmentation – With AI perfor-
mance continuing to improve, there exists the important question
of whether these improvements also translate into improvements
in overall performance as well [24, 32, 51]. In the next sections,
we show howHINT can answer these questions by comparing the
accuracy and effort of users without any AI assistance vs. with
AI assistance from a system, and contrasting it with offline eval-
uation results. From a model training perspective, more recent
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efforts have proposed to align model training and optimization
such that it complements human expertise [32, 51].
We discuss the above human-centered dimensions to emphasize

the potential discrepancy that may exist between model accuracy
and its impact on users but that may be difficult to uncover unless AI
applications are tested at a large scale, with HINT-like frameworks.
Note that while the studies mentioned in this section actively in-
volve users in the evaluation (unlike offline techniques), they do not
evaluate the AI recommendations in the context of the actual sys-
tem and GUI where it is integrated and deployed. HINT instead aims
at making integration testing in context feasible before deployment.

3 DESIGN

The HINT framework organizes the testing process of AI-based
systems into three high-level phases – setting up the AI feature to
be tested, conducting the tests through a crowdsourced workflow,
and generating a report based on the test data. As Figure 1 shows,
HINT takes as input an AI-based system prototype, a user task
definition and dataset and deploys it to the crowd. Crowd partici-
pants go through multiple task or calibration sessions while HINT
is tracking user behavior and perceptions. Below are the details for
each phase.

3.1 Setting Up HINT Tests

HINT groups individual tests into scenarios which are meant to
simulate or replicate the dynamics of one possible way an AI may
evolve or adapt over time. To set up HINT tests, some information
needs to be configured by the tester to define the scenario. Specif-
ically, this consists of the following three main components (cf.
Figure 1):
(1) GUI with AI-based feature – This is a working, medium to high

fidelity graphical interface crowd participants will interact with
to solve the user task. The prototype only needs to contain
functionality required to solving the user task (see below). The
AI predictions may be pre-computed for easier deployment.

(2) User task – This defines a realistic task or use case that the
AI-based feature is designed to support. A user task instance
comprises a set of text definitions of what we expect the user
may want to achieve, some criteria to determine how well the
goal has been achieved, and the concrete input data involved
in the task. For example, when testing a creativity support
suggestion-based AI feature, a task may ask participants to cre-
ate a set of slides based on a prompt and some assets. Individual
sessions of this user task can then apply their own input data
(e.g., a different prompt). If a performance metric/ground truth
is available for the task, a tester can also provide it with the
task to automatically evaluate participants’ responses.

(3) Workflow components – This defines the dynamics of the user
experience and AI-based feature through what we will refer
to as test blocks (e.g., an individual task session) to run. Test
blocks are organized into individual pages crowd participants
go through and may be configured in a modular way. Test
designers can flexibly choose from the following list of test
blocks:
• Training – familiarize the participant with the prototype
and the task they will be solving in the form of a tutorial

explaining how to use various parts of the system to solve
the task.

• Calibration session – ground the participant’s expectations
about the system using a baseline task. For example, calibra-
tion sessions can involve solving the task with the AI feature
turned off. These are useful as baselines to understand how
much value the AI may add to user productivity and can be
used to calibrate for artifacts in results caused by recruitment
variance.

• Task sessions – present a task with some type of behavior
dynamics applied for the AI. Interaction details are logged
during these sessions via interaction probes (see next section).

• Task surveys – collect self-reported feedback about the past
session (task or calibration). Includes Likert-based qualitative
probes for session as well as cumulative experience so far.
Task surveys are matched to sessions and can only come after
a session. The types of questions are configurable and we
share our implementation of them in Section 3.2.1.

• Exit survey – collects a final set of self-reported information
from the user after they have completed all task sessions,
supporting both free text as well as Likert rating or preference
statements. The exit survey may be configured to include
additional probe questions asking to compare experiences
in sessions with AI-enabled features, against those without
the AI. Test designers can choose what insights they want to
capture and configure HINT accordingly.

Task sessions, calibration sessions, and task surveys can be repli-
cated multiple times when specifying a workflow which defines
the length of the test. Training sessions and exit surveys should
only be included once if at all and should be put exclusively at
the beginning and the end of the workflow, respectively.

3.2 Crowdsourced Workflow for Data

Collection

To collect user experiences in a scalable way, HINT runs the testing
scenarios defined through the testing setup on a crowd platform
(e.g., Amazon Mechanical Turk). This gives AI practitioners access
to a large pool of recruitable participants allowing for easy scaling
of testing.

Upon acceptance of the crowd platform task (HIT), participants
will be debriefed about the test process and their consent will be
collected. Following this, participants will go through the a se-
ries of test blocks as defined by the AI practitioner in the testing
setup (Figure 1) until they complete all test blocks. For the test
blocks involving task instances, HINT randomizes the available
task instances to populate them, reducing any potential confounds
resulting from the task data (e.g. slight differences in difficulty).

3.2.1 HINT Probes. HINT utilizes two type of probes to capture
user behavior patterns: measured metrics (implicitly collected dur-
ing task sessions) and self-reported metrics (explicitly collected dur-
ing surveys). Below we describe the intent and nature of each probe
type. The exact probes used may vary depending on the system
being tested and we discuss how we implemented them for our
experiments in Section 4.
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Crowdsourced Workflow HINT Report

Self-reported metrics
Measured metrics

Offline metrics

Crowdsourcing Platform

1

2

3

task session
calibration session

Setup

task survey

Figure 1: High-level diagram of the HINT framework design. Tests consist of an AI-based feature, user task and the workflow

configuration. HINT then recruits crowd participants to execute a customizable series of test blocks to probe changes in user

behavior and perceptions over time (green). At the end, a report is produced to summarize the insights gained from testing.

Measured metrics are collected by instrumenting the AI-based
feature and are tied to the particular interactions in the interface.1
For example, a probe might track button clicks in an AI-based
feature that adds a button on suggested items or it may track text
typed in a search query box (and the resulting items). HINT uses
these implicit events to establish a timeline of user actions tied
to each session. Metrics can then be inferred from the timelines
by analyzing the events such as measuring their frequency or by
finding specific sequences of events. These probes serve as analogs
to what can be captured by traditional A/B testing but provide richer
information due to their association with the session and their
relation to other objective actions taken. Examples from different
application domains include the number of opened emails for a
mail client, the number of turns in a dialogue system, clickthrough
rates in recommender systems, etc.

Self-reported metrics are collected through surveys at the end of
a task session and are used to probe the user’s qualitative evaluation
of their experience. These are formatted in the form of Likert scores
or open-ended feedback. Likert questions (on a 1-7 scale ranging
from “strongly disagree” to “strongly agree”) are used to probe
statements mapping to experiences of interest. For example, in
our validation experiments, we used the statement “Based on my

experience so far, the AI system can be trusted.” as a probe for the
self-reported trust metric.

3.3 Report

After data collection, HINT generates a report summarizing the
data collected from crowd participants. A HINT report consists of
five main sections: (1) the overview, (2) self-reported metrics (3)
user voices (4) measured metrics and (5) correlations. Depending
on the testing conducted, HINT reports may contain the results of a
single standalone test or compare the results between two tests. An
illustrative example of the report (comparing two tests) is shown
in Figure 2. All graphs are interactive and magnifiable to allow for
fine-grained insights.

The overview section (1) is designed to surface the most impor-
tant high-level insights of the test. The report shows the over-time

1Crowdsourcing workers are made aware and have consented to the instrumentation.
Most importantly, these will not include any personal data since the data in the task is
not tied to the worker.

team performance (e.g., accuracy, F1 scores etc.) plotted along with
corresponding offline AI performance for reference. It also shows
a plot reflecting participants’ effort over time. Depending on the
application this can for instance be defined via number of actions,
time spent in the task, or a combination of both. Finally, this section
may also display participants’ preference for the AI-based feature
compared to the system without the AI-based feature if such a ques-
tion was asked during the exit survey. If the report is comparative,
it will show this information for both tests being investigated as
additional lines or diverging bar charts.

In the self-reported metrics section (2), survey answers of partic-
ipants’ experience are aggregated and plotted for each of the HINT
probes. When the report shows a single test, readers can also toggle
the plotting behavior to view either mean Likert score evolution
over time (via a line chart) or a detailed breakdown of Likert score
distributions plotted as a diverging bar chart. To simplify informa-
tion consumption, the report also provides linear fit coefficients on
the left side to highlight increasing or decreasing trends over time.

At the end of the self-reportedmetrics section, the report presents
samples of user voices (3) in the form of open-ended textual feed-
back. The goal of user voices is to show the participants’ own
assessment of how the system did or did not assist them and con-
textualize them when possible. When preferences are collected
against a calibration (no AI) system, this feedback will be orga-
nized based on the participant’s preference towards or against the
AI-based feature.

In the section following, the report presents measured metrics (4)
representing objective user behavior based on UI instrumentation.
For each metric, linear fit coefficients are also shown.

Finally, at the end of the report (5), we provide a correlation
table that shows the level of correlation between the measured
metrics and the participants’ self-reported metrics based on the
collected data. High correlation between a self-reported and a mea-
sured metric can suggest potential proxies for tracking certain user
experiences via implicitly tracked behaviors. This can enable prac-
titioners to identify probes and events to instrument that may be
useful in future A/B testing, as A/B testing crucially depends on
finding metrics that are aligned with user outcome.
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Figure 2: Compact example of the HINT comparison report. This example outlines the main sections present in HINT reports

and shows the visual form of information presented.

4 EVALUATING THE HINTWORKFLOW

To evaluate the feasibility of our framework, we conducted HINT
tests on two AI-based feature prototypes for an email management
application. The tests span across different time-based variation
schemes for the AI performance. Specifically, we set out to answer
the following questions:

RQ1. Are crowd workers able to use the HINT system
to successfully complete tasks with the AI-based feature
prototype?
RQ2. Can the HINT framework reveal distinct patterns
of user interactions under different performance varia-
tions over time?

In this section, we will first introduce the feature prototypes
we used as examples tested using HINT, then we will present the
setup and configuration for these tests. Finally, we will examine the
insights revealed by HINT about these prototypes and how these
insights address the research questions above.

4.1 AI-based Feature Prototypes

For our experiments, we selected twoAI-based features that support
personal email management (interfaces shown in Figure 3). Personal

email management is a domain that offers a rich space of tasks
that can be aided by AI and past work [26] has explored such
instances. Within the space of AI-based email management features,
we decided on testing two common cases: AI-based search (search),
implemented as an item ranking task, and AI-based event detection
(event), implemented as a classification task. For the AI assistance,
we set up the search feature to AI to improve the text search results
over the inbox by adjusting the ranking of search results to promote
more relevant items (Figure 3b). For the event detection feature, the
AI would assist by flagging messages (Figure 3a) containing events
and showing an inlined “Add Event” button to allow the user to
mark relevant messages.

4.1.1 User tasks. To ground these AI-based features for HINT test-
ing, we also created appropriate tasks for each feature based on how
each AI-based feature would be used. In the tests for the search
feature, we designed the tasks to ask participants to find and tag a
single email based on a description of the message (e.g., “Find the
email that contains the bill for the company offsite in August.” ). In
the tests for the event feature, their task was to find and tag all
emails that contained an event (e.g., meeting, appointment etc.).
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(a) event: Event detector marking emails classified as containing

events with an action button.

(b) search: AI-based search ranking emails by relevance according to

a query (here: “book”).

Figure 3: Examples of the email client prototypes with the two AI-based features.

4.1.2 Task data. To populate data for each AI-based feature and
task, we selected and editedmessages from the Enron Email Dataset [25]
to create a set of 12 inboxes (6 for search, 6 for event). We set the
size of the inboxes and ground truth solutions to control difficulty
while simulating a realistic task. For the search case, we populated
inboxes with 80 messages each out of which 1 message was the
target message to be found. For the event case, we selected a group
of emails (ranging in size between 5-15) that contained event infor-
mation for each inbox and populated the remaining emails with
those that didn’t contain information until the size of the inbox
was between 35-45. The ground truth solutions for all the inboxes
were selected by the research team from the Enron dataset such
that all members agreed on the label of all messages in the inbox
(with any ambiguous messages discarded).

4.2 Experiment Setup

In this section, we will breifly introduce the setup we used to run the
HINT experiments including the probe metrics used, the scenarios
we tested the AI-based feature prototypes on, and the recruitment
of participants during the HINT tests.

4.2.1 HINT Probes. As described in Section 3.2.1, the general HINT
framework allows for a variety of metrics to be captured as a part of
the tests. For our experiments on the AI-based email management
features, we used the following probe metrics:

• Measured metrics: Based on the nature of the application do-
main, we instrumented the prototype to track each user action
in the context of the session (an activity log). Using the timeline,
we derived the following measured (objective) metrics based on
the log, noting that they represent only a subset of all potentially
useful metrics:
– WORK TIME: Time taken (s) from session start to complete.
– OPENED: Number of messages opened. If a message was
opened twice by a user, this would be counted twice.

– CORRECTIONS: Ratio (%) of tagging actions that change a
previously tagged item/email. A tagging action entails flagging
for search and adding an event for event.

– UPTAKE: An overall metric for utilization of the AI-based
feature. For event, this is the % of tagging actions that were a
result of accepting an AI suggestion. For search, this is the

inverse of the number of queries made before an item was
tagged.

• Self-reported metrics: Inspired by previous work on evaluat-
ing machine learning, humanmachine coordination and trust [14,
18, 47], we adapted and assembled six statements (formulated
as 7-point Likert questions) for use as self-reported metrics in
HINT. We drew three questions (confidence, effort, utility) from
common questions used in user studies to evaluate general use-
fulness of features in the context of completing tasks. We then
included questions about mental model and trust, which mirror
similar questions used in the RADAR [47] evaluation but are
adapted to guage evolving collaboration effectiveness between
the human and AI by measuring the participant’s cumulative
trust and mental model of the AI so far as opposed to for a single
session. Finally, we attempt to capture the overall quality of the
collaboration over time by posing a question for whether the user
will continue to use the AI system. The goal for this selection is to
balance capturing key insights into human-AI teaming behavior,
while maintaining a short and simple self-reporting process to
reduce the cognitive load on the participants.
– CONFIDENCE: “I am confident that I completed the last task

correctly.”
– EFFORT: “Completing the task took me a lot of effort.”
– UTILITY: “During the last task, the AI system was useful.”
– MENTAL MODEL: “Based on my experience so far, I under-

stand in what situations the AI system will perform well.”
– TRUST: “Based on my experience so far, the AI system can be

trusted.”
– STICKINESS: “Based on my experience so far, I would use the

AI system again.”
These questions generally fall into two groups: (1) questions
about the last session (CONFIDENCE, EFFORT, UTILITY)
and (2) questions about the cumulative (i.e., so far) experience
(MENTAL MODEL, TRUST, STICKINESS).

4.2.2 Workflow Setup. For our experiments across all the condi-
tions, we configured the HINT workflow with the same series of
workflow components. Each participant was first given a training
test block where they are given an example task to familiarize them-
selves with the basic interface of the email management feature.
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Then each participant was assigned 6 sessions: 2 calibration ses-
sions, followed by 4 task sessions. Task surveys were conducted
after each session, followed by an exit survey at the end. The order
of tasks used in the task sessions was randomized to account for
any potential effects resuting from different task difficulty of the
individual tasks used for each session.

4.2.3 Scenario Conditions. To simulate possible scenarios for the
behavior of the AI, we created scenarios by applying one of 3 tem-
poral variation schemes to one of the 2 AI-based features tested.
These temporal variation schemes defined how the AI’s perfor-
mance would evolve over time during the 4 task sessions in that
scenario. The three cases for temporal variation were: (1) Static:
the AI has a static level of performance throughout all task sessions;
(2) Varies between sessions: the AI’s performance only changes
between task sessions; (3) Varies within session: the AI’s per-
formance changes between different interactions within the same
session. For each temporal variation scheme, there were two possi-
ble performance patterns based on a combination of sessions using
a ‘high-performance’ AI (h) or a ‘low-performance’ AI (l). Overall,
we created a total of 8 HINT tests, which are summarized in Table 2.

4.2.4 AI performance for conditions. In the static variation schemes,
we simulated an AI system that had a fixed classification perfor-
mance (precision and recall both at either 50% or 80% for the l and
h respectively) throughout all the sessions. In the varies between

sessions case, we used 2 types of patterns where we introduce a
change in the performance level of the AI in the middle of the 4
sessions: hhll (high then low) and llhh (low then high). For the
event tests, the ‘high-performance’ AI (h) performed at 80% for
both precision and recall while the the ‘low-performance’ AI (l)
performed at 50% for precision and recall. In the search tests, we
used a target mean reciprocal rank (MRR) to define the AI perfor-
mance with ‘high-performance’ AI (h) defined as having a target
MRR of 1 and the ‘low-performance’ AI (l) having a target MRR of
0.1.

Finally, for varies within session variation schemes, high vari-
ance (s-hv) and low variance (s-lv), the AI performance was tar-
geted to hit an MRR value of either 1 or 0.1 (for each individual
search query) in the high variance scheme, while the AI was tar-
geted to consistently hit anMRR of 0.33 for the low variance scheme.

4.2.5 Participants. Wedeployed these tests onAmazonMechanical
Turk. Participants were given a base pay ($5.0) plus a per-session
bonus of up to $0.5 based on their performance on the task to
incentivize participants to make their best effort. Altogether, crowd
workers received an average hourly wage at or above $12. We
recruited 50 participants per test (out of 8 in Table 2) for a total of 400
participants. Our recruitment limited participants to participate in
only one test per AI-based feature. For quality control, we discarded
any participants who failed to find the target item in all 6 sessions
for search feature tests and any participants who tagged less than 5
ormore than 15messages for all 6 sessions in the event feature tests.
We also discarded participants who did not complete all sessions.
In total, we used data collected from 313 participants (e-l = 39 , e-h
= 36, e-hhll = 43, e-llhh = 41, s-hhll = 44, s-llhh = 43, s-hv = 37,
s-lv = 30).

4.3 Findings

4.3.1 RQ1: Were crowd participants able to successfully complete
tasks? To evaluate RQ1, we probed participants’ self-reported un-
derstanding of the tasks during each HINT test. We included the
following 7-point Likert question: “The task instructions were clear
and easy to understand for all the task sessions.” as part of the exit
survey. We found that almost all participants reported agreement at
any level (>4 Likert score) with this claim: 96% in the search tasks
and 94% in the event tasks. A significant majority also reported
agreement or strong agreement (≥6 Likert score) in both event
(76.7%) and search (85.1%) tests.

Moreover, as evidenced by the performance in the calibration
sessions (1 & 2), participants were able to achieve generally con-
sistent and acceptable performance on the tasks even without AI
support (Figures 5a,5c and 7a). This suggests that the HINT crowd-
sourced workflow for testing is adequate in allowing participants
to understand the tasks in our test domains.

4.3.2 RQ2: Can the HINT framework reveal distinct patterns of user
interactions over time? To evaluate RQ2, we looked at the collected
probe metrics for pairs of performance variation schemes (as de-
fined in Section 4.2.4). We were able to observe interesting patterns
that were uniquely surfaced by the over-time interactions and mea-
surements collected using the HINT framework.

In the following sections, we will elaborate on the observations
for each performance variation scheme.

4.3.3 Static Performance – Figure 4. The static performance tests
simulate cases where the AI-based feature has consistent perfor-
mance throughout its use. In our calibration sessions we observed
that the e-h participants had significantly lower initial performance
on the task without AI assistance than e-l participants (Figure 4a).
This in conjunction with the difference in measured effort (per-
centage of emails opened, Figure 4b), shows that for these tests the
pool of participants recruited differed in their abilites on the task.
We suspect that this could be a rare case where attentive workers
may have been exhausted in one test due to the simultaneous re-
cruitment and in practice a practitioner should consider re-running
additional test recruitments. While discrepancies in the participants
base performance is undesirable, this observation does illustrate
the importance of calibration sessions as anchor measurements
in HINT to help us identify if any differences could be caused by
artifacts due to the particular group of workers recruited.

Despite this difference in initial performance, we found that,
surprisingly, in both AI performance patterns, participants ended
up converging on similar levels of performance by the end of the
last task session. In other words, the differential gain (change) in
accuracy for the high-performance AI (e-h) when compared to No-
AI sessions was higher than when using the lower-performance AI.
At the same time, reliance on AI was also significantly higher for
the e-h, seen through both higher uptake of the AI suggestions and
lower amount of emails opened (Figure 4c and 4b). This indicated
that despite having lower performance when doing the task without
assistance, workers in this condition were able to discern that the
AI performed well and accepted more recommendations from the
AI than the group with a low-performance AI. It’s worth noting
that even though AI performance was static in these tests, we were
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Table 2: Summary description of tests conducted using the HINT workflow for the email management application.

Performance variation Test Feature Description

Static

e-l (39) event static performance, F1 = 0.5
e-h (36) event static performance, F1 = 0.8

Varies between sessions

e-hhll (43) event performance drops after 2nd AI session: F1 = 0.8→ 0.5
e-llhh (41) event performance increases after 2nd session: F1 = 0.5→ 0.8
s-hhll (44) search performance drops after 2nd session: MRR = 1.0→ 0.1
s-llhh (43) search performance increases after 2nd session: MRR = 0.1→ 1.0

Varies within session

s-hv (37) search high performance variance within a session
(random MRR target of 1.0 or 0.1 per query)

s-lv (30) search low performance variance within a session
(fixed MRR target of 0.33)
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Figure 4: Over-time comparison of the e-l and e-h tests. Sessions 1, 2 are calibration sessions (no AI), while 3-6 are done with

the AI. Effort is measured as % of all emails opened. Uptake is measured as % of all tagging completed through AI suggestion.

only able to observe the convergence of the team performance and
correlated differences in reliance on AI because of the over-time
nature of the multiple sessions invloved in HINT tests (RQ2).

4.3.4 Performance Varies Between Sessions – Figures 5 and 6. In
these tests, the performance of the AI was switched after the first 2
of the 4 AI sessions. In both AI-based features, HINT testing was
able to surface the effects of this temporal change in AI performance
reflected through changes in the overall team performance: We saw
higher overall performance (Figure 5a and 5c) and higher uptake
(Figure 5b and 5d) of the AI feature in the periods of time where
the AI performed well.

Additionally, HINT revealed patterns in the user experiences
that were unique to the particular AI-based feature being tested
(search or event). Looking the search tests, the temporal changes
were reflected directly in both the reported and measured metrics:
When AI performance dropped (hhll) or increased (llhh), we saw
corresponding changes in probed values like uptake (Figure 5d) as
well as self reported values like stickiness or effort (Figure 6b) with
similar trends also present for confidence, trust, and mental model
ratings. However, when we look at the event tests, we only see
a corresponding effect on these metrics (Figure 5b and 6a) when
the performance dropped (hhll) without seeing a similar change
when the performance increases (llhh).

This seems to suggest that while participants were sensitive to
AI performance changes in both directions when using the search
feature, they were only sensitive to AI performance drops for the

event feature. An improvement in the AI performance did not
result in a corresponding perceived difference by participants. We
hypothesize that these effects may partially be explained by the
different interactions involved in the two features – AI performance
is easier to judge for the search feature because participants can
quickly identify when the results ranks what they are seeking
highly whereas better event tagging recommendations may just be
ignored if the participant doesn’t trust the feature anymore. This
is also reflected by overall higher effort when comparing across
the two tasks (effort in Figure 6a compared to 6b). Some of the
user voices also support this hypothesis: A participant using the
event feature noted that “It was wrong so often I just ignored it.”
while a participant using the search feature mentioned that “It did
not seem to be consistent. There was one task in particular where (...)

the one I needed was the very last option. (...) Other times it worked

seamlessly.”
In this scenario, HINT testing was able to identify and surface a

unique over-time behavior pattern resulting from the interaction
between the AI’s performance pattern and the task (search or
event). This is evidenced by clear over-time effects on measured
(performance, uptake) and self-reported metrics, providing positive
support for the sensitivity of HINT tests as well as the need for
over-time testing (RQ2).

4.3.5 Performance Varies Within Session – Figure 7. Finally, we
tested whether HINT is sufficiently sensitive to identify patterns
induced by changes in AI performance within a single session –
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Figure 5: Over-time comparison of performance and uptake for the event (a, b) and search (c, d) features.
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Figure 6: A subset of users’ self-reported experience metrics for the event feature (a) and the search feature (b) comparing

the effect of changing AI performance from low to high v.s. high to low. Similar trends can be observed with the remaining

features (See Figure 8 in the appendix)

behavior that is more fine-grained than the probes used in HINT.
We tested this with the search feature (conditions s-hv and s-
lv). To recall, these tests compare a high-variance (but also high
average performance) AI implementation that is sometimes high-
performance while other times low-performance, with an AI imple-
mentation that is ‘stable’ between interactions with a lower average
performance. Figure 7a shows the session-level performance with
’x’ marks indicating average MRR performance for the AI feature
in each condition.

First, we observed that the team performance (F1) across both
tests mostly converged. This is in line with previous findings in

information retrieval [48], showing that people are robust to re-
trieval quality, and consistent with our observations for a static
AI. However, unlike with the static AI, we measured substantially
higher effort (Figure 7b) for participants interacting with the high
variance AI despite it having the higher average performance out of
the two. Similarly, we observed a trend of increasing uptake for the
low variance AI (despite its lower average performance) as opposed
to a relatively flat uptake curve for the high variance AI (Figure 7c).
We hypothesize that this difference would likely be attributed to
the negative effects of unreliable performance (high-variance) out-
weighing the improvement in average performance.
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Figure 7: Over-time comparison of the s-hv and s-lv tests. Sessions 1, 2 are calibration sessions (no AI), while 3-6 are done

with the AI. AI offline performance measured with average targeted Mean Reciprocal Rank (MRR). Uptake in search tasks
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issued before making a tag action.

This is important because, in practice, it may not be evident to
the practitioner ahead of time that there exists high variance in the
AI-based feature unlike in our scenario. Offline tests based on fixed
evaluation datasets can miss real-world variance while A/B tests
in real-world situations can result in mixed signals as the users
may naturally do tasks of differing difficulty that can be hard to
compare. While the source of the unusual observations (compared
to what would be expected of a staticAI) in the previous paragraph
can’t be directly attributed to variance just by the HINT testing
alone (since the probes don’t measure interaction level variance),
the existence of the behavior does suggest that HINT tests are able
to uncover potentially anomalous user behavior patterns that can
allow a practitioner to inform their future analysis. This further
supports the case for HINT when it comes to revealing distinct
behavior patterns (RQ2).

5 EVALUATING THE HINT REPORT

While our experiments in Section 4 evaluated the observations pro-
duced by the HINT framework, we also wanted to understand how
HINT as a framework can provide utility to AI practitioners when it
comes to informing their decision-making process. Specifically, we
wanted to see whether the report produced by HINT allows practi-
tioners to understand behaviors (especially over-time behaviors) of
their AI system better, and whether this understanding would affect
their decisions when it comes to deployment. To explore this, we
conducted a qualitative evaluation by presenting practitioners with
a deployment related scenario along with a HINT report based on
the earlier experiments involving the AI-based email management
feature prototypes.

In this section, we present qualitative results from our study that
collected responses via semi-structured interviews from 13 AI prac-
titioners at a large software company. We aimed at representing a
balanced set of roles involved in the deployment decision process
around AI features (program managers, designers, and engineers).
Participants were recruited via three mailing lists focusing on the
topics of “Machine Learning”, “Design for AI”, and “Machine Learn-
ing for Productivity”. Participants’ ages were diverse (min = 28,
max = 53, mean = 41.7), as well their genders (6 male, 6 female, 1
prefer not to say). Table 3 shows the distribution of roles and years
of experience in AI-based features for participants.

5.1 Study protocol

The one-hour long study started by presenting particpants with an
overview of HINT, its overall goal and a description of the main
terminology needed for the study as described in Section 3. Next,
we described the AI-based feature that each participant would see
(search or event) and showed a screenshot of the medium-fidelity
prototype of the email client to the participant, explaining the user
task and how the AI-based feature would assist the user. After
this, participants were asked to imagine they were part of a team
working on the AI-based feature and need to make a deployment
decision. Finally, we gave people a high-level overview of each
section of the HINT reports along with quick explanation of what
metrics they contained.

We assigned participants one of four different scenarios which
different by the type of the deployment decision (See Appendix A).
The set of scenarios was chosen to illustrate realistic use cases for
HINT while also covering the different temporal variation schemes
in the AI-based feature as well as different decision contexts (com-
parative vs. individual). Table 4 shows an overview of the properties
of the scenarios we tested. With iterative changes being prevalent
in development, 3 of our 4 scenarios assumed a comparative setting
where two versions of the AI-based feature were being evaluated
and 1 scenario covered the case where a single version of the AI-
based feature was being evaluated.

We framed comparative deployment decisions (S1, S2, S4) as
decisions between a simpler, less costly to run system versus a
more costly system version with higher offline performance but
unclear benefits. For example, scenario S1 was contextualized as
follows:

“Imagine you have two AI system versions for the same

AI-based feature for Event Detection. The old system

has lower offline performance than the new system, but

it would also be substantially cheaper to run as it does

not require a complicated deep learning stack. You have

already deployed the old system for a while and are

now trying to decide on whether to switch to the new

system. To make an informed decision, you run two

tests via HINT: KeepOld simulating the case where you

would not switch to the new system and OldToNew

simulating the case where you would switch to the new

system after the second session. Based on the HINT
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Table 3: Distribution of roles and years of experience on AI-based features among AI practitioners in the study.

Role Participants Experience Participants

Program Manager 5 [P2, P18, P21, P32, P40] < 1 year 0
Designer 4 [P7, P9, P10, P23] 1 - 2 years 1 [P52]
ML Engineer / Scientist 4 [P4, P20, P30, P36] 2 - 5 years 7 [P28, P29, P31, P37, P42, P51, P52]

> 5 years 5 [P38, P40, P45, P45, P53]

report, would you advocate for keeping the old system

or switching to the new one?”
KeepOld and OldToNew are aliases for e-l and e-llhh, respec-
tively. In scenario S3, we asked participants to decide whether a
new AI-based feature was ready for deployment. Full descriptions
of each can be found in the Appendix.

Participants were asked to think aloud while they were consum-
ing the information in the report and deliberating while taking
a deployment decision. After they made and justified their deci-
sion, we asked the following four open-ended questions in our
interviews:

Q1. Would you use HINT for testing the AI-based fea-
tures that your are working on?
Q2. How is the HINT report informing your decision-
making?
Q3. What other types of tests would you run via HINT?
Q4. How can HINT reports be further strengthened to
support different audiences and roles?

5.2 Summary of results

For each question, we grouped similar answers into themes and
present them with a representative set of quotes.

5.2.1 Q1. Would you use HINT for testing the AI-based features
that your are working on? Nine out of 13 participants in the study
said that they would use HINT to test the features that they are
working on. Themain reasons for why participants would use HINT
were being able to (i) access usage data with real users ahead of
deployment, (ii) extend experimentation and testing beyond offline
model evaluation, and (iii) select the metrics for A/B tests which
are best correlated with end-user utility.
• P40 – Program Manager: “Yes, I would definitely use something

like this. One of the challenges that we have had is: ‘How do we

ensure that we experiment and have confidence way ahead of pro-

ductization because productization is very resource heavy?’. So we

need to get some early signal that it is great to actually transition

out of the research phase [. . . ] If we had a way to prototype and

test these with customers early through something that we could

crowdsource and if HINT did that for us, that would be extremely

valuable because we need a way to test, get this data on real usage

and real people and not just do offline model evaluation. We try to

simulate this sometimes, but this isn’t real users, it isn’t qualita-

tive feedback from real customers where they tell us that they are

fighting with the system.”
• P10 – Designer: “At the very bottom [of the report], I really like this

correlation table. If we do tests, and we determined what metrics

were most useful proxies, that would be pretty cool. As this gets

used, the authors would get metrics about where the system has

given the wrong response. This is going to a level where we would

do analysis with real users.”
The four participants who were reluctant of using HINT mentioned
that they would have challenges either integrating it with their
current mode of operation, or that it is difficult to define a user task
that encapsulates enough user context for testing. We discuss both
these challanges in detail in Section 6.
• P21 – Program Manager: “In our team, we need to think about the

tradeoff between the hours spent on building the system vs. the cost

that we would spend on human testing.”
• P4 – Engineer: “We often do the UX research upfront.”
• P30 – ML Scientist: “We run a recommendation service that re-

quires quite a lot of personal context from the user. So in order to

have an actual human judge for the effectiveness of the system, you

have to be aware of that context.”

5.2.2 Q2. How is the HINT report informing your decision-making?
Overall, we saw the reports encouraged participants to think more
carefully about how much value the AI-based features is adding
for the user. We noticed this both in cases where the decision point
was about deploying an AI on the first place (individual reports)
or for replacing a current version with a more sophisticated one
(comparative reports). For example:
• P32 – Program Manager: “Because the user preference on AI is

less than 40%, I think it is a little risky to roll it out right now. I

would like to increase this to at least 60%-70% . . . [gives an example

where in their experience the AI feature was not a value added to

the expert] . . . In today’s world, I think, expectations on AI have

gone up.”
• P20 - ML Engineer: “The new system requires more engineering

cost, support, and others. Since I don’t see much clarity or strong

signal on users preferring the new system more, then I am asking if

it is really giving me enough value?”
Participants also examined over-time behavior and trajectories
when assessing systems:
• P7 – Designer: “Now the time it takes [to complete the task] goes

down which is great. You would hope that the amount of time it

takes people to do the task goes down as they do it more.”
• P9 – Designer: [Looking at overall performance] “I think that

over time, these two systems would perform similarily.”
During the think-aloud sessions, we also observed participants

switching between offline, self-reported, and measured metrics.
Several reported that they appreciated the opportunity to join this
type of information and correlate it in the last section of the report
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Table 4: Summary of scenarios and respective HINT reports shown to participants.

Scenario AI-based feature Participants HINT report

S1 event 4 [P2, P4, P30, P36] comparative: e-l vs. e-llhh
S2 search 3 [P7, P20, P21 comparative: s-lv vs. s-hv
S3 event 3 [P10, P32, P40] individual: s-l
S4 event 3 [P9, P18, P23] comparative: e-l vs. e-h

(e.g., P40 - PM: “The table of metric correlation would definitely guide

the metric focus for my experiments.” ).

5.2.3 Q3. What other types of tests would you run via HINT?. Dur-
ing this part of the interview, participants mentioned other types
of tests and open questions that they would like to answer prior
to deployment. Extending test scenarios, participants mentioned
the possibility of running N-way comparisons and reports or in-
creasing the time horizon to understand how resilient a system
is to absorb small changes over time. The other set of extensions
targeted changes in the UX, sparking a variety of specific and broad
questions around design, e.g.,
• P7 – Designer: [Talking about applying it to conversational AI]
“where you got two different personality styles for the AI [. . . ] and

you test these different types of interaction.”
• P40 – PM: “Should I improve my model or improve the UX?” )
• P2 – PM: “What levers do I have to set the expectations right in

UX design?”

5.2.4 Q4. How can HINT reports be further strengthened to support
different audiences and roles? Many participants expressed the need
for different levels of granularity in the report (e.g., P7 - Designer:
“I don’t think everyone wants the same level of information.” ). On the
low granularity end of the spectrum, one participant suggested it
would be helpful to have a single score only (P4 - Engineer: “From
an engineer’s POV – who is probably is downstream from the UX

researcher – they would probably appreciate a single metric a bit

better.” ). Most suggestions targeted items of medium granularity
– for example condensing a few scores into a summary score or
adding a more general overview. However, participants also voiced
concerns about high level summaries being effective (P9 – Designer:
“There is always a temptation to take the overview or like the more

high level stuff and just run with it.” ). We will return to this point
in our discussion in the next section.

Further, participants mentioned that it would be helpful in some
cases to guide interpretation of the graphs or recommend decisions:
• P32 – Program Manager: “For each of the graphs, if you say this is
good and this is bad (e.g. anything above X), that would also help

in my decision making. You need to tell me what is good enough. . . ”
• P23 – Designer: “Maybe there are best practices. [For example] if

you are working on an e-mail system, here are the five things you

want to be looking at.”

6 DISCUSSION

Our results demonstrate that the HINT framework is practical and is
able uncover complex over-time patterns in user behavior. We also
make the case that these over-time patterns can arise in common

situations. However, we also note that there are still limitations
to the applicability of HINT and we will discuss those as well as
potential avenues for future work in this section.

6.1 Limitations

One limitation present in our current experimental design is the
use of novice crowd workers as the participants for our tests. It is
not difficult to imagine cases where the AI-based feature is targeted
towards domain experts (such as medical assistance tools or cre-
ativity support tools) that cannot be simulated by crowd workers.
However, this limitation is mainly a feature of our experiments
and not of the HINT framework itself. While some adjustments
will need to be made when setting up aspects of the workflow –
such as creating training sessions aimed at experts and reducing
the frequency of user-reported metric probes – the overall process
presented in the HINT workflow would be able to generalize to an
expert-led setting.

However, there are still potential aspects that limit the applica-
bility of HINT. For example, one key requirement for using HINT
is that of being able to define appropriate tests – reminiscent of in-
tegration testing in software engineering. Defining an appropriate
user task and producing the data to support that task will likely take
some effort initially when running tests. This effort can likely be
amortized over the number of future tests one will run but nonethe-
less is something to consider. Additional costs of testing may also be
justified in some cases as passing tests can serve as certificates for
key outcomes (e.g., increased human-AI performance). We recom-
mend that teams working on AI-based features collectively decide
on how many resources they want to dedicate to testing before
designing HINT tests.

Additionally, some aspects of HINT and the report rely on be-
ing able to measure performance on a task in some objective way.
This can present challenges in expert-led situations, such as eval-
uating creativity support tools, where there is no simple measure
of performance. In these cases, the practitioner still has at their
disposal the measured and self-reported probes in HINT and these
measurements can still surface many valuable behavioral patterns
even without performance-based anchors.

Finally, while HINT allows evaluating behavior patterns for spe-
cific user tasks and AI update scenarios, it doesn’t by itself provide
guidance for whether the task or design of the feature as defined by
the practitioner is one that aligns best with the users’ needs. Thus,
we envision HINT to be used in conjunction with other tools and
instrumentation at various stages of the design process.
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6.2 Future Work

While we did not test HINT with highly personalized AI-based
features, it would be interesting to run prototypes on each par-
ticipant’s own data, for example via authenticated service APIs.
This also opens up the more general possibility of adapting HINT
to more open-ended scenarios where tasks success is more sub-
jective, e.g., in content recommendation. Another related issue is
that of framing and motivating over time tasks for users. In our
experiments, we framed it as a explicitly sequential experience –
participants were asked to solve similar tasks repeatedly with the
same AI and were asked about their experience so far after each
session. However, other framings are possible, e.g,. asking the user
to imagine they returned the next day to the AI-based feature in
between sessions and asking whether they would like to use the
AI again the next day. In a similar vein, it would be interesting to
examine HINT workflows that would perform comparative tests
explicitly, for example by enabling side-by-side comparisons or
allow people to switch between different AI versions [12].

Regarding the HINT reports, we found a large interest in our
interviews with practitioners in using them with their own AI-
based features. While this is exciting, we envision multiple ways
in which the report can further be strengthened or extended. An
important direction to explore would be how to offer different levels
of granularity in reporting those results. However, this needs to be
carefully balanced with the goal of incentivizing practitioners to
move away from single-score performance numbers since aggre-
gated evaluation on single metrics may hide important conditions
of failure [5, 36, 41]. Therefore, we expect future iterations on the
HINT report design to balance between aggregated and detailed
interaction, and most importantly to allow for interactive data fil-
tering and progressive information presentation [43]. Zooming in
could add support for being able to replay individual user traces or
for understanding anomalies or outliers. Another ask from practi-
tioners was to add more active guidance or decision support to the
reports. This may take the form of automatically generated insights
or recommending a certain deployment decision. Future work could
therefore consider extending HINT into a decision-support system,
keeping in mind that this may cause undesired over-reliance on
the system due to automation bias [44].

7 CONCLUSION

In this work we presented HINT, a customizable crowd-based frame-
work for testing human-AI collaboration over time. HINT supports
scalable testing of medium to high fidelity prototypes with crowd-
workers performing real tasks over successive sessions and gen-
erates summary reports that enable practitioners to see over time
trends in human-AI collaboration that they previously could only
see post-deployment. We found that in common scenarios that in-
volve an evolving AI-based feature, there were distinct behavior
patterns that were only surfaced by tests that focused on perfor-
mance variations over time. Our evaluations show that HINT is
sensitive enough to reveal these behavioral trends resulting from
the evolving experience between humans and AI systems and that
HINT reports can provide early signals to help practitioners make
deployment decisions that consider the effects of AI systems on

the user experience. In summary, we propose the HINT frame-
work to address a major gap in tools and methodologies for testing
human-AI interaction experiences.
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A APPENDIX

• S1 – Event Detection: “Imagine you have two AI system versions

for the same AI-based feature for Event Detection. The old system

has lower offline performance than the new system, but it would also

be substantially cheaper to run as it does not require a complicated

deep learning stack. You have already deployed the old system for

a while and are now trying to decide on whether to switch to the

new system. To make an informed decision, you run two tests via

HINT: KeepOld simulating the case where you would not switch

to the new system and OldToNew simulating the case where you

would switch to the new system after the second session. Based on

the HINT report, would you advocate for keeping the old system or

switching to the new one?”
• S2 – Search: “Imagine you have a simple baseline system for an

AI-based feature, in this case email Search. However, this baseline

system does not have state-of-the art accuracy. You are thinking

about deploying a newer AI system which in overall has higher

accuracy than the previous baseline, but you believe is rather incon-

sistent across interactions. To take an informed decision, you run

two tests via HINT: S-LV (to simulate the case when you deploy the

simple baseline) and S-HV (to simulate the case when you would

deploy the more accurate but less consistent system). Based on the

HINT report, would you advocate for deploying the simple baseline

or the newer AI system? ”

• S3 – Event Detection: “Imagine you have a simple baseline sys-

tem for an AI-based feature, in this case Event Detection. However,

this baseline system does not have state-of-the art accuracy and you

would like to understand whether it adds anything over a simple

no-AI system and see how new users are adapting to it. To take an

informed decision, you run a test via HINT: S-LLLL (to simulate

the deployment of the simple baseline). Based on the HINT report,

would you advocate for deploying the AI-based feature with the

simple baseline?”
• S4 – Event Detection: “Imagine you have two AI system versions

for the same AI-based feature, in this case Event Detection. One

system is a simple baseline which is fast to run but does not have

state-of-the art accuracy. The other system is more sophisticated

and more accurate offline but also more computationally expensive

(requires a complicated deep learning stack). You would like to

understand whether there exists a marginal user benefit of one

system over the other. None of these systems has been deployed

in the past in production. To take an informed decision, you run

two tests via HINT: E-LLLL (to simulate the deployment of the

baseline system) and E-HHHH (to simulate the deployment of the

more sophisticated system). Based on the HINT report, would you

advocate for deploying the AI-based feature with the simple baseline

or the sophisticated system? ”
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Figure 8: Full plots of all probes for users’ self-reported experience metrics for the event feature (a) and the search feature

(b) comparing the effect of changing AI performance from low to high v.s. high to low.
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