
MINDSim: User Simulator for News Recommenders
Xufang Luo

Microsoft Research Asia
xufluo@microsoft.com

Zheng Liu
Microsoft Research Asia
zheng.liu@microsoft.com

Shitao Xiao∗
Beijing University of Posts and

Telecommunications
stxiao@bupt.edu.cn

Xing Xie
Microsoft Research Asia
xing.xie@microsoft.com

Dongsheng Li
Microsoft Research Asia

dongsheng.li@microsoft.com

ABSTRACT
Recommender system is playing an increasingly important role
in online news platforms nowadays. Recently, there is a growing
demand for applying reinforcement learning (RL) algorithms to
news recommendation aiming to maximize long-term and/or non-
differentiable objectives. However, without an interactive simulated
environment, it is extremely costly to develop powerful RL agents
for news recommendation. In this paper, we build a user simulator,
namely MINDSim, for news recommendation. Targeting at new
user generation and corresponding behavior simulation, we first
construct a hidden space for users using a generative adversarial
network, so that new users can be generated by sampling from
this hidden space. To capture complex and fast user interest drifts
over time, we adopt an encoder-decoder architecture, which takes
the clicked news during the simulation as input and outputs the
new user interests for the next period of time. Finally, we build the
MINDSim simulator using MIcrosoft News Dataset (MIND), and
extensive experimental results on this large-scale real-world dataset
demonstrate thatMINDSim can simulate the behaviors of real users
with high quality.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
news recommendation, user simulator, reinforcement learning

ACM Reference Format:
Xufang Luo, Zheng Liu, Shitao Xiao, Xing Xie, and Dongsheng Li. 2022.
MINDSim: User Simulator for News Recommenders. In Proceedings of the
ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3485447.3512080

∗Work was done when the third author was the intern with Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512080

1 INTRODUCTION
Recommender systems are becoming the vital channels of getting
information, especially for some rapidly updated and plentiful infor-
mation, e.g., news [25, 29]. Hence, a growing number of techniques
are developed for news recommendations. Recently, applying rein-
forcement learning (RL) algorithms to recommenders draws much
attention from both industry and academia [18, 19, 49], because
RL algorithms are widely and successfully used in many decision-
making tasks, such as video games [28] and locomotion [36], and
they are naturally designed for optimizing some long-term [40] and
non-differentiable objectives [32], such as dwell time and revisit,
which are crucial for recommenders, but have not been extensively
considered by conventional recommendation algorithms.

However, applying RL algorithms in real-world recommenda-
tion services is extremely costly [8, 38]. First, training RL agents
requires an online interactive environment, where agents improve
themselves via trial-and-error. But the low-quality recommenda-
tions caused by model training will lead to bad user experiences,
making it prohibitive to directly train them in an online production
environment. Second, deploying a new recommendation policy to
a production service involves lots of engineering efforts, which
are too costly for algorithmic experimentation. Previous research
works [2, 8, 38] try to solve the above problems by creating an
online environment via simulating users’ behaviors, but the follow-
ing two challenges in news recommendation cannot be effectively
addressed by these methods.

First, recently proposed user simulators for other kinds of rec-
ommenders [35, 38, 47] cannot effectively handle the unique “new
item” issue in news recommendation. Different from conventional
recommenders (e.g., movie and product) in which new items are rel-
atively rare, news recommenders need to deal with diverse contents
generated almost every minute and then quickly become out-of-
date within a few days or even hours [49]. This “new item” issue
is a well-known challenge for news recommendation, which also
raises challenges for the user simulator. Targeting at the “new item”
issue of news recommendation, the simulator should be capable
of modeling user interests over fast-changing and highly diverse
news collections.

Second, although news recommendation algorithms can success-
fully handle the above “new item” issue, they are not capable of
generating “new user” for simulation. Existing news recommen-
dation algorithms can only predict the future behaviors of known
users, i.e., they are not able to go beyond the fixed user set and
thus cannot generate new users with similar behaviors as real users.

https://doi.org/10.1145/3485447.3512080
https://doi.org/10.1145/3485447.3512080
https://doi.org/10.1145/3485447.3512080

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Xufang Luo, Zheng Liu, Shitao Xiao, Xing Xie, and Dongsheng Li

Adopting a news recommender as a simulator will prevent the sim-
ulator from covering more users with diverse interests, causing the
trained RL agents to easily overfit. In addition, only simulating the
behaviors of existing users may introduce modeling biases for the
minority groups of users [23].

In this paper, we propose a user simulator, namely MINDSim,
for news recommendation, which consists of the following two
stages to tackle the above two challenges, respectively. 1)MINDSim
constructs a hidden space for users, so that new users can be gener-
ated by sampling from this space. More specifically,MINDSimmaps
each user to the hidden space by encoding the user’s history clicked
news into a hidden vector using an auto-encoder, and the hidden
vector can be used to represent this user’s interests. Then, MIND-
Sim trains a Generative Adversarial Network (GAN) using the real
users’ hidden vectors in the dataset to learn the distribution of user
interests. Thus, the trained GAN can effectively model the hidden
space of user interests and generate users by sampling from the hid-
den space. 2) MINDSim employs the encoder-decoder architecture
to capture the fast user interest drifts over diverse newly appeared
news. First, the encoder is used to aggregate the embeddings of
the clicked news after the user is generated. Here, embeddings are
generated by a large pre-trained language model with news articles
as inputs. Thus, user interest changes caused by recent clicks can
be reflected in the outputs of the encoder. Then, starting from the
encoder output, the process that news is sequentially selected from
a candidate news set is modeled as a decoding process. Besides,
once the candidate news set is updated, clicked news in the last set
is sent to the encoder, and then the decoding process is performed
on the new set. Therefore, instant user interest changes within the
current candidate news set are also considered.

To evaluate the performance, we build the MINDSim simulator
using MIcrosoft News Dataset (MIND) [45], which is a large-scale
news recommendation dataset collected from anonymized logs of
real users. Extensive experimental results show that MINDSim can
well simulate the behaviors of real users.

We summarize our contributions as follows:
• We propose a novel user simulator called MINDSim. To the
best of our knowledge, this is the first user simulator tailored
for online news recommendation, which provides an online
interactive environment to train RL agents.

• We construct a hidden space for users using GAN, and thus
can sample new users beyond the fixed dataset from the
hidden space.

• We use an encoder-decoder architecture to effectively cap-
ture the complex and fast user interest drifts over time in
news recommendation.

• We build the simulator with large-scale offline data. Exten-
sive experiments demonstrate thatMINDSim generates high-
quality simulations of user behaviors.

2 SETTINGS AND FRAMEWORK
2.1 Interactions between Users and the News

Recommender
We focus on a typical and real-world setting in news recommenda-
tion and describe the interactions between the users and the news
recommender in this subsection. As shown in Fig. 1, once a user

User 𝑢News Recommender

Recommended news list 𝐿𝑡

Impression 𝐼𝑡

General interest 𝑖𝑢

+

Clicking behaviors

Figure 1: Interactions between the news recommender and
the user 𝑢 at time step 𝑡 .

opens a news website or application, the news recommender will
select a list of news from a large candidate set that is continually
updated with the latest news, and present them to the user. Next,
the user will selectively click and read them according to his/her
interests. Note that users have personalized interests, which are un-
known to the recommender. Then, the recommender will improve
the selected news list by considering the clicked news in previous
interactions, and present them to the user. The interaction goes
on until the user leaves the news website or application. Here, a
list of news with clicked/unclicked labels composes an impression
𝐼 = (𝑛+1 , . . . , 𝑛

+
𝑖
, 𝑛−
𝑖+1, . . . , 𝑛

−
|𝐼 |), where 𝑛

+ and 𝑛− are clicked and
unclicked news respectively, and | · | denotes the size of the list, and
thus one round of interactions forms an impression.

2.2 Partially Observable Markov Decision
Process

We next give a mathematical framework to formulate the inter-
action between the user and the news recommender described
above. First, since we try to apply RL algorithms to optimize the
recommendation policy, the news recommender and users natu-
rally correspond to the RL agent and the environment in general
RL interaction system respectively. Then, under this setting, users
with personalized interests lead to different state transition func-
tions and Markov Decision Processes (MDPs), which raises great
difficulties for recommendation policy learning at the agent side.

Here, we propose to introduce the partially observable Markov de-
cision process (POMDP) to solve this problem. Particularly, we merge
the user-specific information into states. Note that this information
is used for modeling different users at the user side, and should
be unknown for the recommender. Hence, it is appropriate to use
POMDP rather than MDP to model the interaction and handle the
unknown information. Specifically, POMDP is a generalization of
the MDP, which emphasizes that states in the environment are not
fully observable for the RL agent and the agent can only receive
observations from the environment. Formally, it can be defined
as a 7-tuple ⟨𝑆,𝐴,𝑇 , 𝑅,Ω,𝑂,𝛾⟩, where 𝑆 is the state space, 𝐴 is the
action space, 𝑇 : 𝑆 × 𝐴 ↦→ 𝑆 is the state transition function, 𝑅 is
the reward function, Ω is the observation space, 𝑂 : 𝑆 ↦→ Ω is the
observation function based on states, 𝛾 is the discount factor for

MINDSim: User Simulator for News Recommenders WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

𝑒5

…

𝑒3 𝑒4 𝑒𝑚…𝑒1 𝑒2

𝑔𝑚𝑔4𝑔4𝑔3𝑔2𝑔1

…

FFN FFN FFN FFN FFN FFN

𝑒′4𝑒′2 𝑒′3 𝑒′𝑘−1…ℎ 𝑒′1

FFN FFN FFN FFN FFN FFN

Mean Pooling

…

…

𝑒′2 𝑒′3 𝑒′4 𝑒′𝑘−1 𝑒′𝑘

𝑒2
𝑐

𝑒𝑙
𝑐

…

𝑒1
𝑐

𝑒𝑙
𝑐

𝑒1
𝑐

𝑒𝑙
𝑐

𝑒1
𝑐

𝑒𝑙
𝑐

𝑒1
𝑐

𝑒𝑙
𝑐

𝑒1
𝑐

𝑒𝑙
𝑐

… … … … …

𝑔′𝑘𝑔′5𝑔′4𝑔′3𝑔′2𝑔′1

𝑒′1

News Text Processor

Transformer Layer

(Can Stack More)

Transformer Layer

(Can Stack More)

Candidate

News Embeddings

…

Encoder

Decoder

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛𝑚

𝑛′1 𝑛′2 𝑛′3 𝑛′4 𝑛′5 𝑛′𝑘

(a) Model Architecture.

Encoder

𝑣𝑢
𝑟𝑒𝑎𝑙

Decoder

Discriminator

Generator

𝑣𝑢
𝑓𝑎𝑘𝑒

𝑒2
ℎ𝑒1

ℎ 𝑒|𝐻𝑢|
ℎ

…

…

…

History Clicked News

of User 𝑢

Reconstructed

History Clicked News

Encoder

ℎ

Decoder

𝑒1,1
+𝑣𝑢 𝑒𝑡−1,𝑚

+
…

…

…

Clicked News

Before Time 𝑡

Clicked News

in 𝐿𝑡

First Stage Second Stage

(b) Two Stages.

Figure 2: Illustration of the proposedMINDSim simulator for news recommenders.

future rewards. Targeting at the news recommendation problem,
we define the key elements in the 7-tuple as follows:

Observation 𝑜 contains the information that the recommender
can see and needs to be considered when taking actions. We design
the observation as the impression sequence. At time step 𝑡 , 𝑜𝑡 =

(𝐼1, . . . , 𝐼 |𝑜𝑡 |) denotes impressions regarding the specific user before
this time step, and 𝑜𝑡+1 = 𝑜𝑡 ⊕ 𝐼 ′, which means that the observation
is updated with the newly generated impression 𝐼 ′ at time step 𝑡 .
Observation 𝑜1 can be empty if the targeted user is new.

State 𝑠 contains full information at the user side. We assume
that each user 𝑢 has a general unchanged interest 𝑖𝑢 , and state 𝑠
is designed as the combination of the observation and the user
interest, i.e., 𝑠𝑡 = (𝑜𝑡 , 𝑖𝑢). Note that for a new user, state 𝑠1 = (∅, 𝑖𝑢),
and user interest changes are modeled in the transition function.

Action 𝑎 at time step 𝑡 is a list of news 𝐿𝑡 = (𝑛𝑡,1, . . . , 𝑛𝑡, |𝐿𝑡 |) that
the recommender presents to the user, i.e., an impression without
clicked and unclicked labels.

State transition function 𝑇 models clicking behaviours of
users. It takes state 𝑠𝑡−1 and action 𝑎𝑡−1 as inputs. Since action
is an impression without labels and the state is updated with the
newly collected impression, the output of the transition function,
i.e., the next state 𝑠𝑡 , corresponds to the clicking behaviors of the
user, providing each impression with clicked or unclicked labels.

2.3 Problem Definition
In this paper, we focus on building a user simulator for news recom-
mendation, and the problem is defined as follows. Generally, given
an offline dataset containing some users and their behaviors, we
learn a state transition function in the POMDP, representing the
environment side in the RL interaction system. Learning a reward
function can be defined as another problem, and is not the focus of

this paper. We use U = {𝑢1, 𝑢2, . . . , 𝑢 |U |} to denote the user set in
the offline dataset, and a specific user in this set is denoted as 𝑢 1.
Each user has a clicking history sequence 𝐻𝑢 = (𝑛ℎ1 , 𝑛

ℎ
2 , . . . , 𝑛

ℎ
|𝐻𝑢 |)

and an impression sequence 𝐼𝑀𝑃𝑢 = (𝐼1, 𝐼2, . . . , 𝐼 |𝐼𝑀𝑃𝑢 |) ordered in
time, where 𝑛ℎ∗ is one of the clicked news in the history and the
impression is defined in Section 2.1.

For the state transition function learning problem, we notice that
state 𝑠𝑡 = (𝑜𝑡 , 𝑢) changes over time and 𝑢 is unchanged. Thus, this
problem can be naturally decomposed into two sub-problems, i.e.,
general user interest modeling and clicking behavior simulation.
They are handled in two stages respectively byMINDSim as follows.

In the 1st stage, we construct a hidden space for users, and each
user 𝑢 can be represented by a hidden vector 𝑣𝑢 sampled from the
space. Here, we first use the user’s history clicks 𝐻𝑢 to construct
𝑣𝑢 , and thus 𝑣𝑢 contains information regarding this user’s general
interests. Then, a generative model is learned to model the distribu-
tion of 𝑣𝑢 , representing the hidden space for users, and user hidden
vectors can be sampled using this generative model.

In the 2nd stage, we use an encoder-decoder architecture to take
complex and fast user interest changes into consideration, and based
on the sophisticated modeling for user interest changes, MINDSim
can simulate clicking behaviors close to real users. Here, for time
step 𝑡 , inputs of model in this stage include the user-specified hid-
den vector 𝑣𝑢 , impressions (𝐼1, 𝐼2, . . . , 𝐼𝑡−1) collected before time
step 𝑡 , and candidate news list 𝐿𝑡 provided by the recommender
(i.e., all news in 𝐼𝑡 without labels). The output of the model is the
clicked news list, and thus an action 𝐿𝑡 (recommended news list) is
converted into an impression 𝐼𝑡 (news list with clicked or unclicked
labels) in the 2nd stage.

1In this paper, user index is omitted for simplify.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Xufang Luo, Zheng Liu, Shitao Xiao, Xing Xie, and Dongsheng Li

3 METHODOLOGY
In this section, we introduceMINDSim in detail. First, since both two
stages can be generally regarded as sequence-to-sequence processes,
we use the same network architecture for both stages with only
minor differences, and we describe the architecture in the first
subsection. Then, we show how this architecture can be applied to
these two stages in the following two subsections separately. Finally,
we summarize the training and inference process of MINDSim.

3.1 Model Architecture
Generally, we use two architectures in MINDSim. First, a large
pre-trained language model is utilized as the news text processor,
and every news 𝑛 can be converted to a vector 𝑒 using it. Second,
sequences of news embedding vectors can be processed by the
encoder-decoder. Both architectures are built upon transformer
layers. As a result, we’ll briefly introduce the transformer layer first;
then, we’ll introduce the detailed workflows of the text processor
and the encoder-decoder architecture. Finally, we’ll present the loss
function used to train the encoder-decoder model.

3.1.1 Transformer Layer. Since transformer-based architectures
show great power in various domains, we adopt the transformer
layer as the basic component of the model architecture. We use
similar architecture as in [41] and give a brief introduction here,
with more details shown in Appendix B.

One transformer layer contains two successive modules, i.e.,
multi-head self-attention and position-wise feed-forward network,
denoted as MultiHeadAtten and FFN, respectively. Multiple trans-
former layers can be stacked to enable learning a more complex
relationship between inputs, and calculations in one layer are con-
ducted as follows:

Ĥ𝑖 = LN(MultiHeadAtten
(
H𝑖) + H𝑖

)
,

H𝑖+1 = LN(FFN
(
Ĥ𝑖) + Ĥ𝑖

)
,

(1)

in which H𝑖 and H𝑖+1 are the input and output hidden states of
the 𝑖-th layer; LN indicates the layer-norm. Here, H1 is the input
embedding matrix, obtained by stacking the embedding sequence
(𝑒1 +𝑝1, 𝑒2 +𝑝2, . . . , 𝑒𝑚 +𝑝𝑚), where 𝑒𝑖 is the embedding of the 𝑖-th
input (word or news), and 𝑝𝑖 is the learnable positional embedding
to address chronological sequence.

3.1.2 News Text Processor. We use a pre-trained language model,
which is widely recognized for its high capability in natural lan-
guage understanding, as the news text processor. Particularly, we
leverage one of the SOTA BERT-like text encoders, UniLMv2-base
[3] as our backbone network. In this model, the input word embed-
dings are iteratively processed by 12 cascaded Transformer layers.
We perform mean-pooling over the last layer’s hidden states (H13)
and linearly transform the result into our news embedding:

𝑒 = W𝑒MeanPooling(H13), (2)

whereW𝑒 is the linear transformation matrix.

3.1.3 Encoder-Decoder. As shown in Fig. 2(a), the proposed encoder-
decoder architecture is also mainly composed of transformer layers.
Generally, the encoder maps a sequence of news into a hidden vec-
tor, and the decoder generates a sequence of news starting from
the hidden vector.

Encoder: The input sequence of news (𝑛1, 𝑛2, . . . , 𝑛𝑚) is first
converted into embeddings (𝑒1, 𝑒2, . . . , 𝑒𝑚) by the text processor.
Next, stacked transformer layers can learn complex transition pat-
terns between them, and covert it to a hidden vector sequence,
denoted as (𝑔1, 𝑔2, . . . , 𝑔𝑚). Then, we use a mean pooling operator
to aggregate these hidden vectors, i.e.,

ℎ = MeanPooling(𝑔1, 𝑔2, . . . , 𝑔𝑚) . (3)

Decoder: As a usual decoding process, the output news embed-
ding 𝑒 ′𝑡 at time step 𝑡 is used as the input for the next time step.
And here hidden vector ℎ is taken as the input for the first time
step. However, the output news cannot be directly chosen from a
fixed candidate set via a softmax layer as common practice in NLP
tasks, since the word set is usually fixed, but the candidate news set
is continually updated with the latest news. Therefore, the output
news is selected via ranking inMINDSim. More specifically, stacked
transformer layers take the input news embedding sequence, and
output hidden vectors (𝑔′1, 𝑔

′
2, . . . , 𝑔

′
𝑘
). Meanwhile, the candidate

news set (𝑛𝑐1, 𝑛
𝑐
2, . . . , 𝑛

𝑐
𝑙
) is converted into candidate embeddings

(𝑒𝑐1, 𝑒
𝑐
2, . . . , 𝑒

𝑐
𝑙
) using the text processor. After that, we compute the

score for each candidate news in every position via dot product
between every hidden vector 𝑔′ and every candidate embedding 𝑒𝑐 :

M𝑠𝑐𝑜𝑟𝑒 = G′ (E𝑐)⊺ =


𝑔′1
𝑔′2
.
.
.

𝑔′
𝑘


[
(𝑒𝑐1)⊺ ; (𝑒𝑐2)⊺ ; . . . ; (𝑒𝑐𝑙)

⊺] . (4)

where G′ ∈ R𝑘×𝑑𝑒 , (E𝑐)⊺ ∈ R𝑑𝑒×𝑙 , and 𝑑𝑒 is the embedding size.
Thus, we obtain scores for all candidate news (with index 1 to 𝑙)
at each position (with index 1 to 𝑘). Then, the candidate news are
ranked according to the matrixM𝑠𝑐𝑜𝑟𝑒 ∈ R𝑘×𝑙 . At the first position,
news with the max score in this position (1st row of M𝑠𝑐𝑜𝑟𝑒) is
ranked as the first one in the final result. Next, for the second
position, the one with the max score here (2nd row of M𝑠𝑐𝑜𝑟𝑒)
among the remaining candidates expect the first chosen one is
ranked as the second one in the final result. Then, by following such
a rule, we can obtain news embeddings at every position, forming
(𝑒 ′1, 𝑒

′
2, . . . , 𝑒

′
𝑘
), which is shifted and used as inputs for the decoder.

Note that we use the teacher forcing strategy [22] in the training
stage, and use outputted hidden vectors by the transformer layers as
inputs during test time, since ground-truth is not available during
test time. Finally, corresponding news sequence of the selected
embeddings (𝑛′1, 𝑛

′
2, . . . , 𝑛

′
𝑘
) are taken as decoded news.

By treating the clicked news sequence like a natural language
sentence, information and relationships between previously clicked
news can be effectively captured by the model to predict the next
clicked news. In this way, the decoding process canmodel the transi-
tion dynamics among news in clicked sequences. Such sophisticated
modeling can help MINDSim to have a precise understanding of
user interest changes.

3.1.4 Model Learning. We apply cross entropy loss to train the
model. Suppose that there are |𝐷 | sequence pairs in the dataset,

MINDSim: User Simulator for News Recommenders WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

then the loss function is defined as follows:

L =

|𝐷 |∑︁
𝑎=1

𝑘∑︁
𝑏=1

(
−

𝑙∑︁
𝑐=1

𝑦
(𝑎)
𝑏,𝑐

log𝑝𝑠𝑐𝑜𝑟𝑒
𝑎,𝑏,𝑐

)
𝑝𝑠𝑐𝑜𝑟𝑒
𝑎,𝑏

= softmax
(
𝑚𝑠𝑐𝑜𝑟𝑒

𝑎,𝑏

)
,

(5)

where𝑚𝑠𝑐𝑜𝑟𝑒
𝑎,𝑏

is the 𝑏-th row of the 𝑎-th score matrixM𝑠𝑐𝑜𝑟𝑒
𝑎 , and

𝑦𝑎,𝑏 is the corresponded one-hot vector of the ground-truth label.
We now summarize the encoder-decoder architecture used in

MINDSim. First, the input news sequence is converted to embedding
vectors by the text processor. Next, we use stacked transformer
layers followed by a mean pooling operator to encode information
from inputs into an internal hidden vector. After that, the decoding
process starts from the internal hidden vector, and a sequence of
hidden vectors is generated by stacked transformer layers in the
decoder. Finally, news in the candidate set are ranked according to
scores calculated by the dot product of generated hidden vectors
and candidate news embeddings, and the model is optimized via
the cross entropy loss. Note that we use separate parameters for
the encoder and decoder to address that they have different effects.

3.2 1st Stage: User Hidden Space Construction
As shown in Fig. 2(b), in this stage, the user hidden space is learned
by the following two steps.

3.2.1 Reconstruction. Given a user 𝑢 and the corresponding click-
ing history sequence 𝐻𝑢 = (𝑛ℎ1 , 𝑛

ℎ
2 , . . . , 𝑛

ℎ
|𝐻𝑢 |), the user hidden

vector 𝑣𝑢 is generated by the encoder and learned via the recon-
struction task. Specifically, both the input and output sequence to
the encoder-decoder are 𝐻𝑢 during training. The candidate news
set consists of 𝐻𝑢 as clicked news and unclicked news sampled
from other users’ histories. Thus, after the mean pooling, the hid-
den vector ℎ𝑢 contains information of all news in 𝐻𝑢 . Moreover, to
control the scale of values in the hidden vector, we further use a
tanh activation function, i.e., 𝑣𝑢 = tanh(ℎ𝑢). user hidden vector 𝑣𝑢
is taken as the start vector for the decoding process.

Therefore, 𝑣𝑢 aggregates information from the user’s historical
clicked news, and can reflect the user’s general interest 𝑖𝑢 . So far,
we find a way to map a user to an example in the hidden space.
Next, the hidden space is constructed via learning the distribution
of 𝑣𝑢 .

3.2.2 GAN. We use Wasserstein GAN [1] to learn the distribution
of 𝑣𝑢 and then generate new user’s hidden vectors by sampling from
the distribution. Real users’ hidden vectors generated with user
histories in the dataset are denoted as 𝑣𝑟𝑒𝑎𝑙𝑢 , while those generated
by the generator 𝐺 are denoted as 𝑣 𝑓 𝑎𝑘𝑒𝑢 . And the discriminator
𝐷 tries to classify real or fake hidden vectors. Then, we have the
following learning objective:

min
𝐺

max
𝐷

E
𝑣𝑟𝑒𝑎𝑙𝑢 ∼P𝑟𝑒𝑎𝑙

[
𝐷 (𝑣𝑟𝑒𝑎𝑙𝑢)

]
− E

𝑣
𝑓 𝑎𝑘𝑒
𝑢 ∼P𝑓 𝑎𝑘𝑒

[
𝐷 (𝑣𝑓 𝑎𝑘𝑒𝑢)

]
, (6)

where P𝑓 𝑎𝑘𝑒 is the model distribution implicitly defined by 𝑣 𝑓 𝑎𝑘𝑒𝑢 =

𝐺 (𝑧) and 𝑧 is the noise vector. Besides, we also adopt gradient
penalty to improve GAN training [13]. After training, the user
hidden space is constructed and we can use the learned generator
to sample user hidden vectors beyond the offline dataset.

3.3 2nd Stage: User Behavior Prediction
Based on the learned general user interests, we next use the model
to predict user behaviors with user interests changes modeled via
the encoder-decoder architecture.

For time step 𝑡 , user 𝑢, and its hidden vector 𝑣𝑢 , the collected im-
pressions of this user before time step 𝑡 is denoted as (𝐼1, 𝐼2, . . . , 𝐼𝑡−1),
and current recommended news list is denoted as 𝐿𝑡 . Every impres-
sion contains clicked news 𝑛+ and unclicked new 𝑛−, and news
in 𝐿𝑡 are unlabeled. The encoder takes the general user interest
and clicked news before 𝑡 into consideration, and accordingly gath-
ers information in them. Hence, the input sequence in this stage
is (𝑛+1,1, 𝑛

+
1,2, . . . , 𝑛

+
2,1, 𝑛

+
2,2, . . . , 𝑛

+
𝑡−1,1, 𝑛

+
𝑡−1,2, . . .). The decoding pro-

cess simulates user clicking behaviors, so the clicked news in 𝐿𝑡
consist of the output sequence, denoted as (𝑛+

𝑡,1, 𝑛
+
𝑡,2, . . . , 𝑛

+
𝑡,𝑘

), and
𝐿𝑡 is the candidate news set, since user can only choose from rec-
ommended news. Therefore, candidate news set 𝐿𝑡 is converted
into an impression 𝐼𝑡 , and the observation is updated accordingly.

In this stage, MINDSim models different kinds of user inter-
est changes via the encoder-decoder architecture, to address com-
plex and fast changes in the news recommendation scenario. First,
clicked news after the user is generated is considered by the en-
coder, and thus the hidden vector after the mean pooling always
contains information regarding updated user interests. Then, for
recommended news in the current time step, user behavior, in which
news is clicked one by one, is modeled as a decoding process. Here,
previously clicked news can influence the next click. For instance, if
a user’s interest is the same as before, the user may keep reading the
sports news, or if the user’s interest changes quickly, he/she may
read entertainment news after reading sports news. Various kinds
of changes are modeled as transitions between candidate news via
the decoding process, and transition patterns can be learned from
the data.

3.4 Summary
The training process in MINDSim is summarized here. First, using
𝐻𝑢 of all users, a reconstruction model is learned to map 𝐻𝑢 to 𝑣𝑢 .
Then, based on 𝑣𝑢 generated from existing users in the dataset, the
encoder-decoder model in the 2nd stage is learned using impression
sequences of those users. Besides, we build a GAN based on 𝑣𝑢 of
users in the dataset to enable MINDSim to generate new users.

During inference, we first use GAN to generate a user hidden
vector, and then use the model in the 2nd stage to encode newly
clicked news and predict clicks via decoding. In this way, users are
generated using GAN, and their behaviors are obtained using the
encoder-decoder in the 2nd stage. Hence, MINDSim can simulate
users and be used as the environment in the interaction in Fig. 1.

4 EXPERIMENTS
In this section, we conduct detailed experiments to answer the
following research questions (RQs):

RQ1: Can MINDSim model user behaviors appropriately and
accurately?

RQ2: Can MINDSim simulate users whose behaviors are similar
to real users?

RQ3: Can MINDSim go beyond the fixed offline dataset?

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Xufang Luo, Zheng Liu, Shitao Xiao, Xing Xie, and Dongsheng Li

Time

Train
(Nov. 9th ~ Nov. 12nd)

Valid
(Nov. 13rd)

Test
(Nov. 14th ~ Nov. 15th)

Users

268244 (5.97)

44915 (1)

95161 (2.12)

Figure 3: Separation of the dataset. Number of users are the
proportion are labelled.

4.1 Data Processing and Statistics
We use a large-scale English news recommendation dataset, i.e.,
MIND, in the experiments. MIND was collected from anonymized
behavior logs of real users during a week (from Nov. 9th, 2019
to Nov. 15th, 2019) and serves as a benchmark dataset for news
recommendation in many research works [9, 42, 44]. Note that
we only use impression and news data in MIND dataset, while
entities and relations are ignored in this work since we don’t focus
on language understanding. We also include some discussions on
news recommendation datasets in Appendix C.1.

We process the original MIND dataset by following steps to make
it suitable for building a user simulator. First, we group impressions
in MIND by the user id. In this way, we obtain a large user set,
and for every user, the history clicked news before the collection
week, and related impressions during the collection week are listed.
Each impression contains clicked news and unclicked news, and
impressions are sorted by time. Then, we utilize some filters to
remove some unqualified data. Specifically, users with less than two
historical clicked news or less than two impressions are removed
from the dataset. Finally, because we cannot access true labels of
MIND’s testing data, we merge users in training and validation
data, and create a new separation for them. As shown in Fig. 3,
besides users, the impression time also has a disjoint separation to
avoid information leakage, since news is extremely time-sensitive.
More specifically, if #impressions of the user in the training data
duration (i.e., Nov. 9th to Nov. 12nd) is highest compared with
other durations, this user will be regarded as training data. Then,
according to this rule, 268244 users with their impressions fromNov.
9th to Nov. 12nd are used as training data, while their impressions
at other time are discarded. This process is also applied to validation
and testing data, and thus we obtain a new separation for MIND
dataset, which is used in all experiments in this paper.

The average #news per impression in the processed dataset is
46.6, which is also the average size of the changing action space.
Besides, the average #clicked news per impression is 1.7. Such
sparse labels indicate the difficulties for algorithms to handle.

4.2 Predictive Performance
To clarify that the utilized encoder-decoder architecture is predic-
tive for user behaviors and can model user behaviors appropriately
and accurately, we conduct the following experiments. First, we
train the auto-encoder in the 1st stage by reconstructing users’
history clicks in the training data. Then, we use the learned user
hidden vectors to train the encoder-decoder in the 2nd stage. Fi-
nally, we run the model trained in the 2nd stage on the testing data.

Table 1: Predictive performance on testing data.

Method nDCG MRR Precision

@1 @5 @10 @1 @5 @10 @1 @5 @10

FM 0.310 0.419 0.448 0.185 0.314 0.339 0.185 0.121 0.088
DeepFM 0.313 0.424 0.452 0.190 0.320 0.344 0.190 0.123 0.088
BPR 0.314 0.423 0.453 0.189 0.319 0.344 0.189 0.123 0.088
NCF 0.317 0.425 0.454 0.194 0.323 0.347 0.194 0.122 0.088
SASRec 0.309 0.416 0.444 0.184 0.310 0.335 0.184 0.118 0.085
GAUM 0.298 0.405 0.434 0.168 0.294 0.320 0.168 0.115 0.085
MINDSim 0.320 0.429 0.458 0.198 0.327 0.352 0.198 0.124 0.089

To assess if the model can predict real user behaviors accurately,
performances are evaluated via ranking metrics described below.
Note that we do not incorporate GAN here, since the ground-truth
clicked news for newly generated users is unknown. Moreover, due
to the limitation of computational resources, we cannot fine-tune
the news text processor (i.e., the large pre-trained language model)
for every method below. Hence, we first fine-tune the text processor
using SpeedyFeed [46] on the training data, and then fix its weights
for all methods. The news embedding size is 64.

4.2.1 Compared Baselines. We use multiple widely used state-of-
the-arts as baselines:

• Factorization Machines (FM) [33]: FM is a general predictor
for recommendation, which combines the advantages of SVM
with factorization models.

• Deep Factorization Machines (DeepFM) [14]: DeepFM lever-
ages deep neural networks for feature learning to make FM
more powerful.

• Bayesian Personalized Ranking (BPR) [34]: BPR uses a generic
optimization criterion for personalized ranking to maximize
posterior.

• Neural Collaborative Filtering (NCF) [15]: NCF replaces the
inner product in matrix factorization with neural networks
to learn the user-item interaction function.

• Self-Attentive Sequential Recommendation (SASRec) [21]:
SASRec is a self-attention based sequential model which
seeks to identify relevant items from user’s history clicks for
predicting the next item.

• Generative Adversarial User Model (GAUM) [8]: GAUM is
an imitation learning based user simulator that tries to learn
user behaviors in a generative adversarial way.

For FM, DeepFM, BPR, and NCF, user embeddings are required
and here we calculate the user embedding via mean pooling over
embeddings of user’s clicked news. And to make the model be
aware of new information, the user embedding is updated once the
new impression is generated. Besides, since weights of the news
embedding model are fixed, we further introduce two additional
linear layers, whose hidden dimension is the same as the embed-
ding dimension, serving as embedding layers for users and items
respectively in these four baselines.

4.2.2 Evaluation Metrics. We adopt three metrics to evaluate the
performance of methods. The first one is normalized Discounted
Cumulative Gain (nDCG), which takes true and predicted relevance
scores as inputs to measure ranking quality. Here, suppose there

MINDSim: User Simulator for News Recommenders WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

are 𝑁 clicked news, the relevance score of the news ranked at𝑚 is
set to 𝑁 −𝑚 + 1. Then, nDCG@k is calculated as:

nDCG@k =
DCGk
IDCGk

=

∑𝑘
𝑖=1

𝑟
𝑝𝑟𝑒𝑑

𝑖
log(1+𝑖)

IDCGk
, (7)

where 𝑟𝑝𝑟𝑒𝑑
𝑖

is the predicted relevance scores, and IDCGk can be
calculated as DCGk using 𝑟𝑡𝑟𝑢𝑒· . The second used metric is mean
reciprocal rank (MRR), which is calculated as:

MRR =
1
|𝐷 |

|𝐷 |∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

, (8)

where |𝐷 | is the number of sequences in the dataset, and 𝑟𝑎𝑛𝑘𝑖 is
the rank position of the first news in the ground-truth ranking list
of the 𝑖th sequence. The third metric is Precision. With these three
metrics, we can have a reasonable and comprehensive evaluation
of the ranking quality of methods.

4.2.3 Implementation Details. Our implementation is based on
RecBole [43], which is a unified recommendation library and pro-
vides many existing models. Hyper-parameters are set to be the
same across methods, and can be found in Appendix C.

4.2.4 Results. Results of all methods are listed in Table 1. We can
observe that MINDSim outperforms baselines, which demonstrates
that the encoder-decoder architecture in MINDSim can accurately
predict user’s clicks and help to appropriately model user behaviors
with high quality. Results also show that MINDSim has strength
over other user simulator, which indicates the difficulty of build-
ing a simulator for news recommendation, and the importance of
capturing fast and complex user interest changes in this task.

4.3 Simulation Results
We assess the simulation quality of MINDSim and analyze the simi-
larities between generated users and real users in this experiment.

We use the MINDSim model obtained from experiments in the
last sub-section and conduct the following steps. First, generated
hidden vectors by the auto-encoder in the 1st stage are used to train
the GAN. Then, we use the trained GAN and the encoder-decoder in
the 2nd stage to generate users and their clicking behaviors. In our
problem, the recommender provides recommended news list 𝐿 to
users, and then users’ clicking behaviors can be obtained based on
𝐿. Thus, the recommender should keep the same for fairness when
comparing the behaviors of real users and the simulator. However,
in the dataset, recommended news lists are provided by Microsoft
News service, so we cannot effortlessly access this full policy and
use it to interact with newly generated users by MINDSim. Here,
we solve this problem by using the testing data to approximately
recover the recommendation policy as follows. First, users in the
testing data are mapped to the hidden space via the trained auto-
encoder. Then, when a new user hidden vector is generated by the
GAN, we compute the Euclidean distance between the generated
user and all user vectors in the testing data, and recommended lists
of the user with minimum distance are chosen as data used for the
newly generated user. Hence, the clicking behaviors of real users
and the simulator can be compared under the same recommender.

(a) User hidden vectors. (b) Clicked news embeddings.

Figure 4: Visualization of simulation results.

100 1000 10000

Num ber of News

1.0

2.0

3.0

4.0

5.0

S
in

k
h

o
rn

 D
iv

e
rg

e
n

c
e

MINDSim

MINDSim (NO Decoder)

MINDSim (NO Encoder)

Figure 5: Sinkhorn Divergences of different models.

4.3.1 Visualization. As shown in Fig. 4, we provide two-dimensional
t-SNE visualizations for both user hidden vectors generated by the
GAN, and clicked news embeddings generated by the GAN and
encoder-decoder. Fig. 4(a) shows that the auto-encoder in the 1st
stage can successfully map users to the hidden space, and the GAN
can learn the distribution of user hidden vectors. Hence, new users
can always be sampled from the space via the trained GAN. Fig. 4(b)
shows that the clicked news of generated users is similar to real
users in the dataset. This result demonstrates that MINDSim can
generate users whose behaviors are similar to real users, and thus
the core problem in building a user simulator for news recommen-
dation is addressed.

4.3.2 Quantitative Comparison. We further provide some quanti-
fied comparisons to assess the simulation quality and analyze the
importance of every component in MINDSim. Generally, besides
GAN, MINDSim consists of two parts, i.e., encoder and decoder.
Hence, we set two baselines here:

• MINDSim (NO Encoder): The encoder is used for aggregat-
ing relevant information in impressions before the current
time step. Here, the encoder is removed and thus, such in-
formation will not be considered by the model.

• MINDSim (NO Decoder): The decoder trained in the 2nd
stage is removed here, and outputs of the encoder (i.e., hidden
vector ℎ after the mean pooling operator) are directly used
to calculate the score for candidate news via dot product.

Two baseline models are trained using the training data via identical
steps as MINDSim. And clicking behaviors are generated using
testing data as before.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Xufang Luo, Zheng Liu, Shitao Xiao, Xing Xie, and Dongsheng Li

Table 2: Performances in generalization experiments. Im-
provements are emphasized in italic with the “+” sign.

Method Data nDCG MRR Precision

@1 @10 @1 @10 @1 @10

FM Original 0.291 0.424 0.156 0.307 0.156 0.083
Augmented 0.295 + 0.430 + 0.162 + 0.313 + 0.162 + 0.084 +

DeepFM Original 0.300 0.434 0.170 0.320 0.170 0.084
Augmented 0.303 + 0.438 + 0.175 + 0.326 + 0.175 + 0.085 +

BPR Original 0.300 0.434 0.170 0.319 0.170 0.084
Augmented 0.302 + 0.437 + 0.172 + 0.323 + 0.172 + 0.085 +

NCF Original 0.303 0.438 0.174 0.326 0.174 0.085 +
Augmented 0.305 + 0.439 + 0.177 + 0.327 + 0.177 + 0.084

SASRec Original 0.293 0.423 0.158 0.305 0.158 0.080
Augmented 0.300 + 0.430 + 0.169 + 0.315 + 0.169 + 0.082 +

We use the unbiased Sinkhorn divergence [12] to quantify the
similarity between behaviors of generated users and real users.
Sinkhorn divergences, used in many generation tasks [30, 31], are
positive and definite approximations of Optimal Transport dis-
tances, and can be estimated by samples. Since user behaviors are
samples generated from some underlying distributions, smaller
Sinkhorn divergences indicate more similar behaviors.

We calculate Sinkhorn divergences with the different number
of samples (i.e., news) to eliminate sampling bias in estimating,
and show them in Fig. 5. We can observe that: 1) User behaviors
generated by MINDSim have much lower divergences than base-
lines regardless of the number of samples, which demonstrates
that MINDSim can simulate users and their behaviors better, and
indicates the importance of both the encoder and the decoder; 2)
MINDSim (NO Encoder) performs much worse than other two
methods, which shows that taking information of continuously
generated impressions into consideration is important for behavior
prediction, and is necessary for modeling fast user interest changes
in building the user simulator of news recommendation.

4.4 Generalization Performances
We design the following experiments to show that MINDSim can
generate new users beyond the fixed offline dataset, which also
answers RQ3 at the beginning of the experiment section.

First, we randomly sample a small set of users (i.e., 2000 users)
from the training data. Next, we augment this subset with retrained
MINDSim. Specifically, we generate 1000 user hidden vectors using
GAN, representing 1000 new users. Their clicking behaviors are
simulated using the same way as visualization, i.e., we find the user
with the smallest Euclidean distance among 2000 users, and use
the corresponding impressions as recommended lists for the new
user. Therefore, we obtain 1000 users whose hidden vectors and
clicking behaviors are generated by MINDSim. Then, we use the
original dataset containing 2000 users and the augmented dataset
containing 3000 users (i.e., 2000 real users and 1000 simulated users)
to train some recommendation models (i.e., FM, DeepFM, BPR, NCF,
and SASRec) respectively. Finally, model performances are assessed
on the testing data using ranking metrics.

We list the ranking metrics of all methods in Table 2. Results
show MINDSim can help to promote almost every metric for all
recommendation methods on the testing data. The promotion on
generalization performance demonstrates that MINDSim can go
beyond and enhance the dataset by simulating new users and their
clicking behaviors, which are similar but different from the fixed
dataset. Hence, the core priority in building a user simulator is
effectively tackled by MINDSim.

5 RELATEDWORK
News Recommendation Algorithms: Online news platforms
have become important media of information access. Considering
that there are massive volumes of news articles on the news plat-
forms and fresh content are being generated at a rapid speed, it is
critical to make personalized news recommendation based on each
user’s individual interest. In recent years, a great deal of works
has been dedicated to the development of news recommendation
systems [24, 26, 29, 49]. Our work differs from these works in that
we focus on building the user simulator for news recommenders,
rather than the recommender itself.

RL for Recommendation: Research works regarding RL for
recommendation can be generally categorized into two groups. In
the first one, to optimize some long-term objectives, researchers
try to apply RL algorithms to different recommendation scenarios
and problems that have not been applied before. These scenarios
include E-commerce [4, 18], online personalized news recommen-
dation [49], video recommendation [6] and so on. The second type
of research works target on solving some problems when RL is
applied to the scenario. Problems include but are not limited to
class imbalance (negative feedback is much more than positive
ones) [48], dynamic and unstable environments with high-variance
and distribution shifting [7], extremely large action spaces [5]. The
target of these works is different from the focus of this paper, since
we try to build a user simulator for news recommendation. Learning
RL agents using the simulator is the future work.

User Simulators for Recommendation: This line of works is
mainly related to model-based RL algorithms in the RL taxonomy,
where the dynamics model is learned and used to interact with
the RL agent to improve sample efficiency. Some works put the dy-
namics model learning and the RL agent learning problem into one
framework. For example, [2, 8, 38] use the generative framework
based on Generative Adversarial Imitation Learning [17]. [50] uses
a World Model as the customer simulator, and use Dyna-Q [39]
based algorithm to train the recommendation policy.

Some other works only focus on building the simulator or envi-
ronment reconstruction. [47] proposes a user simulator for evaluat-
ing conversational recommenders. [35] develops RecoGym,which is
an environment for product recommendation in online advertising,
but it is not a full RL set-up. [37] proposes an deconfounded envi-
ronment reconstruction method for multi-agent RL based recom-
mender. [20] develops a recommender simulation platform, which
emphasizes configurability and targets on general recommenders.

Our work differs from these works in two aspects. First, we
focus on the news recommendation problem, which has not been
addressed by previous works. Andwe further introduce transformer
layers and the encoder-decoder architecture to handle fast and

MINDSim: User Simulator for News Recommenders WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

complex user interest changes. Second, we use a POMDP to model
the recommendation policy learning problem and handle users
with different interests, and thus building the user simulator can
be regarded as a supervised learning problem.

6 CONCLUSION
We propose a user simulator, namely MINDSim, for news recom-
menders. Different from previous works for user simulators,MIND-
Sim designs two stages to tackle the “new item” issue in news
recommendation and the “new user” problem in building the simu-
lator, respectively. In the 1st stage, MINDSim constructs a hidden
space for users, so that new users can be generated by sampling
from this hidden space. In the 2nd stage, MINDSim leverages an
encoder-decoder architecture to capture the fast user interest drifts
due to instantly appearing new items. Extensive experiments on
the large-scale MIND dataset well demonstrate that MINDSim can
simulate behaviors of real users with high quality.

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein genera-

tive adversarial networks. In ICML.
[2] Xueying Bai, Jian Guan, and Hongning Wang. 2019. A Model-Based Reinforce-

ment Learning with Adversarial Training for Online Recommendation. NeurIPS
(2019).

[3] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu
Wang, Jianfeng Gao, Songhao Piao, Ming Zhou, et al. 2020. Unilmv2: Pseudo-
masked language models for unified language model pre-training. In ICML.

[4] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2018.
Reinforcement Mechanism Design for e-commerce. In WWW.

[5] Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,
Yuzhou Zhang, and Yong Yu. 2019. Large-scale interactive recommendation with
tree-structured policy gradient. In AAAI.

[6] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In WSDM.

[7] Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-Hong
Tang. 2018. Stabilizing reinforcement learning in dynamic environment with
application to online recommendation. In KDD.

[8] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019. Gen-
erative adversarial user model for reinforcement learning based recommendation
system. In ICML.

[9] Jamell Dacon and Haochen Liu. 2021. Does Gender Matter in the News? Detecting
and Examining Gender Bias in News Articles. In Companion Proceedings of the
Web Conference 2021. 385–392.

[10] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. In ACL.

[11] Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition. In ICASSP.

[12] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain
Trouve, and Gabriel Peyré. 2019. Interpolating between Optimal Transport
and MMD using Sinkhorn Divergences. In The 22nd International Conference on
Artificial Intelligence and Statistics. 2681–2690.

[13] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. 2017. Improved Training of Wasserstein GANs. In NeurIPS.

[14] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. In
IJCAI.

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

[16] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[17] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
In NeurIPS.

[18] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforce-
ment learning to rank in e-commerce search engine: Formalization, analysis, and
application. In KDD.

[19] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SlateQ: A tractable

decomposition for reinforcement learning with recommendation sets. arXiv
preprint (2019).

[20] Eugene Ie, Chih wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing
Wang, Rui Wu, and Craig Boutilier. 2019. RecSim: A Configurable Simulation
Platform for Recommender Systems. arXiv preprint arXiv:1909.04847 (2019).

[21] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM.

[22] John F Kolen and Stefan C Kremer. 2001. A field guide to dynamical recurrent
networks. John Wiley & Sons.

[23] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased Offline
Evaluation of Contextual-Bandit-Based News Article Recommendation Algo-
rithms. InWSDM.

[24] Jianxun Lian, Fuzheng Zhang, Xing Xie, and Guangzhong Sun. 2018. Towards
Better Representation Learning for Personalized News Recommendation: a Multi-
Channel Deep Fusion Approach.. In IJCAI. 3805–3811.

[25] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized news
recommendation based on click behavior. In Proceedings of the 15th international
conference on Intelligent user interfaces. 31–40.

[26] Zheng Liu, Yu Xing, Fangzhao Wu, Mingxiao An, and Xing Xie. 2019. Hi-Fi Ark:
Deep User Representation via High-Fidelity Archive Network.. In IJCAI.

[27] Andrew LMaas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities
improve neural network acoustic models. In ICML.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[29] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017.
Embedding-based news recommendation for millions of users. In KDD.

[30] Giorgio Patrini, Rianne van den Berg, Patrick Forre, Marcello Carioni, Samarth
Bhargav, Max Welling, Tim Genewein, and Frank Nielsen. 2020. Sinkhorn au-
toencoders. In UAI.

[31] Gabriel Peyré, Marco Cuturi, et al. 2019. Computational optimal transport: With
applications to data science. Foundations and Trends® in Machine Learning 11,
5-6 (2019), 355–607.

[32] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732 (2015).

[33] Steffen Rendle. 2010. Factorization machines. In ICDM. IEEE.
[34] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.
[35] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros

Karatzoglou. 2018. Recogym: A reinforcement learning environment for the
problem of product recommendation in online advertising. arXiv preprint
arXiv:1808.00720 (2018).

[36] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In ICML. PMLR.

[37] Wenjie Shang, Yang Yu, Qingyang Li, Zhiwei Qin, Yiping Meng, and Jieping Ye.
2019. Environment reconstruction with hidden confounders for reinforcement
learning based recommendation. In KDD.

[38] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. 2019.
Virtual-taobao: Virtualizing real-world online retail environment for reinforce-
ment learning. In AAAI.

[39] Richard S Sutton. 1990. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Machine learning
proceedings 1990. Elsevier, 216–224.

[40] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. NeurIPS (2017).

[42] Sanne Vrijenhoek, Mesut Kaya, Nadia Metoui, Judith Möller, Daan Odijk, and
Natali Helberger. 2021. Recommenders with amission: assessing diversity in news
recommendations. In Proceedings of the 2021 Conference on Human Information
Interaction and Retrieval. 173–183.

[43] et al. Wayne Xin Zhao. 2020. RecBole: Towards a Unified, Comprehensive
and Efficient Framework for Recommendation Algorithms. arXiv preprint
arXiv:2011.01731 (2020).

[44] Chuhan Wu, Fangzhao Wu, Yongfeng Huang, and Xing Xie. 2020. Neural news
recommendation with negative feedback. CCF Transactions on Pervasive Com-
puting and Interaction 2, 3 (2020), 178–188.

[45] Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian,
Danyang Liu, Xing Xie, Jianfeng Gao, Winnie Wu, and Ming Zhou. 2020. MIND:
A Large-scale Dataset for News Recommendation. In ACL. https://msnews.
github.io/.

[46] Shitao Xiao, Zheng Liu, Yingxia Shao, Tao Di, and Xing Xie. 2021. Training
Large-Scale News Recommenders with Pretrained Language Models in the Loop.
arXiv preprint arXiv:2102.09268 (2021).

https://msnews.github.io/
https://msnews.github.io/

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Xufang Luo, Zheng Liu, Shitao Xiao, Xing Xie, and Dongsheng Li

[47] Shuo Zhang and Krisztian Balog. 2020. Evaluating Conversational Recommender
Systems via User Simulation. In KDD.

[48] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with negative feedback via pairwise deep reinforcement
learning. In KDD.

[49] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A deep reinforcement learning framework
for news recommendation. In WWW.

[50] Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie,
and Dawei Yin. 2020. Pseudo Dyna-Q: A reinforcement learning framework for
interactive recommendation. In WSDM.

A NOTATIONS
Notations used in this paper are summarized in Table 3.

Table 3: Notations used in this paper.

Notation Meaning

𝑢,U User, User set
𝑖𝑢 Unchanged general interest of user 𝑢
𝑣𝑢 Hidden vector for user 𝑢
𝐿 Recommended news list
𝐼 Impression
𝐻𝑢 News sequence for clicking history of user 𝑢
𝑛, 𝑛+, 𝑛− News, Clicked news, Unclicked news
𝑛𝑐 , 𝑛ℎ Candidate news, Historical news
𝑒 Embedding vector of the news

B TRANSFORMER LAYER
Given the input sequence of embedding (𝑒1, 𝑒2, . . . , 𝑒𝑚), where 𝑒𝑖 ∈
R𝑑 is embedding vector of the 𝑖-th item and𝑚 is the sequence length,
we first stack them and obtain an embedding matrix Ê ∈ R𝑚×𝑑 .
Next, following [21], we add a learnable positional embedding to
address that items in the sequence are chronological. Hence, we
can obtain the embedding matrix E as follows:

E =


𝑒1 + 𝑝1
𝑒2 + 𝑝2

.

.

.

𝑒𝑚 + 𝑝𝑚


∈ R𝑚×𝑑 ,

where 𝑝𝑖 is generated by a learnable positional embedding look-up
table P ∈ R𝑚×𝑑 with the position index 𝑖 as the input. After that,
the embedding matrix E is sent to the transformer layer, which is
consisted of two sub-layers as follows.

Multi-Head Self-Attention: Self-attentionmechanism has been
successfully applied in many tasks with sequential inputs [11, 41].
It automatically learns weights to aggregate the input sequence,
and emphasizes important information for the task via adjusting
weights. Besides, self-attentionmechanism has shown strong power
in handling sequential inputs with variable lengths [10]. Hence,
we applied it in MINDSim to process news sequences of different
users with variable lengths, and use it to learn news embeddings.
More specifically, self-attention operation process input embedding
matrix E as follows:

SelfAttention (E)

= Attention
(
EW𝑄 ,EW𝐾 ,EW𝑉

)
= softmax

©­­«
(
EW𝑄

) (
EW𝑄

)𝑇
√
𝑑

ª®®¬
(
EW𝑉

)
,

(9)

where W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑×𝑑 are learnable matrices to project
embedding matrix E into query, key and value, respectively. Besides,

MINDSim: User Simulator for News Recommenders WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

in the proposed encoder-decoder architecture, we also use a left-to-
right uni-directional attention mask to take the natural of sequence
into consideration.

Moreover, the multi-head attention is used as follows:
F = MultiHead (E)

= [head1; head2; . . . ; headh]W𝑂 ,
(10)

where each head is a self-attention operator in Equation (9), and
W𝑂 ∈ Rℎ𝑑×𝑑 is another learnable projection matrix for the con-
catenation of all attention outputs.

Position-Wise Feed-Forward Network: After multi-head self-
attention layer, a position-wise feed-forward network is applied
to endow the model with nonlinearity and interactions between
different dimensions as follows:

𝑔𝑖 = FFN(𝑓𝑖) = GELU
(
𝑓𝑖W(1) + 𝑏 (1)

)
W(2) + 𝑏 (2) , (11)

where 𝑓𝑖 is the 𝑖-th output of the multi-head self-attention layer,
GELU is a Gaussian Error Linear Unit (GELU) activation [16],W(1) ∈
R𝑑×4𝑑 ,W(2) ∈ R4𝑑×𝑑 are weight matrices, 𝑏 (1) ∈ R4𝑑 , 𝑏 (2) ∈ R𝑑
are bias. Weights and bias are learnable, and shared across all posi-
tions.

For the output of each sub-layer, we employ some additional
operations, which have been proved to be effective in deep neu-
ral networks. First, dropout is applied, and followed by a residual
connection. After that, layer normalization is also utilized to stabi-
lize training. Moreover, two sub-layers above together with these
additional operations can stack more to enable learning a more
complex relationship between inputs. Finally, a hidden vector se-
quence (𝑔1, 𝑔2, . . . , 𝑔𝑚), where 𝑔𝑖 ∈ R𝑑 , is obtained after staked
transformer layers.

C EXPERIMENT DETAILS
C.1 Discussions on the Dataset
We discuss existing new recommendation datasets, and elaborate
the reason for choosing MIND dataset in experiments in this sub-
section.

First, this paper targets at building the first user simulator tai-
lored for online news recommendation, to the best of our knowl-
edge, MIND is the only publicly available dataset with enough
information that can satisfy unique requirements for reaching the
target of this paper. Other datasets cannotmeet requirements for the
following reasons. 1) Building a user simulator requires organizing
the dataset by users, and hence, user id is the necessary information,
but it is not provided in some datasets (e.g., Yahoo News). 2) To
provide essential information for interactions between users and
the news recommender, impressions must contain clicked news, as
well as unclicked ones presented to users, and then the decoding
process in the 2nd stage is performed on the candidate news set
consisting of those presented news. Although some datasets (e.g.,
SmartMedia Adressa in Norwegian, Kaggle dataset from Globo.com
in Portuguese) contain clicked news, unclicked but presented news
are missed in these datasets. Besides, rich historical clicked news,
used for constructing hidden vectors for users, are also missed
in these datasets. 3) Some other news recommendation datasets
focus on different aspects, rather than online personalized news
recommendation. For example, some datasets (e.g., BuzzFeed News,

Fakeddit, . . .) focus on fake news detection. Reuters Corpora and
20 Newsgroups are used for news classification. Hacker News con-
tains news and comments regarding IT industry, but sequential
impressions with clicking behaviors are not shown in this dataset.
YOW Dataset focuses on explicit and implicit feedbacks, but it only
contains 383 articles and 25 users, and detailed information about
sequential impressions is also missing. 4) Some other datasets are
not available now, such as the plista dataset. A related challenge
(i.e., CLEF-NewsREEL Challenge) to the plista dataset is obsolete
now. Besides, the language used in this dataset (not English) and
the lack of rich historical clicks for users also obstruct the usage of
this dataset for building the user simulator.

Second, we would like to highlight that MIND dataset is repre-
sentative for news recommendation. It contains about 160k English
news articles and more than 15 million impression logs generated
by 1 million users. Each log contains clicked and unclicked news,
and historical news of this user. Such a large-scale dataset with
abundant information is a convincing benchmark to test the per-
formance of algorithms related to news recommendation.

C.2 Hyper-parameters
Hyper-parameters are set to be same across methods. We set initial
learning rate to 0.001, and use Adam to adaptively change the
learning rate during training. Batch size is set to 128. The training
process is endedwhen the early stopping criteria is met, and the step
for early stopping is set to 10. The model with the best performance
on validation data is chosen and we report its results on testing
data. For GAUM, we follow their open source implementation, and
use the same model architecture and configurations. For MINDSim
and SASRec, the number of transformer layers is 3 and the number
of head is 2, and the dropout probability is set to 0.5.

C.3 Implementation Details of GAN
Some implementation details of GAN in MINDSim are listed here.
The generator and discriminator of the GAN are both composed
by 4 linear layers, with layer normalization and leaky ReLU [27]
added between two layers. The size of the noise vector 𝑧 is 100, and
dimensions of layers in the generator and discriminator are 100-
128-256-128-64 and 64-128-256-128-1, respectively. GAN is trained
using Adam optimizer with initial learning rate 0.0001.

C.4 Computational Costs
Experiments are run on a single 6-core machine with one V100
GPU, and each run costs about 2 hours.

	Abstract
	1 Introduction
	2 Settings and Framework
	2.1 Interactions between Users and the News Recommender
	2.2 Partially Observable Markov Decision Process
	2.3 Problem Definition

	3 Methodology
	3.1 Model Architecture
	3.2 1st Stage: User Hidden Space Construction
	3.3 2nd Stage: User Behavior Prediction
	3.4 Summary

	4 Experiments
	4.1 Data Processing and Statistics
	4.2 Predictive Performance
	4.3 Simulation Results
	4.4 Generalization Performances

	5 Related Work
	6 Conclusion
	References
	A Notations
	B Transformer Layer
	C Experiment Details
	C.1 Discussions on the Dataset
	C.2 Hyper-parameters
	C.3 Implementation Details of GAN
	C.4 Computational Costs

