
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

What Makes Your Data Unavailable To Deep Learning?
Anonymous Author(s)

ABSTRACT
Availability attacks1, which poison the training data with impercep-
tible perturbations, can make the data not exploitable by machine
learning algorithms so as to prevent unauthorized use of data. In
this work, we investigate why these perturbations work in principle.
We are the first to unveil an important population property of the
perturbations of these attacks: they are almost linearly separable
when assigned with the target labels of the corresponding samples,
which hence can work as shortcuts for the learning objective. We
further verify that linear separability is indeed the workhorse for
availability attacks. We synthesize linearly-separable perturbations
as attacks and show that they are as powerful as the deliberately
crafted attacks. Moreover, such synthetic perturbations are much
easier to generate. For example, previous attacks need dozens of
hours to generate perturbations for ImageNet while our algorithm
only needs several seconds. Our finding also suggests that the short-
cut learning is more widely present than previously believed as deep
models would rely on shortcuts even if they are of an imperceptible
scale and mixed together with the normal features.

CCS CONCEPTS
• Data Privacy and Ethics; • Learning Paradigms → Adversarial
Learning;

KEYWORDS
data security, data poisoning, shortcut learning

ACM Reference Format:
Anonymous Author(s). 2022. What Makes Your Data Unavailable To Deep
Learning?. Submitted to ACM Conference (Conference’22). ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Sharing personal data online has become an important lifestyle
for many people. Despite big datasets crawled from the Internet
keep advancing the state-of-the-art deep models [7, 9, 19], there
are increasing concerns about the unauthorized use of personal data
[6, 23, 36]. For instance, a private company has collected more
than three billion face images to build commercial face recognition
models without acquiring any user consent [22]. To address those
concerns, many data poisoning attacks have been proposed to prevent
data from being learned by unauthorized deep models [12–14, 25,
1More precisely, we investigate clean-label availability attacks. Some availability attacks
inject malicious training samples instead of perturbing existing ones [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’22, August 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: An illustration of clean-label availability attacks.

44, 48, 51]. They add imperceptible perturbations to the training data
so that the model cannot learn much information from the data and
the model accuracy on unseen data is arbitrarily bad. These attacks
make the data not available/exploitable by machine learning models
and are known as availability attack [5]. We give an illustration of
this type of attack in Figure 1.

In literature, there are roughly three methods to construct the
availability attack against deep neural networks. The first method
generates the perturbations as the solution of a bi-level optimization
problem [4, 12, 13, 51]. The bi-level optimization problem updates
the perturbations to minimize the loss on perturbed data while maxi-
mizing the loss on clean data.

Secondly, Huang et al. [25] conceive a simpler poisoning attack
called error-minimizing noise, where the perturbation on training
data is crafted by minimizing the training loss. The intuition is that
if the perturbation can reduce the loss to zero, then there is nothing
left for backpropagation in the regular training procedure. Recently,
Nakkiran [31] and Fowl et al. [14] point out that error-maximizing
noises, which are commonly used as adversarial examples, can
serve as an availability attack as well. Despite these quite different
approaches, all of them are powerful availability attacks. Intrigued
by this observation, we ask the following question:

What is the underlying workhorse for availability attacks against
deep neural networks?

To answer this question, we first take a close look at the perturba-
tions of existing attacks. We visualize the perturbations of several
availability attacks via two-dimensional T-SNEs [49] in Figure 2 and
Figure 8 in Appendix A. The experimental setup is depicted in Sec-
tion 2.2. Surprisingly, the perturbations with the same class label are
well clustered, suggesting that the perturbations would be linearly
separable in the original high-dimensional space. We confirm this
by fitting the perturbations with linear models. The perturbations are
assigned with the labels of their target examples. It turns out that
simple logistic regression models can fit the perturbations of four
representative attacks with > 90% training accuracy. This finding
suggests that linearly-separable perturbations may be the key for
existing availability attacks to succeed.

To further confirm that the linear separability is a sufficient (not
only necessary) condition, we reverse the above procedure: synthe-
sizing some simple linearly-separable perturbations to see if they can

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’22, August 2022, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

40 20 0 20 40 60

60

40

20

0

20

40

60
Clean Data

Class 0
Class 1
Class 2

60 40 20 0 20 40 60

60

40

20

0

20

40

60
DeepConfuse

Class 0
Class 1
Class 2

60 40 20 0 20 40 60
60

40

20

0

20

40

60

Error-minimizing Noise
Class 0
Class 1
Class 2

Figure 2: T-SNEs of the first three classes of clean CIFAR-10 data and the perturbations generated via DeepConfuse [12] and error-
minimizing noises [25]. The perturbations are flattened and normalized into unit norms.

serve as availability attacks. Specifically, we first generate some ini-
tial synthetic perturbations via a method in Guyon [18] and then add
a new post-processing procedure so that the synthetic perturbations
remain effective when data augmentations are applied. Extensive
experiments on benchmark datasets and models demonstrate that
synthetic perturbations can be as powerful as existing availability
attacks. Notably, generating synthetic perturbations is significantly
easier and cheaper than existing attacks as it does not require solv-
ing any optimization problems. For example, recent attacks need
dozens of hours to generate perturbations for the ImageNet data,
while generating synthetic perturbations only needs several seconds.
This finding reveals that using linearly-separable perturbations is
indeed the workhorse to the success of state-of-the-art availability
attacks.

The above finding conceptually links the availability attacks with
shortcut learning [16]. Shortcut learning stands for the behavior
that deep models tend to rely on features that do not generalize on
realistic test data. Such features are referred to as shortcuts. With this
concept, the perturbations of availability attacks are also shortcuts.
We note that the shortcuts in previous works are usually part of natu-
ral data, which are somehow heuristic, e.g., “grass” is a shortcut for
recognizing “cow” in natural images [3, 16]. In this work, we expose
a more explicit form of shortcuts and discuss extensively how to
construct such shortcuts. We unveil that deep learning models would
overwhelmingly rely on spurious shortcuts even though the shortcuts
are scaled down to an imperceptible magnitude. This finding exposes
a fundamental vulnerability of deep models and hence may be of
independent interest to the community.

Our contributions are summarized as follows:

• We reveal that the perturbations of several existing availabil-
ity attacks are (almost) linearly separable.

• We propose to use synthetic shortcuts to perform availability
attack, which is much cheaper and easier to conduct.

• We link availability attacks with shortcut learning and greatly
widen the understanding of shortcuts in deep learning.

1.1 Related Work
Data poisoning. In general, data poisoning attacks perturb training
data to intentionally cause some malfunctions of the target model

[5, 17, 40]. A common class of poisoning attacks aims to cause test-
time error on some given samples [8, 15, 43, 54] or on all unseen
samples [12–14, 25, 44, 51]. The latter attacks are also known as
availability attacks [2]. In this work, we investigate and reveal the
workhorse of availability attacks. We show that the perturbations
of these availability attacks are (almost) linearly separable. We fur-
ther confirm that synthesised linearly-separable perturbations can
perform strong attacks.

Backdoor attacks are another type of data poisoning attack that
perturbs training data so that the attacker can manipulate the tar-
get model’s output with a designed trigger [11, 33, 34, 39, 41, 47].
The perturbations of backdoor attacks have two major differences
compared to those of availability attacks. Firstly, the perturbations
of availability attacks are imperceptible. Secondly, advanced avail-
ability attacks use a different perturbation for every sample while a
backdoor trigger is applied to multiple samples. In the threat model
of availability attacks, the data are probably crowdsourced. It is pre-
ferred to use different perturbations for different samples in such a
setting. Otherwise, the adversarial learner can remove perturbations
from all related samples if any poisoned image leaks.

Shortcut learning. Recently, the community has realized that
deep models may rely on shortcuts to make decisions [3, 16, 35].
Shortcuts are spurious features that are correlated with target labels
but do not generalize on test data. Beery et al. [3] show that a deep
model would fail to recognize cows when the grass background is
removed, suggesting that the model takes “grass” as a shortcut for
“cow”. Niven and Kao [35] show that large language models use the
strong correlation between some simple words and labels to make
decisions, instead of trying to understand the sentence. For instance,
the word “not” is directly used to predict negative labels. In this
work, we show shortcut learning exists more widely than previously
believed. Our experiments in Section 3 demonstrate that deep models
only pick shortcuts even if the shortcuts are scaled down to an
imperceptible magnitude and mixed together with normal features.
These experiments reveal another form of shortcut learning, which
has been unconsciously exploited by availability poisoning attacks.
There also exist other synthesized datasets that offer a stratification
of features [21, 42]. Those synthetic data contain shortcuts that can
not be used as perturbations as they are visible and affect the normal
data utility. For example, Shah et al. [42] generate synthetic data

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

What Makes Your Data Unavailable To Deep Learning? Conference’22, August 2022, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

by vertically concatenating images from the MNIST and CIFAR-10
datasets.

1.2 Notations
We use bold lowercase letters, e.g., 𝒗, and bold capital letters, e.g.,
𝑴 , to denote vectors and matrices, respectively. The 𝐿𝑝 norm of a
vector 𝒗 is denoted by ∥𝒗∥𝑝 . A sample consists of feature 𝒙 and label
𝑦. We use D to denote a dataset that is sampled from distribution D.
In this paper, we focus on classification tasks. The classification loss
of a model 𝑓 on a given sample is denoted by ℓ (𝑓 (𝒙), 𝑦).

2 AVAILABILITY ATTACKS USE
LINEARLY-SEPARABLE PERTURBATIONS

In this section, we investigate the common characteristic of exist-
ing availability attacks. First, We briefly introduce three different
approaches to construct availability attacks. Then, we visualize the
perturbations of advanced attacks with two-dimensional T-SNEs.
The plots suggest that the perturbations of all three kinds of attacks
are some ‘easy’ features. Finally, we verify that the perturbations
of these attacks are almost linearly separable by fitting them with
simple models.

2.1 Three Types Of Availability Attacks
2.1.1 The Alternative Optimization Approach. We first intro-
duce the alternative optimization approach to generate perturbations
for availability attacks. It solves the following bi-level objective,

argmax
{𝜹 }∈Δ

E(𝒙,𝑦)∼D [ℓ (𝑓 ∗ (𝒙), 𝑦)],

s.t. 𝑓 ∗ ∈ argmin
𝑓

∑︁
(𝒙,𝑦) ∈D

ℓ (𝑓 (𝒙 + 𝜹), 𝑦), (1)

where 𝜹 is a sample-wise perturbation and Δ is a constraint set
for perturbations. The two formulas in Equation 1 directly reflect
the goal of availability attacks. Specifically, the optimal solution
on perturbed data (specified by the second formula) should have
the largest loss on clean data (specified by the first formula). The
constraint set Δ is set to make the perturbations imperceptible, e.g.,
a small 𝐿𝑝 norm ball.

Directly solving Equation (1) is intractable for deep neural net-
works. Recent works have designed multiple approximate solutions
[12, 13, 51]. Feng et al. [12] use multiple rounds of optimization
to generate perturbations. At each round, they first approximately
optimize the second objective by updating a surrogate target model
on perturbed data for a few steps. Then they approximately optimize
the first objective by updating a generator for a few steps. The out-
puts of the generator are used as perturbations. Another example is
the Neural Tangent Generalization Attacks (NTGAs) in Yuan and
Wu [51]. They approximately optimize the bi-level objective based
on the recent development of Neural Tangent Kernels [26].

2.1.2 The Error-minimizing Noise. Huang et al. [25] propose an-
other bi-level objective to generate perturbations. Instead of solving
Equation (1), they use the following objective,

argmin
{𝜹 }∈Δ

E(𝒙,𝑦)∼D [min
𝑓

ℓ (𝑓 (𝒙 + 𝜹), 𝑦)] . (2)

The perturbations are intentionally optimized to reduce the train-
ing loss. The main motivation is that if the training loss is zero, then
the target model will have nothing to learn from the data because
there is nothing to backpropagate. A randomly initialized model
is used as a surrogate of the target model. They also use multiple
rounds of optimization to generate perturbations. At each round,
they first train the surrogate model for a few steps to minimize the
loss on perturbed data. Then they optimize the perturbations to also
minimize the loss of the surrogate model. They repeat the above
process until the loss on perturbed data is smaller than a pre-defined
threshold.

2.1.3 Adversarial Examples. Instead of using bi-level objec-
tives, Fowl et al. [14] show that the common objectives of adversarial
examples are sufficient to generate powerful data poisoning pertur-
bations. They use both untargeted (the first objective) and targeted
adversarial examples (the second objective),

argmax
{𝜹 }∈Δ

E(𝒙,𝑦)∼D [ℓ (𝑓 (𝒙 + 𝜹) , 𝑦)] ,

argmin
{𝜹 }∈Δ

E(𝒙,𝑦)∼D
[
ℓ
(
𝑓 (𝒙 + 𝜹) , 𝑦′

)]
,

(3)

where 𝑦′ ≠ 𝑦 is an incorrect label and 𝑓 is a trained model. Sur-
prisingly, Fowl et al. [14] demonstrate that these simple objectives
can generate perturbations that achieve state-of-the-art attack perfor-
mance.

2.2 Visualizing The Perturbations
Although the three approaches in Section 2.1 have different objec-
tives, they all manage to perform powerful attacks. Intrigued by this
observation, we try to find out whether there is a common pattern
among different types of availability attacks. If so, the common
pattern may be the underlying workhorse for availability attacks.

To find such a common pattern, we first visualize different types
of perturbations, including DeepConfuse [12], NTGA [51], error-
minimizing noises [25], and adversarial examples [14]. We compute
their two-dimensional t-SNEs [49]. These four attacks achieve ad-
vanced attack performance and cover all the three approaches in
Section 2.1. We use their official implementations to generate per-
turbations. Detailed configurations are in Appendix B.

The two-dimensional t-SNEs of DeepConfuse and error-minimizing
noises are shown in Figure 2. The plots of NTGA and adversarial
examples are presented in Figure 8 of Appendix A due to the space
limit. Surprisingly, for all the attacks considered, the perturbations
for the same class are well clustered, suggesting that even linear
models can classify them well. For comparison purposes, we also
compute the t-SNEs of the clean data. As shown in Figure 2, in
contrast with the t-SNEs, the projections of different classes of the
clean data are mixed together, which indicates that they require a
complex neural network to be correctly classified. This observa-
tion suggests that using linearly-separable perturbations may be the
common pattern among availability attacks.

2.3 Availability Attacks Use Linearly-Separable
Perturbations

To quantify the ‘linear separability’ of the perturbations, we fit the
perturbations with simple models and report the training accuracy.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’22, August 2022, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Training accuracy (in %) of simple models on clean
data and the perturbations of different attacks.

Algorithm Linear Model Two-layer NN
Clean Data 49.9 70.1

DeepConfuse [12] 100.0 100.0
NTGA [51] 100.0 100.0

Error-minimizing [25] 100.0 100.0
Adv. Examples (Untargeted) [14] 91.5 99.9
Adv. Examples (Targeted) [14] 100.0 100.0

The perturbations are labeled with the labels of the corresponding
target examples. The simple models include linear models and two-
layer neural networks. Details can be found in Appendix B.

The results are presented in Table 1. Compared to the results on
clean data, simple models can easily fit the perturbations. On all
attacks considered, linear models achieve more than 90% training
accuracy and two-layer neural networks achieve nearly 100% training
accuracy. These results confirm that the perturbations of advanced
availability attacks are all (almost) linearly separable.

Existing attacks against deep neural networks all use ReLU acti-
vation functions in their crafting models. Deep models with ReLU
activation functions are known to learn piecewise linear functions in
input space [1]. Therefore, it is natural to wonder whether the linear
separability is stemming from the property of ReLU. In Section 5.1,
we replace the ReLU layers with Tanh layers in the crafting models
of adversarial examples and error-minimizing noises. It turns out
that simple models still can easily fit the new perturbations, which
demonstrates that the linear separability is an intrinsic property of
these availability attacks rather than something associated with a
specific network structure.

2.4 Connecting To Shortcut Learning
The fact that the perturbations can be easily fitted by linear models
naturally connects to a recent concept named shortcut learning [16].
Shortcut learning summarizes a general phenomenon when any
learning system makes decisions based on spurious features that do
not generalize on realistic test data2. Shortcut features have been
found in different fields. For vision tasks, Beery et al. [3] show
deep models fail to recognize cows when the grass background is
removed from images, suggesting the grass background is a shortcut
for predicting cows. In the field of natural language processing,
Niven and Kao [35] show language models use the strong correlation
between some simple words and labels to make decisions, instead of
really understanding the data.

With the presence of shortcut learning, it seems reasonable to pos-
tulate that the perturbations of existing attacks succeed by creating
shortcuts to the target model. We give an illustration in Figure 3. A
major difference between the perturbations of poisoning attacks and
existing shortcut features is that the perturbations are of an imper-
ceptible scale and mixed together with useful features. Since there
is no direct evidence to show deep models will take this kind of

2Geirhos et al. [16] use a more specific definition of shortcuts. They denote shortcuts as
those features that do not generalize on out-of-distribution (OOD) data. We note that
poisoning attacks would change the distribution of training data and hence make the
clean test data ‘OOD’ with respect to the trained model.

Figure 3: An illustration of how the perturbations of availability
attacks work as shortcuts.

shortcuts, in the next section, we design experiments to confirm the
postulated explanation. We synthesize imperceptible and linearly-
separable perturbations and show deep models are very vulnerable
to such synthetic shortcuts.

3 LINEAR SEPARABILITY IS A SUFFICIENT
CONDITION FOR AVAILABILITY ATTACKS
TO SUCCEED

Although we have demonstrated that the perturbations of four ad-
vanced attacks are all almost linearly separable, it is a bit early to
claim that ‘linear separability’ is the underlying working principle
of availability poisoning attacks. Perturbations are linearly separable
may only be a necessary but not sufficient condition for poisoning
attacks to succeed. In order to verify this postulated explanation, we
use simple synthetic data to serve as perturbations and compare their
effectiveness with existing poisoning attacks. It turns out that the
synthetic perturbations are as powerful as advanced attacks.

The rest of this section is organized as follows. In Section 3.1, we
first give an algorithm for generating synthetic data as perturbations.
In Section 3.2, we verify the effectiveness of synthetic perturbations
on different models and datasets.

3.1 Generating Synthetic Perturbations as
Shortcuts

The synthetic perturbations in this section are generated via two
building blocks. In the first block, we use a method in Guyon [18]
to generate samples from some normal distributions. In the second
block, we transfer the samples into the image format so that they
can be applied to benchmark vision tasks. We give the pseudocode
in Algorithm 1.

The first building block proceeds as follows. We first generate
some points that are normally distributed around the vertices of a
hypercube. The points around the same vertex are assigned with the
same label. Then for each class, we introduce different covariance.
Any two classes of the generated points can be easily classified by a
hyperplane as long as the side length of the hypercube is reasonably
large.

In the second building block, we pad each dimension of the
sampled points and reshape them into two-directional images. The
padding operation introduces local correlation into the synthetic
images. Local correlation is an inherent property of natural images.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

What Makes Your Data Unavailable To Deep Learning? Conference’22, August 2022, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

In Section 5.2, we show the padding operation is necessary to make
the synthetic perturbations remain effective when data augmentation
methods are applied.

Algorithm 1: Generating Perturbations for Vision Datasets

1: Input: number of classes 𝑘 , number of examples in each class
{𝑛𝑖 }𝑘𝑖=1, image size (𝑤,ℎ), patch size 𝑝, norm bound 𝜖.

2: Compute 𝑤 ′ = 𝑟𝑜𝑢𝑛𝑑 (𝑤/𝑝) + 1 and ℎ′ = 𝑟𝑜𝑢𝑛𝑑 (ℎ/𝑝) + 1.

// The first block: using the method in Guyon [18] to generate
some initial data points.

3: Create a 𝑤 ′ℎ′-dimensional hypercube.
4: for 𝑖 = 1 to 𝑘 do
5: Generate 𝑫 (𝑖) ∈ R𝑛𝑖×𝑤′ℎ′ , where each row of 𝑫 (𝑖) is

sampled from N(0, 𝑰𝑤′ℎ′×𝑤′ℎ′).
6: // Introduce random covariance among columns.
7: Uniformly sample the elements of 𝑨 ∈ R𝑤′ℎ′×𝑤′ℎ′ from

[−1, 1].
8: Compute 𝑫 (𝑖) = 𝑫 (𝑖)𝑨.
9: Randomly choose an unused vertex and let 𝒄 (𝑖) ∈ R𝑤′ℎ′ be

its coordinates.
10: // Move the sampled points to the chosen vertex.
11: Compute 𝑫 (𝑖) = 𝑫 (𝑖) + 𝒄 (𝑖) , i.e., 𝒄 (𝑖) is added to each row of

𝑫 (𝑖) .
12: Assign the rows of 𝑫 (𝑖) with label 𝑖.
13: end for

// The second block: duplicating each dimension to introduce
local correlation.

14: Duplicate each dimension of the initial data for 𝑝2 times and
reshape the results into two-dimensional patches with size
𝑝 × 𝑝.

15: Put the patches together and take crops to generate synthetic
noises with size (𝑤,ℎ).
// Scale down the magnitude of synthetic data and harvesting
perturbations.

16: Normalize each synthetic sample with 𝐿2 norm bound 𝜖.
17: Add synthetic perturbations to corresponding clean images.

In Algorithm 1, the synthetic images are scaled down before being
used as perturbations. We visualize the synthetic perturbations and
corresponding perturbed images in Figure 4. We also visualize the
perturbations in Huang et al. [25] for a comparison. The details of
perturbations can be found in Section 3.2. As shown in Figure 4, the
synthetic perturbations do not affect data utility.

3.2 Synthetic Perturbations Are Highly Effective
as Availability Attacks

Now we verify the effectiveness of synthetic perturbations and make
comparisons with existing availability attacks. We perturb the entire
training set following the main setup in previous works [12, 14, 25,
51]. That is, we synthesize a perturbation for every training example.
In Section 4.1 and 4.2, we show synthetic perturbations are still
effective when only partial training data are poisoned.

We use 𝐿2-norm for synthetic perturbations to keep the sample-
wise variation in the same class. We normalize the synthetic noises

into a 𝐿2-norm ball with radius
√
𝑑𝜖 ′, where 𝑑 is the dimension of

the input. We evaluate synthetic perturbations on three benchmark
datasets: SVHN [32], CIFAR-10, CIFAR-100 [27], and a subset
of ImageNet [38]. Following the setup in Huang et al. [25], we
use the first 100 classes of the full dataset as the ImageNet subset.
The target model architectures include VGG [45], ResNet [20], and
DenseNet [24]. We adopt standard random cropping and flipping as
data augmentation. The hyperparameters for training are standard
and can be found in Appendix B. We use 𝜖 ′ = 6/255 for synthetic
perturbations. The patch size in Algorithm 1 is set as 8.

Table 2: Accuracy on clean test data of CIFAR-10. The target
model is ResNet-18. The training data are poisoned with differ-
ent attacks. The closer the accuracy to random guessing, the
better the attack efficiency.

Algorithm Test Accuracy (in %)
No Perturbation 94.69
TensorClog [44] 48.07
Alignment [13] 56.65

DeepConfuse [12] 28.77
NTGA [51] 33.29

Error-minimizing [25] 19.93
Adversarial Examples [14] 6.25

Synthetic Perturbations 13.54

We first compare synthetic perturbations with existing poisoning
attacks. The comparisons are made on the CIFAR-10 dataset with
ResNet-18 as the target model. We use the best-performing setup in
their official implementations to generate perturbations. We present
the comparison in Table 2. Synthetic perturbations are as powerful as
advanced poisoning attacks despite they are much easier to generate.

Then we evaluate synthetic perturbations on different models and
datasets. The test accuracy of target models is in Table 3. We also
plot the training curves of target models on both clean and perturbed
data in Figure 5. The results in Table 3 and Figure 5 further confirm
the effectiveness of synthetic perturbations.

We note that generating synthetic perturbations is data irrelevant
and only takes several seconds using a single CPU core. In contrast,
existing attacks often need hours or even days to generate perturba-
tions using GPUs. We compare the computational complexities of
synthetic perturbations and recent attacks in Section 3.3.

In summary, our experiments demonstrate that using linearly-
separable perturbations is indeed a sufficient condition for availabil-
ity poisoning attacks to succeed. Moreover, these results also expose
that deep models are very vulnerable to obscured shortcuts. This
finding has two meanings to the community. First, it confirms that
advanced availability poisoning attacks do succeed by providing
shortcuts. Second, it further exposes the shortcut learning problem,
which is a fundamental vulnerability of deep models.

3.3 Complexity Analysis
Here we give an analysis of the computational complexity of Al-
gorithm 1. The complexity of generating synthetic perturbations is
O(𝑛𝑑/𝑝2), where 𝑛 is the size of the dataset, 𝑑 is the dimension of
clean data, and 𝑝 is the patch size. This complexity is mainly from
introducing covariance into synthetic data (Line 6 in Algorithm 1).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’22, August 2022, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Original a) b) c) d)

Figure 4: Visualization of perturbed images and normalized perturbations. Columns a) and b) use synthetic perturbations. Columns c)
and d) use the attack in Huang et al. [25].

Table 3: Accuracy (in %) on clean test data. The target models are trained on clean data (D𝑐) and data perturbed by synthetic
perturbations (D𝑠𝑦𝑛).

Target Model
SVHN CIFAR-10 CIFAR-100 ImageNet Subset
D𝑐 D𝑠𝑦𝑛 D𝑐 D𝑠𝑦𝑛 D𝑐 D𝑠𝑦𝑛 D𝑐 D𝑠𝑦𝑛

VGG-11 95.4 18.1 91.3 28.3 67.5 10.9 79.1 10.7

ResNet-18 96.2 8.0 94.7 13.5 74.8 9.0 79.7 11.0

ResNet-50 96.4 7.8 94.8 14.9 75.2 8.4 82.4 10.8

DenseNet-121 96.7 9.7 95.0 10.6 76.5 7.6 82.9 14.7

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

SVHN

Train (Poisoned)
Test (Poisoned)
Train (Clean)
Test (Clean)

0 20 40 60 80 100
Epoch

CIFAR-10

Train (Poisoned)
Test (Poisoned)
Train (Clean)
Test (Clean)

0 20 40 60 80 100
Epoch

CIFAR-100

Train (Poisoned)
Test (Poisoned)
Train (Clean)
Test (Clean)

0 20 40 60 80 100
Epoch

ImageNet subset

Train (Poisoned)
Test (Poisoned)
Train (Clean)
Test (Clean)

Figure 5: Training curves of ResNet-18 models on perturbed and clean data. The word ‘poisoned’ denotes the model is trained
on perturbed data. The test performance is evaluated on clean data. The test accuracy is low throughout training when synthetic
perturbations are added.

The complexity of generating synthetic perturbations is signifi-
cantly smaller than those of recent attacks. The complexity of run-
ning the algorithms in recent attacks is O(𝑛𝑇𝐿(𝑑𝑤 +𝑤2)), where 𝑇
is the number of iterations generating the poisons, 𝐿 is the network
depth, and 𝑤 is the network width (for simplicity, we assume the
network is of equal width). The term 𝑛𝐿(𝑑𝑤 +𝑤2) is the cost of one
forward/backward pass. This complexity is strictly worse than that
of generating synthetic perturbations.

In recent attacks, the number of iterations generating the poisons
is usually large. For example, Huang et al. [25] use multiple gradient
descent steps to solve the optimization problems in Eq (2). On the
ImageNet dataset, they first run 100 SGD updates for the outer

problem. Then they loop over every target example to optimize
the inner problem. They run 20 SGD updates for each example.
The above process is repeated until the training accuracy is larger
than a pre-defined threshold. Another example is the attack in Fowl
et al. [14]. For each target example, they use 250 Projected Gradient
Descent (PGD) steps to generate perturbations.

We now give an empirical comparison. We measure the time
costs of generating error-minimizing noises, adversarial examples,
and synthetic perturbations. The device is a server with a single
Tesla V100 GPU and an Intel Xeon E5-2667 CPU. We note that
running Algorithm 1 does not require a GPU. The time costs are
tested on SVHN, CIFAR-10, and the ImageNet subset. The target

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

What Makes Your Data Unavailable To Deep Learning? Conference’22, August 2022, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Time costs (in seconds) of generating error-minimizing
noises, adversarial examples, and synthetic perturbations.

Method SVHN CIFAR-10 ImageNet
Error-min. Noises ∼2.7k ∼3.5k >28k

Adv. Examples ∼3.3k ∼4.1k >30k
Algorithm 1 <3 <3 <3

Table 5: Test accuracy (in %) on clean (C) and poisoned (P)
classes. Numbers of poisoned classes are 1, 3, and 5.

Method
1 3 5

C P C P C P

Error-min. Noises [25] 94.6 2.4 93.9 1.1 93.8 3.1
Synthetic Perturbations 94.7 2.7 94.0 0.6 93.2 2.9

model is ResNet18. We use the configurations described in Huang
et al. [25] and Fowl et al. [14] to generate error-minimizing noises
and adversarial examples. For synthetic perturbations, we use the
same setting as that in Section 3.2. The time costs are reported in
Table 4. Generating synthetic perturbations is significantly cheaper
than existing availability attacks.

4 EXPERIMENTS UNDER DIFFERENT
SETTINGS

Here we test synthetic perturbations under different settings. We
first consider two cases where not all the training data are poisoned.
Although the main setting in previous works is to perturb the full
training set, in practice we may only need to perturb part of the data.
In the first case, we only apply Algorithm 1 to some of the classes. In
the second case, we perturb partial data that are randomly sampled
from all the classes. Finally, we run experiments on a face dataset
following the application scenario in Huang et al. [25].

4.1 Poisoning Some Classes of The Training Data
In many practical datasets, some classes are more sensitive than
others, e.g., in medical datasets, the patients that are diagnosed
with a certain disease may be more concerned about their data than
healthy people. We randomly sample some classes of the CIFAR-10
dataset and apply Algorithm 1 on all the examples of the sampled
classes. After training, we report the test accuracy on clean classes
and poisoned classes separately.

The synthetic perturbations are generated in the same way as
that in Section 3.2. For comparison, we also run experiments with
error-minimizing noises using those generated in Section 3.2. The
experiments are run on ResNet-18. The numbers of poisoned classes
are 1, 3, and 5. The poisoned classes are randomly chosen and are
the same for two types of noises. We report the results in Table 5.
Algorithm 1 is still highly effective when only some of the classes
are poisoned.

Table 6: Test accuracy (in %) with different poisoning percent-
ages 𝑝. Training with the poisoned subset does not improve the
test accuracy much compared to training with clean data only.

Method 𝑝 =90% 𝑝 =80% 𝑝 =50% 𝑝 =20%
Clean Data (1 − 𝑝) 82.6 86.5 92.4 93.9

Error-min. Noises [25] 85.2 86.8 92.8 94.1
Adv. Examples [14] 85.3 88.2 92.2 93.7

Synthetic Perturbations 85.7 86.3 92.9 94.0

4.2 Poisoning Different Percentages of The
Training Data

Here we show synthetic perturbations remain effective when only
a given percentage of the training data is poisoned. We follow the
experimental setup in Fowl et al. [14], Huang et al. [25]. Specifically,
for each poisoning percentage, we train two models. One model
uses both the clean subset and the poisoned subset as its training
data and the other one only uses the clean subset. The difference
between the performances of those two models represents how much
information the former model gains from the poisoned data. A small
performance gap indicates the former model gains little information
from the poisoned data.

We test four different poisoning percentages (from 20% to 90%)
on the CIFAR-10 dataset. The experiments are run on ResNet-18
models. We compare the performance of synthetic perturbations with
that of adversarial examples and error-minimizing noises [14, 25].
The results are presented in Table 6. The performance gain of using
the poisoned subset is small for all three attacks. This suggests that
synthetic perturbations are still effective in this setting.

4.3 Experiments on Face Data
Here we apply Algorithm 1 on face datasets. We follow the applica-
tion scenario in Huang et al. [25] (see Figure 4 in Huang et al. [25]
for an illustration). The task is to use face images to predict biologi-
cal identities. We train an Inception-ResNet-v1 model [46] on the
WebFace Dataset [50]. A random subset with 20% samples is used
for testing and the remaining samples are used for training. The Web-
Face dataset has 10575 identities and 50 of them are poisoned. We
run Algorithm 1 with the configuration in Section 3.2 (𝜖 ′ = 6/255)
to process the training images of the poisoned identities.

When using Algorithm 1, the test accuracy of the poisoned iden-
tities is only 13.6% which is much lower than the test accuracy
of the clean identities (>80%). The training curves are plotted in
Figure 7. When using error-minimizing noises, the test accuracy of
the poisoned identities reported in Huang et al. [25] is ∼16%. These
results confirm that Algorithm 1 is also highly effective on face data.
We note that generating error-minimizing noises requires some aux-
iliary data. For example, Huang et al. [25] use 100 identities from
the CelebA dataset [30] to generate error-minimizing noises for the
50 identities from the WebFace dataset. On the contrary, running
Algorithm 1 does not require any auxiliary data.

5 ABLATION STUDY
In this section, we run some experiments to better understand our
findings and the proposed algorithm. We first test whether the linear

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’22, August 2022, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

SVHN

Train (Poisoned)
Test (Poisoned)
Train (Clean)
Test (Clean)

0 20 40 60 80 100
Epoch

CIFAR-10

Train (Poisoned)
Test (Poisoned)
Train (Clean)
Test (Clean)

0 20 40 60 80 100
Epoch

CIFAR-100

Train (Poisoned)
Test (Poisoned)
Train (Clean)
Test (Clean)

Figure 6: Training curves of ResNet18 models trained on SVHN, CIFAR-10, and CIFAR-100 datasets. The perturbations are NOT
processed by the padding opeartion.

0 20 40 60 80 100
Training progress

0

20

40

60

80

100

Re
co

gn
iti

on
 a

cc
ur

ac
y

Train (Clean)
Test (Clean)
Train (Poisoned)
Test (Poisoned)

Figure 7: Training curves of an Inception-ResNet model on
clean/poisoned WebFace.

separability is stemming from the property of the ReLU activation
function. Then we demonstrate the padding operation in Algorithm 1
is necessary to make the perturbations robust against data augmenta-
tion methods.

5.1 Linear Separability Is Not Stemming from
ReLU

It is well known to the community that a ReLU-DNN learns a
piecewise linear function in input space [1]. The crafting models of
advanced availability attacks all use the ReLU activation by default.
Therefore, the linear separability may be stemming from the property
of ReLU. To verify this, we replace the ReLU layers with Tanh
layers in the crafting models of error-minimizing noises [25] and
adversarial examples [14]. We fit the new perturbations with the
same simple models as those in Section 2. The results are presented
in Table 7. The new perturbations are still almost linearly separable:
linear models achieve more than 90% training accuracy and two-
layer neural networks achieve 100% training accuracy. This suggests
that the linear separability is not associated with the ReLU activation
function.

Table 7: Training accuracy (in %) of simple models on the per-
turbations of different attacks. The perturbations are generated
with Tanh-DNNs.

Algorithm Linear Model Two-layer NN
Error-min. Noises [25] 100.0 100.0

Adv. Examples (Untargeted) [14] 92.7 100.0
Adv. Examples (Targeted) [14] 100.0 100.0

5.2 The Effect Of The Padding Operation in
Algorithm 1

Here we explain why we duplicate each dimension of the initial data
points into two-dimensional patches in Algorithm 1. Intuitively, it
is more convenient to directly generate synthetic perturbations that
have the same dimension as the original images. We will show this
straightforward approach can not be used as a powerful attack.

We directly use the output of the method in Guyon [18] as the
straightforward approach, i.e., the dimension of synthetic data is the
same as the dimension of flattened images and we simply reshape
the synthetic data into the image format. Other configurations are
the same as those in Section 3. The models are trained with standard
augmentation methods including random crop and flipping. The
training curves of the target models are plotted in Figure 6. The test
accuracy is still high when the data is poisoned, which does not meet
the requirement of availability attacks.

The fact that the padding operation makes the perturbations re-
main effective may be because it introduces local correlation into the
perturbations, which is an inherent property of natural images. In Ap-
pendix C, we show synthetic perturbations are still highly effective
when more powerful data augmentation methods are applied.

6 CONCLUSION
This work gives an explanation of the working principle of avail-
ability poisoning attacks. We show advanced attacks coincidentally
generate linearly-separable perturbations. We further synthesize lin-
early separable perturbations to demonstrate that using linearly sepa-
rable perturbations is sufficient for an availability attack to succeed.
The proposed algorithm is an order of magnitude faster than exist-
ing attacks. Our findings also suggest deep models are more prone
to shortcuts than previously believed. They will find and heavily
rely on shortcuts even when the shortcuts are scaled down to an
imperceptible magnitude.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

What Makes Your Data Unavailable To Deep Learning? Conference’22, August 2022, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. 2016.

Understanding deep neural networks with rectified linear units. arXiv preprint
arXiv:1611.01491 (2016).

[2] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. 2010. The
security of machine learning. Machine Learning (2010).

[3] Sara Beery, Grant Van Horn, and Pietro Perona. 2018. Recognition in terra incog-
nita. In Proceedings of the European conference on computer vision (ECCV).

[4] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[5] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition (2018).

[6] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
et al. 2020. Extracting Training Data from Large Language Models. arXiv preprint
arXiv:2012.07805 (2020).

[7] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. 2020. Big Self-Supervised Models are Strong Semi-Supervised Learners.
arXiv preprint arXiv:2006.10029 (2020).

[8] Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan, John
Dickerson, Gavin Taylor, and Tom Goldstein. 2021. LowKey: leveraging adver-
sarial attacks to protect social media users from facial recognition. arXiv preprint
arXiv:2101.07922 (2021).

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552
(2017).

[11] Khoa Doan, Yingjie Lao, and Ping Li. 2021. Backdoor Attack with Imperceptible
Input and Latent Modification. Advances in Neural Information Processing
Systems (2021).

[12] Ji Feng, Qi-Zhi Cai, and Zhi-Hua Zhou. 2019. Learning to confuse: generating
training time adversarial data with auto-encoder. arXiv preprint arXiv:1905.09027
(2019).

[13] Liam Fowl, Ping-yeh Chiang, Micah Goldblum, Jonas Geiping, Arpit Bansal,
Wojtek Czaja, and Tom Goldstein. 2021. Preventing unauthorized use of propri-
etary data: Poisoning for secure dataset release. arXiv preprint arXiv:2103.02683
(2021).

[14] Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja,
and Tom Goldstein. 2021. Adversarial Examples Make Strong Poisons. arXiv
preprint arXiv:2106.10807 (2021).

[15] Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor,
Michael Moeller, and Tom Goldstein. 2020. Witches’ brew: Industrial scale data
poisoning via gradient matching. arXiv preprint arXiv:2009.02276 (2020).

[16] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A Wichmann. 2020. Shortcut
learning in deep neural networks. Nature Machine Intelligence (2020).

[17] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild,
Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein. 2020. Dataset Security
for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses. arXiv
preprint arXiv:2012.10544 (2020).

[18] Isabelle Guyon. 2003. Design of experiments of the NIPS 2003 variable selection
benchmark. In NIPS 2003 workshop on feature extraction and feature selection.

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Conference
on Computer Vision and Pattern Recognition.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition.

[21] Katherine L Hermann and Andrew K Lampinen. 2020. What shapes feature
representations? exploring datasets, architectures, and training. arXiv preprint
arXiv:2006.12433 (2020).

[22] Kashmir Hill. 2020. The secretive company that might end privacy as we know it.
The New York Times (2020).

[23] Kashmir Hill and Aaron Krolik. 2019. How photos of your kids are powering
surveillance technology. The New York Times (2019).

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition.

[25] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen
Wang. 2021. Unlearnable Examples: Making Personal Data Unexploitable. Inter-
national Conference on Learning Representations (2021).

[26] Arthur Jacot, Franck Gabriel, and Clément Hongler. 2018. Neural tangent
kernel: Convergence and generalization in neural networks. arXiv preprint
arXiv:1806.07572 (2018).

[27] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009).

[28] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. 2019.
Fast autoaugment. arXiv preprint arXiv:1905.00397 (2019).

[29] Dong C Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for
large scale optimization. Mathematical programming (1989).

[30] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learn-
ing Face Attributes in the Wild. In Proceedings of International Conference on
Computer Vision.

[31] Preetum Nakkiran. 2019. A Discussion of’Adversarial Examples Are Not Bugs,
They Are Features’: Adversarial Examples are Just Bugs, Too. Distill (2019).

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. NIPS Workshop on Deep Learning and Unsupervised Feature Learning
(2011).

[33] Anh Nguyen and Anh Tran. 2020. Input-aware dynamic backdoor attack. arXiv
preprint arXiv:2010.08138 (2020).

[34] Anh Nguyen and Anh Tran. 2021. WaNet–Imperceptible Warping-based Backdoor
Attack. arXiv preprint arXiv:2102.10369 (2021).

[35] Timothy Niven and Hung-Yu Kao. 2019. Probing neural network comprehension
of natural language arguments. arXiv preprint arXiv:1907.07355 (2019).

[36] Vinay Uday Prabhu and Abeba Birhane. 2020. Large image datasets: A pyrrhic
win for computer vision? arXiv preprint arXiv:2006.16923 (2020).

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention.

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision (2015).

[39] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2020. Hidden
trigger backdoor attacks. In Proceedings of the AAAI Conference on Artificial
Intelligence.

[40] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom
Goldstein. 2021. Just how toxic is data poisoning? a unified benchmark for
backdoor and data poisoning attacks. In International Conference on Machine
Learning.

[41] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison frogs! targeted clean-label
poisoning attacks on neural networks. arXiv preprint arXiv:1804.00792 (2018).

[42] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth
Netrapalli. 2020. The pitfalls of simplicity bias in neural networks. arXiv preprint
arXiv:2006.07710 (2020).

[43] Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and Ben Y
Zhao. 2020. Fawkes: Protecting privacy against unauthorized deep learning
models. In USENIX Security Symposium.

[44] Juncheng Shen, Xiaolei Zhu, and De Ma. 2019. TensorClog: An imperceptible
poisoning attack on deep neural network applications. IEEE Access (2019).

[45] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[46] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. 2017.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence.

[47] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. 2020. An
embarrassingly simple approach for trojan attack in deep neural networks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining.

[48] Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. 2021.
Provable Defense Against Delusive Poisoning. arXiv preprint arXiv:2102.04716
(2021).

[49] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research (2008).

[50] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. 2014. Learning face represen-
tation from scratch. arXiv preprint arXiv:1411.7923 (2014).

[51] Chia-Hung Yuan and Shan-Hung Wu. 2021. Neural Tangent Generalization
Attacks. In International Conference on Machine Learning. PMLR.

[52] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe,
and Youngjoon Yoo. 2019. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In Proceedings of the IEEE/CVF International
Conference on Computer Vision.

[53] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[54] Hengtong Zhang, Jing Gao, and Lu Su. 2021. Data Poisoning Attacks Against
Outcome Interpretations of Predictive Models. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’22, August 2022, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

60 40 20 0 20 40 60

60

40

20

0

20

40

60

Adversarial Examples

Class 0
Class 1
Class 2

6 4 2 0 2 4 6

40

30

20

10

0

10

20

30

NTGA

Class 0
Class 1
Class 2

Figure 8: T-SNEs of targeted adversarial examples [14] and
NTGA [51]. Perturbations from the same class are well clustered.
Notably, many embeddings of NTGA are overlapped, suggesting
that it uses very similar perturbations for some examples.

Appendix A ADDITIONAL T-SNE PLOTS
Here we plot the t-SNEs of two other attacks in Table 1, i.e., ad-
versarial examples [14] and NTGA [51]. We use their official im-
plementations to generate the perturbations (see Appendix B for
details). The t-SNEs are plotted in Figure 8. The perturbations for
the same class are well clustered. This observation is similar to that
from Figure 2.

Appendix B IMPLEMENTATION DETAILS OF
EXPERIMENTS

Implementation details of the experiments in Section 2. We gen-
erate perturbations of baseline algorithms using their official im-
plementations: DeepConfuse3, NTGA4, error-minimizing noise5,
and adversarial examples6. The configuration is set to be the one
that achieves the best attack performance on CIFAR-10. Specifically,
DeepConfuse uses an 8-layer U-Net [37] as the crafting model.
NTGA uses a 3-layer convolutional network. Error-minimizing
noises and adversarial examples use standard ResNet-18 models.

The experimental setup for training the simple models is as fol-
lows. We train the simple models with standard cross-entropy loss.
Before training, all perturbations are flattened into 1-dimensional
vectors and normalized to unit norm. The two-layer neural networks
have a width of 30. All models are trained with the L-BFGS opti-
mizer [29] for 50 steps.

Implementation details of the experiments in Section 3. We use
the Stochastic Gradient Descent (SGD) optimizer with a momentum
coefficient 0.9 for all experiments. For all datasets, we use a batchsize
of 128. The learning rates of all models are set to follow the choices
in the original papers [20, 24, 45]. The learning rate for ResNet and
DenseNet models is 0.1. The learning rate for VGG models is 0.01.
All models are trained for 100 epochs. The learning rate is divided
by 10 at epoch 50 and 75.

3https://github.com/kingfengji/DeepConfuse
4https://github.com/lionelmessi6410/ntga
5https://github.com/HanxunH/Unlearnable-Examples
6https://github.com/lhfowl/adversarial_poisons

Table 8: Test accuracy (in %) of ResNet18 models on the CIFAR-
10 dataset.

Cutout Mixup CutMix FA

Error-min. Noises 18.9 57.4 32.3 41.6

Synthetic Perturbations 10.6 39.5 17.7 24.4

Appendix C TRAINING WITH MORE
POWERFUL DATA
AUGMENTATION METHODS

Here we demonstrate that synthetic noises can not be filtered out by
state-of-the-art data augmentation methods. We test four advanced
data augmentation methods including Cutout [10], Mixup [53], Cut-
Mix [52], and Fast Autoaugment (FA) [28]. Experimental results
suggest that synthetic perturbations are still highly effective when
those augmentation methods are applied.

We train ResNet18 models on the CIFAR-10 dataset. For all aug-
mentation methods, we use the default configurations for CIFAR-10
from the original papers to set their parameters. Other experimental
settings such as the noise strength and training recipe are the same as
those in Section 3.2. The results are presented in Table 8. In Table 8,
we also include the test accuracy of using error-minimizing noises
for a comparison. The results suggest that synthetic perturbations
are more effective when advanced augmentation methods are ap-
plied. For example, when Fast Autoaugment (FA) is applied, the test
accuracy of using synthetic perturbations is 24.4% while the test
accuracy of using error-minimizing noises is 41.6%.

Appendix D REPRODUCIBILITY STATEMENT
We upload our source code with README files in the supplement.
The README files provide example commands to verify our find-
ings. The code will also be published after the reviewing process.
Our implementation is based on Pytorch7, which is a popular open-
source machine learning framework.

7https://pytorch.org/

10

https://github.com/kingfengji/DeepConfuse
https://github.com/lionelmessi6410/ntga
https://github.com/HanxunH/Unlearnable-Examples
https://github.com/lhfowl/adversarial_poisons
https://pytorch.org/

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Notations

	2 Availability Attacks Use Linearly-Separable Perturbations
	2.1 Three Types Of Availability Attacks
	2.2 Visualizing The Perturbations
	2.3 Availability Attacks Use Linearly-Separable Perturbations
	2.4 Connecting To Shortcut Learning

	3 Linear Separability Is A Sufficient Condition For Availability Attacks to Succeed
	3.1 Generating Synthetic Perturbations as Shortcuts
	3.2 Synthetic Perturbations Are Highly Effective as Availability Attacks
	3.3 Complexity Analysis

	4 Experiments under Different Settings
	4.1 Poisoning Some Classes of The Training Data
	4.2 Poisoning Different Percentages of The Training Data
	4.3 Experiments on Face Data

	5 Ablation Study
	5.1 Linear Separability Is Not Stemming from ReLU
	5.2 The Effect Of The Padding Operation in Algorithm 1

	6 Conclusion
	References
	A Additional t-SNE Plots
	B Implementation Details Of Experiments
	C Training with More Powerful Data Augmentation Methods
	D Reproducibility Statement

