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What Makes Your Data Unavailable To Deep Learning?
Anonymous Author(s)

ABSTRACT
Availability attacks1, which poison the training data with impercep-
tible perturbations, can make the data not exploitable by machine
learning algorithms so as to prevent unauthorized use of data. In
this work, we investigate why these perturbations work in principle.
We are the first to unveil an important population property of the
perturbations of these attacks: they are almost linearly separable
when assigned with the target labels of the corresponding samples,
which hence can work as shortcuts for the learning objective. We
further verify that linear separability is indeed the workhorse for
availability attacks. We synthesize linearly-separable perturbations
as attacks and show that they are as powerful as the deliberately
crafted attacks. Moreover, such synthetic perturbations are much
easier to generate. For example, previous attacks need dozens of
hours to generate perturbations for ImageNet while our algorithm
only needs several seconds. Our finding also suggests that the short-
cut learning is more widely present than previously believed as deep
models would rely on shortcuts even if they are of an imperceptible
scale and mixed together with the normal features.
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1 INTRODUCTION
Sharing personal data online has become an important lifestyle
for many people. Despite big datasets crawled from the Internet
keep advancing the state-of-the-art deep models [7, 9, 19], there
are increasing concerns about the unauthorized use of personal data
[6, 23, 36]. For instance, a private company has collected more
than three billion face images to build commercial face recognition
models without acquiring any user consent [22]. To address those
concerns, many data poisoning attacks have been proposed to prevent
data from being learned by unauthorized deep models [12–14, 25,
1More precisely, we investigate clean-label availability attacks. Some availability attacks
inject malicious training samples instead of perturbing existing ones [4].
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Figure 1: An illustration of clean-label availability attacks.

44, 48, 51]. They add imperceptible perturbations to the training data
so that the model cannot learn much information from the data and
the model accuracy on unseen data is arbitrarily bad. These attacks
make the data not available/exploitable by machine learning models
and are known as availability attack [5]. We give an illustration of
this type of attack in Figure 1.

In literature, there are roughly three methods to construct the
availability attack against deep neural networks. The first method
generates the perturbations as the solution of a bi-level optimization
problem [4, 12, 13, 51]. The bi-level optimization problem updates
the perturbations to minimize the loss on perturbed data while maxi-
mizing the loss on clean data.

Secondly, Huang et al. [25] conceive a simpler poisoning attack
called error-minimizing noise, where the perturbation on training
data is crafted by minimizing the training loss. The intuition is that
if the perturbation can reduce the loss to zero, then there is nothing
left for backpropagation in the regular training procedure. Recently,
Nakkiran [31] and Fowl et al. [14] point out that error-maximizing
noises, which are commonly used as adversarial examples, can
serve as an availability attack as well. Despite these quite different
approaches, all of them are powerful availability attacks. Intrigued
by this observation, we ask the following question:

What is the underlying workhorse for availability attacks against
deep neural networks?

To answer this question, we first take a close look at the perturba-
tions of existing attacks. We visualize the perturbations of several
availability attacks via two-dimensional T-SNEs [49] in Figure 2 and
Figure 8 in Appendix A. The experimental setup is depicted in Sec-
tion 2.2. Surprisingly, the perturbations with the same class label are
well clustered, suggesting that the perturbations would be linearly
separable in the original high-dimensional space. We confirm this
by fitting the perturbations with linear models. The perturbations are
assigned with the labels of their target examples. It turns out that
simple logistic regression models can fit the perturbations of four
representative attacks with > 90% training accuracy. This finding
suggests that linearly-separable perturbations may be the key for
existing availability attacks to succeed.

To further confirm that the linear separability is a sufficient (not
only necessary) condition, we reverse the above procedure: synthe-
sizing some simple linearly-separable perturbations to see if they can

1
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Figure 2: T-SNEs of the first three classes of clean CIFAR-10 data and the perturbations generated via DeepConfuse [12] and error-
minimizing noises [25]. The perturbations are flattened and normalized into unit norms.

serve as availability attacks. Specifically, we first generate some ini-
tial synthetic perturbations via a method in Guyon [18] and then add
a new post-processing procedure so that the synthetic perturbations
remain effective when data augmentations are applied. Extensive
experiments on benchmark datasets and models demonstrate that
synthetic perturbations can be as powerful as existing availability
attacks. Notably, generating synthetic perturbations is significantly
easier and cheaper than existing attacks as it does not require solv-
ing any optimization problems. For example, recent attacks need
dozens of hours to generate perturbations for the ImageNet data,
while generating synthetic perturbations only needs several seconds.
This finding reveals that using linearly-separable perturbations is
indeed the workhorse to the success of state-of-the-art availability
attacks.

The above finding conceptually links the availability attacks with
shortcut learning [16]. Shortcut learning stands for the behavior
that deep models tend to rely on features that do not generalize on
realistic test data. Such features are referred to as shortcuts. With this
concept, the perturbations of availability attacks are also shortcuts.
We note that the shortcuts in previous works are usually part of natu-
ral data, which are somehow heuristic, e.g., “grass” is a shortcut for
recognizing “cow” in natural images [3, 16]. In this work, we expose
a more explicit form of shortcuts and discuss extensively how to
construct such shortcuts. We unveil that deep learning models would
overwhelmingly rely on spurious shortcuts even though the shortcuts
are scaled down to an imperceptible magnitude. This finding exposes
a fundamental vulnerability of deep models and hence may be of
independent interest to the community.

Our contributions are summarized as follows:

• We reveal that the perturbations of several existing availabil-
ity attacks are (almost) linearly separable.

• We propose to use synthetic shortcuts to perform availability
attack, which is much cheaper and easier to conduct.

• We link availability attacks with shortcut learning and greatly
widen the understanding of shortcuts in deep learning.

1.1 Related Work
Data poisoning. In general, data poisoning attacks perturb training
data to intentionally cause some malfunctions of the target model

[5, 17, 40]. A common class of poisoning attacks aims to cause test-
time error on some given samples [8, 15, 43, 54] or on all unseen
samples [12–14, 25, 44, 51]. The latter attacks are also known as
availability attacks [2]. In this work, we investigate and reveal the
workhorse of availability attacks. We show that the perturbations
of these availability attacks are (almost) linearly separable. We fur-
ther confirm that synthesised linearly-separable perturbations can
perform strong attacks.

Backdoor attacks are another type of data poisoning attack that
perturbs training data so that the attacker can manipulate the tar-
get model’s output with a designed trigger [11, 33, 34, 39, 41, 47].
The perturbations of backdoor attacks have two major differences
compared to those of availability attacks. Firstly, the perturbations
of availability attacks are imperceptible. Secondly, advanced avail-
ability attacks use a different perturbation for every sample while a
backdoor trigger is applied to multiple samples. In the threat model
of availability attacks, the data are probably crowdsourced. It is pre-
ferred to use different perturbations for different samples in such a
setting. Otherwise, the adversarial learner can remove perturbations
from all related samples if any poisoned image leaks.

Shortcut learning. Recently, the community has realized that
deep models may rely on shortcuts to make decisions [3, 16, 35].
Shortcuts are spurious features that are correlated with target labels
but do not generalize on test data. Beery et al. [3] show that a deep
model would fail to recognize cows when the grass background is
removed, suggesting that the model takes “grass” as a shortcut for
“cow”. Niven and Kao [35] show that large language models use the
strong correlation between some simple words and labels to make
decisions, instead of trying to understand the sentence. For instance,
the word “not” is directly used to predict negative labels. In this
work, we show shortcut learning exists more widely than previously
believed. Our experiments in Section 3 demonstrate that deep models
only pick shortcuts even if the shortcuts are scaled down to an
imperceptible magnitude and mixed together with normal features.
These experiments reveal another form of shortcut learning, which
has been unconsciously exploited by availability poisoning attacks.
There also exist other synthesized datasets that offer a stratification
of features [21, 42]. Those synthetic data contain shortcuts that can
not be used as perturbations as they are visible and affect the normal
data utility. For example, Shah et al. [42] generate synthetic data
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by vertically concatenating images from the MNIST and CIFAR-10
datasets.

1.2 Notations
We use bold lowercase letters, e.g., 𝒗, and bold capital letters, e.g.,
𝑴 , to denote vectors and matrices, respectively. The 𝐿𝑝 norm of a
vector 𝒗 is denoted by ∥𝒗∥𝑝 . A sample consists of feature 𝒙 and label
𝑦. We use D to denote a dataset that is sampled from distribution D.
In this paper, we focus on classification tasks. The classification loss
of a model 𝑓 on a given sample is denoted by ℓ (𝑓 (𝒙), 𝑦).

2 AVAILABILITY ATTACKS USE
LINEARLY-SEPARABLE PERTURBATIONS

In this section, we investigate the common characteristic of exist-
ing availability attacks. First, We briefly introduce three different
approaches to construct availability attacks. Then, we visualize the
perturbations of advanced attacks with two-dimensional T-SNEs.
The plots suggest that the perturbations of all three kinds of attacks
are some ‘easy’ features. Finally, we verify that the perturbations
of these attacks are almost linearly separable by fitting them with
simple models.

2.1 Three Types Of Availability Attacks
2.1.1 The Alternative Optimization Approach. We first intro-
duce the alternative optimization approach to generate perturbations
for availability attacks. It solves the following bi-level objective,

argmax
{𝜹 }∈Δ

E(𝒙,𝑦)∼D [ℓ (𝑓 ∗ (𝒙), 𝑦)],

s.t. 𝑓 ∗ ∈ argmin
𝑓

∑︁
(𝒙,𝑦) ∈D

ℓ (𝑓 (𝒙 + 𝜹), 𝑦), (1)

where 𝜹 is a sample-wise perturbation and Δ is a constraint set
for perturbations. The two formulas in Equation 1 directly reflect
the goal of availability attacks. Specifically, the optimal solution
on perturbed data (specified by the second formula) should have
the largest loss on clean data (specified by the first formula). The
constraint set Δ is set to make the perturbations imperceptible, e.g.,
a small 𝐿𝑝 norm ball.

Directly solving Equation (1) is intractable for deep neural net-
works. Recent works have designed multiple approximate solutions
[12, 13, 51]. Feng et al. [12] use multiple rounds of optimization
to generate perturbations. At each round, they first approximately
optimize the second objective by updating a surrogate target model
on perturbed data for a few steps. Then they approximately optimize
the first objective by updating a generator for a few steps. The out-
puts of the generator are used as perturbations. Another example is
the Neural Tangent Generalization Attacks (NTGAs) in Yuan and
Wu [51]. They approximately optimize the bi-level objective based
on the recent development of Neural Tangent Kernels [26].

2.1.2 The Error-minimizing Noise. Huang et al. [25] propose an-
other bi-level objective to generate perturbations. Instead of solving
Equation (1), they use the following objective,

argmin
{𝜹 }∈Δ

E(𝒙,𝑦)∼D [min
𝑓

ℓ (𝑓 (𝒙 + 𝜹), 𝑦)] . (2)

The perturbations are intentionally optimized to reduce the train-
ing loss. The main motivation is that if the training loss is zero, then
the target model will have nothing to learn from the data because
there is nothing to backpropagate. A randomly initialized model
is used as a surrogate of the target model. They also use multiple
rounds of optimization to generate perturbations. At each round,
they first train the surrogate model for a few steps to minimize the
loss on perturbed data. Then they optimize the perturbations to also
minimize the loss of the surrogate model. They repeat the above
process until the loss on perturbed data is smaller than a pre-defined
threshold.

2.1.3 Adversarial Examples. Instead of using bi-level objec-
tives, Fowl et al. [14] show that the common objectives of adversarial
examples are sufficient to generate powerful data poisoning pertur-
bations. They use both untargeted (the first objective) and targeted
adversarial examples (the second objective),

argmax
{𝜹 }∈Δ

E(𝒙,𝑦)∼D [ℓ (𝑓 (𝒙 + 𝜹) , 𝑦)] ,

argmin
{𝜹 }∈Δ

E(𝒙,𝑦)∼D
[
ℓ
(
𝑓 (𝒙 + 𝜹) , 𝑦′

) ]
,

(3)

where 𝑦′ ≠ 𝑦 is an incorrect label and 𝑓 is a trained model. Sur-
prisingly, Fowl et al. [14] demonstrate that these simple objectives
can generate perturbations that achieve state-of-the-art attack perfor-
mance.

2.2 Visualizing The Perturbations
Although the three approaches in Section 2.1 have different objec-
tives, they all manage to perform powerful attacks. Intrigued by this
observation, we try to find out whether there is a common pattern
among different types of availability attacks. If so, the common
pattern may be the underlying workhorse for availability attacks.

To find such a common pattern, we first visualize different types
of perturbations, including DeepConfuse [12], NTGA [51], error-
minimizing noises [25], and adversarial examples [14]. We compute
their two-dimensional t-SNEs [49]. These four attacks achieve ad-
vanced attack performance and cover all the three approaches in
Section 2.1. We use their official implementations to generate per-
turbations. Detailed configurations are in Appendix B.

The two-dimensional t-SNEs of DeepConfuse and error-minimizing
noises are shown in Figure 2. The plots of NTGA and adversarial
examples are presented in Figure 8 of Appendix A due to the space
limit. Surprisingly, for all the attacks considered, the perturbations
for the same class are well clustered, suggesting that even linear
models can classify them well. For comparison purposes, we also
compute the t-SNEs of the clean data. As shown in Figure 2, in
contrast with the t-SNEs, the projections of different classes of the
clean data are mixed together, which indicates that they require a
complex neural network to be correctly classified. This observa-
tion suggests that using linearly-separable perturbations may be the
common pattern among availability attacks.

2.3 Availability Attacks Use Linearly-Separable
Perturbations

To quantify the ‘linear separability’ of the perturbations, we fit the
perturbations with simple models and report the training accuracy.
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Table 1: Training accuracy (in %) of simple models on clean
data and the perturbations of different attacks.

Algorithm Linear Model Two-layer NN
Clean Data 49.9 70.1

DeepConfuse [12] 100.0 100.0
NTGA [51] 100.0 100.0

Error-minimizing [25] 100.0 100.0
Adv. Examples (Untargeted) [14] 91.5 99.9
Adv. Examples (Targeted) [14] 100.0 100.0

The perturbations are labeled with the labels of the corresponding
target examples. The simple models include linear models and two-
layer neural networks. Details can be found in Appendix B.

The results are presented in Table 1. Compared to the results on
clean data, simple models can easily fit the perturbations. On all
attacks considered, linear models achieve more than 90% training
accuracy and two-layer neural networks achieve nearly 100% training
accuracy. These results confirm that the perturbations of advanced
availability attacks are all (almost) linearly separable.

Existing attacks against deep neural networks all use ReLU acti-
vation functions in their crafting models. Deep models with ReLU
activation functions are known to learn piecewise linear functions in
input space [1]. Therefore, it is natural to wonder whether the linear
separability is stemming from the property of ReLU. In Section 5.1,
we replace the ReLU layers with Tanh layers in the crafting models
of adversarial examples and error-minimizing noises. It turns out
that simple models still can easily fit the new perturbations, which
demonstrates that the linear separability is an intrinsic property of
these availability attacks rather than something associated with a
specific network structure.

2.4 Connecting To Shortcut Learning
The fact that the perturbations can be easily fitted by linear models
naturally connects to a recent concept named shortcut learning [16].
Shortcut learning summarizes a general phenomenon when any
learning system makes decisions based on spurious features that do
not generalize on realistic test data2. Shortcut features have been
found in different fields. For vision tasks, Beery et al. [3] show
deep models fail to recognize cows when the grass background is
removed from images, suggesting the grass background is a shortcut
for predicting cows. In the field of natural language processing,
Niven and Kao [35] show language models use the strong correlation
between some simple words and labels to make decisions, instead of
really understanding the data.

With the presence of shortcut learning, it seems reasonable to pos-
tulate that the perturbations of existing attacks succeed by creating
shortcuts to the target model. We give an illustration in Figure 3. A
major difference between the perturbations of poisoning attacks and
existing shortcut features is that the perturbations are of an imper-
ceptible scale and mixed together with useful features. Since there
is no direct evidence to show deep models will take this kind of

2Geirhos et al. [16] use a more specific definition of shortcuts. They denote shortcuts as
those features that do not generalize on out-of-distribution (OOD) data. We note that
poisoning attacks would change the distribution of training data and hence make the
clean test data ‘OOD’ with respect to the trained model.

Figure 3: An illustration of how the perturbations of availability
attacks work as shortcuts.

shortcuts, in the next section, we design experiments to confirm the
postulated explanation. We synthesize imperceptible and linearly-
separable perturbations and show deep models are very vulnerable
to such synthetic shortcuts.

3 LINEAR SEPARABILITY IS A SUFFICIENT
CONDITION FOR AVAILABILITY ATTACKS
TO SUCCEED

Although we have demonstrated that the perturbations of four ad-
vanced attacks are all almost linearly separable, it is a bit early to
claim that ‘linear separability’ is the underlying working principle
of availability poisoning attacks. Perturbations are linearly separable
may only be a necessary but not sufficient condition for poisoning
attacks to succeed. In order to verify this postulated explanation, we
use simple synthetic data to serve as perturbations and compare their
effectiveness with existing poisoning attacks. It turns out that the
synthetic perturbations are as powerful as advanced attacks.

The rest of this section is organized as follows. In Section 3.1, we
first give an algorithm for generating synthetic data as perturbations.
In Section 3.2, we verify the effectiveness of synthetic perturbations
on different models and datasets.

3.1 Generating Synthetic Perturbations as
Shortcuts

The synthetic perturbations in this section are generated via two
building blocks. In the first block, we use a method in Guyon [18]
to generate samples from some normal distributions. In the second
block, we transfer the samples into the image format so that they
can be applied to benchmark vision tasks. We give the pseudocode
in Algorithm 1.

The first building block proceeds as follows. We first generate
some points that are normally distributed around the vertices of a
hypercube. The points around the same vertex are assigned with the
same label. Then for each class, we introduce different covariance.
Any two classes of the generated points can be easily classified by a
hyperplane as long as the side length of the hypercube is reasonably
large.

In the second building block, we pad each dimension of the
sampled points and reshape them into two-directional images. The
padding operation introduces local correlation into the synthetic
images. Local correlation is an inherent property of natural images.

4
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In Section 5.2, we show the padding operation is necessary to make
the synthetic perturbations remain effective when data augmentation
methods are applied.

Algorithm 1: Generating Perturbations for Vision Datasets

1: Input: number of classes 𝑘 , number of examples in each class
{𝑛𝑖 }𝑘𝑖=1, image size (𝑤,ℎ), patch size 𝑝, norm bound 𝜖.

2: Compute 𝑤 ′ = 𝑟𝑜𝑢𝑛𝑑 (𝑤/𝑝) + 1 and ℎ′ = 𝑟𝑜𝑢𝑛𝑑 (ℎ/𝑝) + 1.

// The first block: using the method in Guyon [18] to generate
some initial data points.

3: Create a 𝑤 ′ℎ′-dimensional hypercube.
4: for 𝑖 = 1 to 𝑘 do
5: Generate 𝑫 (𝑖) ∈ R𝑛𝑖×𝑤′ℎ′ , where each row of 𝑫 (𝑖) is

sampled from N(0, 𝑰𝑤′ℎ′×𝑤′ℎ′).
6: // Introduce random covariance among columns.
7: Uniformly sample the elements of 𝑨 ∈ R𝑤′ℎ′×𝑤′ℎ′ from

[−1, 1].
8: Compute 𝑫 (𝑖) = 𝑫 (𝑖)𝑨.
9: Randomly choose an unused vertex and let 𝒄 (𝑖) ∈ R𝑤′ℎ′ be

its coordinates.
10: // Move the sampled points to the chosen vertex.
11: Compute 𝑫 (𝑖) = 𝑫 (𝑖) + 𝒄 (𝑖) , i.e., 𝒄 (𝑖) is added to each row of

𝑫 (𝑖) .
12: Assign the rows of 𝑫 (𝑖) with label 𝑖.
13: end for

// The second block: duplicating each dimension to introduce
local correlation.

14: Duplicate each dimension of the initial data for 𝑝2 times and
reshape the results into two-dimensional patches with size
𝑝 × 𝑝.

15: Put the patches together and take crops to generate synthetic
noises with size (𝑤,ℎ).
// Scale down the magnitude of synthetic data and harvesting
perturbations.

16: Normalize each synthetic sample with 𝐿2 norm bound 𝜖.
17: Add synthetic perturbations to corresponding clean images.

In Algorithm 1, the synthetic images are scaled down before being
used as perturbations. We visualize the synthetic perturbations and
corresponding perturbed images in Figure 4. We also visualize the
perturbations in Huang et al. [25] for a comparison. The details of
perturbations can be found in Section 3.2. As shown in Figure 4, the
synthetic perturbations do not affect data utility.

3.2 Synthetic Perturbations Are Highly Effective
as Availability Attacks

Now we verify the effectiveness of synthetic perturbations and make
comparisons with existing availability attacks. We perturb the entire
training set following the main setup in previous works [12, 14, 25,
51]. That is, we synthesize a perturbation for every training example.
In Section 4.1 and 4.2, we show synthetic perturbations are still
effective when only partial training data are poisoned.

We use 𝐿2-norm for synthetic perturbations to keep the sample-
wise variation in the same class. We normalize the synthetic noises

into a 𝐿2-norm ball with radius
√
𝑑𝜖 ′, where 𝑑 is the dimension of

the input. We evaluate synthetic perturbations on three benchmark
datasets: SVHN [32], CIFAR-10, CIFAR-100 [27], and a subset
of ImageNet [38]. Following the setup in Huang et al. [25], we
use the first 100 classes of the full dataset as the ImageNet subset.
The target model architectures include VGG [45], ResNet [20], and
DenseNet [24]. We adopt standard random cropping and flipping as
data augmentation. The hyperparameters for training are standard
and can be found in Appendix B. We use 𝜖 ′ = 6/255 for synthetic
perturbations. The patch size in Algorithm 1 is set as 8.

Table 2: Accuracy on clean test data of CIFAR-10. The target
model is ResNet-18. The training data are poisoned with differ-
ent attacks. The closer the accuracy to random guessing, the
better the attack efficiency.

Algorithm Test Accuracy (in %)
No Perturbation 94.69
TensorClog [44] 48.07
Alignment [13] 56.65

DeepConfuse [12] 28.77
NTGA [51] 33.29

Error-minimizing [25] 19.93
Adversarial Examples [14] 6.25

Synthetic Perturbations 13.54

We first compare synthetic perturbations with existing poisoning
attacks. The comparisons are made on the CIFAR-10 dataset with
ResNet-18 as the target model. We use the best-performing setup in
their official implementations to generate perturbations. We present
the comparison in Table 2. Synthetic perturbations are as powerful as
advanced poisoning attacks despite they are much easier to generate.

Then we evaluate synthetic perturbations on different models and
datasets. The test accuracy of target models is in Table 3. We also
plot the training curves of target models on both clean and perturbed
data in Figure 5. The results in Table 3 and Figure 5 further confirm
the effectiveness of synthetic perturbations.

We note that generating synthetic perturbations is data irrelevant
and only takes several seconds using a single CPU core. In contrast,
existing attacks often need hours or even days to generate perturba-
tions using GPUs. We compare the computational complexities of
synthetic perturbations and recent attacks in Section 3.3.

In summary, our experiments demonstrate that using linearly-
separable perturbations is indeed a sufficient condition for availabil-
ity poisoning attacks to succeed. Moreover, these results also expose
that deep models are very vulnerable to obscured shortcuts. This
finding has two meanings to the community. First, it confirms that
advanced availability poisoning attacks do succeed by providing
shortcuts. Second, it further exposes the shortcut learning problem,
which is a fundamental vulnerability of deep models.

3.3 Complexity Analysis
Here we give an analysis of the computational complexity of Al-
gorithm 1. The complexity of generating synthetic perturbations is
O(𝑛𝑑/𝑝2), where 𝑛 is the size of the dataset, 𝑑 is the dimension of
clean data, and 𝑝 is the patch size. This complexity is mainly from
introducing covariance into synthetic data (Line 6 in Algorithm 1).
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Figure 4: Visualization of perturbed images and normalized perturbations. Columns a) and b) use synthetic perturbations. Columns c)
and d) use the attack in Huang et al. [25].

Table 3: Accuracy (in %) on clean test data. The target models are trained on clean data (D𝑐 ) and data perturbed by synthetic
perturbations (D𝑠𝑦𝑛).

Target Model
SVHN CIFAR-10 CIFAR-100 ImageNet Subset
D𝑐 D𝑠𝑦𝑛 D𝑐 D𝑠𝑦𝑛 D𝑐 D𝑠𝑦𝑛 D𝑐 D𝑠𝑦𝑛

VGG-11 95.4 18.1 91.3 28.3 67.5 10.9 79.1 10.7

ResNet-18 96.2 8.0 94.7 13.5 74.8 9.0 79.7 11.0

ResNet-50 96.4 7.8 94.8 14.9 75.2 8.4 82.4 10.8

DenseNet-121 96.7 9.7 95.0 10.6 76.5 7.6 82.9 14.7
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Figure 5: Training curves of ResNet-18 models on perturbed and clean data. The word ‘poisoned’ denotes the model is trained
on perturbed data. The test performance is evaluated on clean data. The test accuracy is low throughout training when synthetic
perturbations are added.

The complexity of generating synthetic perturbations is signifi-
cantly smaller than those of recent attacks. The complexity of run-
ning the algorithms in recent attacks is O(𝑛𝑇𝐿(𝑑𝑤 +𝑤2)), where 𝑇
is the number of iterations generating the poisons, 𝐿 is the network
depth, and 𝑤 is the network width (for simplicity, we assume the
network is of equal width). The term 𝑛𝐿(𝑑𝑤 +𝑤2) is the cost of one
forward/backward pass. This complexity is strictly worse than that
of generating synthetic perturbations.

In recent attacks, the number of iterations generating the poisons
is usually large. For example, Huang et al. [25] use multiple gradient
descent steps to solve the optimization problems in Eq (2). On the
ImageNet dataset, they first run 100 SGD updates for the outer

problem. Then they loop over every target example to optimize
the inner problem. They run 20 SGD updates for each example.
The above process is repeated until the training accuracy is larger
than a pre-defined threshold. Another example is the attack in Fowl
et al. [14]. For each target example, they use 250 Projected Gradient
Descent (PGD) steps to generate perturbations.

We now give an empirical comparison. We measure the time
costs of generating error-minimizing noises, adversarial examples,
and synthetic perturbations. The device is a server with a single
Tesla V100 GPU and an Intel Xeon E5-2667 CPU. We note that
running Algorithm 1 does not require a GPU. The time costs are
tested on SVHN, CIFAR-10, and the ImageNet subset. The target
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Table 4: Time costs (in seconds) of generating error-minimizing
noises, adversarial examples, and synthetic perturbations.

Method SVHN CIFAR-10 ImageNet
Error-min. Noises ∼2.7k ∼3.5k >28k

Adv. Examples ∼3.3k ∼4.1k >30k
Algorithm 1 <3 <3 <3

Table 5: Test accuracy (in %) on clean (C) and poisoned (P)
classes. Numbers of poisoned classes are 1, 3, and 5.

Method
1 3 5

C P C P C P

Error-min. Noises [25] 94.6 2.4 93.9 1.1 93.8 3.1
Synthetic Perturbations 94.7 2.7 94.0 0.6 93.2 2.9

model is ResNet18. We use the configurations described in Huang
et al. [25] and Fowl et al. [14] to generate error-minimizing noises
and adversarial examples. For synthetic perturbations, we use the
same setting as that in Section 3.2. The time costs are reported in
Table 4. Generating synthetic perturbations is significantly cheaper
than existing availability attacks.

4 EXPERIMENTS UNDER DIFFERENT
SETTINGS

Here we test synthetic perturbations under different settings. We
first consider two cases where not all the training data are poisoned.
Although the main setting in previous works is to perturb the full
training set, in practice we may only need to perturb part of the data.
In the first case, we only apply Algorithm 1 to some of the classes. In
the second case, we perturb partial data that are randomly sampled
from all the classes. Finally, we run experiments on a face dataset
following the application scenario in Huang et al. [25].

4.1 Poisoning Some Classes of The Training Data
In many practical datasets, some classes are more sensitive than
others, e.g., in medical datasets, the patients that are diagnosed
with a certain disease may be more concerned about their data than
healthy people. We randomly sample some classes of the CIFAR-10
dataset and apply Algorithm 1 on all the examples of the sampled
classes. After training, we report the test accuracy on clean classes
and poisoned classes separately.

The synthetic perturbations are generated in the same way as
that in Section 3.2. For comparison, we also run experiments with
error-minimizing noises using those generated in Section 3.2. The
experiments are run on ResNet-18. The numbers of poisoned classes
are 1, 3, and 5. The poisoned classes are randomly chosen and are
the same for two types of noises. We report the results in Table 5.
Algorithm 1 is still highly effective when only some of the classes
are poisoned.

Table 6: Test accuracy (in %) with different poisoning percent-
ages 𝑝. Training with the poisoned subset does not improve the
test accuracy much compared to training with clean data only.

Method 𝑝 =90% 𝑝 =80% 𝑝 =50% 𝑝 =20%
Clean Data (1 − 𝑝) 82.6 86.5 92.4 93.9

Error-min. Noises [25] 85.2 86.8 92.8 94.1
Adv. Examples [14] 85.3 88.2 92.2 93.7

Synthetic Perturbations 85.7 86.3 92.9 94.0

4.2 Poisoning Different Percentages of The
Training Data

Here we show synthetic perturbations remain effective when only
a given percentage of the training data is poisoned. We follow the
experimental setup in Fowl et al. [14], Huang et al. [25]. Specifically,
for each poisoning percentage, we train two models. One model
uses both the clean subset and the poisoned subset as its training
data and the other one only uses the clean subset. The difference
between the performances of those two models represents how much
information the former model gains from the poisoned data. A small
performance gap indicates the former model gains little information
from the poisoned data.

We test four different poisoning percentages (from 20% to 90%)
on the CIFAR-10 dataset. The experiments are run on ResNet-18
models. We compare the performance of synthetic perturbations with
that of adversarial examples and error-minimizing noises [14, 25].
The results are presented in Table 6. The performance gain of using
the poisoned subset is small for all three attacks. This suggests that
synthetic perturbations are still effective in this setting.

4.3 Experiments on Face Data
Here we apply Algorithm 1 on face datasets. We follow the applica-
tion scenario in Huang et al. [25] (see Figure 4 in Huang et al. [25]
for an illustration). The task is to use face images to predict biologi-
cal identities. We train an Inception-ResNet-v1 model [46] on the
WebFace Dataset [50]. A random subset with 20% samples is used
for testing and the remaining samples are used for training. The Web-
Face dataset has 10575 identities and 50 of them are poisoned. We
run Algorithm 1 with the configuration in Section 3.2 (𝜖 ′ = 6/255)
to process the training images of the poisoned identities.

When using Algorithm 1, the test accuracy of the poisoned iden-
tities is only 13.6% which is much lower than the test accuracy
of the clean identities (>80%). The training curves are plotted in
Figure 7. When using error-minimizing noises, the test accuracy of
the poisoned identities reported in Huang et al. [25] is ∼16%. These
results confirm that Algorithm 1 is also highly effective on face data.
We note that generating error-minimizing noises requires some aux-
iliary data. For example, Huang et al. [25] use 100 identities from
the CelebA dataset [30] to generate error-minimizing noises for the
50 identities from the WebFace dataset. On the contrary, running
Algorithm 1 does not require any auxiliary data.

5 ABLATION STUDY
In this section, we run some experiments to better understand our
findings and the proposed algorithm. We first test whether the linear
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Figure 7: Training curves of an Inception-ResNet model on
clean/poisoned WebFace.

separability is stemming from the property of the ReLU activation
function. Then we demonstrate the padding operation in Algorithm 1
is necessary to make the perturbations robust against data augmenta-
tion methods.

5.1 Linear Separability Is Not Stemming from
ReLU

It is well known to the community that a ReLU-DNN learns a
piecewise linear function in input space [1]. The crafting models of
advanced availability attacks all use the ReLU activation by default.
Therefore, the linear separability may be stemming from the property
of ReLU. To verify this, we replace the ReLU layers with Tanh
layers in the crafting models of error-minimizing noises [25] and
adversarial examples [14]. We fit the new perturbations with the
same simple models as those in Section 2. The results are presented
in Table 7. The new perturbations are still almost linearly separable:
linear models achieve more than 90% training accuracy and two-
layer neural networks achieve 100% training accuracy. This suggests
that the linear separability is not associated with the ReLU activation
function.

Table 7: Training accuracy (in %) of simple models on the per-
turbations of different attacks. The perturbations are generated
with Tanh-DNNs.

Algorithm Linear Model Two-layer NN
Error-min. Noises [25] 100.0 100.0

Adv. Examples (Untargeted) [14] 92.7 100.0
Adv. Examples (Targeted) [14] 100.0 100.0

5.2 The Effect Of The Padding Operation in
Algorithm 1

Here we explain why we duplicate each dimension of the initial data
points into two-dimensional patches in Algorithm 1. Intuitively, it
is more convenient to directly generate synthetic perturbations that
have the same dimension as the original images. We will show this
straightforward approach can not be used as a powerful attack.

We directly use the output of the method in Guyon [18] as the
straightforward approach, i.e., the dimension of synthetic data is the
same as the dimension of flattened images and we simply reshape
the synthetic data into the image format. Other configurations are
the same as those in Section 3. The models are trained with standard
augmentation methods including random crop and flipping. The
training curves of the target models are plotted in Figure 6. The test
accuracy is still high when the data is poisoned, which does not meet
the requirement of availability attacks.

The fact that the padding operation makes the perturbations re-
main effective may be because it introduces local correlation into the
perturbations, which is an inherent property of natural images. In Ap-
pendix C, we show synthetic perturbations are still highly effective
when more powerful data augmentation methods are applied.

6 CONCLUSION
This work gives an explanation of the working principle of avail-
ability poisoning attacks. We show advanced attacks coincidentally
generate linearly-separable perturbations. We further synthesize lin-
early separable perturbations to demonstrate that using linearly sepa-
rable perturbations is sufficient for an availability attack to succeed.
The proposed algorithm is an order of magnitude faster than exist-
ing attacks. Our findings also suggest deep models are more prone
to shortcuts than previously believed. They will find and heavily
rely on shortcuts even when the shortcuts are scaled down to an
imperceptible magnitude.
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Figure 8: T-SNEs of targeted adversarial examples [14] and
NTGA [51]. Perturbations from the same class are well clustered.
Notably, many embeddings of NTGA are overlapped, suggesting
that it uses very similar perturbations for some examples.

Appendix A ADDITIONAL T-SNE PLOTS
Here we plot the t-SNEs of two other attacks in Table 1, i.e., ad-
versarial examples [14] and NTGA [51]. We use their official im-
plementations to generate the perturbations (see Appendix B for
details). The t-SNEs are plotted in Figure 8. The perturbations for
the same class are well clustered. This observation is similar to that
from Figure 2.

Appendix B IMPLEMENTATION DETAILS OF
EXPERIMENTS

Implementation details of the experiments in Section 2. We gen-
erate perturbations of baseline algorithms using their official im-
plementations: DeepConfuse3, NTGA4, error-minimizing noise5,
and adversarial examples6. The configuration is set to be the one
that achieves the best attack performance on CIFAR-10. Specifically,
DeepConfuse uses an 8-layer U-Net [37] as the crafting model.
NTGA uses a 3-layer convolutional network. Error-minimizing
noises and adversarial examples use standard ResNet-18 models.

The experimental setup for training the simple models is as fol-
lows. We train the simple models with standard cross-entropy loss.
Before training, all perturbations are flattened into 1-dimensional
vectors and normalized to unit norm. The two-layer neural networks
have a width of 30. All models are trained with the L-BFGS opti-
mizer [29] for 50 steps.

Implementation details of the experiments in Section 3. We use
the Stochastic Gradient Descent (SGD) optimizer with a momentum
coefficient 0.9 for all experiments. For all datasets, we use a batchsize
of 128. The learning rates of all models are set to follow the choices
in the original papers [20, 24, 45]. The learning rate for ResNet and
DenseNet models is 0.1. The learning rate for VGG models is 0.01.
All models are trained for 100 epochs. The learning rate is divided
by 10 at epoch 50 and 75.

3https://github.com/kingfengji/DeepConfuse
4https://github.com/lionelmessi6410/ntga
5https://github.com/HanxunH/Unlearnable-Examples
6https://github.com/lhfowl/adversarial_poisons

Table 8: Test accuracy (in %) of ResNet18 models on the CIFAR-
10 dataset.

Cutout Mixup CutMix FA

Error-min. Noises 18.9 57.4 32.3 41.6

Synthetic Perturbations 10.6 39.5 17.7 24.4

Appendix C TRAINING WITH MORE
POWERFUL DATA
AUGMENTATION METHODS

Here we demonstrate that synthetic noises can not be filtered out by
state-of-the-art data augmentation methods. We test four advanced
data augmentation methods including Cutout [10], Mixup [53], Cut-
Mix [52], and Fast Autoaugment (FA) [28]. Experimental results
suggest that synthetic perturbations are still highly effective when
those augmentation methods are applied.

We train ResNet18 models on the CIFAR-10 dataset. For all aug-
mentation methods, we use the default configurations for CIFAR-10
from the original papers to set their parameters. Other experimental
settings such as the noise strength and training recipe are the same as
those in Section 3.2. The results are presented in Table 8. In Table 8,
we also include the test accuracy of using error-minimizing noises
for a comparison. The results suggest that synthetic perturbations
are more effective when advanced augmentation methods are ap-
plied. For example, when Fast Autoaugment (FA) is applied, the test
accuracy of using synthetic perturbations is 24.4% while the test
accuracy of using error-minimizing noises is 41.6%.

Appendix D REPRODUCIBILITY STATEMENT
We upload our source code with README files in the supplement.
The README files provide example commands to verify our find-
ings. The code will also be published after the reviewing process.
Our implementation is based on Pytorch7, which is a popular open-
source machine learning framework.

7https://pytorch.org/
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