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Abstract—Modern developers rely on container-orchestration
frameworks like Kubernetes to deploy and manage hybrid work-
loads that span the edge and cloud. When network conditions be-
tween the edge and cloud change unexpectedly, a workload must
adapt its internal behavior. Unfortunately, container-orchestration
frameworks do not offer an easy way to express, deploy, and
manage adaptation strategies. As a result, fine-tuning or mod-
ifying a workload’s adaptive behavior can require modifying
containers built from large, complex codebases that may be
maintained by separate development teams. This paper presents
BumbleBee, a lightweight extension for container-orchestration
frameworks that separates the concerns of application logic
and adaptation logic. BumbleBee provides a simple in-network
programming abstraction for making decisions about network
data using application semantics. Experiments with a BumbleBee
prototype show that edge ML-workloads can adapt to network
variability and survive disconnections, edge stream-processing
workloads can improve benchmark results between 37.8% and
23x, and HLS video-streaming can reduce stalled playback by
77%.

I. INTRODUCTION

Hybrid workloads that span edges and clouds are on the
rise [23], [48]. Container technologies like Docker [50] and
orchestration platforms like Kubernetes [30] are crucial to
hybrid workloads because they provide a uniform compute and
control plane. Orchestrators can launch tasks to satisfy bursts
of new requests, kill tasks when utilization drops, and load-
balance traffic. However, even perfect orchestration cannot
ensure good performance and reliability in the face of highly
variable network conditions.

This limitation is acute for hybrid workloads because,
unlike within a single cluster, network conditions between the
edge and cloud can change unexpectedly [13], [54], [76] and
partitions are not uncommon [1], [4], [6], [25], [26], [51].
When network conditions degrade it is crucial for workloads
to adapt their internal behavior in response. For example,
a machine-learning (ML) workload may switch to an edge
inference model with lower accuracy to compensate for higher
network latency, and a stream-processing workload may ag-
gregate more aggressively to compensate for a drop in network
bandwidth. In these cases and many others, application-aware
adaptation [53] is the key to maintaining acceptable quality
when network conditions degrade.

Unfortunately, applying application-aware adaptation to or-
chestrated workloads is onerous. At the orchestration level,
tools like Azure Arc [5], Google Anthos [24], AWS Hybrid
Cloud [3], and KubeEdge [39] provide a centralized control
plane for hybrid workloads, but they do not support adapta-
tion. At the application level, adaptation strategies are often
tightly coupled with other functionality in a single container,

such as a video-processing container that implements adaptive
bitrate logic and video transcoding. As a result, fine-tuning or
modifying a workload’s adaptive behavior can require changes
to a large codebase that is often maintained by a separate
development team. At the network-transport level application-
oblivious responses to variable network conditions, such as
TCP congestion control, provide fair bandwidth allocation, but
only the application knows how to change its internal behavior
as conditions change.

To fill this gap, we present a lightweight in-network process-
ing facility for application-aware adaptation called BumbleBee.
BumbleBee provides a clean separation of concerns between
workloads’ adaptation and business logic. Workloads’ core
functionality remain in their original unmodified containers,
and BumbleBee adaptation scripts execute in sidecar prox-
ies. BumbleBee benefits a variety of hybrid workloads: ML
applications can gracefully switch between high- and low-
fidelity inference, stream-processing applications can meet
between 37.8% and 23x more deadlines, and video-streaming
applications can reduce stalling by 77%.

The main technical challenge that BumbleBee addresses is
balancing expressiveness and modularity. Embedding adap-
tation within an application container enables arbitrary ex-
pressiveness but provides poor modularity since business and
adaptation logic are trapped in the same component. At the
other end of the spectrum, P4 [9] can be applied to unmodified
workloads but provides a very limited programming model.
The Envoy sidecar [73] and eBPF [72] are more expressive
than P4, but they do not support stateful adaptations such as
redirecting or transforming stalled messages.

BumbleBee allows developers to write concise scripts, of-
ten only tens of lines of code, that can programmatically
drop, redirect, reorder, and transform network data. Heavy-
weight computations, such as video transcoding, can be asyn-
chronously offloaded, and BumbleBee handles reintegrating
these modified payloads into a workload’s message queue.
Because scripts execute within a user-level sidecar proxy,
BumbleBee can adapt workloads without modifying existing
containers.

This small incremental change to an existing mechanism
allows application-aware adaptation to benefit from the separa-
tion of concerns already provided by the container ecosystem.
Applications need not take on the task of network monitoring,
and adaptation strategies can be updated and repurposed
without inspecting complex source code or deploying new
containers. BumbleBee’s approach also allows placement of
adaptive mechanisms closer to the point at which change
occurs in the network, improving agility over more end-to-
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Fig. 1: Envoy sidecars interpose on a pod’s network commu-
nication.

end approaches.
This paper makes the following contributions:
• We identify four common patterns applications use to
adapt to network variability.
• We design and implement a single in-network abstrac-
tion to implement all of these patterns, informed by
application needs.
• Experiments with our prototype show that edge work-
loads benefit from BumbleBee: (1) ML applications
can utilize cloud resources when available and operate
without interruption when disconnected, (2) BumbleBee
increases the number of deadlines met between 37.8%
and 23x on the Yahoo! stream-processing benchmark, (3)
BumbleBee reduces stalled playback by 77% during HLS
video streaming under real-world network conditions, and
(4) BumbleBee adds less than 10% overhead to the 99th
percentile request latency compared to a baseline sidecar.

The rest of the paper is organized as follows. Section II
describes background information. Section III describes the
BumbleBee design. Section IV presents an evaluation of our
BumbleBee prototype. Section V describes related work. And
Section VI presents our conclusions.

II. BACKGROUND

Applications are increasingly written in a containerized
framework [8], [50], [60] as a collection of communicating mi-
croservices [52]. These frameworks provide many advantages:
a strict decomposition of tasks, a consistent deployment model
allowing in-place updates, declarative capture and preservation
of system dependencies, and lightweight resource isolation and
monitoring. Such ecosystems explicitly provide for separa-
tion of concerns through architectural decisions. Application
writers need not be concerned with task creation, monitoring,
placement, or scaling, relying instead on container orchestra-
tion frameworks [30], [70]. Likewise, they need not actively
manage the communication between emplaced tasks. Instead, a
service mesh [43], [59] provides reliable, fault-tolerant, load-
balanced communication across complex topologies of task
deployment. This section describes these frameworks, with an
eye to BumbleBee’s integration with them.
Containers: Docker [50] is a container-based virtualization
platform that provides process-level performance and security

isolation; such platforms have become the standard unit to
manage and deploy software in the cloud. Container images
include all of the user-level state required to launch an appli-
cation, including binaries, support libraries, and configuration.
Each container typically implements a single component mi-
croservice of the overall application, providing an API to the
other constituent components.
Container Orchestration: Kubernetes [30] automates deploy-
ment, scaling, and management of distributed, containerized
applications. The unit of deployment in Kubernetes is a pod.
A pod is a set of containers that run under the same oper-
ating system kernel and share the same underlying physical
resources, such as cores and disks. Because containers within
a pod share a machine they can communicate cheaply via local
storage or intra-kernel messaging.

Developers write configuration manifests describing how
Kubernetes should deploy an application on a set of physical
or virtual machines, e.g., which container images to use,
how containers are grouped into pods, and which ports each
pod needs. The manifest also describes runtime goals for an
application, such as pod replication factors, load balancing
among replicas, and an auto-scaling policy.
Service Mesh: Service meshes [43] manage inter-pod commu-
nications within Kubernetes. They provide service discovery,
peer health monitoring, routing, load balancing, authentication,
and authorization. This is done via the sidecar pattern [10],
in which a user-level network proxy called Envoy [38] is
transparently interposed between each pod and its connection
to the rest of the system; applications are oblivious to the
sidecar and its mechanisms. Each Envoy instance is populated
with iptable rules to route incoming and outgoing packets
through the sidecar, as shown in Figure 1. This architec-
ture makes the Envoy sidecar an ideal place to implement
application-aware adaptation. It allows application writers to
focus only on the needs of adaptation as data traverses the
network, without having to integrate it with the application’s
behavior as prior systems did [22], [53]. We use the Istio [59]
implementation in our prototype.

An Envoy sidecar has a pool of worker threads, mapped
to the underlying threads exposed to this container. Work-
ers block on ingress/egress sockets, and are invoked on a
per-message basis. On invocation, the Envoy worker passes
the message through one or more application-specific filters.
Filters are small, stateless code snippets that operate on
individual messages. Filters have full access to a message and
can perform simple operations, such as redirection, dropping,
and payload transformation. Developers commonly use Envoy
filters for monitoring and traffic shaping, such as collecting
telemetry, load-balancing, and performing A/B testing. Envoy
supports filters at several layers of the network stack.

III. DESIGN AND IMPLEMENTATION

In designing BumbleBee, we kept three goals in mind.
First, we followed the container ecosystem’s core principle of
separation of concerns, isolating the application’s logic from
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Fig. 2: Kubernetes deployment of a distributed application
with BumbleBee enabled.

adaptation decisions. The existing infrastructure of orchestra-
tion frameworks and service meshes made this particularly
attractive. Second, we kept interfaces as narrow as possible.
There were places where BumbleBee needs some additional
information or functionality, but those were chosen only reluc-
tantly. Third, we erred on the side of simple and inexpensive
in designing the interface exposed by BumbleBee whenever
possible.

BumbleBee’s overall architecture is illustrated in Figure 2.
Authors define applications through a YAML manifest that
describes the set of application container images and their
corresponding configurations. When deployed, the Istio service
mesh co-locates an Envoy sidecar proxy with each Kubernetes
pod; this sidecar is interposed on all traffic to and from the pod.
Applications supply BumbleBee adaptation logic as simple
Lua scripts [34], deployed in the sidecars as Envoy filters [59].
All elements in a container ecosystem can be updated in place;
thus these scripts can be changed on the fly without stopping
or re-deploying the overall application.

To determine how best to frame the abstractions provided
by BumbleBee, we surveyed a variety of existing adaptive
systems in various domains:
• Video streaming: live or on-demand videos are streamed

from a server to a client. When bandwidth is constrained,
parties involved transform streams to lower video resolu-
tion, or drop frames-per-second [71].

• Video conferencing: multiple users interactively video-
chat. When network is congested, clients transform frames
to lower resolutions [18], [78], or drop to voice-only mode
(e.g., FaceTime “poor connection” [58]). For consistent
poor network conditions, they redirect to calls through a
different meet-up server [36], or occasionally drop out-of-
sync frames if delayed too long.

• Internet of Things (IoT): distributed clients collect and
stream sensor data to the cloud. The clients react to
changes in network environment by dropping (filtering)
data points below a threshold [27], aggregating or tran-
forming data into an average or histogram [35], and
re-ordering low-priority data points to the tail of the
queue [29].

• Stream-processing applications: distributed workers pro-
cess continuous streams of data for real-time insights
(e.g., fraud detection). However, the distributed nature of
the jobs often encounter turbulent network environment.

The applications adapt by dropping less important mes-
sages [63], re-ordering new messages to the front queue to
avoid backlogs [2], [57], transforming multiple messages
to aggregated message [65], and redirecting messages that
are assigned to overloaded worker to another worker.

We identified four common adaptation patterns used across
existing adaptive systems:

• Drop eliminates data when it is no longer useful.
• Reorder defers lower priority data in preference to more

important but subsequent elements.
• Redirect changes routing from an over-utilized resource to

an available but possibly lower-quality one.
• Transform converts data from one format to another, typ-

ically reducing size at the cost of data fidelity.

Each system we examined used at least one of these patterns;
some combined more than one. Importantly, all of these can
be implemented by observing at most a small, contiguous
range of network messages at the head of the current transmis-
sion sequence. Stock Envoy exposes messages individually to
stateless scripts. We expanded this interface to allow scripts
access to a single mutable ordered queue for each (source,
destination) pair. We were reluctant to widen the interface in
this way, but doing so is necessary to support reordering of
messages in applications that can benefit from it.

A. BumbleBee’s interface

BumbleBee aims to provide an interface that is both simple
and low-overhead. This motivated a few key design decisions.
The first was to describe adaptation strategies via an impera-
tive Lua scripting interface. We initially explored declarative
interfaces like YAML or SQL. Unfortunately, we found it
difficult to express simple adaptations declaratively. At the
same time, these systems included significant unnecessary
mechanism, representing a potential runtime liability to the
critical path of message processing. In addition, nearly all
individual adaptation strategies of which we are aware of
have been implemented in imperative languages, and it seemed
burdensome to change models.

Second, we explicitly do not support the use of Lua libraries
beyond the standard, built-in set. This helps ensure that in-
script behavior is simple, inexpensive, and reduces the surface
area for malicious actors. If more complex functionality is
necessary, it must be provided through external callbacks, as
we discuss below.

BumbleBee views the world from the perspective of a single
Kubernetes pod, and how that pod should react to changes in
the network. Figure 3 shows a sample BumbleBee adaptation
script for a surface street traffic monitoring application. This
application uses an ML model to detect traffic, choosing
between an inexpensive one on the nearby edge or a remote,
full-fidelity version in the cloud. It adaptively decides where
to run the ML model and at what resolution. As shown, the
main abstraction exported to BumbleBee scripts is a set of
queued messages per (source, destination) pair. The scripts can
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1 function envoy_on_request(h)
2 -- for each sink
3 for queue in h:Queues():getQueue() do
4 -- check the route
5 route = queue:route()
6 if string.find(route, "cloud") then
7 -- check current bandwidth estimate
8 bw = queue:getBW()
9 if bw == 0 then

10 -- if disconnected
11 -- redirect the request to the edge
12 h:redirect("edge-detector")
13 elseif bw < required then
14 -- if bw is too low
15 -- transform the request to lower-res
16 h:transform("180p")
17 end
18 if bw < required/2 then
19 -- if bw drops well below required
20 -- notify the request source
21 h:notify(bw)
22 end
23 end end end

Fig. 3: This simple Lua script for the traffic-monitoring
application redirects requests to the edge when the network
becomes disconnected, down-samples enqueued requests when
bandwidth drops, and invokes a registered callback network
conditions change significantly.

iterate over these queues (Line 3) and access various queue
properties, such as its length, route, or observed bandwidth
(Line 5–8). The queue iterators are also used to apply in place
adaptations, such as redirecting messages to another endpoint
(Line 12). Other adaptation strategies such as dropping or
reordering messages are implemented in a similar fashion.
More complex actions, such as transforming messages (Line
16) or notifying the application of metrics (Line 21) can be
done through asynchronous callbacks.

Metrics exposed: BumbleBee exports a number of network
performance metrics on which to base adaptation decisions;
these are summarized in Table I. At the lowest level, Bum-
bleBee exposes TCP metrics such as the congestion window
size, number of in-flight packets, and round-trip time (RTT).
BumbleBee also exposes the average end-to-end latency for
messages in a queue, which Envoy calculates using request
and response arrival times. In addition, BumbleBee provides
information about how long each messages has spent in a
queue through an object-item’s age property.

Network bandwidth is a crucial metric for numerous adap-
tation strategies. BumbleBee does not measure available band-
width along a physical link, but it calculates the observed
bandwidth for messages forwarded from a particular queue.
This allows scripts to reason about the observed bandwidth
along their path of interest. For example, scripts can detect
that a path has been disconnected if its observed bandwidth
drops to zero.
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Fig. 4: BumbleBee extends the Envoy sidecar (BumbleBee
components marked as yellow).

B. BumbleBee architecture

Figure 4 shows the architecture of BumbleBee. It is situated
within an Envoy sidecar, with user-defined adaptation logic
executed in the BumbleBee filter. The rest of this section
describes the three key components of this architecture: a
queue manager that maintains message queues, an in-network
scripting facility that executes custom application logic as
messages arrive, and a callback mechanism that allows scripts
to interact with other parts of an application.

Message queues: BumbleBee represents each (source, des-
tination) pair in a pod as a single, mutable queue, widening
the prior interface of stateless message processing. The latter is
sufficient for common tasks of a service mesh: load balancing,
filtering, etc., but cannot support the reordering pattern needed
by many adaptive applications. We add this abstraction with
a separate queue manager that runs concurrently with the
Envoy worker pool. Worker threads pass messages to the queue
manager through the BumbleBee filter. The BumbleBee filter
buffers data until a complete network message (e.g., HTTP
request/response, Netty [49] message) has been assembled,
and then forwards the message to the queue manager. Note
that treating messages at higher protocol layers may add some
additional latency; as we show in Section IV-D this is modest.

By default the queue manager creates pairs of queues
for each endpoint pair, one in each direction, providing a
handful of methods to BumbleBee filters within the worker
threads. The application can optionally request finer-grained
division of queues on a per-pod basis. For example, in its
orchestration configuration an application may name pods
containing an object-detector running on the cloud ”cloud-
object-detector.local.” It can then instruct BumbleBee to create
queues in each pod’s sidecar for handling requests to those
specific pods. Individual filters are invoked as messages arrive
on inbound queues, and pass messages after processing to
the corresponding outbound queue. Because operations are
non-blocking, we use a simple per-queue locking scheme to
synchronize access.

In addition to events based on message arrival, the manager
periodically receives timer events that implement a token-
bucket algorithm for outbound messages. When the manager
has accumulated enough tokens, messages are forwarded to
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Context Interface Description Returns

Queue

length() returns number of messages in a queue, useful to approximate queuing delay. queue length
avgLatency() returns weighted moving average of end-to-end latency of messages (delta between request &

response)
average latency

observedBW() returns observed bandwidth allocated to the queue–the rate of the queue sending data. observed bandwidth
TCPMetrics(m) retrieves the TCP metrics (e.g., mean RTT) at the queue level. TCP metric
messages() for-loop entry to iterate over messages in the queue. message object

Message

size() returns the size of the message’s current payload. size of payload
age() get the age, i.e., how long the message has been in the queue, in ms resolution. age of message
TCPMetrics(m) retrieves the TCP metrics (e.g., mean RTT) at the message/request level. TCP metric
dst() returns the current destination of the message. message destination
header() returns the message’s header. message header
bytes(i, j) returns data from i to j of payload of the current message in raw binary format. raw payload
redirect(dst) redirect the message to a new destination (dst).
transform(args) asynchronously transform a message’s payload by forwarding to a registered endpoint.
drop() drops the current message from the queue. The function does not guarantee successful operation

(e.g., already transmitted in the middle of dropping). If successful, returns the updated queue length,
otherwise, returns the old queue length.

new queue length

insert(msg) inserts a new message msg after the current message in the queue. If successful, returns the updated
queue length, otherwise, returns the old queue length.

new queue length

moveToFront() move the message to front of the queue.
moveToBack() move the message to end of the queue.

Callback notify(metrics) asynchronously send registered endpoints a metrics string.

TABLE I: BumbleBee interface for in-network scripting.

Envoy’s event dispatcher. To minimize overhead, timers scale
the token refill rate and are only active when the queue has
pending messages.

Scripting facility: BumbleBee applies user-defined adap-
tation logic to the queues maintained by the queue manager.
When a worker thread loads a BumbleBee filter, the filter reads
the appropriate script from the orchestration configuration and
launches it within a Lua runtime, a feature natively supported
by Envoy. These scripts are executed only as messages arrive;
we have chosen not to also add timer events. This ties
adaptation agility to message arrival rate; a limitation we have
not found burdensome in our limited experience so far.

External callbacks: BumbleBee’s scripting environment
allows applications to perform simple processing on enqueued
messages: drop, redirect, or reorder. However, many appli-
cations can benefit from richer interactions between adaptive
scripts and the rest of the application. For example, an appli-
cation might benefit from in-network observation, providing
early detection of bandwidth or latency changes. Likewise,
an application may want to transform message payloads in
ways that are too complex for a lightweight Lua runtime.
For example, a video streaming application may want to
downsample video chunks ahead of network constructions
to prevent head-of-line blocking. To support this kind of
functionality, BumbleBee allows scripts to make asynchronous
callbacks.

There are two forms such callbacks might take. The first
(and simpler) one is used to notify external endpoints of events
within an adaptation script. An application’s orchestration
configuration can bind a list of RESTful endpoints to particular
notifications within a script, taking a string as an argument.
On invocation, the Lua runtime generates asynchronous HTTP
calls with the string argument to any endpoints listed in the
orchestration configuration. This exposes information from
lower layers, and so should be used in the rare cases when

an application benefits significantly from such feedback.
The second form is used to transform message contents. As

with notifications, applications bind invocations to a RESTful
endpoint through their orchestration configuration. When a
script invokes transformation on an enqueued message, the
Lua runtime marks the entry asynchronously forwards the
message payload to the registered endpoint for transformation.
The result is returned and substitutes for the original message.
To avoid blocking on this operation, pending messages are
marked in progress, and subsequent messages can be sent in
the interim. Transformations are typically used for complex
computations that should not take place in the critical path
of the Envoy sidecar. Transformations may optionally access
other resources–such as an external database–that are not
possible within a sidecar limited only to the standard libraries.

IV. EVALUATION

To evaluate BumbleBee, we seek answers to the following
questions:

• Does BumbleBee enable beneficial adaptation strate-
gies?
• How difficult is writing adaptation strategies in Bum-

bleBee?
• How much overhead does BumbleBee add to Envoy?

To answer the first three questions we use our BumbleBee
prototype to investigate adaptation strategies for three case-
study applications. First, we use BumbleBee to help a dis-
tributed, vehicular-traffic monitoring application that adapts
the quality of its object detection to changing network condi-
tions. Second, we use BumbleBee to help a stream-processing
application intelligently shed requests under bursty workloads.
Finally, we use BumbleBee to help a live video-streaming ser-
vice to reduce stalled playback while maintaining acceptable
video resolution. To answer the last question, we run wrk2 [74]
micro-benchmarks to measure how BumbleBee affects request
latency compared to Envoy.
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We run these workloads with BumbleBee using Istio 1.4.3,
Envoy 1.13.0, and clusters of virtual machines managed by
Azure Kubernetes Service (AKS) 1.18.14.

A. Case study: traffic monitoring

Our first case study is an emulated smart-city application
that streams roadside video to machine-learning (ML) models.
The ML models forward a detected vehicle’s bounding box
and confidence level to one or more traffic-light controllers.
The controllers filter bounding boxes with confidence levels
below a threshold (e.g., 50%). The controllers use vehicle
counts and locations to monitor and schedule traffic, such as
reducing the time between green and red lights when road
congestion is high.

Traffic monitoring is representative of many edge computing
applications [54]. The input sensors (e.g., roadside cameras)
and controllers (e.g., traffic controllers) are co-located on the
edge with a distributed computing pipeline between them. This
pipeline must process sensor data fast enough for the con-
trollers to respond to changes in the physical environment, and
the application must operate even when network conditions are
poor.

The ML pipeline can be instantiated along two paths: em-
bedded in a resource-rich cloud environment or a lightweight
edge environment. The cloud offers powerful machines and
can support sophisticated and accurate ML models, whereas
the edge can run a limited number of less accurate models.
The application prefers results from the cloud models, and it
will send frames to the cloud as long as network conditions
allow it.

Detection accuracy is a key measure of fidelity for traffic
monitoring. Accuracy is highest when the network allows
the application to stream high-resolution frames to the cloud,
but as network conditions change, the application can adapt
the video stream’s quality by changing frame resolution or
frame rate. Low-quality streams diminish model accuracy, and
high-quality streams improve accuracy. The application runs
at lowest fidelity when it is disconnected from the cloud.
During disconnections, the application must redirect video
frames to its lightweight edge models, sacrificing accuracy
for availability.

Figure 3 from Section III shows a BumbleBee script that
implements these trade-offs. The script iterates over an egress
request queue looking for entries destined for a cloud object-
detector. When bandwidth drops to zero, BumbleBee redirects
requests to the edge object-detector. If bandwidth falls below
a threshold, BumbleBee forwards requests to the application’s
transform service, which reduces frames’ resolution to 180p
(320x180). And if bandwidth falls well below what is required,
BumbleBee notifies the sender so that it can start to send
lower-resolution frames instead of relying on BumbleBee to
do so.

Major cloud providers like AWS [1], [4], Azure [6], [51],
and Google Cloud [25], [26] all suffer significant outages,
and recent studies show that network conditions between
the edge and cloud can be turbulent [13], [54], [76]. To

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frame number

0

10

20

30

40

50

# 
of

 o
bj

ec
ts

 d
et

ec
te

d 
(>

50
%

 c
on

fi.
) Cloud

(a) stable baseline

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frame number

0

10

20

30

40

50

# 
of

 o
bj

ec
ts

 d
et

ec
te

d 
(>

50
%

 c
on

fi.
)

connected disconnected connected disconnected connected
Cloud
Edge

(b) disconnecting network

Fig. 5: The number of detected vehicles with greater than 50%
confidence with (a) stable network conditions and the work-
load running fully in the cloud, and (b) network disconnections
that shift the workload to the edge using BumbleBee.

understand how our traffic-monitoring application behaves
when edge-to-cloud connectivity is poor, we run experiments
with disconnections and constricted bandwidth between the
edge pods and cloud pods. Note that for our experiments we
logically divide cluster nodes between the edge and cloud, but
the underlying physical machines and network are entirely in
Azure. Our Kubernetes cluster contains virtual machines with
four vCPUs, 16 GB RAM, and a 32 GB SSD. The cluster also
includes two GPU nodes with an Nvidia Tesla K80 GPU,
six vCPUs, 56 GB RAM, and a 340 GB SSD. We simulate
a roadside camera by streaming a highway-traffic recording
from Bangkok, Thailand [11]. We use YOLOv3 as our cloud
object-detection model and TinyYOLO as our edge model.
Both models are trained with the COCO dataset [44], which
is designed to detect vehicles and passengers.

To evaluate if the application benefits from BumbleBee,
we measure the number of detected vehicles and end-to-
end detection latency. The former metric influences how well
the application controls traffic, and the latter influences how
quickly the light controller responds to traffic changes.

To characterize our traffic-monitoring application without
BumbleBee, we first capture the baseline object-detection
accuracy of streaming 360p (640x360) video at 15 fps when
fully connected to the cloud. Figure 5a shows the number of
detected vehicles over time with a confidence threshold above
50%. The YOLOv3 model in the cloud consistently detects
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bleBee (BB) allows the application to selectively downsample
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detection accuracy.

between 10 and 40 vehicles.
To simulate a disconnected edge site, we run the application

under BumbleBee and partition the edge and cloud pods after
1000 and 3000 frames so that the cloud object-detector is
unreachable. We heal the network between frames 2000 and
3000. Loading tensor-flow models can be slow, so BumbleBee
pre-loads the edge detector at the beginning of the experiment.
Figure 5b shows the detected cars drop during disconnection,
because the application switches to TinyYOLO on the edge.

There is a delay between when a disconnection occurs
and when BumbleBee detects the disconnection. In our ex-
periment, five frames stall before BumbleBee detects that
bandwidth is zero. Recall that our video streams at 15 fps,
and so requests arrive every 67 ms. Thus, the first request
sent after the disconnection experiences an approximately
350 ms of additional delay before BumbleBee redirects it to
the edge. This is because four cloud-bound requests arrive
after the first post-disconnection request but before BumbleBee
detects the disconnection. When the sixth post-disconnection
request arrives, BumbleBee has detected the disconnection and
responds by redirecting all cloud-bound requests to the edge.
Between disconnections, the application matches baseline de-
tection accuracy. These results show that with BumbleBee, the
application can continue to operate, albeit in a degraded mode,
when the cloud is unavailable.

We also want to understand if the application benefits from
adapting to network changes that are less dramatic than a
disconnection. Recall that end-to-end latency is a critical ap-
plication metric. When disconnected, the weaker edge detector
processes 360p frames 33% faster than the cloud detector
using equivalent hardware. However, when bandwidth to the
cloud drops, sending 360p frames can cause exponentially
increasing queuing delay. To demonstrate, we restrict edge-to-
cloud bandwidth to 15 Mbps and repeat the traffic-monitoring
experiment twice, first sending 360p frames and then sending
180p frames. Frames are full-color, JPEG-compressed images.
Figure 6 shows the results. When the application streams 360p
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Fig. 7: The cloud object detector identifies more vehicles with
confidence greater than 50% in 360p frames than in 180p
frames.
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Fig. 8: BumbleBee enables the traffic-monitoring application
to send 360p frames when possible and avoid head-of-line-
blocking by selectively downsampling frames to 180p. Each
blue data point represents the percentage of additional objects
that the BumbleBee-enabled application detects in a frame
compared to sending all 180p frames. The 3444 frames (out of
5000) are downsampled to avoid exponential queuing delays.
These frames gain zero percent improvement.

frames (the blue line), the latency rises exponentially, but the
median latency of streaming 180p frames is 772 ms.

However, lower resolution frames reduce detection accu-
racy. Figure 7 shows the number of objects the application
detects with confidence greater than 50% for 360p and 180p
frames. Note that the blue dots are identical to those in
Figure 5a. 360p frames allow the cloud model to consistently
detect more objects than the 180p stream, often significantly
so. These results suggest that the traffic-monitoring application
could benefit from selective adaptation by downsampling
frames that cause queuing delay, and transmitting the remain-
ing frames intact.

To confirm our hypothesis, we repeat our limited-bandwidth
experiment using BumbleBee. The application sends 360p
frames, and BumbleBee selectively downsamples frames that
cause queuing delay. Figure 8 shows the percent improvement
of the object detector with BumbleBee’s selective downsam-
pling enabled compared to always sending 180p frames. When
BumbleBee downsamples a frame to 180p, the improvement
percentage is zero. Overall, BumbleBee downsamples 3444
frames and leaves 1556 intact. Furthermore, the graph shows
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that selectively downsampling provides much better detection
accuracy than always downsampling. Combined with the me-
dian latency of 1700ms in Figure 6, these results show that
BumbleBee allows the traffic-monitoring application to find a
good balance between detection accuracy and latency using
the simple script in Figure 3.

To summarize, the results show that our traffic-monitoring
application benefits from BumbleBee in two ways. First, the
application operates when disconnected from the cloud by
redirecting requests to a weaker edge object-detector. Second,
when network bandwidth constricts, the application selectively
downsamples frames to balance end-to-end latency and de-
tection accuracy. We also show that the adaptation strategies
responsible for these benefits can be concisely expressed by
the script in Figure 3.

B. Case-study: stream processing

Our second case study is the Yahoo! stream-processing
benchmark [14] that counts ad views from an input stream
of ad impressions, i.e., clicks, purchases, and views. The
benchmark is widely used [32], [45], [69], [77], because it
mimics in-production workloads and business logic. The first
stage reads and parses impression data, the second stage filters
out non-view events, and the final stage stores aggregate view
counts over 10 s sliding windows. Impression counts help ad
services bill customers and select the next ads to display. In
the latter case, timeliness (meeting a latency deadline) is more
important than completeness (fully processing every input),
and many practitioner testimonials [20], [21], [68] emphasize
the importance of timeliness.

By default, the Yahoo! benchmark generates emulated im-
pressions at a constant rate, but real-world rates can be bursty.
Bursts may be problematic for applications with timeliness
requirements, because practitioners often statically allocate
resources and must restart pipelines to scale dynamically [69].
Over-provisioning is not always possible, and unexpected
bursts can rapidly increase end-to-end latency as applications
fall behind processing every message.

Load-shedding [63], [64], [75] is a common way to adapt
to such bursts. Shedding trades completeness for timeliness by
dropping less important inputs to free resources and improve
the number of deadlines met. Today this adaptation strategy
can only be implemented by modifying an application’s inter-
nals, but BumbleBee can intelligently shed load for unmodified
applications.

To characterize how effectively BumbleBee helps the Ya-
hoo! benchmark improve timeliness, we orchestrate the bench-
mark with Kubernetes by placing a containerized Apache
Flink [12] worker in a pod. A worker pod can execute any
stage and can pass inter-stage data within the same pod. Each
Kubernetes node hosts one pod and is a virtual machine with
two vCPUs and 8 GB RAM, connected by an underlying
network provisioned at 1 Gbps. The benchmark polls external
Kafka brokers for input events and stores results in an external
Redis database. 10 s sliding windows are too coarse to properly
measure the impact of bursts on timeliness, so we add a

1 filt_thrd = 0.5 --- filtering threshold in sec
2 late_thrd = 1.0 --- lateness threshold in sec
3 function envoy_on_response(h)
4 queues = h:Queues()
5 for queue in queues:getQueue() do
6 for msg in queue:messages() do
7 json = msg:json()
8 if queue:avgLatency() > filt_thrd then
9 event_type = json:getString("event_type")

10 if event_type ˜= "view" then
11 msg:drop() --- pre-emptively filter
12 end
13 end
14
15 event_time = json:getNum("event_time")
16 age = h:epoch() - event_time
17 if age > late_thrd then
18 msg:drop() --- drop late msgs
19 end
20 end end end

Fig. 9: This BumbleBee script pre-emptively filters messages
and drops late messages to save inter-pod bandwidth when it
detects latency in the pipeline.
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Fig. 10: Our stream-processing application processes input
messages mostly under 2 s latency after a short warm-up
period, when 170k input messages are streamed per second.

small amount of instrumentation to aggregate over 1 s sliding
windows.

Figure 9 shows a BumbleBee script that uses custom mess-
age-dropping logic to implement two forms of load shedding:
pre-emptive filtering and dropping late messages. Recall that
the benchmark filters out click and purchase events in its
second stage. Under BumbleBee, if latency increases, the
benchmark pre-emptively filters non-view events before the
second stage (lines 8-13). The script also drops view events
if they are unlikely to meet their deadline (lines 17-19). Both
adaptations free resources as the script detects latency in the
pipeline.

Our baseline benchmark configuration runs under Kuber-
netes, without an Envoy sidecar or BumbleBee. We first run
the baseline configuration with a constant, baseline load of
170k events per second. To characterize latency, we sample
the end-to-end latency of the last event included in the
benchmark’s 1 s aggregation window. Figure 10 shows how
the latency of these sampled events change over time. Latency
for the first 25 s is highly variable as the benchmark warms
up. After the warmup, sampled latency is largely under 2 s.
This is expected since we provisioned enough compute and
network resources to process every event within 2 s.
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Fig. 11: Temporal 2x input load spikes leads the application
to experience high latency for 1.5 times longer than the spike
duration even after the input load returns back to the previous
level. The BumbleBee-enabled application takes less than 30 s
to bring latency back to the previous level.

We next run an experiment with variable load: first 170k
events per second for 125 s, followed by a burst of 340k events
per second for 100s, followed by a return to 170k events
per second for 200s. Figure 11 shows sampled latency for
the baseline benchmark (w/o BB) and the benchmark with
BumbleBee (w/ BB) under variable load. During the burst,
BumbleBee drops over 29% of all events, and after the burst,
BumbleBee drops less than 6% of events. Compared to the
baseline, BumbleBee’s custom dropping policy significantly
improves sampled latency and time to recovery. Excluding
warmup, BumbleBee allows nearly 74% of sampled views
to be processed within 2 s, whereas the baseline benchmark
allows only 44%. In addition, BumbleBee returns the bench-
mark to steady state less than 50 s after the burst ends; without
BumbleBee, it returns to steady state after 125 s.

A limitation of the current BumbleBee implementation
causes the two arcs in Figure 11 that peak at 20 s and 25 s
sampled latency. BumbleBee intercepts only inter-pod commu-
nication, but benchmark pods contains workers for all stages.
Thus, sometimes the benchmark transfers data between stage
workers residing in the same pod, i.e., over local Unix sockets
on which BumbleBee cannot interpose. This phenomenon is
an artifact of the Yahoo! benchmark’s design and would not
be an issue for applications that separate each stage into a
dedicated tier of pods.

Figure 12 highlights how BumbleBee impacts meeting dead-
lines of 1-20 s during the warmup, baseline-load, bursty-load,
and second-baseline intervals. As expected, longer deadlines
(e.g., 20 s) are met more often than shorter ones (e.g., 1 s) with
and without BumbleBee. There is also little difference between
the two configurations during the initial warmup and baseline
intervals. However, BumbleBee provides substantial benefit
during the bursty interval, allowing the benchmark to meet
nearly 23x more 1 s deadlines and 37.8% more 20 s deadlines
than without BumbleBee. BumbleBee provides substantial
benefits when load returns to normal, allowing the benchmark
to meet over 90% of its deadlines, regardless of length. In
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Fig. 12: When the input load increases above expected level
that operators have projected and provisioned resources ac-
cordingly, the application hardly processes messages within a
deadline. The consequence continues to stay longer than the
ramp-up period.

contrast, the baseline benchmark only meets less than 40% of
its 1 s deadlines and 65% of its 20 s deadlines. This is due
to the baseline benchmark’s emphasis on completeness, and
having to work through its backlog of enqueued events even
after load has returned to normal.

C. Case study: video streaming

For our final case study, we evaluate an HTTP Live
Streaming (HLS) service with an Nginx server and HLS.js
client [31]. At runtime, the server partitions an input live
stream into a rolling sequence of self-descriptive, fixed-length
MPEG-TS chunks at several resolutions. When a chunk can
be downloaded, the server updates an HLS manifest file to
announce its availability and resolution. The HLS client is
responsible for all adaptation logic and periodically polls the
manifest to learn when the newest chunk is ready. After
reading the manifest, the client predicts the time to download
the next chunk at the available resolutions. These predictions
are based on the chunks’ sizes and a bandwidth estimate
calculated over a sliding window of prior downloads.

The client’s competing objectives are continuous video
playback and high video quality. Stalling occurs when the
client’s playback buffer is empty, which is far worse for the
user experience than temporary drops in video quality [19]. For
example, if bandwidth drops in the middle of downloading
a chunk, the client’s playback buffer may drain before the
transfer completes. This is common when clients react too
slowly to abrupt bandwidth drops and high variability [46],
[76].

Prior solutions to this problem rely on either server [46] or
client [76] modifications. Modifying a server without the clean
separation provided by BumbleBee requires either building
from scratch or understanding an existing codebase and con-
tinuously merging with external updates. Furthermore, client
agnosticism is critical for open protocols like HLS, because
service providers cannot dictate which of the many players a
client may use [67]. Fortunately, BumbleBee can transparently
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1 function envoy_on_request(h)
2 hdr = h:header()
3 bw = hdr:get("bw-est")
4 curr, chunk = hdr:get("path")
5 -- use bw estimate to choose a chunk
6 pred = find_resolution(bw)
7 if pred < curr then
8 -- downsamples
9 hdr:replace("path", pred.. "/".. chunk)

10 elseif pred > curr * 2 then
11 -- upsamples
12 hdr:replace("path", pred.. "/".. chunk)
13 end end

Fig. 13: This BumbleBee script for the video streaming
application predicts appropriate resolution to transmit based
on the most recent bandwidth measurement and distribution
of chunk sizes. When the script disagrees with the client, it
overwrites the path of chunk’s resolution to increase/decrease
resolutions. Note that the script is conservative about up-
sampling to avoid potential stalls.

apply a variety of adaptation strategies to correct an HLS
client’s bandwidth mis-predictions.

The BumbleBee script in Figure 13 illustrates such a strat-
egy. The script adapts to sudden bandwidth changes faster
than an unmodified HLS.js client by only considering the
most recent chunk transfer rather than a sliding window over
several transfers. Based on this bandwidth estimate, the script
chooses among available chunk resolutions. If the requested
resolution could cause a stall (line 6-9), BumbleBee modifies
the path field of the HTTP header so that it refers to a lower-
resolution chunk. However, if the client requests a resolution
that could under-utilize the available bandwidth (line 10),
BumbleBee swaps in a higher-resolution chunk path. Bum-
bleBee’s bandwidth estimate requires Envoy modifications to
monitor low-level transfer progress or a service provider to
place a middlebox between the client and server. For the
purposes of our experiments, we emulate the latter by co-
locating a proxy with the client and configuring the client
to direct its requests through the proxy. Future versions of
BumbleBee will include the necessary Envoy modifications.

We first evaluate the video-streaming service with two
synthetic bandwidth changes: a sudden drop and recovery,
and a gradual drop and recovery. These changes highlight
the trade-offs of reacting more quickly than the HLS client’s
strategy. In addition, to evaluate the efficacy of BumbleBee
in real-world scenarios, we analyze network-condition logs of
Puffer [76] clients watching live video streams. We limit our
experiments to traces that cause stalls of more than 100 s, and
from these traces replay estimated instantaneous bandwidth
conditions. We replay the first ten minutes of each trace.

For all experiments we run the Nginx server under Kuber-
netes in a dedicated virtual machine with an Nvidia V100
GPU, 6 vCPUs, and 112 GB of RAM. For the client, the
HLS.js player in the same data center as the Kubernetes cluster
but in a separate virtual machine with sufficient underlying

bandwidth between the two. We use Linux TC to replay
bandwidth traces at the client side, and we use the default
player configuration unless noted. Each video chunk is four-
seconds long.

We characterize streaming with and without BumbleBee
with two metrics: playback buffer and video resolution. The
playback buffer is the seconds of video that a client can
play without receiving new data from the server. When the
buffer reaches zero, the video stalls. Resolution represents
video quality. Buffer and resolution can be traded off. In
the extremes, sending only low-resolution chunks minimizes
quality but maximizes buffer, and sending only high-resolution
chunks maximizes quality but minimizes buffer. Because stalls
are so painful [19], BumbleBee wants to offer acceptable
quality with minimum stalls.

Figure 14a shows the first synthetic trace: a sharp bandwidth
drop for 20 s and fast recovery. Figures 14b and 14c show the
clients’ playback buffer levels and displayed resolutions over
the course of the trace, respectively. The client under both
configurations stalls as it calibrates its bandwidth estimates.
The client under both configurations also stalls when band-
width drops. However, under BumbleBee the client adapts to
the drop and rebuilds its playback buffer faster than without
BumbleBee. Overall, BumbleBee reduces stalling from 13 s to
9 s, a 32% improvement. As Figure 14c shows this is possible
because under BumbleBee the client reduces its resolution
to 360p near 65 s, whereas without BumbleBee the client
continues to download 1080p chunks.

Figure 14d shows the second synthetic trace: gradual band-
width decrease and recovery, each over 50 s. We hypothe-
sized that BumbleBee would offer little benefit on this trace,
anticipating that the client’s default estimates would closely
track the gradual changes. Surprisingly, Figure 14e shows that
BumbleBee reduces post-calibration stalling from 11 s to 5 s, a
55% improvement. Figure 14f shows that without BumbleBee
the client fails to adapt to decreasing bandwidth, continuing
to fetch 1440p chunks. In comparison, BumbleBee reduces
resolution in a step-wise fashion and eliminates all stalling in
the valley.

We repeat the experiments with nine Puffer traces. Fig-
ure 15a summarizes the percentage of total stall time that
a client experiences during each trace, with and without
BumbleBee. The client with BumbleBee stalls at the most
5% of the total duration, and the client without BumbleBee
stalls 22% of the time, a 77% improvement. Figure 15b shows
box plots of playback resolution, including mean and median.
Note that in trace T2, which exhibits the least stalling without
BumbleBee, the HLS.js client achieves higher resolutions than
with BumbleBee albeit with some additional stalling. From
the logs, we find that BumbleBee’s script is too cautious
about sending higher resolutions that could clog the connection
during T2. This matches our expectation that quickly reacting
to network changes to aggressively avoid stalling can lead to
worse bandwidth utilization.
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(c) Synthetic-0 Video Resolutions
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Fig. 14: BumbleBee helps the live video streaming application to adapt quickly and cautiously. Figures in the first column
show the bandwidth estimates for both traces. Figures in the second column show how the client’s playback buffer changes
during the trace. Figures in the last column demonstrates fast and agile adaptations by BumbleBee’s script.
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(a) Across all traces, playback stalls are significantly less with
BumbleBee than without.
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(b) To eliminate stalls, BumbleBee sacrifices some video resolution.

Fig. 15: Experiments with the nine Puffer traces with the most
stalls show how BumbleBee helps the live video streaming
application to reduce stalls while maintaining acceptable video
resolution.

D. Latency micro-benchmarks

To evaluate the overhead imposed by BumbleBee compared
to Envoy, we measure end-to-end latency using the HTTP
benchmarking tool wrk2 [74]. The tool generates HTTP re-

quests at a constant rate and outputs a latency distribution.
We configure wrk2 to generate 500 requests per second with
1000 concurrent connections over five one-minutes runs.

For our experiments, we create a client pod that runs
wrk2 and assign it to a GPU node. We also create a server
pod running the Nginx web server under default settings on
a normal node. Both pods contain an Envoy sidecar with
access to two cores. We measure the latency distribution under
four client configurations: (1) Envoy without BumbleBee, (2)
BumbleBee with no Lua script, (3) BumbleBee with a simple
queue-iteration script, and (4) BumbleBee with a simple LIFO
(Last In First Out) script. The first configuration serves as
baselines for understanding BumbleBee’s scripting overhead.
Note that all configurations with BumbleBee move messages
from the BumbleBee filter to the queue manager.

We use a simple LIFO and queue-iteration scripts used in
the experiments. BumbleBee’s queues are internally imple-
mented as doubly-linked lists, which makes LIFO reordering
relatively inexpensive. However, iterating over the queue could
be slow for two reasons. First, BumbleBee uses a per-queue
locking scheme that ensures only one script can execute at a
time. Second, the Lua runtime creates a new stack and object
bindings each time the iteration script runs. These startup costs
are drawbacks of using a scripting language instead of binary
executables or bytecodes like WebAssembly.

To test our hypothesis, we run wrk2 five times with each
client configuration. Figure 16 shows the latency distributions
at the 50th, 75th, 90th, and 99th percentiles on the X-axis.
Up to the 75th percentile, the latency for all BumbleBee
configurations is very close to Envoy, between 6.5% to 12%
extra overhead, where the absolute value for the latency
overhead is between 0.15ms and 0.35ms. However, the cost
of iterating over the queue is apparent at the very tail of the
distribution. For example, at the 90th percentile, the iteration
script’s latency is 23% more than Envoy’s, and at the 99th
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Fig. 16: Micro-benchmarks with wrk2 show that BumbleBee
adds no additional overhead compared to Envoy up the 99th
percentile. However, the additional cost of iterating over a
message queue becomes apparent at the very tail of distri-
bution.

percentile it is 9.5% more.

V. RELATED WORK

Adaptation in mobile computing: Resources in mobile com-
puting are highly constrained as opposed to a data-center envi-
ronment. Prior adaptation systems [22], [53] trade application
fidelity for various metrics. Similar to BumbleBee’s callback
functionality, Odyssey [53] creates a collaborative adapta-
tion solution that notifies applications to adapt their fidelity.
On-demand distillation [22] performs “on-the-fly” adaptive
transcoding of web contents based on the client’s bandwidth,
similar to BumbleBee’s dynamic transformation. However,
these systems do no expose control over the enqueued data.

Many others [7], [15], [16] integrate adaptation logic for
better use of computation resources. Cyber foraging [7] is a
runtime framework that allows developers to write and deploy
complex adaptation tactics. MAUI [16] and CloneCloud [15]
partition application code, either with developer-defined anno-
tations (MAUI) or through static analysis (CloneCloud). Then,
they adaptively offload partitions between local execution (on
the mobile device) to remote execution. BumbleBee can be
thought of as an extension to these systems where it can
redirect the offloading traffic based on runtime variables such
as network bandwidth.
Adaptation in video streaming: Video streaming [33], [37],
[47], [55], [61], [76] is another domain that employs various
adaptation strategies to improve video watching experience. A
few recent works [46], [76] propose video streaming servers
that adaptively select the best bit-rate by using machine
learning to predict the bandwidth or transmission time. Others
have developed video clients to adapt to network conditions
changes for fairness [37] and stability [33], to minimize re-
buffering [61], and to handle unexpected network outage [55].
While the individual solutions vary, these solutions can easily
be reimplemented in BumbleBee and leverage the low-level
networking metrics and control available by BumbleBee to
achieve improved performance (as shown in Section IV-C).

Other Adaptations: Odessa [56] is an adaptive runtime
for partitioning and executing computer vision application
remotely. The runtime balances the level of pipelining and
data-parallelism to achieve low latency under variable network
conditions. Kahawai [17] is a system for cloud gaming where
clients with modest local GPUs collaborate with powerful
cloud servers to generate high-fidelity frames. Kahawai adapts
to network changes by adjusting the fidelity and frame rate
of frames. Outatime [40] is a speculative execution system
for cloud gaming where thin-clients send input and servers
at the cloud render speculative frames of future possible
outcomes while adapting to network tail latencies. These
systems can leverage the scripting interface and in-network
processing capabilities of BumbleBee to improve or simplify
their adaptation strategy.
In-network Processing: The concept of in-network process-
ing has been proposed over two decades ago where custom
in-network applications are deployed at the router to pro-
vide additional functionalities, e.g., webpage caching [66].
Recent developments in networking hardware (e.g., smart NIC,
FPGA) have led to revisiting the idea of in-network process-
ing. Flexible programming languages such as P4 [9] have
emerged to simplify the development of in-network processing
applications. As a result, many [28], [41], [42], [62] have
explored using in-network processing for wide variety of use
cases such as improving consensus protocols (NOPaxos [42]),
faster transactions (Eris [41]), network telemetry (Sonata [28]),
or improving network functionalities, e.g., DNS and NAT
(Emu [62]). Along the lines of these work, BumbleBee allows
in-network processing of custom adaptation logic but for
containerized environments such as Kubernetes.

VI. CONCLUSIONS

In this paper we describe BumbleBee, a platform supporting
application-aware adaptation that is integrated with the orches-
tration and service mesh mechanisms that support container-
based microservices. This is done by judiciously widening the
in-network interface in two ways. From above, applications
supply simple scripts that describe adaptive logic. From below,
service mesh sidecars expose the queue of pending messages
so that these scripts can drop, reorder, redirect, or transform
those messages. Experiments with a BumbleBee prototype
demonstrate the benefits of our approach: (1) by using Bum-
bleBee, ML applications at the edge can utilize cloud resources
when available and operate without interruption when dis-
connected, (2) BumbleBee increases the number of deadlines
met between 23x and 37.8% on the Yahoo! stream-processing
benchmark, and (3) BumbleBee reduces stalled playback by
77% during HLS video streaming under real-world network
conditions.
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