
SECFLOAT: Accurate Floating-Point meets Secure
2-Party Computation (Full Version)

Deevashwer Rathee
UC Berkeley

deevashwer@berkeley.edu

Anwesh Bhattacharya
Microsoft Research

t-anweshb@microsoft.com

Rahul Sharma
Microsoft Research

rahsha@microsoft.com

Divya Gupta
Microsoft Research

divya.gupta@microsoft.com

Nishanth Chandran
Microsoft Research

nichandr@microsoft.com

Aseem Rastogi
Microsoft Research

aseemr@microsoft.com

Abstract—We build a library SECFLOAT for secure 2-party
computation (2PC) of 32-bit single-precision floating-point oper-
ations and math functions. The existing functionalities used in
cryptographic works are imprecise and the precise functionalities
used in standard libraries are not crypto-friendly, i.e., they use
operations that are cheap on CPUs but have exorbitant cost in
2PC. SecFloat bridges this gap with its novel crypto-friendly
precise functionalities. Compared to the prior cryptographic li-
braries, SECFLOAT is up to six orders of magnitude more precise
and up to two orders of magnitude more efficient. Furthermore,
against a precise 2PC baseline, SECFLOAT is three orders of
magnitude more efficient. The high precision of SECFLOAT leads
to the first accurate implementation of secure inference. All prior
works on secure inference of deep neural networks rely on ad
hoc float-to-fixed converters. We evaluate a model where the
fixed-point approximations used in privacy-preserving machine
learning completely fail and floating-point is necessary. Thus,
emphasizing the need for libraries like SECFLOAT.

I. INTRODUCTION

Floating-point is the default format used to perform oper-
ations on real numbers on modern computer hardware. All
CPUs support efficient and accurate floating-point arithmetic
on which software developers rely upon. Whether it is solving
differential equations, continued fractions, matrix factoriza-
tion, or financial predictions, floating-point is everywhere.
Theoretically, it was shown in the 1980’s [36], [74] that
any program, and therefore, floating-point programs, can be
securely implemented using 2-party computation (2PC) pro-
tocols. These protocols allow two mutually distrustful parties
to run programs on their secret inputs in a way that both the
parties learn nothing about the inputs of each other beyond
what is revealed by the outputs (Section IV-C). However, since
almost all practical software uses floating-point arithmetic and
existing library support for 2PC of floating-point is either non-
existent or imprecise, there is a big gap between the software
that exists and the programs that can actually be run accurately
with existing 2PC implementations.

When developers use (single-precision) floating-point math
libraries like GNU’s libm or Intel’s MKL [8], [9], they
get strong accuracy guarantees. In particular, the results of
primitive operations like floating-point addition and division
are correct (return the floating-point number closest to the

ideal real result, Section III-B) and the implementations of
math functions in math.h like trigonometric sine are precise
(return either the closest or the second-closest floating-point
number to the ideal real result, Section III-C). With these
guarantees, the developers can build applications that represent
computations over reals accurately while using only 32-bits.

A. Importance of accurate floating-point

To emphasize the importance of accurate floating-point,
we review two historical incidents. In December 1994, Intel
recalled its Pentium processors at the cost of $475-million
because the hardware for its floating-point division instruction
sometimes produced slightly inaccurate results [32]. This issue
was brought to the public by a mathematics professor whose
code to enumerate primes became inconsistent because of this
hardware bug.

The second example, is a software bug which caused
the explosion of Ariane-5 rocket resulting in a loss of $7
billion [1]. The explosion was caused by replacing floating-
point numbers with imprecise low-bitwidth fixed-point num-
bers. Although there are some non-safety-critical applications,
e.g. in pattern recognition, where losing numerical precision
for efficiency gains may be OK—an integer overflow in a
quantized computer vision model could result in an incorrect
image classification—many safety critical applications (in
basic sciences or cyber-physical systems) completely fail if
there is an accuracy loss. Hence, both the writers of math
libraries software and manufactures of floating-point hardware
guarantee that the floating-point operations are accurate, i.e.,
correct or precise.

B. Secure computation of floating-point code

Running floating-point code with 2PC while maintaining
accuracy is hard. Although efficient 2PC support for integer
arithmetic exists, it is insufficient for floating-point. Single-
precision floating-point numbers or floats differ from integers
as, even when using only 32-bits, floats have a large dynamic
range: they can represent very large numbers like 2127 and
very small numbers like 2−126 exactly. As 2PC protocols can
support arbitrary bitwidth integers, it is theoretically feasible

to exactly simulate operations on floats with operations on
integers or fixed-point numbers. However, due to the large
range of values that floats represent, this approach requires
very high bitwidth (512-bit) integers that impose intractable
performance overheads.

The primary work on 2PC of floating-point is by Demmler
et al. [28] (referred to as ABY-F to stand for ABY-float).
They express floating-point operations as optimized circuits
(obtained from hardware synthesis tools) and run them with
generic 2PC protocols1. In contrast, MP-SPDZ [44] uses
hand-made custom functionalities for floating-point operations
given by Aliasgari et al. [11], [12] (referred to as SA-
F). The users of existing cryptographic implementations of
floating-point (ABY-F and SA-F) face two challenges. First,
the available math implementations are imprecise and don’t
provide the accuracy guarantees that are provided by standard
implementations of math.h (Section III-C, Section IX-A). In
particular, we have observed that ABY-F and SA-F produce
garbage output (floating-point exceptions like division-by-zero
or answers that are wrong in every digit) for valid computa-
tions (Appendix A). We show two very simple examples of
these errors. First, when evaluating x

sinπ(x) at x near zero, the
expected output is 0.3 ≈ 1

π but ABY-F circuits do a division
by zero. Second, when evaluating the derivative of log(x) at
x = 1, i.e., d log(x)dx |x=1 ≈ log(1)−log(1−ε)

ε , the expected output
is 1.0 but ABY-F outputs 0.7. Hence, the applicability of ABY-
F to safety critical applications is unclear (SA-F is even more
imprecise than ABY-F). Second, even if the target computation
is insensitive to precision, both ABY-F and SA-F suffer from
high performance overheads (Section IX-A).

C. Our contributions

We provide SECFLOAT, the first secure 2PC library for
floating-point that matches the accuracy of Intel’s libraries.
SECFLOAT supports both correct floating-point primitive op-
erations (addition, multiplication, division, and comparison)
and precise math functions (trigonometric functions, expo-
nentiation, and logarithm). In particular, for the examples
above, SECFLOAT produces the expected outputs. Further-
more, SECFLOAT outperforms a state-of-the-art precise base-
line [41] by three orders of magnitude (Section IX-A) and
is up to two orders of magnitude more efficient than even
imprecise baselines [3], [28], [44]. Because of SECFLOAT’s
better performance, even for the computations that are less
sensitive to precision, users of secure 2PC of floating-point are
better-off using SECFLOAT compared to the existing systems.

We also implement privacy preserving proximity test-
ing [71], an application that has previously been used to
evaluate 2PC implementations of floats [28]. On random input
coordinates from Google maps, SECFLOAT-based implemen-
tations are four orders of magnitude more accurate on average
and have 6.8 − 11× lower communication than the state-of-
the-art. Here, the average error in distance computed by Intel’s

1EMP [3] also uses the circuits of ABY-F. We discuss more in Section IX.

MKL/SECFLOAT from ideal real result is about a millimeter
and it is about two metres for ABY-F (1600× worse).

Finally, prior works in secure inference use fixed-point
arithmetic. We show a case study in privacy-preserving ad-
vertisements where fixed-point models completely fail and
floating-point is necessary (Section IX-C).

The main technical contributions of SECFLOAT are novel
functionalities for operations over floats that a) keep the cryp-
tographic cost of running the functionalities low and b) provide
accurate results. To obtain 2PC protocols for these floating-
point functionalities, we run each atomic computation with a
2PC building block over integers (Table I), e.g., comparison,
multiplication, etc. We need to design new functionalities
because the existing functionalities used in cryptographic
works are imprecise and the precise functionalities used in
non-cryptographic works are not crypto-friendly, i.e., they use
operations that are cheap on CPUs but have exorbitant cost
in 2PC. SECFLOAT bridges this gap with its crypto-friendly
precise functionalities. Note that although each building block
of Table I corresponds to a single x86 assembly instruction,
their communication costs (given in the last column), which
are the bulk of the cryptographic costs, are very different.

Next we discuss the standard libraries, i.e., the non-
cryptographic floating-point resources, and why they are un-
suitable for 2PC. Then, in Section I-E we provide an overview
of SECFLOAT’s functionalities.

D. Why standard libraries are not suitable for 2PC?

1) IEEE Standard: The IEEE standard defines the repre-
sentation for floats with p = 8 exponent bits and q = 23
mantissa bits [4] and specifies that primitive operations should
be correct. That is, the primitive operations on these numbers
should be computed with infinite precision real arithmetic and
then rounded to the floating-point number closest to the ideal
real result. The IEEE standard leaves it to the hardware de-
signers to come up with efficient functionalities that compute
intermediate results equivalent to the infinite precision results.
The existing implementations of IEEE standard are not crypto-
friendly and lead to inefficient 2PC implementations (e.g., they
use Boolean circuits [72] or high bitwidth integers [39]).

2) Intel’s MKL: Although IEEE does not specify the pre-
cision of math libraries, it is standard to compute precise
results. For math functions, there is a standard recipe [26]
with three steps which is used by all standard math libraries
including MKL: range reduction, polynomial approximations,
and output compensation. For example, in the first step,
computing a math function z = 2x on a large input range
like x ∈ [−2126, 2127] is reduced to computing 2f on a very
small input range f ∈ [0, 1) using high school mathematics
(2x = 2N2f where N is an integer and 0 ≤ f < 1). The
second step uses polynomials to compute y ≈ 2f accurately
enough so that when y is mapped to the final float output
(z = y · 2N) in the third step, the output is precise. Standard
libraries use high bitwidths to get precise results that have
exorbitant cost when implemented as-is using 2PC. Below,
we discuss the 2PC performance bottlenecks in more detail.

E. SECFLOAT’s design

SECFLOAT has novel and accurate crypto-friendly function-
alities. Standard floating-point libraries incur high worst case
execution time (WCET) on corner cases to run likely inputs
efficiently. However, in 2PC, the floating-point implementa-
tions must take the same time on all inputs to ensure security.
Hence, SECFLOAT’s functionalities require low WCET, which
is one of the reasons why the standard libraries are unsuitable
for it. Furthermore, the existing custom functionalities that
have been designed for MPC are imprecise [11], [12].

For primitive operations over floats, i.e., addition, multi-
plication, and division, SECFLOAT meets the specifications of
IEEE standard and more. In particular, the primitive operations
of SECFLOAT are parametrized by p and q and provide
provably correct results for all floating-point representations,
including the ones that are outside the IEEE standard, e.g.,
Google’s BFloat16 with p = 8 and q = 7, nVIDIA’s
TensorFloat32 with p = 8 and q = 10, etc. This generality
of primitive operations is crucial for SECFLOAT’s math func-
tionalities. Furthermore, they use algorithms that are crypto-
friendly. For example, division looks up the approximate result
from a moderately sized lookup table which is further refined
to a correct result using Newton iterations. This scheme is
suboptimal for CPUs but outperforms the state-of-the-art in
2PC by 11.6×. Standard implementations of the IEEE standard
are overfitted to q = 23 and lead to 2.36− 6.07× slower 2PC
implementations than SECFLOAT (Section IX-A3). For this
evaluation, we simplified implementations in Berkeley’s Soft-
Float [39] by removing the code for special values like NaNs
and denormals, and executed these simplified functionalities
with the same cryptographic building blocks as SECFLOAT.
The former is necessary for a fair comparison as SECFLOAT,
like the other baselines, doesn’t support NaNs and denormals
(Section III-A). Adding support for denormals and NaNs
would require using comparisons on inputs to identify whether
special values can arise in the computation and multiplexing
the results of normal computations and computations with
special values. Here, the cost of normal computations is much
higher than the other costs.
Design of math functions. For math functions, SECFLOAT
also follows the standard 3-step recipe (Section I-D2). How-
ever, the similarities between SECFLOAT and MKL end here.
Since 2PC, which is the target for SECFLOAT, has very
different performance characteristics than CPUs, SECFLOAT’s
functionalities are very different from MKL in the represen-
tations, range reductions, and polynomial approximations. We
make four technical contributions to design cryptographically
efficient math functionalities.

First, we provide new range reductions and implement
them efficiently with 2PC. Although there are several range
reduction techniques available in literature [26], [51], [53],
they rely on polynomial approximations to be evaluated with
very high precision, e.g., doubles with q = 52, which has
high cryptographic cost. Hence, our range reductions are more
complex but allow the polynomial approximations to use

q = 27 and still permit the overall functionalities to be precise.
Note that evaluating polynomials over custom representations
with q = 27 is made possible by the generality of SECFLOAT’s
primitive operations.

Second, MKL uses high degree polynomials that are not
crypto-friendly. We show how to obtain crypto-friendly splines
(Appendix I). Third, we provide a new general functionality to
securely evaluate splines efficiently that can have applicability
beyond floating-point arithmetic (see Section VI-A).

Fourth, to further improve performance, we use cheaper
floating-point primitive operators whenever possible that have
lower cost but don’t provide correct results for all inputs.
SECFLOAT ensures that the cumulative error (the sum of
approximation errors from splines, rounding errors when com-
puting the polynomial with cheaper floating-point operations,
and the rounding errors arising from output compensation)
remains low enough that the overall functionalities are precise.

In Section II, we provide a walk-through example to further
elaborate on SECFLOAT’s design choices.

Bitwidth optimizations. The functionalities of primitive
operations in SECFLOAT use operations over integers
or fixed-point numbers that can be realized using 2PC
frameworks such as ABY [29], SPDZ [44], etc. These
frameworks use a uniform bitwidth, e.g., 64, for all values.
This restriction of uniform bitwidth mandates use of
larger than necessary bitwidths for many sub-computations
that is wasteful for SECFLOAT’s functionalities and leads
to unnecessary performance penalties. As an additional
optimization, SECFLOAT’s functionalities use mixed-bitwidth
computation and ensure that expensive high bitwidths
are used only sparingly: the computations use as low
bitwidths as possible, switch to high bitwidths via extensions
when necessary, and then come back to low bitwidths
via truncations. Some of the building blocks used by our
functionalities are sign or zero extension of an n1-bit integer
to an n2-bit integer (n1 < n2), truncating an n1-bit integer
to an n2-bit integer (n1 > n2), multiplying an n1-bit
integer and an n2-bit integer into an n1 + n2-bit result, etc
(Section IV-D). Note that these building blocks are generic
and not specific to floating-point. Furthermore, SECFLOAT’s
functionalities of math functions use operations over both
floating-point numbers and integers. Integer operations in
SECFLOAT’s math functions also use minimal possible
(necessary to maintain precision) bitwidths and rely on the
same mixed-bitwidth building blocks discussed above. We
use the state-of-the-art 2PC protocols for the mixed-bitwidth
building blocks provided in SIRNN [64]. More efficient
2PC protocols for these building blocks would improve the
performance of SECFLOAT’s functionalities even further.

To summarize, we make the following contributions:

• We provide the first crypto-friendly functionalities for pre-
cise math functions. These use new range reductions, a
new functionality to evaluate splines, and a mechanism

to generate splines that are efficient to evaluate in 2PC
(Section VI and Appendix I).

• We provide crypto-friendly functionalities for primitive
floating-point operations that are correct and support arbi-
trary floating-point representations (Section V).

• We build a library SECFLOAT2 for secure 2-party compu-
tation of 32-bit floating-point arithmetic which is up to six
orders of magnitude more accurate and up to three orders of
magnitude more efficient than prior work (Section IX).

• Using privacy-preserving proximity testing, we show that
SECFLOAT outperforms prior floating-point 2PC libraries in
both accuracy and performance. We provide an example
of machine learning inference with 2PC that concretely
justifies the use of floating-point over fixed-point arithmetic
(Section IX-C).

F. Other Related Work

There is prior work that focuses on implementing floating-
point in the honest majority setting [22], [23], [43], [45],
[48], [57] but these custom functionalities are imprecise [63].
Moreover, we focus on the 2PC setting that provides stronger
security guarantees. It is possible to use CBMC-GC to get
correct functionalities for primitive operations [14], [63].
However, ABY-F [28] outperforms it on primitive operations
and the overheads of this approach are intractable for math
functions (Section IX-A3). Fixed-point math implementations
include [13], [21], [25], [40], [46], [47], [55], [64], [67].
Golden section numbers [31] is an alternative real number
representation that has been evaluated in the honest-majority
setting. HE-based works [15], [16], [56], [61], [75] focus on
floating-point addition/multiplication and are less performant
than ABY-F. Orthogonal to SECFLOAT is the work on OTs
with sublinear communication [19], [27], [73] that when com-
bined with SECFLOAT can further improve the performance
in low-bandwidth settings [64] (Appendix C).

II. WALK-THROUGH EXAMPLE

To explain the differences between standard math libraries
and SECFLOAT, we provide an example where we start with a
standard implementation L of log2 x and incrementally modify
it to obtain SECFLOAT’s crypto-friendly functionality. First,
L expresses the input float x as x = m2N with m = 1 + δ
where δ is a double s.t. 0 ≤ δ < 1, and N is an integer.
Using the range reduction log2 x = N + log2(1 + δ), L first
computes y ≈ log2(1 + δ) using a polynomial approximation
which uses the Taylor series polynomial with degree seven:
y = δ − δ2

2 + . . .− δ7

7 . Here, all the arithmetic operations are
performed using doubles. Then, L rounds the double y + N
to a float f and returns f . Although f is precise, L is not
crypto-friendly because it uses high degree polynomials over
high bitwidth doubles.

To make L crypto-friendly, we first replace doubles having
q = 52 mantissa bits with a representation having q = 27.
Each floating-point operation can introduce a rounding error

2Implementation is available at https://github.com/mpc-msri/EzPC.

of 1
2q [35]. With q = 27, the computation y + N suffers

from high numerical errors. When N = −1 and δ ≈ 1 then
y ≈ 1 and subtracting approximately computed values that
are close to each other leads to cancellation errors (here, y
is approximate because of the rounding errors caused in the
polynomial evaluation). These errors were insignificant when
y was a double with q = 52 but they tank the precision with
q = 27. Hence, SECFLOAT uses the following novel range
reduction: when N 6= −1 then log2 x = N + log2(1 + δ)
(as before) and when N = −1 then log2 x = log2(1 − δ′),
where δ′ =

(
1− m

2

)
. Note that the value of δ′ computed

using finite-bit arithmetic over m is provably exactly equal to
the value obtained if δ′ were to be computed with operations
performed over infinite-bit real numbers using standard results
from numerical analysis (e.g., Sterbenz’s theorem [70]).Thus,
SECFLOAT’s range reduction avoids cancellation errors.

Next, we replace high degree polynomials with low degree
(degree 3) piecewise polynomials or splines that are more effi-
cient in 2PC. Hence, log(1+δ) ≈ θ(i)0 +θ

(i)
1 δ+θ

(i)
2 δ2 +θ

(i)
3 δ3

if δ ∈ [κ(i), κ(i+1)). We show how to compute θ(i)j s and κ(i)s
in Appendix I. To efficiently compute this step, we provide a
new functionality that given a public spline and a secret δ finds
(θ

(i)
0 , θ

(i)
1 , θ

(i)
2 , θ

(i)
3) s.t. δ ∈ [κ(i), κ(i+1)) (Section VI-A).

Finally, we replace the q = 27 additions in spline evaluation
with cheaper additions that have lower cryptographic cost at
the expense of larger errors than the correct additions (multi-
plications are still correct). We then recompute the splines to
ensure that the new splines lead to math functionalities with
provably precise outputs while using the cheap incorrect addi-
tions. We show the final SECFLOAT functionality for log2 x in
Figure 10 that has been exhaustively tested for precise results
on all possible floating-point inputs (Section VI).

This example demonstrates that SECFLOAT strikes a deli-
cate balance between cryptographic costs and numerical errors,
which has never been achieved before: prior cryptographic
libraries are imprecise and the standard math libraries are
inefficient with 2PC (Section IX).

III. FLOATING-POINT BACKGROUND

Floats in the IEEE standard [4] consist of a sign bit s, an 8-
bit unsigned integer η called the biased exponent, and 23 man-
tissa bits ω. These encode the real number (−1)s ·2η−127 ·1.ω.
We use the standard notation that binary strings are prefixed
with 0b. For example, s = 0, η = 127, ω = 0b0221 (a
23-bit binary string with top 22 bits zero and least sig-
nificant bit 1), represents the real number 1 + 2−23. This
representation doesn’t enjoy nice algebraic properties that
are critical for cryptography. For example, the numbers are
not evenly distributed which makes masking difficult. Hence,
performing secure computation over floating-point is usually
more expensive than cryptography over integers [28].

A. Special values

Our aim with SECFLOAT is to provide the same floating-
point support that standard software operates with. IEEE
standard defines four special values: ±inf (the largest and

https://github.com/mpc-msri/EzPC

the smallest representable values), ±0, NaNs (that are result
of 0/0, log(−1), etc.) and denormals (small numbers to enable
gradual underflows). The standard libraries for floating-point
software don’t handle NaNs and denormal special values
correctly by default. For example, Intel’s math libraries, with
optimizations turned on, doesn’t handle denormals correctly
and requires extra compilation flags to enable strict adherence
to the IEEE standard. The reason for this design is two fold:
handling these special values correctly incurs a significant
performance cost and writing software that uses these special
values properly requires specialized expertise in numerical
analysis which is beyond the scope of most programmers. The
algebra of these special values is counter-intuitive, e.g., x = x
is false when x is NaN. Hence, although there is no conceptual
difficulty in supporting denormals, NaNs, and floating-point
exceptions, neither SECFLOAT nor the baselines we compare
with (Section IX) are IEEE compliant for them.

B. Correct results

The IEEE standard requires that the result of primitive oper-
ators, i.e., addition, subtraction, multiplication and division, is
correctly rounded. That is, the result must be computed exactly
(with infinite precision) and then rounded to the floating-point
number nearest to the exact result (using round to even in
case of ties). To perform these operations, the intermediate
computations require more bits. For example, it is common
for handheld calculators to internally work with 13 decimal
digits so that the user gets precise operations on 10 digits. We
call the correctly rounded results as correct results as they are
the most precise results permitted by the representation.

We provide some examples of the default IEEE rounding
mode using a representation with two mantissa bits, i.e.,
|ω| = 2. The binary string 0bdj . . . d0.d−1 . . . d−k repre-
sents the real number

∑j
i=−k di2

i. Here, with |ω| = 2, the
representable numbers are {. . . , 0b1.01 = 1.25, 0b1.10 =
1.5, 0b1.11 = 1.75, . . .}. The other real numbers are not
exactly representable as floating-point numbers and need to be
rounded to floating-point numbers. In IEEE, the real number
1.3125 = 0b1.0101 would be rounded down to 1.25 =
0b1.01. In contrast, 1.4375 = 0b1.0111 would be rounded
up to 1.5 = 0b1.10. Now, consider 1.375 = 0b1.0110 which
is half way between 1.25 and 1.5. It is rounded up to 1.5 as
IEEE rounds to even in case of ties. Finally, 1.625 = 0b1.101,
which is half way between 1.5 and 1.75 is rounded down to
1.5 because of round to even. Formally, in case of ties, the real
number is rounded to the floating-point number whose least
significant mantissa bit is zero. Although this rounding scheme
is more complicated than always rounding down or rounding
up, Reiser and Knuth [66] provide compelling arguments
about how its use helps maintain the precision in numerical
software. Hence, round to nearest with ties to even is the
default rounding mode in IEEE standard and also the one that
SECFLOAT uses.

Next, lets consider an example of an operation on a floating-
point number x = 1.25 = 0b1.01 = (−1)02127−1271.01 with
ω = 0b01 and η = 127. Then x2 = 0b1.01 ∗ 0b1.01 =

round(1.25 · 1.25) = round(1.5625) = round(0b1.1001) =
0b1.10 = 1.5. Here, first the intermediate result is computed
with high bitwidth to get the exact real result 1.5625 which is
then subsequently rounded to only two mantissa bits to obtain
the final result 1.5 with ω′ = 0b10 and η′ = 127. For primitive
operations, some extra bits in intermediate values is sufficient
to get the exact real result [4]. However, this is not the case
with math functions.

C. Precise results

The IEEE standard does not require the implementations of
math functions, i.e., transcendental functions to be correctly
rounded because of the table maker’s dilemma [35]: computing
the correctly rounded outputs of transcendental functions for
|ω| bits of mantissa (say 23 bits) can require intermediate
values with unbounded bits of mantissa. However, most math
library implementations try to ensure that the computed result
is “close” to the exact real result. This closeness relation is
formally defined using an error metric3 known as ULPs (“units
in last place”) [35]. In particular, correctly rounded results
have ULP error ≤ 0.5 and commonly used implementations
of math libraries have ULP error ≤ 1.

Formally, the ULP error between a floating-point number r′

and a real number r is defined as follows. We define ulp(r)
as the distance between the two floating-point numbers that
surround r. Hence, if r− is the floating-point number just
below r and r+ is the floating-point number just above r
then ulp(r) = (r+ − r−). Then the ULP error between r

and r′ is ULP(r, r′) = |r−r′|
ulp(r) . For IEEE-compliant primitive

operations, the ULP error is at most half and this upper bound
is reached when |r− − r| = |r+ − r|. Most commonly used
math libraries like Intel’s MKL guarantee that if the exact real
output of a transcendental function is r then the output r′ is
either r− or r+, which ensures that the ULP error between r′

and r is below one. For imprecise implementations with u > 1
ULP error, log2 u bits of the output are garbage [35].

IV. PRELIMINARIES

We define notation, secret sharing, background on 2PC with
its security model, and 2PC building blocks.

A. Notation

Let λ be the computational security parameter. [k] refers to
the set {0, . . . , k − 1}, x||y denote concatenation of strings x
and y, and 1{P} be the indicator function that returns 1 if the
predicate P is true and 0 otherwise. We use the natural one-to-
one mapping between {0, 1}` (`-bit integers) and the ring Z2` .
For an element x ∈ Z2` , we refer to its unsigned representation
as uint`(x) = ζ`(x), where ζ` is a lossless lifting operator
that maps an element of Z2` to an element in Z. We use
2’s complement encoding for signed representation, which is

3Relative errors are undefined at zero and deducible from ULP errors [35].
In contrast, ULP errors are always well defined. Absolute errors are less useful,
e.g., in exponentiation, the maximum absolute error of MKL/SECFLOAT/all
baselines exceeds 1038.

Functionality
Notation

Description Communication
Functionality Protocol

Multiplexer [65] z = c ? x : y 〈z〉` = Π`MUX(〈c〉B , 〈x〉`, 〈y〉`) z = x if c = 1, else z = y 2λ+ 2`

OR [65] z = x ∨ y 〈z〉B = ΠOR(〈x〉B , 〈y〉B) z = x ∨ y λ+ 20

Equality [65] e = 1{x = y} 〈e〉B = Π`EQ(〈x〉`, 〈y〉`) Checks if x = y, x, y ∈ Z2` < 3
4
λ`+ 9`

Comparison [65] c = 1{x > y} 〈c〉B = Π`GT(〈x〉`, 〈y〉`) Checks if x > y, x, y ∈ Z2` < λ`+ 14`

Lookup Table (LUT) [30] y = L(x), y ∈ Z2n 〈y〉n = Πm,nLUT (L, 〈x〉m) index x, LUT L, z ∈ Z2n 2λ+ 2mn

Zero-Extension [64] y = ZXt(x, n) 〈y〉n = Πm,nZXt (〈x〉m) ζn(y) = ζm(x) mod 2n,m ≤ n λ(m+ 1) + 13m+ n

Truncate-and-Reduce [64] y = TR(x, s) 〈y〉`−s = Π`,sTR(〈x〉`) Upper `− s bits of x λ(s+ 1) + `+ 13s

Unsigned Mixed-bitwidth
Multiplication [64] z = x ∗` y 〈z〉` = Πm,n,`UMult (〈x〉m, 〈y〉n)

ζ`(z) = ζm(x) · ζn(y) mod 2`,
` ≥ max(m,n)

λ(3µ+ ν) + µ(µ+ 2ν)
+16(m+ n)

Signed Mixed-bitwidth
Multiplication [64] z = x ∗′` y 〈z〉` = Πm,n,`SMult (〈x〉m, 〈y〉n)

int`(z) = intm(x) · intn(y) mod 2`,
` ≥ max(m,n)

λ(3µ+ ν) + µ(µ+ 2ν)
+16(m+ n)

Most Significant
Non-Zero Bit [64], [74] k,K = MSNZB(x) 〈k〉`, 〈K〉` = Π`MSNZB(〈x〉`) k, s.t. xk = 1 ∧ ∀i > k, xi = 0,

K = 2`−1−k ≤ λ(5`− 4) + `2

Table I: 2PC building blocks used by SECFLOAT. All communication is in bits. µ = min(m,n), ν = max(m,n).

defined as int`(x) = uint`(x)−MSB(x) · 2`, where MSB(x)
is the most-significant bit of x.

Fixed-point representation. Real numbers can be encoded
as integers using fixed-point representation parameterized by
bitlength ` and scale s. For an unsigned fixed-point integer x,
JxK`,s denotes its real value uint`(x)

2s ∈ Q.

B. Secret sharing

We use 2-out-of-2 additive secret sharing schemes over
different rings [17], [68] between two parties P0 and P1. An `-
bit secret-shared integer is represented as 〈x〉` = (〈x〉`0, 〈x〉`1)
with x = 〈x〉`0 + 〈x〉`1 mod 2` and share of Pb is 〈x〉`b for
b ∈ {0, 1}. To denote shares of boolean values over Z2, we use
the superscript B. 2-out-of-2 secret sharing schemes guarantee
that each share contains no information about the secret (i.e.,
the distribution of 〈x〉`b for b ∈ {0, 1}, is independent of x).

C. 2PC and Security Model

Secure 2-party computation (2PC) [36], [74] considers two
parties P0 and P1 with private inputs x and y respectively,
who agree to compute a public function f on these inputs,
i.e., f(x, y). 2PC provides an interactive protocol with the
guarantee that no party learns anything more than the output
of the function. A common technique for constructing 2PC
protocols is to convert computation over cleartext values into
corresponding cryptographically secure interactive protocols
that operate over secret shares. For instance, say P0 and P1

wish to compute the function z = f(x, y) which is 0 if x < y
and 1 otherwise. They would begin by secret sharing x and
y with each other over an appropriate ring (i.e., P0 creates
〈x〉` = (〈x〉`0, 〈x〉`1) with x = 〈x〉`0+〈x〉`1 mod 2` and gives P1

the share 〈x〉`1 while P1 similarly creates shares (〈y〉`0, 〈y〉`1)
and gives P0 the share 〈y〉`0). Next, they would execute an
interactive protocol Πf that would compute random shares of
z, i.e., at the end of this protocol P0 and P1 would hold (say
boolean) shares 〈z〉B0 and 〈z〉B1 such that 〈z〉B0 ⊕〈z〉B1 = z. Πf

comes with a guarantee that P0 learns nothing about y and P1

learns nothing about x by this interaction; if the parties wish

to learn z, then they can do so by reconstructing the 2 shares
(e.g. P0 can send the share 〈z〉B0 to P1 who computes z).
Security Model. Our threat model is same as [28] and considers
2-party computation secure against a static PPT semi-honest
adversary. At the beginning of the protocol, the adversary
corrupts one of the two parties, and tries to learn information
about honest party’s input using the protocol messages while
faithfully following the protocol. We argue security using the
standard simulation paradigm [20], [36], [54].

Our protocols for floating-point invoke several 2PC sub-
protocols that realize the building blocks described below and
satisfy the same security definition (see Section VII).

D. 2PC Building Blocks

Table I describes the building blocks we use and their
communication cost (refer Appendix D for details), and in-
cludes the mixed-bitwidth 2PC functions that are realizable
using the protocols from [64], [74]. For instance, the protocol
for multiplexer for `-bit values is denoted by Π`

MUX. It takes
as input boolean shares of conditional c and `-bit arithmetic
shares of two values x and y and returns `-bit arithmetic shares
of z, where z = x if c = 1 and z = y otherwise. We use the
protocol from [65] with total communication 2λ+2`. Below,
we define two new building blocks used by our functionalities
and show how to realize them in Appendix D2.

a) Less-than-and-equal: LT&EQ(x, y) takes x, y ∈ Z2`

as input, and outputs two bits cLT = 1{x < y} and cEQ =
1{x = y}. The advantage of using this functionality (over
comparison and equality separately) is that one can implement
it at nearly the same cost as one comparison. We provide a
protocol Π`

LT&EQ that takes as input 〈x〉`, 〈y〉` and securely
computes 〈cLT〉B , 〈cEQ〉B with λ(` + 3) + 14` + 60 bits of
communication.

b) Truncate-and-Reduce-with-Sticky-bit: TRS(x, s) is
similar to truncate-and-reduce (Table I), except that it addi-
tionally sets the least-significant-bit of the output as 1 if any
of the lower s bits of x is 1. We provide a protocol Π`,s

TRS

that takes as input 〈x〉` and securely computes 〈TRS(x, s)〉`−s
with λ(s+ 5) + `+ 14s+ 60 bits of communication.

Functionality Fp,qFPCheck(α)
1: α = (z, s, e,m)
2: if 1{e > 2p−1 − 1} then
3: m = 2q; e = 2p−1

4: if 1{z = 1} ∨ 1{e < 2− 2p−1} then
5: m = 0; e = 1− 2p−1; z = 1

6: Return (z, s, e,m)

Fig. 1: Checking for overflows and underflows.

V. PRIMITIVE OPERATIONS

In the following, we use Greek letters for floating-point
numbers and Roman letters for fixed-point numbers or in-
tegers. We denote a floating-point number α, parameterized
with p, q ∈ Z+, as a tuple (z, s, e,m) where z ∈ {0, 1} is the
zero-bit (set if α = 0), s ∈ {0, 1} is the sign-bit (set only if
α ≤ 0), e ∈ {0, 1}p+2 is the (unbiased) signed exponent taking
values in the range [−2p−1+1, 2p−1] and m ∈ {0, 1}q+1 is the
(normalized) unsigned fixed-point mantissa taking values from
[2q, 2q+1−1]∪{0} with scale q. We note that α = (z, s, e,m)
represents the real number (1−z)·(1−2s)·2intp+2(e)·JmKq+1,q .
Below, we write α.z for the z component of the α tuple, and
similarly for other components. For single-precision floating-
point numbers, recall that the IEEE standard sets p = 8 and
q = 23. Following IEEE, we define the infinities special
values (−1)sinf as (0, s, 2p−1, 2q). Similarly, the special
values (−1)s0 are defined as (1, s,−2p−1 + 1, 0). During
operations, when the result overflows, i.e., the magnitude
of the result becomes greater than the largest floating-point
number, the result is mapped to ±inf. Similarly, when the
result underflows, that is, its magnitude becomes too small
to be represented as floating-point numbers, then the result
is mapped to ±0. We provide the functionality Fp,qFPCheck that
checks for overflows and underflows in Figure 1. Note that the
underflow check also ensures that the mantissa and exponent
are consistent with the zero-bit.
Correctness. For all the primitive operators, we provide the
following correctness guarantee. For inputs that are normalized
floating-point numbers, the outputs of our functionality are
bitwise equivalent to the primitive operators in the IEEE
standard, except if the outputs are denormals or NANs. Our
baselines that we compare against provide the same or weaker
correctness guarantees (Section III).

We begin by describing the functionality for rounding that
is used by all our primitive operators and math functions.
Steps in rounding and primitive operations functionalities can
be securely realized using building blocks from Section IV-D
(see Section VII). In this section, we describe floating-point
multiplication, addition and division and defer the details of
comparison to Appendix E. We show how to mechanically
translate these functionalities to 2PC protocols in Section VII.

A. Rounding �R

The rounding-nearest (ties to even) operator x�Rr takes as
input an `-bit fixed-point number x with scale s, and returns
a (` − r)-bit fixed-point number y with scale (s − r) that

Functionality F`RNTE(x, r)
1: a = TRS(x, r − 2); idx = a mod 8
2: c = LRNTE(idx), c ∈ {0, 1}
3: Return TR(a, 2) + ZXt(c, `− r)

Fig. 2: Round Nearest Ties to Even: x�Rr.

Functionality Fp,q,QRound∗(e,m)

1: if 1{m ≥ 2Q+1 − 2Q−q−1} then
2: Return (e+ 1, 2q)
3: else
4: Return (e,m�R(Q− q))

Fig. 3: Round mantissa and check for overflow.

is closest to x in terms of the real value (Section III-B). In
concrete terms, we have |JyK`−r,s−r − JxK`,s| ≤ 2−(s−r)−1.
We provide the functionality for rounding in Figure 2.

Correctness: Let x = x`−r−1||d||g||xr−1, where x`−r−1 ∈
{0, 1}`−r−1, d, g ∈ {0, 1}, xr−1 ∈ {0, 1}r−1. First, we
replace xr−1 with a sticky bit f which is set if any bit of xr−1
is set using TRS. Now, for correct results we need to round
up when g and f are set (round up result is closer than the
round down result). For the tie case, i.e., when f is zero and g
is set, if d is set (number is odd) then we round it up to even.
We use a lookup table (LUT) LRNTE(d||g||f) = g ∧ (d ∨ f)
to encode these cases and realize round up by TR(x, r) + 1.

B. Round&Check Fp,q,QRound∗

In floating-point operations, rounding is usually performed
on a normalized mantissa m ∈ [2Q, 2Q+1) of Q + 1 bits
to reduce its fractional bits from higher precision Q to the
lower precision of the floating-point representation q. Thus,
the mantissa is rounded by Q − q bits and we get an output
mantissa of q+1 bits. During rounding, a normalized mantissa,
however, can become unnormalized (= 2q+1) and overflow
q + 1 bits, in case the input mantissa is close to 2Q+1 and
is rounded up. To account for this, in case of overflows, the
mantissa is set to 2q and the exponent e is incremented to
adjust for dividing mantissa by 2. We denote this functionality
by Fp,q,QRound∗(e,m) and describe it in Figure 3.

Correctness: First note that m is only rounded to 2q+1 if
m ≥ 2Q+1 − 2Q−q−1. In case m > 2Q+1 − 2Q−q−1, m

2Q−q is
closer to 2q+1 than 2q+1 − 1. If m < 2Q+1 − 2Q−q−1, m

2Q−q

is closer to 2q+1 − 1. If m = 2Q+1 − 2Q−q−1, according
to the defintion of round-ties-to-even, we choose the even
representation, i.e., 2q+1. Now, in case there are no overflows,
we simply round the mantissa and return the result Step 4.
Otherwise, we increment the exponent by 1 and divide the
rounded mantissa by 2 to get 2q+1 Step 2.

C. Multiplication �p,q
Given two floating-point values α1 and α2, we can

write their (exact) product α as (1 − α.z) · (1 − 2α.s) ·
2int(α1.e)+int(α2.e) · Jα1.mKq+1,q · Jα2.mKq+1,q , where α.z =
α1.z ∨ α2.z and α.s = α1.s ⊕ α2.s. Thus, we first add the

Functionality Fp,qFPMul(α1, α2)
1: e = α1.e+ α2.e
2: m = α1.m ∗2q+2 α2.m
3: if 1{m < 22q+1 − 2q−1} then
4: m = m�Rq mod 2q+1

5: else
6: m = m�R(q + 1); e = e+ 1

7: s = α1.s⊕ α2.s; z = α1.z ∨ α2.z
8: Return α = Fp,qFPCheck(z, s, e,m)

Fig. 4: Floating-Point Multiplication: α1 �p,q α2

input exponents to get e = α1.e + α2.e. Next, we multiply
the input mantissas, which results in a 2q + 2-bit fixed-
point integer m with scale 2q such that JmK2q+2,2q ∈ [1, 4).
Now, we normalize the mantissa and adjust the exponent to
create a normalized floating-point output. There are two cases:
Roughly, when JmK2q+2,2q < 2, we simply round it by q bits
and set e as the output exponent. Otherwise, we round m by
q+1 bits and set the output exponent as e+1. Finally, we check
for overflow and underflow. We describe our multiplication
functionality FFPMul formally in Figure 4. Additionally, we
perform the optimization of Appendix H1.

Correctness: Step 1 computes e = α1.e + α2.e ∈ [−2p +
2, 2p], which fits in p + 2 bits, the bitwidth of the input
exponents. Step 2 computes the product m = α1.m∗2q+2α2.m
exactly in 2q + 2 bits, which is the sum of bitwidth of the
input mantissas. Now, m ∈ [22q, (2q+1 − 1)2] is a fixed-point
integer with 2q fractional bits, i.e., JmK2q+1,2q ∈ [1, 4). If m
is already in the normalized range (Case I), we simply round it
by q bits in Step 4; else (Case II) we round it by q+1 bits and
increment e by 1 in Step 6. An important consideration here is
that rounding could lead to an unnormalized mantissa (equal
to 2q+1) in Case I if m ∈ [22q+1 − 2q−1, 22q+1 − 1] before
rounding. Note that Case II doesn’t have this issue as even the
largest m, i.e., (2q+1 − 1)2 does not round beyond 2q+1 − 2.
Thus, to determine the case, we check if m < 22q+1 − 2q−1

(and not m < 22q+1) in Step 3 to account for the case-
switching due to rounding. Finally, the output sign bit and the
zero bit are set in Step 7. The last steps handles overflows and
underflows. Since we computed the output of multiplication
exactly before rounding the mantissa to q bits, the maximum
error in output mantissa is 2−q−1, i.e., at most 0.5 ULP error.

D. Addition �p,q

We need to add two floating-point numbers, α1 and α2.
Let β1 be the larger of the two numbers in magnitude and β2
be the smaller one. Next, we compute the difference of their
exponents, d = β1.e − β2.e. Now we have the following 2
cases: (1) d > q + 1: we simply return β1 as β2 is too small
compared to β1. (2) d ≤ q + 1: we align the exponents of
both operands to β2.e by left-shifting β1.m by d to obtain
the mantissa m1 with bitlength 2q + 2 and scale q. Next, we
add/subtract β2.m from m1 depending on sign of β2. With
this, we have an unnormalized mantissa m with bitlength 2q+3
and scale q such that β2.e is the corresponding exponent. To

Functionality Fp,qFPAdd(α1, α2)
1: (eLT, eEQ) = LT&EQ(α1.e, α2.e)
2: mLT = 1{α1.m < α2.m}
3: (β1, β2) = eLT ⊕ (eEQ ∧mLT) ? (α2, α1) : (α1, α2)
4: d = β1.e− β2.e
5: if 1{d > q + 1} then
6: Return β1
7: else
8: m1 = β1.m ∗2q+2 2d

9: m2 = ZXt(β2.m, 2q + 2)
10: m2 = (β1.s⊕ β2.s ? −m2 : m2)
11: m = m1 +m2; e = β2.e
12: k,K = MSNZB(m),K = 22q+1−k

13: m = m ∗2q+2 K; e = e+ k − q
14: (e,m) = Fp,q,2q+1

Round∗ (e,m).
15: z = 1{m = 0}; s = β1.s
16: Return α = Fp,qFPCheck(z, s, e,m)

Fig. 5: Floating-Point Addition: α1 �p,q α2

Functionality Fp,qFPDiv(α1, α2)
1: m1 = ZXt(α1.m, q + 2); m2 = α2.m; e = α1.e− α2.e
2: if 1{α1.m < α2.m} then
3: m1 = 2m1; e = e− 1

4: t = 2; g = d q+1
2t
e+ 1; k0 = g + 1

5: h = TR(m2, q − g) mod 2g

6: r0 = Lrecp−init(h), r0 ∈ {0, 1}k0+2

7: for i = 1 to t do
8: ki = 2i · (g − 1) + 3
9: fi = 2ki − TR(m2 ∗ki−1+q+1 ri−1, q + ki−1 − ki)

10: ri = ri−1 ∗ki+2 2ki−ki−1 + TR(ri−1 ∗′ki+ki−1+2

fi, ki−1)

11: m′′ = m1 ∗kt+q+2 rt; m′ = TR(m′′, kt)
12: y1 = m2 ∗q+3 m

′; y2 = y1 + ZXt(m2, q + 3)
13: y = (m1 ∗q+3 2q+1)− (y1 + y2); (lt, eq) = LT&EQ(0, y)
14: m = lt⊕ (eq ∧ 1{m mod 2 = 1}) ? m′ + 1 : m′

15: s = α1.s⊕ α2.s, z = α1.z
16: Return α = Fp,qFPCheck(z, s, e,m)

Fig. 6: Floating-Point Division: α1 �p,q α2.

normalize m, we left-shift it by 2q + 1 − k bits, where k
is most significant non-zero bit (MSNZB) of m, and set its
scale as 2q+ 1. Accordingly, we subtract 2q+ 1− k from the
exponent to account for the left-shift and add q + 1 to it for
the scale change. To reduce the scale of mantissa from 2q+ 1
to q bits, we round it using Fp,q,2q+1

Round∗ from Section V-B to
get the mantissa in q + 1 bits. The sign of the output is the
same as the sign of β1 and we check if m is 0 to set the zero-
bit. Our floating-point addition functionality FFPAdd is given
in Figure 5. We prove correctness in Appendix F.

E. Division �p,q
Given numerator α1 and denominator α2, we can write their

(exact) division α as α1.z ·(1−2α.s)·2intp+2(α1.e)−intp+2(α2.e) ·
(Jα1.mKq+1,q/Jα2.mKq+1,q), where α.s = α1.s⊕α2.s. Thus,
we first subtract the exponents to get e = α1.e− α2.e. Next,
we compare the mantissas and if α1.m < α2.m, we double
α1.m to get m1 and subtract 1 from the output exponent
e. This ensures that the quotient of the mantissas is always

normalized. To calculate the quotient, we first compute an
approximation r0 for the reciprocal of α2.m with relative error
< 2−g by using a lookup table of size 2g (Step 6). Then, we
perform t Newton iterations on this approximation (Steps 7–
10), essentially doubling the precision with each iteration, to
get rt with relative error < 2−(2

t(g−1)+1) ≤ 2−q−2. Next, we
multiply rt with m1 to get an approximation of the quotient
m′ that has an ULP error of at most 1 (Step 11). At this point,
we show that the correct quotient can either be Jm′Kq+1,q or
Jm′+1Kq+1,q . We decide between the two (in Steps 12–14) by
checking whether Jm1Kq+2,q is closer to Jm′ ·α2.mK2q+3,2q or
J(m′ + 1) ·α2.mK2q+3,2q . Finally, the output sign-bit is set as
the XOR of the input sign-bits, the output zero-bit is set as the
numerator’s zero-bit, and we perform checks for underflows
and overflows. We prove correctness in Appendix G.

VI. MATH FUNCTIONS

We describe our implementations for math functions over
floats, i.e., p = 8 and q = 23. For SECFLOAT’s design of
math functions please see Section I-E and Section II. Recall
that the math functions in standard math libraries follow
a generic three step process: range reduction, polynomial
approximations, and output compensation.

Next, we describe the operators that the math functionalities
use. We use floating-point addition and multiplication with
various parametrizations of (p, q) in polynomial approxima-
tion and output compensation to obtain accurate results. We
observe that for some of the intermediate operations, we don’t
need correctly rounded results to meet the 1 ULP error bound.
Here, the intermediate operands have a restricted range and the
checks for corner cases can be omitted. In particular, we omit
the calls to FFPCheck. Also, we have created functionalities for
cheap addition (denoted by �∗) and cheap division (denoted
by �∗) that do not return correctly rounded results and
describe them in Appendix H. Hence, the functionalities use
�/� (without FFPCheck) and cheap addition/division while
ensuring that the final result is precise. We avoid calls to
floating-point comparisons of the form α < β by designing
the functionalities so that β is usually a power of 2 and the
comparison can be done by just comparing exponents.
Correctness. To prove the precision of our functionalities,
we exhaustively test on all possible floating-point inputs.
For each input α, we compute β the floating-point output
of the functionality. We also soundly model the exact real
result using high-precision arithmetic, i.e., MPFR [34] with
500-bits of precision. MPFR produces a tiny range [r1, r2]
in which the exact real result must lie. We compute a
sound bound on the ULP error of β using [r1, r2], i.e,
max(ULP(β, r1),ULP(β, r2)). This bound is below 1 for all
our math functionalities on all inputs. Evaluating a functional-
ity on a single input takes microseconds and we can test each
functionality on all inputs within a few hours.

In the following, we use Floatp,q(r) to denote the floating-
point number, parametrized by p and q, obtained by correctly
rounding the real number r.

F`,n,d,p,qGetC (x,Θ = {θ(j)i }
d,n
i=0,j=1,K = {kj}n+1

j=1)

1: {vj}j∈[n] = LKActiveInterval(x), x ∈ {0, 1}`, vj ∈ {0, 1}
2: For j ∈ [n], Vj = ZXt(vj , q + 1); V ′j = Vj mod 2p+2

3: for i = 0 to d do
4: zi = si = ei = mi = 0
5: for j = 1 to n do
6: zi = zi + vj · θ(j)i .z; si = si + vj · θ(j)i .s

7: ei = ei + V ′j · θ
(j)
i .e; mi = mi + Vj · θ(j)i .m

8: Return {(zi, si, ei,mi)}di=0

Fig. 7: Retrieve the coefficients of the active piece in an n-piece
d-degree spline using an `-bit index x: GetC`,n,d,p,q(x,Θ,K).

A. Spline Evaluation

All our math functionalities use splines, or piecewise poly-
nomials for polynomial approximation. An n-piece spline F
is parameterized by the knots K = {κ1, . . . , κn+1} and n
polynomials of degree d. Let the set of coefficients of these
polynomials be Θ = {θ(j)i }

d,n
i=0,j=1. Then, spline F computed

on δ ∈ [κ1, κn+1) is

F (δ) = θ
(j)
0 + θ

(j)
1 · δ + . . .+ θ

(j)
d · δ

d, for δ ∈ [κj , κj+1)

The main task is to select the correct polynomial coefficients
for δ from Θ. In all our math functions, we set up the knots
K such that the active interval for δ (j s.t. δ ∈ [κj , κj+1)) can
be determined using only a few bits from the exponent and
the mantissa of δ. We use these bits, ` in number, to define
idx ∈ {0, 1}` from δ and K = {k1, . . . , kn+1} from K with
kj ∈ {0, 1}` for all j ∈ [n+1] such that δ ∈ [κj , κj+1) if and
only if idx ∈ [kj , kj+1]. With this the task is to select correct
coefficients given idx,Θ,K.

There are two natural ways to realize splines. 1) Compare
idx with {k1, . . . , kn+1} and depending on the comparison
outputs, compute the correct coefficients [59], [60]. 2) Use
a 2` size LUT that maps idx to correct coefficients. Both of
these approaches have high cryptographic cost. The former
requires n comparisons. In the latter approach, the lookup table
entries are d + 1 floating-point numbers, and since the cost
of lookup table grows linearly with entry size, this approach
has high cost when we are looking for many coefficients. We
give a specialized crypto-friendly functionality for selecting
the correct coefficients in Figure 7.

First, we construct a LUT LKActiveInterval of size 2` (of one-
hot encodings) that maps idx ∈ {0, 1}` to v ∈ {0, 1}n
such that vj = 1 if idx ∈ [kj , kj+1) and 0 otherwise. Note
that the table entries are only n-bits. After the lookup in
Step 1, we compute the correct coefficients as

∑
j vj · θj . To

compute this with our floating-point representation, we extend
vj to appropriate size rings (Step 2) before multiplication.
We crucially note that since the coefficients in Θ are public,
the above equation can be computed locally by each party
using scalar multiplication on secret shares of vj . Hence, our
cryptographic cost is only proportional to 2`-size LUT with
n-bit entries followed by n extensions from 1 bit to q+1 bits.
That is, our cryptographic cost is independent of the degree

Functionality F8,23
FPsinπ(α)

1: p = 8; q = 23; Q = 27
2: α′ = (α.z, 0, α.e, α.m ∗Q+1 2Q−q)
3: if 1{α.e ≥ 23} then
4: Return Floatp,q(0)
5: else if 1{α.e < −14} then
6: γ = Floatp,Q(π) �p,Q α

′

7: Return (γ.z, γ.s,F (
Round∗γ.e, γ.m,Q, q))

8: else
9: m = α.m ∗q+15 2α.e+14

10: a = TR(m, q + 14); n = m mod 2q+14

11: f = (1{n > 2q+13} ? 2q+14 − n : n)
12: k,K = MSNZB(f); f = f ∗q+15 K
13: z = 1{f = 0}; e = (z ? − 2p−1 + 1 : k − q − 14)
14: δ = (z, 0, e,TR(f, q + 14−Q))
15: if 1{δ.e < −14} then
16: µ = Floatp,Q(π) �p,Q δ
17: else
18: if 1{δ.e < −5} then
19: idx1 = δ.e+ 14 mod 24

20: (θ1, θ3, θ5) = GetC4,9,5,p,Q(idx1,Θ
1
sin,K

1
sin)

21: else
22: idx2 = 32 · (δ.e+ 5 mod 27)
23: idx2 = idx2 +ZXt(TR(δ.m,Q−5) mod 32, 7)
24: idx2 = 1{δ.e = −1} ? 127 : idx2
25: (θ1, θ3, θ5) = GetC7,34,5,p,Q(idx2,Θ

2
sin,K

2
sin)

26: ∆ = δ �p,Q δ
27: µ = ((θ5 �p,Q ∆) �∗p,Q θ3) �p,Q ∆
28: µ = (µ�∗p,Q θ1) �p,Q δ

29: Return (µ.z, a⊕ α.s,Fp,q,QRound∗(µ.e, µ.m)).

Fig. 8: Floating-point sinπ8,23(α).

of the polynomial used in the spline4. Moreover, we carefully
choose the knots to ensure that ` is small. All our splines have
` ≤ 8 and n ≤ 64.

Concretely, for tangent that requires only 2 coefficients,
the naı̈ve LUT-based approach is better. But for functions
like exponentiation and logarithm (Section VI-D) that require
looking up 6 and 8 coefficients respectively, our approach
has 2.3× and 3.7× lower communication than naı̈ve LUT-
based approach, respectively. Also, our approach has 3.1× and
3.9× lower communication than comparison-based approach
for exponentiation and logarithm, respectively.

Next, we describe the math functionalities for trigonometric
sine and tangent, logarithm, and exponentiation; cosine is in
Appendix J. Appendix K describes the splines used by them.
The polynomials are evaluated using Horner’s rule, e.g., a +
bx+ cx2 is evaluated as a+ x(b+ cx).

B. Sine

We provide the functionality for computing sinπ(α) in
Figure 8. First, we handle the easy cases in Steps 3-7.
• If the input |α| ≥ 223, we know that sinπ(α) = 0 as all

such numbers are integers.
• If the input |α| < 2−14, it is small enough that approxi-

mating sinπ(α) as πα leads to less than 1 ULP error.

4Number of multiplications on δ needed to compute the polynomial depends
on the degree, and hence, we aim to minimize the degree.

For other inputs, we perform the range reduction:
1) Range Reduction : We use the property that sinπ is an

odd periodic function to reduce the computation of sinπ(α)
where |α| ∈ [2−14, 223) to sinπ(δ) where δ ∈ [0, 0.5]. Let
s = 1{α < 0} and β = |α| = 2 ·K + a + n, where K ∈ N,
a ∈ {0, 1} and n ∈ [0, 1). Now, consider δ ∈ [0, 0.5], defined
as δ = n if n < 0.5 and δ = 1 − n otherwise. Then, using
sinπ(1− x) = sinπ(x), we have:

sinπ(α) = (−1)a+s · sinπ(δ) (1)

Although this equation is over reals, we compute bits
a, s ∈ {0, 1} and a reduced input δ ∈ [0, 0.5] from α using
the building blocks of Section IV-D in Steps 9-14.

2) Polynomial Evaluation (Steps 15-28): For reduced in-
puts δ < 2−14, we simply approximate sinπ(δ) as π · δ. The
computation of sinπ(δ) on the rest of the inputs is split into
two cases, and we design a separate spline of degree 5 (of the
form θ1δ+θ3δ

3+θ5δ
5) for both cases. The first case considers

δ ∈ [2−14, 1
32) and we use a 9 piece spline F 1 here, whose

intervals are determined by the lower 4 bits of the exponent.
The second case handles δ ∈ [1

32 , 0.5] and here we use a 34
piece spline F 2. Lower 2 bits of exponent and upper 5 bits of
mantissa suffice to determine the intervals of F 2 on all inputs
except δ = 0.5. To avoid looking at additional bits for δ = 0.5,
in Step 24, if δ = 0.5 we set the 7-bit index idx2 to the idx2
corresponding to the last interval [63

128 , 0.5).
3) Output Compensation (Step 29): By Equation 1, we

return sinπ(δ) if a⊕ s is 0, and −sinπ(δ) otherwise.

C. Tangent

We provide the functionality for computing tanπ(α) in
Figure 9. For |α| /∈ [2−14, 223), tanπ(α) = sinπ(α) (Steps 3-
7). For α ∈ [2−14, 223), we perform the following steps.

1) Range Reduction: Standard approaches for range reduc-
tion of tanπ use high degree polynomials that is not crypto-
friendly. So, we designed our own range reduction for tanπ
as follows. Similar to sinπ, tanπ is also an odd periodic
function. Let s = 1{α < 0} and β = |α| = K + m,
K ∈ N and m ∈ [0, 1). Now, tanπ(m) = (−1)b · tanπ(n),
where b = 1{m > 0.5} and n = b ? 1 − m : m. We
have tanπ(n) = tanπ(t)1−2c, where c = 1{m > 0.25} and
t = c ? 0.5 − n : n. Now, we rewrite t = N

512 + δ, where
N ∈ {0, . . . , 127} and δ ∈ [0, 1

512]. Finally, using the identity
tanπ(x+ y) = tanπ(x)+tanπ(y)

1−tanπ(x)·tanπ(y) , we get:

tanπ(α) = (−1)b+s ·
(tanπ(N

512) + tanπ(δ)

1− tanπ(N
512) · tanπ(δ)

)1−2c
(2)

Thus, we get bits b, c, s ∈ {0, 1}, an index N ∈ {0, 1}7 and a
reduced input δ ∈ [0, 1

512] in Steps 9-21.
2) Polynomial Evaluation (Steps 22-28): We use a 21-piece

spline with polynomials of the form θ1δ + θ3δ
3 to compute

tanπ(δ) for δ ∈ [2−14, 1
512] . We use 3 bits of the exponent

and 2 bits from the mantissa of δ to lookup the coefficients
from the LUT Ltan-coeffs of size 21.

Functionality F8,23
FPtanπ(α)

1: p = 8; q = 23; Q = 27
2: α′ = (α.z, 0, α.e, α.m ∗Q+1 2Q−q)
3: if 1{α.e ≥ 23} then
4: Return Floatp,q(0)
5: else if 1{α.e < −14} then
6: γ = Floatp,Q(π) �p,Q α

′

7: Return (γ.z, γ.s,F (
Round∗γ.e, γ.m,Q, q))

8: else
9: if 1{α.e ≥ −9} then

10: m = α.m ∗q+9 2α.e+9

11: (n, b) = 1{m > 2q+8} ? (2q+9 −m, 1) : (m, 0)
12: (t, c) = 1{n > 2q+7} ? (2q+8 − n, 1) : (n, 0)
13: f = t mod 2q; N = TR(t, q)
14: if 1{N = 27} then
15: N = N − 1 mod 27; δ′ = Floatp,q(2

−9)
16: else
17: k,K = MSNZB(f); f = f ∗q+1 K
18: z = 1{f = 0}; e = (z ? −2p−1+1 : k−q−9)
19: N = N mod 27; δ′ = (z, 0, e, f)

20: else
21: b = 0; c = 0; N = 0; δ′ = (α.z, 0, α.e, α.m)

22: δ = (δ′.z, δ′.s, δ′.e, δ′.m ∗Q+1 2Q−q)
23: if 1{δ.e < −14} then
24: µ = Floatp,Q(π) �p,Q δ
25: else
26: idx = (δ′.e+14 mod 8)||(TR(δ′.m, q−2) mod 4)
27: (θ1, θ3) = Ltan-coeffs(idx), idx ∈ {0, 1}5
28: µ = ((θ3 �p,Q δ �p,Q δ) �∗p,Q θ1) �p,Q δ

29: ν = Ltan-table(N), N ∈ {0, 1}7
30: ζ1 = µ�∗p,Q ν; ζ2 = Floatp,Q(1) �∗p,Q (µ�p,Q ν)
31: (η1, η2) = 1{c = 1} ? (ζ2, ζ1) : (ζ1, ζ2)
32: γ = η1 �∗p,Q η2
33: Return (γ.z, b⊕ α.s,Fp,q,QRound∗(γ.e, γ.m))

Fig. 9: Floating-point tanπ8,23(α).

3) Output Compensation (Steps 29-33): tanπ(N
512) is re-

trieved from a lookup table of size 128 and the output is
computed according to Equation 2.

D. Logarithm

The functionality for computing log2(α) is given in Fig-
ure 10. The input α ∈ [2−126, 2128), i.e., α.s = α.z = 0 and
we proceed with following steps.

1) Range Reduction (Steps 2-6): Let α = m · 2N , where
m ∈ [1, 2) and N ∈ [−126, 127] ∩ Z. Let a = 1{N = −1}
and define δ as δ = m− 1 if a = 0 and δ = 1− m

2 if a = 1.
Then, it is easy to see that the following holds:

log2(α) =

{
N + log2(1 + δ) a = 0

log2(1− δ) a = 1
(3)

Thus, from the range reduction, we get a bit a ∈ {0, 1},
a reduced input δ ∈ [0, 1), and an integer N ∈ {0, 1}8. We
use this more complicated range reduction than log2(α) =
N + log2(1 + δ) as the latter suffers from cancellation errors
when N = −1 and δ is close to 1. Hence, the requirement of
precise results and desire to keep the bitwidths small dictate
that we use Equation 3.

Functionality F8,23
FPlog2(α)

1: p = 8; q = 23; Q = 27
2: a = 1{α.e = −1}; f = a ? 2q+1 − α.m : α.m− 2q

3: k,K = MSNZB(f); f = f ∗q+1 K
4: e = a ? k − q − 1 : k − q
5: z = 1{f = 0}; e = (z ? − 2p−1 + 1 : e)
6: N = α.e; δ = (z, 0, e, f ∗Q+1 2Q−q)
7: if 1{δ.z } then
8: µ = Floatp,Q(0)
9: else

10: if 1{δ.e < −5} then
11: idx1 = δ.e+ 24 mod 25

12: (θa0 , θ
a
1 , θ

a
2 , θ

a
3) = GetC5,19,4,p,Q(idx1,Θ

1
log,K

1
log)

13: (θb0, θ
b
1, θ

b
2, θ

b
3) = GetC5,18,4,p,Q(idx1,Θ

3
log,K

3
log)

14: else
15: idx2 = 16 · (δ.e+ 5 mod 27)
16: idx2 = idx2 + ZXt(TR(δ.m,Q− 4) mod 16, 7)
17: (θa0 , θ

a
1 , θ

a
2 , θ

a
3) = GetC7,20,4,p,Q(idx2,Θ

2
log,K

2
log)

18: (θb0, θ
b
1, θ

b
2, θ

b
3) = GetC7,32,4,p,Q(idx2,Θ

4
log,K

4
log)

19: (θ0, θ1, θ2, θ3) = a ? (θa0 , θ
a
1 , θ

a
2 , θ

a
3) : (θb0, θ

b
1, θ

b
2, θ

b
3)

20: µ = ((θ3 �p,Q δ) �∗p,Q θ2) �p,Q δ
21: µ = ((µ�∗p,Q θ1) �p,Q δ) �∗p,Q θ0
22: β = LInt2Float(N), N ∈ {0, 1}p
23: β′ = (β.z, β.s, β.e, β.m ∗Q+1 2Q−6)
24: γ = a ? µ : µ�∗p,Q β

′

25: Return (γ.z, γ.s,Fp,q,QRound∗(γ.e, γ.m))

Fig. 10: Floating-point log28,23(α).

2) Polynomial Evaluation (Steps 7-21): Depending on the
value of a, we need to compute either log2(1+δ) or log2(1−
δ), where δ ∈ [0, 1). If δ = 0, we simply return 0. For other
inputs, we found that δ ∈ [2−23, 1) when a = 0 and δ ∈
[2−24, 0.5] when a = 1. For all the cases described below, we
use degree-3 splines.

When a = 1, we split the computation of log2(1−δ) in two
cases and design separate splines for both. 1) δ ∈ [2−24, 1

32):
a 19-piece spline F 1 such that intervals are determined by the
lower 5 bits of the exponent. 2) δ ∈ [1

32 , 0.5]: a 20-piece spline
F 2 where intervals are determined using 7 bits: lower 3 bits
of exponent and upper 4 bits of mantissa.

When a = 0, to compute log2(1 + δ), we do similar two
cases. 1) δ ∈ [2−23, 1

32): a 18 piece spline F 3 determined by
the same lower 5 bits of exponent. 2) δ ∈ [1

32 , 1): a 32-piece
spline F 4 determined by the same 7 bits as above.

We provide details on exact knots used in Appendix K. As
the knots used in the two cases of a = 0 and a = 1 have a
large overlap, in GetC, we combine the first look-up step in
F 1 and F 3 (similarly, F 2 and F 4) to reduce its cost.

3) Output Compensation (Steps 23-25): Let µ be the output
of the polynomial evaluation. As per Equation 3, if a = 1, we
simply return µ; else, we convert N to a floating-point number
β with p = 8 and q = 6 using an LUT LInt2Float of size 256,
convert β to floating-point with p = 8 and q = 27, and round
µ+ β to q = 23.

Functionality F8,23
FPexp2(α)

1: p = 8; q = 23; Q = 27; β = (α.z, 0, α.e, α.m)
2: if 1{α.s = 0} ∧ 1{α.e ≥ 7 } then
3: Return inf
4: else if 1{α <p,q Floatp,q(−126)} then
5: Return Floatp,q(0)
6: else if 1{α.e < −24} then
7: Return Floatp,q(1)
8: else
9: m = α.m ∗q+32 2α.e+24

10: s = α.s; f = m mod 2q+24; N = TR(m, q + 24)
11: k,K = MSNZB(f); f = TR(f ∗q+25 K, 24 + q−Q)
12: z = 1{f = 0}; e = (z ? − 2p−1 + 1 : k − q − 24)
13: N = (s ? −N : N); δ = (z, 0, e, f)
14: if 1{δ.e < −24} then
15: µ = Floatp,Q(1)
16: else
17: e′ = 1{δ.e < −6} ? − 7 : δ.e
18: idx = 32 · (e′ + 7 mod 28); ∆ = δ �p,Q δ
19: idx = idx + ZXt(TR(δ.m,Q− 5) mod 32, 8)
20: (θ+0 , θ

+
1 , θ

+
2) = GetC8,64,3,p,Q(idx,Θ+

exp2,Kexp2)

21: (θ−0 , θ
−
1 , θ

−
2) = GetC8,64,3,p,Q(idx,Θ−exp2,Kexp2)

22: (θ0, θ1, θ2) = s ? (θ−0 , θ
−
1 , θ

−
2) : (θ+0 , θ

+
1 , θ

+
2)

23: µ = (((θ2 �p,Q δ) �∗p,Q θ1) �p,Q δ) �∗p,Q θ0
24: Return (0, 0,Fp,q,QRound∗(ZXt(N, p+ 2) + µ.e, µ.m))

Fig. 11: Floating-point exp28,23(α).

E. Exponentiation

Figure 11 describes the functionality to compute 2α. First,
we handle the easy cases in Steps 2-7.

• If α ≥ 128, we return inf as 2α overflows 32-bit floats.
• If α < −126, we return 0 as 2α underflows.
• If |α| < 2−24, then returning 1 results in < 1 ULP error.

1) Range Reduction (Steps 9-13): Let s = 1{α < 0} and
β = |α| = K + δ, K ∈ N and δ ∈ [0, 1). For N = (−1)s ·K,
2α = 2N · 2−δ if s = 1 and 2α = 2N · 2δ otherwise. From
this range reduction, we get a bit s ∈ {0, 1}, an integer N ∈
Z ∩ [−126, 128), and a reduced input δ ∈ [0, 1).

2) Polynomial Evaluation (Steps 14-23): Based on the sign-
bit s, we need to compute either 2δ or 2−δ where δ ∈ [0, 1). If
δ < 2−24 then we can again return 1. For the remaining inputs,
we use two 64-piece degree-2 splines, F+ for 2δ and F− for
2−δ . Both F+ and F− have identical and equidistant knots
that are multiples of 1

64 . For small δ with δ.e ∈ [−24,−7], it is
okay to set δ.e = −7 without affecting the active interval of δ.
With this, to determine the active interval of δ, we only need
to examine 8 bits of δ, namely, bottom 3 bits of exponent
and top 5 bits of mantissa. We retrieve the corresponding
coefficients for both F+ and F− for the active interval, assign
the coefficients of the quadratic polynomial θ0 + θ1δ + θ2δ

2

based on s, and evaluate this polynomial on δ.
3) Output Compensation (Step 24): The final output is

simply 2N ·µ, where µ is the output of polynomial evaluation.
Note that since N is an integer, this multiplication is equivalent
to adding N to µ’s exponent.

Protocol Πp,q
FPMul(〈α1〉FP(p,q), 〈α2〉FP(p,q))

1: Set 〈e〉p+2 = 〈α1.e〉p+2 + 〈α2.e〉p+2.
2: Call 〈m′〉2q+2 = Πq+1,q+1,2q+2

UMult (〈α1.m〉q+1, 〈α2.m〉q+1).
3: Call 〈c〉B = Π2q+2

GT (22q+1 − 2q−1, 〈m〉2q+2).
4: Call 〈m1〉q+1 = Π2q+2,q

RNTE (〈m′〉2q+2) mod 2q+1.
5: Call 〈m2〉q+1 = Π2q+2,q+1

RNTE (〈m′〉2q+2).
6: Set 〈e2〉p+2 = 〈e〉p+2 + 1.
7: Call 〈m〉q+1 = Πq+1

MUX(〈c〉B , 〈m1〉q+1, 〈m2〉q+1).
8: Call 〈e〉p+2 = Πp+2

MUX(〈c〉B , 〈e〉p+2, 〈e2〉p+2).
9: Set 〈s〉B = 〈α1.s〉B ⊕ 〈α2.s〉B .

10: Call 〈z〉B = ΠOR(〈α1.z〉B , 〈α2.z〉B).
11: Ret. 〈β〉FP(p,q) = Πp,q

FPCheck(〈z〉B , 〈s〉B , 〈e〉p+2, 〈m〉q+1).

Fig. 12: 2PC protocol for floating-point multiplication

VII. 2PC PROTOCOLS FOR FLOATING POINT

For ease of exposition, in Sections V and VI we described
the crypto-friendly cleartext functionalities for floating-point
operations used in SECFLOAT. Here, we discuss how we can
obtain the corresponding 2PC protocols using the building
blocks discussed in Section IV-D in a straight-forward manner.
First, consistent with the floating-point representation used by
our functionalities, a secret shared floating-point number α is
a tuple 〈α〉FP(p,q) = (〈α.z〉B , 〈α.s〉B , 〈α.e〉p+2, 〈α.m〉q+1) of
four secret-shared values.

Next, as an example, we provide the 2PC protocol for
floating-point multiplication in Figure 12 derived from the
cleartext functionality in Figure 4. Here, parties start with
secret-shares of 2 floating-point values α1 and α2 and end up
with shares of α1�p,q α2. For each step in Figure 4, we com-
pute the shares of the output from the shares of the input by
invoking the correct 2PC building block corresponding to the
computation in that step. For instance, shares of the value m′,
i.e., the product of the mantissas α1.m and α2.m, are obtained
using a call to the protocol for unsigned multiplication over
shares. All the conditionals or “if” statements are executed
using a call to the multiplexer protocol that works over boolean
shares of the conditional variable and arithmetic shares of the
values being chosen. This transforms the data dependent flow
in the cleartext functionality to data oblivious computation in
the 2PC protocol. For example, Steps 7 and 8 correspond to the
conditional setting of m and e in Steps 3-6 in Figure 4. Apart
from the calls to the 2PC building blocks in Section IV-D,
the 2PC protocol for floating-point multiplication also invokes
protocols that check for underflows and overflows (ΠFPCheck)
and round nearest ties to even (ΠRNTE). For completeness, we
provide these protocols in Figures 13 and 14, respectively,
that are derived using similar transformations to cleartext
functionalities in Figures 1 and 2.

We can follow the same mechanical procedure to obtain the
2PC protocols for all primitive floating point operations from
the corresponding cleartext functionalities in Section V. More-
over, for the math functionalities in Section VI, each of the
steps can be securely computed using either the protocol for

Protocol Πp,q
FPCheck(〈α〉FP(p,q))

1: Call 〈c1〉B = Πp+2
GT (〈α.e〉p+2, 2p−1 − 1).

2: Call 〈m〉q+1 = Πq+1
MUX(〈c1〉B , 2q, 〈α.m〉q+1).

3: Call 〈e〉p+2 = Πp+2
MUX(〈c1〉B , 2p−1, 〈α.e〉p+2).

4: Call 〈c2〉B = Πp+2
GT (2− 2p−1, 〈α.e〉p+2).

5: Call 〈c3〉B = ΠOR(〈α.z〉B , 〈c2〉B).
6: Call 〈m〉q+1 = Πq+1

MUX(〈c3〉B , 0, 〈m〉q+1).
7: Call 〈e〉p+2 = Πp+2

MUX(〈c3〉B , 1− 2p−1, 〈e〉p+2).
8: Call 〈z〉B = ΠB

MUX(〈c3〉B , 1, 〈α.z〉B).
9: Return 〈β〉FP(p,q) = (〈z〉B , 〈α.s〉B , 〈e〉p+2, 〈m〉q+1).

Fig. 13: 2PC protocol for checking overflows and underflows

Protocol Π`,r
RNTE(〈x〉`)

1: Call 〈a〉`−r+2 = Π`,r−2
TRS (〈x〉`).

2: Set 〈idx〉3 = 〈a〉`−r+2 mod 8.
3: Call 〈c〉B = Π3,1

LUT(LRNTE, 〈idx〉3).
4: Call 〈a〉`−r = Π`−r+2,2

TR (〈a〉`−r+2).
5: Call 〈c〉`−r = Π1,`−r

ZXt (〈c〉B).
6: Return 〈a〉`−r + 〈c〉`−r .

Fig. 14: 2PC protocol for Round Nearest Ties to Even

the floating-point primitive operations (or, its cheaper variant
as discussed), or the building blocks from Section IV-D.

As is standard, security of the overall protocols for floating-
point operations can be argued in the hybrid model [20] as
follows. First, we replace the calls to sub-protocols with calls
to corresponding ideal (trusted) functionalities. Second, we
note that all the sub-protocols/ideal functionalities maintain the
invariant that they take 2-out-of-2 secret shares of the inputs
and produce 2-out-of-2 secret shares of the output. Hence,
during simulation, it is secure to provide random values (from
the correct domain) as outputs of these ideal functionalities.
With these observations, simulation is straight-forward. For
instance, we prove security of our protocol for floating-
point multiplication against an adversary that corrupts P0 as
follows: the simulator will provide uniform random values
from appropriate domains as shares for m′, c,m1,m2,m, e, z
and β.z, β.s, β.e, β,m. It holds that the views of the adversary
in the real execution and this simulated execution are identical.
Proofs of security for all our protocols are similar.

VIII. SECFLOAT IMPLEMENTATION

We have designed SECFLOAT as a drop-in replacement for
floating-point libraries. The users of SECFLOAT can take their
existing numerical software written in C++ and link it with
SECFLOAT instead of standard math libraries to obtain secure
2PC implementations. SECFLOAT is implemented on top of
SIRNN’s [64] building blocks available at [7] using 3200 lines
of C++. Additionally, [64] provided an optimization, MSB-to-
Wrap, that significantly reduces the cost of building blocks
when the most significant bit (MSB) of the input is known (See
Table 5, [64]). To use this optimization, in our implementation
of floating-point functionalities, many of the bitwidths are

incremented by 1 to keep track of the MSB. Appendix I
describes how to obtain splines for the math functions.

IX. EVALUATION

We empirically evaluate SECFLOAT and show that it signif-
icantly advances the state-of-the-art in 2PC of floating-point
computation both in terms of precision, as well as communi-
cation and latency. We compare against three baselines:

First, we compare with ABY [2] and EMP [3], two state-
of-the-art cryptographic libraries with floating-point support.
They use heavily optimized circuits that were generated au-
tomatically from hardware synthesis tools in ABY-F [28].
Here, on some inputs, all 23 bits of mantissa are garbage
and even some bits of the exponent are incorrect. In contrast,
SECFLOAT implementations are both provably accurate (for
primitive operations and math functions) and have up to 30×
lower communication (Section IX-A2).

For our second baseline, we compare with the MP-
SPDZ [5], [44] semi-honest 2PC implementations of the
custom functionalities for primitive floating-point operations
presented by Aliasgari et al. [11], [12]. Unlike SECFLOAT,
these implementations are imprecise (six orders of magnitude
higher errors) and suffer up to 240× higher communica-
tion overheads (Section IX-A2). MP-SPDZ doesn’t support
floating-point math functions.

As a result, the only way to evaluate math functions like sine
precisely using 2PC frameworks that exist today is to take the
C-code of precise math implementations from an open source
math library like OpenLibm [50] and run it using 2PC with a
compiler that can translate C-code to 2PC protocols. This is
our third baseline. Like SECFLOAT, this baseline is guaranteed
to be precise (OpenLibm is precise and 2PC protocols provide
bitwise equivalent results to cleartext). However the communi-
cation overheads for this baseline are intractable. For example,
for sine, SECFLOAT’s communication is at least 1000× lower
than this baseline (Section IX-A3). Finally, performance of
state-of-the-art SilentOT [19], [27], [73] based protocols is
4.5− 1152× worse than SECFLOAT (Appendix C).

Finally, we evaluate the SECFLOAT library with two ap-
plications: privacy-preserving proximity testing and secure
inference in privacy-preserving advertisements.

Experimental Setup. We perform our experiments on two
machines, each equipped with a 4-core 3.7 GHz Xeon pro-
cessor and 16 GBs of RAM. The machines are connected via
LAN network providing 3 Gbps bandwidth and 0.8 ms RTT.

A. Microbenchmarks and Comparison

In Table II, we consider the benchmarks5 from [28], i.e.,
floating-point comparison (CMP), multiplication (MULT), ad-
dition (ADD), division (DIV), sinπ (SIN), cosπ (COS), tanπ
(TAN), 2α (EXP2), and log2 α (LOG2). Next, we evaluate
SECFLOAT and the baselines.

5SECFLOAT also supports correct square root and precise ex, loge x, etc.

Technique Time (in s) for Batch Size Comm.
(KiB)

ULP
Error103 104 105

CMP
SECFLOAT 0.02 0.07 0.30 1.11 NA

ABY-F 0.05 0.25 2.08 6.93 NA
(2.3x) (3.9x) (7.0x) (6.2x)

MP 0.22 1.24 12.85 89.64 NASPDZ (10.7x) (19.0x) (43.1x) (80.7x)

MULT
SECFLOAT 0.05 0.14 0.69 3.13 0.5

ABY-F 0.34 3.22 32.20 95.74
0.5

(7.0x) (23.0x) (46.7x) (30.6x)
MP 0.38 1.36 10.28 72.72

> 106SPDZ (7.7x) (9.7x) (14.9x) (23.2x)

ADD
SECFLOAT 0.15 0.56 3.91 11.10 0.5

ABY-F 0.12 1.00 9.35 31.33
0.5

(0.8x) (1.8x) (2.4x) (2.8x)
MP 3.63 36.05 − 2561.22

> 106SPDZ (23.8x) (64.4x) − (230.7x)

DIV
SECFLOAT 0.14 0.35 2.43 10.27 0.5

ABY-F 0.46 3.90 38.36 119.55
0.5

(3.2x) (11.2x) (15.8x) (11.6x)
MP 11.33 113.25 − 2462.68

> 106SPDZ (78.4x) (326.3x) − (239.8x)

SIN
SECFLOAT 0.46 1.59 11.27 42.36 1

ABY-F 0.48 4.49 44.77 163.49
> 107

(1.0x) (2.8x) (4.0x) (3.9x)

COS
SECFLOAT 0.50 1.60 11.29 42.41 1

ABY-F 0.46 4.51 45.21 163.86
> 107

(0.9x) (2.8x) (4.0x) (3.9x)

TAN
SECFLOAT 0.66 2.21 14.91 60.38 1

ABY-F 1.32 12.39 122.37 445.86
> 107

(2.0x) (5.6x) (8.2x) (7.4x)

EXP2
SECFLOAT 0.41 1.51 11.28 37.23 1

ABY-F 0.85 8.38 83.61 304.89
1

(2.0x) (5.6x) (7.4x) (8.2x)

LOG2
SECFLOAT 0.53 1.97 14.94 51.48 1

ABY-F 0.92 9.04 90.53 330.77
> 106

(1.7x) (4.6x) (6.1x) (6.4x)

Table II: Comparison of SECFLOAT with ABY-F and MP-
SPDZ. The numbers in parentheses show our improvement
factor. ‘-’ denotes tool crash.

OP Rounds OP Rounds
ABY-F SECFLOAT ABY-F SECFLOAT

CMP 12 11 SIN/COS 95/98 196
MULT 47 27 TAN 394 268
ADD 59 49 EXP2 100 187
DIV 296 84 LOG2 157 256

Table III: Rounds comparison of SECFLOAT with ABY-F.

1) SECFLOAT evaluation: As can be seen from the last
column, SECFLOAT has ideal ULP error: half for primitive
operations and one for math functions. The penultimate col-
umn shows the communication in kilobytes per operation.
We evaluate SECFLOAT with different batch sizes of 1000
to 100,000 operations and report the total execution time. For

batches below size 1000, the time of SECFLOAT is about the
same as the time for batch of size 1000. This unexpected
behavior is because of engineering inefficiencies in the source
code of SIRNN [7], [64] that SECFLOAT currently uses for its
building blocks. In particular, if the implementations in SIRNN
were to be parallelized then the cost of small batches would be
lower. Since improvements in the 2PC implementations of the
building blocks is orthogonal to SECFLOAT, for this evaluation
we use the SIRNN implementations as is.

2) Imprecise baselines: We run the microbenchmarks6 with
ABY-F circuits [28]. For each ABY-F row in Table II, the num-
bers shown are from evaluating these circuits from [28] with
the best performing backend out of ABY’s garbled circuits,
ABY’s GMW, and EMP. We observe that the math functions
(except for EXP2) have huge ULP errors. For example, on run-
ning LOG2 with input just below one, SECFLOAT and MKL
output −8.59913 · 10−8 and ABY-F outputs −1.19209 · 10−7,
which is incorrect in every digit and has a relative error of
40%. We show such examples for other math functions in
Appendix A. SECFLOAT’s communication is also up to 30×
lower than ABY-F, resulting in 46× reduction in running time.
Table III shows that the rounds of SECFLOAT are comparable
to the rounds of ABY-F with the GMW backend. For our case
studies (Section IX-B and Section IX-C), the 2PC performance
is bottlenecked by the communication and not the rounds.

We evaluate the functions available in MP-SPDZ (based on
[11], [12]) in Table II. These implementations are imprecise
and SECFLOAT outperforms them in both precision (up to
106×) and communication (up to 240×).

3) Precise baselines: Since the trigonometric functions are
imprecise in ABY-F circuits [28], and are unavailable in MP-
SPDZ, the only option today to run them with 2PC precisely
is to compile existing precise C-implementations to 2PC. We
use OpenLibm as it has open-source C-code7 for precise math
functions. The only C-to-2PC compiler that can handle Open-
Libm’s implementation for trigonometric sine is CBMC-GC,
the state-of-the-art compiler from C to garbled circuits [14],
[41], [63]. We evaluate this CBMC-GC+OpenLibm approach
for trigonometric sine. Here, CBMC-GC generates a Boolean
circuit with 1.7 million Non-XOR gates and running such a
circuit using any available implementation of Yao’s garbled
circuits will incur a communication of at least 51MiB for each
evaluation [2], [3], [5]. This is three orders of magnitude larger
than the communication of our sinπ functionality and quickly
becomes intractable.

Next, we consider Berkeley’s SoftFloat [39] as a baseline,
which is the gold standard for correct implementations of
primitive operations8. For this comparison, we implemented
SoftFloat’s functionalities with the same building blocks
as SECFLOAT, and found that SoftFloat’s functionalities
have 6.1×, 2.4×, 3.2×, and 2.4× worse communication than
SECFLOAT for comparison, multiplication, addition, and di-

6TAN(x) has been implemented as DIV(SIN(x), COS(x)) for ABY-F.
7Intel MKL’s implementations are in handwritten x86-assembly and there

are no compilers from x86-assembly to 2PC.
8SoftFloat doesn’t have math functions.

Technique Time (in s) for Batch Size Comm. Average
103 104 105 (KiB) ULP Error
Scenario I: Parties have secret inputs

SECFLOAT 0.96 2.86 21.42 75.27
33.86ABY-F 2.29 24.33 250.68 833.98

(2.4x) (8.5x) (11.7x) (11.1x)

Scenario II: Parties have secret-shares of inputs
SECFLOAT 2.41 7.59 55.55 211.26 1.05

ABY-F 4.21 40.27 415.61 1437.73
19612.95

(1.7x) (5.3x) (7.5x) (6.8x)

Table IV: Comparison of SECFLOAT with ABY-F on privacy-
preserving proximity testing. The numbers in parentheses
show our improvement factor.

vision, respectively. SECFLOAT’s improvement can be largely
attributed to the use of non-standard bitwidths (SoftFloat uses
only the standard bitwidths of {8, 16, 32, 64}) and fewer “if-
then-else” statements. For instance, SoftFloat’s addition has
different branches depending on the equality of signs of
operand, and then further two more sub-branches depending
on which operand is larger. In contrast, SECFLOAT runs a
uniform computation for all four cases.

B. Privacy-Preserving Proximity Testing

We evaluate SECFLOAT on privacy preserving proximity
testing [71], the case study used in ABY-F [28]. Here, given
secret coordinates (ψA, φA) and (ψB , φB) for points A and
B on earth, where ψA, ψB are latitudes and φA, φB are
longitudes, it tests whether the distance ∆ between the points
is less than a threshold ε. The distance ∆ is calculated using
Haversine’s formula [69]:

∆ = 2R · tan−1(
√

δ
1−δ), where R is the radius of the Earth,

δ = sinπ2(ψA−ψB

2) + cosπ(ψA) · cosπ(ψB) · sinπ2(φA−φB

2).

The secure computation of ∆ < ε can be reduced to securely
computing δ [71]. The last column of Table IV shows the ULP
error in computing δ in two scenarios.

In scenario I, Alice knows A and Bob knows B and they
want to securely compute whether distance between A and
B is less than ε. As shown by [28], [71], the computation
can be rearranged using trigonometric identities that allows
local computation of trigonometric functions and we need to
only compute the following floating-point operations securely:
6 multiplications, 5 additions, and 1 comparison. We run this
computation with both ABY-F circuits [28] and SECFLOAT
and report the results in the top half of Table IV (we take the
best number of ABY and EMP). The primitive operators of
both SECFLOAT and ABY-F are correct and result in similar
numerical errors. However, SECFLOAT’s communication is an
order of magnitude lower.

In scenario II, Alice and Bob both have secret shares of
(ψA, φA) and (ψB , φB), and want to compute secret shares
of ∆ < ε. This scenario arises when privacy preserving
proximity testing is a part of a bigger computation in which
the coordinates are the output of some 2PC and cannot be
revealed to any single party. This computation requires 4

multiplications, 3 additions, 2 divisions, 1 comparison, 2 sinπ
and 2 cosπ operations. Here, the trigonometric computations
need to be performed with 2PC and the output of ABY-F is
very imprecise (the bottom half of Table IV). On 105 randomly
generated pairs of coordinates, the average ULP error of [28] is
19613 ULPs, which means that more than half of the mantissa
bits in the output are garbage on average. In contrast, the
average numerical error of SECFLOAT is ≈ 1 ULP. In meters,
this translates to ABY-F having an average deviation of ≈ 2
meters, while SECFLOAT has an average deviation of ≈ 10−3

meters with 6.8× lower communication.
We conclude that SECFLOAT provides an accurate imple-

mentation of this application. In both the scenarios, the ULP
error of SECFLOAT-based implementation matches the error
of the cleartext implementation that runs the floating-point
computation with Intel’s compilers and libraries. Moreover, the
communication of SECFLOAT are 6.8 − 11× lower than the
prior state-of-the-art 2PC implementations of this application
and provide up to an order of magnitude faster runtimes.

C. Machine Learning

Consider the problem of web advertising, that is wit-
nessing a push for 2PC-based solutions, through proposals
like Google’s DOVEKEY [6] and Microsoft’s MACAW [10].
Commercial advertisement networks use deep neural networks
(DNNs) for the relevance problem; given the user information
known as context and an advertisement, the model outputs a
score indicating whether the advertisement is relevant to the
user or not. There are two parties—Alice holding a secret
unlabeled input and Bob holding the secret model weights—
who want to run secure inference to learn relevance scores
without revealing their secrets to each other.

The prior works on secure deep learning [18], [24], [33],
[47], [49], [55], [58], [60], [62] (and references therein) rely on
converting floating-point models to fixed-point models. They
require the scale or precision level of fixed-point numbers to
be set manually (often ≤ 16). Low scales cause precision
loss and high scales cause integer overflows. Hence, a good
scale that preserves model accuracy (i.e., where the accuracy
of fixed-point model is close to that of the floating-point
model) might or might not exist. To determine the best scale,
CRYPTFLOW [49], [64], [65] enumerates fixed-point models
with all possible scales and picks the most accurate model.

In this section, we evaluate an industrial relevance model
M. It is a fully-connected feed-forward neural network that
takes a vector of length 874 as input. It has three hidden layers
with sizes 300, 200, and 100, respectively. The output layer
has 4 classes with softmax activation. We evaluated M with
CRYPTFLOW and found that no good scales exists for M
because M has weights in a large dynamic range: they are as
large as 10 and as small as 10−7 in magnitude. The dynamic
range of intermediate activations is even larger and this large
dynamic range of values makes fixed-point approximations
unsuitable for M. All the fixed-point programs, each with
a different scale, generated by CRYPTFLOW for M, either

Task Size Time (s) Comm. (GB) Improvement
Backprop. 1 40.3 10.9 11.3×
Backprop. 32 1020.5 329.6 9.1×
Inference 1 18.3 4.7 8.8×
Inference 32 1036.0 151.58 8.8×

Table V: Secure machine learning with SECFLOAT and its
communication improvements over ABY-F.

overflow the integers for large values or underflow small values
to zero. In both cases, the fixed-point model output is garbage.

In Table V, we perform secure inference of M with
SECFLOAT and report the runtime and communication for
minibatch sizes 1 and 32. For completeness, we also evaluate
backpropagation: one forward pass, one backward pass while
using the cross entropy loss, and a weight update. This model
uses additions, multiplications, comparisons, divisions, and ex-
ponentiations. As expected, the communication of SECFLOAT-
based implementations are much lower than those based on
ABY-F (last column of Table V). Hence, SECFLOAT enables
accurate secure inference of relevance models in privacy-
preserving advertising, which is impossible with the existing
fixed-point-based frameworks.

X. CONCLUSION AND FUTURE WORK

We build a library SECFLOAT for 2PC of floats which is up
to six orders of magnitude more precise and up to three orders
of magnitude more efficient than ABY-F, CBMC-GC, and
MP-SPDZ. Going forward, we would like to provide security
against malicious adversaries and math functions for doubles.
The former is an engineering effort that requires running
SECFLOAT’s crypto-friendly functionalities with SPDZ [44].
Accurate math functions over doubles require advanced veri-
fication techniques (e.g., [37], [38], [52]) as verifying the pre-
cision on all inputs via exhaustive testing on ≈ 264 doubles is
intractable. In most software, the era of fixed-point arithmetic
is long forgotten and not regretted. With SECFLOAT, we make
a case to end the use of ad hoc fixed-point approximations in
secure inference. In the future, we would like to explore what
benefits SECFLOAT brings to other applications in privacy-
preserving machine learning.

REFERENCES

[1] https://www-users.math.umn.edu/∼arnold/disasters/ariane.html, 2000.
[2] “ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party

Computation,” https://github.com/encryptogroup/ABY, 2015.
[3] “EMP-toolkit: Efficient MultiParty computation toolkit,” https://github.

com/emp-toolkit, 2016.
[4] “IEEE standard for floating-point arithmetic,” IEEE STD 754-2019

(Revision of IEEE 754-2008), 2019.
[5] “Multi-Protocol SPDZ: Versatile framework for multi-party computa-

tion,” 2019. [Online]. Available: https://github.com/data61/MP-SPDZ
[6] “ Dovekey auction using Secure Multi Party Computation (MPC),”

https://github.com/google/ads-privacy/blob/master/proposals/dovekey/
dovekey auction.md, 2021.

[7] “CrypTFlow: An End-to-end System for Secure TensorFlow Inference,”
https://github.com/mpc-msri/EzPC, 2021.

[8] “Intel®C++ Compiler Classic Developer Guide and Reference
,” https://software.intel.com/content/www/us/en/develop/
documentation/cpp-compiler-developer-guide-and-reference/
top/optimization-and-programming-guide/intel-math-library/
overview-intel-math-library.html, 2021.

[9] “Intel®oneAPI Math Kernel Library Vector Mathematics Performance
and Accuracy Data ,” https://software.intel.com/content/www/us/en/
develop/documentation/onemkl-vmperfdata/top.html, 2021.

[10] “Multi-party Computation of Ads on the Web (MaCAW),” https://github.
com/WICG/privacy-preserving-ads/blob/main/MACAW.md, 2021.

[11] M. Aliasgari, M. Blanton, and F. Bayatbabolghani, “Secure computation
of hidden markov models and secure floating-point arithmetic in the
malicious model,” Int. J. Inf. Sec., 2017.

[12] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure computation
on floating point numbers,” in NDSS, 2013.

[13] A. Aly and N. P. Smart, “Benchmarking privacy preserving scientific
operations,” in ACNS, 2019.

[14] D. W. Archer, S. Atapoor, and N. P. Smart, “The Cost of IEEE
Arithmetic in Secure Computation,” Cryptology ePrint Archive, Report
2021/054, 2021.

[15] S. Arita and S. Nakasato, “Fully homomorphic encryption for point
numbers,” in Inscrypt, ser. Lecture Notes in Computer Science, 2016.

[16] S. Bai, G. Yang, J. Shi, G. Liu, and Z. Min, “Privacy-preserving oriented
floating-point number fully homomorphic encryption scheme,” Secur.
Commun. Networks, 2018.

[17] G. R. Blakley, “Safeguarding cryptographic keys,” in International
Workshop on Managing Requirements Knowledge, 1979.

[18] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: a mixed-protocol machine learning framework for private
inference,” in ARES, 2020.

[19] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and
P. Scholl, “Efficient two-round OT extension and silent non-interactive
secure computation,” in CCS, 2019.

[20] R. Canetti, “Security and Composition of Multiparty Cryptographic
Protocols,” J. Cryptology, 2000.

[21] O. Catrina, “Round-efficient protocols for secure multiparty fixed-point
arithmetic,” in COMM, 2018.

[22] ——, “Evaluation of floating-point arithmetic protocols based on shamir
secret sharing,” in ICETE (Selected Papers), 2019.

[23] ——, “Performance analysis of secure floating-point sums and dot
products,” in COMM, 2020.

[24] N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah, “SIMC: ML
inference secure against malicious clients at Semi-Honest cost,” in
USENIX Security, 2022.

[25] V. Chen, V. Pastro, and M. Raykova, “Secure Computation for Machine
Learning With SPDZ,” in Workshop on Privacy Preserving Machine
Learning at NeurIPS, 2018.

[26] W. J. Cody, Software Manual for the Elementary Functions (Prentice-
Hall Series in Computational Mathematics). USA: Prentice-Hall, Inc.,
1980.

[27] G. Couteau, S. Raghuraman, and P. Rindal, “Silver: Silent VOLE
and Oblivious Transfer from Hardness of Decoding Structured LDPC
Codes,” in CRYPTO 2021.

[28] D. Demmler, G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated synthesis of optimized circuits for secure
computation,” in CCS, 2015.

[29] D. Demmler, T. Schneider, and M. Zohner, “ABY - A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation,” in NDSS,
2015.

[30] G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider, S. Zeitouni, and
M. Zohner, “Pushing the Communication Barrier in Secure Computation
using Lookup Tables,” in NDSS, 2017.

[31] V. Dimitrov, L. Kerik, T. Krips, J. Randmets, and J. Willemson,
“Alternative implementations of secure real numbers,” in CCS, 2016.

[32] A. Edelman, “The mathematics of the pentium division bug,” SIAM Rev.,
vol. 39, no. 1, 1997.

[33] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Im-
proved Primitives for MPC over Mixed Arithmetic-Binary Circuits,” in
CRYPTO, 2020.

[34] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Trans. Math. Softw., 2007.

[35] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic.” ACM Comput. Surv., vol. 23, no. 1, 1991.

[36] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority,”
in ACM STOC, 1987.

[37] J. Harrison, “Floating point verification in HOL light: The exponential
function,” Formal Methods Syst. Des., vol. 16, no. 3, 2000.

https://www-users.math.umn.edu/~arnold/disasters/ariane.html
https://github.com/encryptogroup/ABY
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://github.com/data61/MP-SPDZ
https://github.com/google/ads-privacy/blob/master/proposals/dovekey/dovekey_auction.md
https://github.com/google/ads-privacy/blob/master/proposals/dovekey/dovekey_auction.md
https://github.com/mpc-msri/EzPC
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-vmperfdata/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-vmperfdata/top.html
https://github.com/WICG/privacy-preserving-ads/blob/main/MACAW.md
https://github.com/WICG/privacy-preserving-ads/blob/main/MACAW.md

[38] ——, “Formal verification of floating point trigonometric functions,” in
FMCAD, ser. Lecture Notes in Computer Science, vol. 1954, 2000.

[39] J. R. Hauser, “Berkeley softfloat (release 3e),” http://www.jhauser.us/
arithmetic/SoftFloat.html, 2018.

[40] B. Hemenway, S. Lu, R. Ostrovsky, and W. W. IV, “High-precision
secure computation of satellite collision probabilities,” in SCN, 2016.

[41] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party
computations in ANSI C,” in CCS, 2012.

[42] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending Oblivious
Transfers Efficiently,” in CRYPTO 2003.

[43] L. Kamm and J. Willemson, “Secure floating point arithmetic and private
satellite collision analysis,” Int. J. Inf. Sec., vol. 14, no. 6, 2015.

[44] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in CCS, 2020.

[45] L. Kerik, P. Laud, and J. Randmets, “Optimizing MPC for robust and
scalable integer and floating-point arithmetic,” in Financial Cryptogra-
phy Workshops, 2016.

[46] D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. H. Cheon, “Privacy-
preserving approximate gwas computation based on homomorphic en-
cryption,” BMC Medical Genomics, vol. 13, 2020.

[47] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in NeurIPS, 2021.

[48] T. Krips and J. Willemson, “Hybrid model of fixed and floating point
numbers in secure multiparty computations,” in ISC, 2014.

[49] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in IEEE Sympo-
sium on Security and Privacy, 2020.

[50] J. Lang, “OpenLibm,” https://openlibm.org/, 2016.
[51] W. Lee, R. Sharma, and A. Aiken, “Verifying bit-manipulations of

floating-point,” in PLDI, 2016.
[52] ——, “On automatically proving the correctness of math.h implemen-

tations,” Proc. ACM Program. Lang., vol. 2, no. POPL, 2018.
[53] J. P. Lim and S. Nagarakatte, “RLIBM-32: high performance correctly

rounded math libraries for 32-bit floating point representations,” in
PLDI, 2021.

[54] Y. Lindell, “How to simulate it – a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography, 2017.

[55] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Network
Predictions via MiniONN Transformations,” in CCS, 2017.

[56] X. Liu, R. H. Deng, W. Ding, R. Lu, and B. Qin, “Privacy-preserving
outsourced calculation on floating point numbers,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 11, 2016.

[57] Y. Liu, Y. Chiang, T. Hsu, C. Liau, and D. Wang, “Floating point
arithmetic protocols for constructing secure data analysis application,”
in KES, ser. Procedia Computer Science, 2013.

[58] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A Cryptographic Inference Service for Neural Networks,” in
USENIX Security, 2020.

[59] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for
Machine Learning,” in CCS, 2018.

[60] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” in IEEE S&P, 2017.

[61] S. Moon and Y. Lee, “An efficient encrypted floating-point representation
using HEAAN and TFHE,” Secur. Commun. Networks, 2020.

[62] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: improved
mixed-protocol secure two-party computation,” in USENIX Security,
2021.

[63] P. Pullonen and S. Siim, “Combining secret sharing and garbled circuits
for efficient private IEEE 754 floating-point computations,” in Financial
Cryptography Workshops, 2015.

[64] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran,
and A. Rastogi, “SIRNN: A math library for secure inference of RNNs,”
in IEEE S&P, 2021.

[65] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,” in
CCS, 2020.

[66] J. F. Reiser and D. E. Knuth, “Evading the drift in floating-point
addition,” Inf. Process. Lett., vol. 3, no. 3, 1975.

[67] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable
Provably-Secure Deep Learning,” in DAC, 2018.

[68] A. Shamir, “How to share a secret,” Commun. ACM, 1979.
[69] R. W. Sinnott, “Virtues of the Haversine,” Sky Telesc., vol. 68, 1984.

Function Input Output ULP ErrorABY-F [28] Ideal/SECFLOAT

SIN 7.5891 · 10−8

0x33a2f983
0 2.38419 · 10−7 16.7 · 106

COS 0.49999
0x3effffff

3.5 · 10−7 9.36268 · 10−8 37.1 · 106

TAN 1.89727 · 10−8

0x32a2f983
0 5.96046 · 10−8 16.7 · 106

LOG2 0.99999
0x3f7fffff

−1.1 · 10−7 −8.59913 · 10−8 4.6 · 106

Table VI: Inputs which lead to large ULP errors in ABY-
F circuits. Ideal is the exact real result. The floating-point
inputs are shown both in their decimal as well as hexadecimal
representations.

[70] P. H. Sterbenz, Floating-point computation, ser. Prentice-Hall series in
automatic computation. Prentice-Hall, 1974.

[71] J. Šeděnka and P. Gasti, “Privacy-preserving distance computation and
proximity testing on earth, done right,” in AsiaCCS, 2014.

[72] Xilinx, “Vivado Design Suite User Guide, High-level Synthesis,”
https://www.xilinx.com/support/documentation/sw manuals/
xilinx2012 2/ug902-vivado-high-level-synthesis.pdf, 2015.

[73] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang, “Ferret: Fast
extension for correlated OT with small communication,” in CCS, 2020.

[74] A. C. Yao, “How to Generate and Exchange Secrets (Extended Ab-
stract),” in FOCS, 1986.

[75] T. Zhu, X. Zou, and J. Pan, “Query with SUM aggregate function on
encrypted floating-point numbers in cloud,” J. Inf. Process. Syst., vol. 13,
no. 3, 2017.

APPENDIX

A. Example inputs with imprecise outputs in ABY-F

In Table VI, we provide example inputs that lead to very
imprecise outputs in ABY-F circuits [28]. We did not evaluate
the precision of these libraries exhaustively; these are the
inputs that have the maximum error in the tests we ran and
larger errors are possible. The third column shows the exact
real result with six decimal digits and SECFLOAT produces the
same answer. The imprecision in ABY-F’s sine is particularly
worrisome as when it is used in computing cosecant (1

sin)
or cotangent (cossin) then the user will run into divide by zero
errors on perfectly valid inputs. For reference, Intel recalled
its pentium processors when DIV(4195835,3145727) returned
1.33373 instead of 1.33382. In Table VI, even the exponent
of the ABY-F output is wrong.

B. Performance numbers of ABY

In this section, we provide performance numbers of ABY
for both garbled circuits (GC) and GMW. See Table VII
for microbenchmark numbers and Table VIII for proximity
testing.

C. Silent OT and extensions.

Another baseline we consider is running accurate function-
alities with GMW [36] where the required oblivious transfers
(OTs) are preprocessed using SilentOT extension [19], [27]
and pseudorandom correlation generators (PCGs) [73]. We ran
Ferret [73], which is the state-of-the-art, to estimate the cost of
OT preprocessing for division from ABY-F and OpenLibm’s

http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
https://openlibm.org/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf

Operation Time (in s) for Batch Size Comm.
(KiB)

ULP
Error103 104 105

CMP
GC 0.11 0.71 6.94 8.82

NA(5.5x) (5.6x) (23.2x) (7.9x)

GMW 0.07 0.31 2.81 6.93
(3.2x) (2.4x) (9.4x) (6.2x)

MULT
GC 0.79 8.45 83.74 96.26

0.5
(16.0x) (60.4x) (121.4x) (30.7x)

GMW 0.41 3.89 36.34 95.74
(8.3x) (27.8x) (52.7x) (30.6x)

ADD
GC 0.52 5.13 52.17 60.04

0.5
(3.4x) (9.2x) (13.3x) (5.4x)

GMW 0.29 2.34 25.12 58.96
(1.9x) (4.2x) (6.4x) (5.3x)

DIV
GC 1.44 15.15 − 170.61

0.5
(10.0x) (32.8x) (11.5x)

GMW 0.80 6.74 63.33 171.25
(5.5x) (14.6x) (22.1x) (11.5x)

SIN
GC 1.37 14.36 − 164.98

> 107
(3.0x) (9.0x) (3.9x)

GMW 0.72 7.13 62.29 165.54
(1.6x) (4.5x) (5.5x) (3.9x)

COS
GC 1.36 14.17 − 165.36

> 107
(2.5x) (8.9x) (3.9x)

GMW 0.75 6.41 62.73 165.92
(1.4x) (4.0x) (5.6x) (3.9x)

EXP2
GC 2.63 24.97 − 306.39

1
(6.3x) (16.2x) (8.2x)

GMW 1.26 13.32 112.83 309.15
(3.0x) (8.6x) (10.0x) (8.3x)

LOG2
GC 2.89 27.84 − 332.26

> 106
(5.5x) (13.8x) (6.5x)

GMW 1.38 12.63 123.44 335.44
(2.6x) (6.3x) (8.3x) (6.5x)

Table VII: Performance numbers for ABY-GC and ABY-
GMW. The numbers in parentheses show SECFLOAT’s im-
provement factor. ‘-’ denotes tool crash.

Technique Time (in s) for Batch Size Comm. Average
103 104 105 (KiB) ULP Error
Scenario I: Parties have secret inputs

GC 7.68 74.78 − 864.48

33.86
(7.8x) (24.4x) (11.5x)

GMW 3.57 34.86 − 875.98
(3.6x) (11.4x) (11.6x)

Scenario II: Parties have secret-shares of inputs

GC 12.40 124.01 − 1459.80

19612.95
(4.6x) (14.1x) (5.9x)

GMW 5.73 55.36 − 1476.56
(2.1x) (6.3x) (6.0x)

Table VIII: Performance of ABY-GC and ABY-GMW on
privacy-preserving proximity testing. The numbers in paren-
theses show SECFLOAT’s improvement factor. ‘-’ denotes tool
crash.

sine, and observed that the time for this preprocessing alone9

was 16.4× and 1152× worse than the total runtime of
SECFLOAT. The communication of Ferret+GMW for division
is 2.2× better and for sine is 36× worse than SECFLOAT.
A recent work Silver [27] improves upon Ferret using new
non-standard assumptions. Using Silver, preprocessing time

9Ignoring the runtime of online multi-round GMW.

is 4.5× and 315× worse than total runtime of SECFLOAT
for division and sine respectively. The communication of
Silver+GMW for division is 3.8× better and for sine is 21×
worse than SECFLOAT.

Above comparisons used traditional IKNP-style [42] OT
extensions for building blocks of SECFLOAT. We note that
almost all of SECFLOAT’s building blocks in Section IV-D use
OTs and can benefit from SilentOT/PCG techniques, that trade
communication with compute, to further improve SECFLOAT’s
performance in low bandwidth settings. In our evaluation set
up, IKNP works better for SECFLOAT.

D. 2PC Building Blocks

1) Existing building blocks:
a) Zero extension.: For x ∈ Z2m , zero-extension to

n > m bits is defined as ZXt(x, n) = ζm(x) mod 2n. [64]
provides a protocol Πm,n

ZXt that takes as input 〈x〉m and outputs
〈ZXt(x, n)〉n with communication of at most λ(m + 1) +
13m + n bits. When m = 1, we do extension using the
cheaper Boolean-to-Arithmetic (B2A) protocol, which costs
λ+ n bits [65].

b) Truncate-and-Reduce.: We denote truncate-reduce by
s bits as TR(x, s) that takes x of ` bits, drops the lower s
bits and returns upper `− s bits as the truncated output. [64]
provides a protocol Π`,s

TR that takes 〈x〉` as input and returns
〈TR(x, s)〉`−s with communication λ(s+ 1) + `+ 13s bits.

c) Multiplication with non-uniform bitwidths.: Unsigned
multiplication between x ∈ Z2m and y ∈ Z2n with the output
in an `-bit ring is denoted by x ∗` y = ζm(x) · ζn(y) mod 2`.
[64] gives a protocol Πm,n,`

UMult that takes 〈x〉m and 〈y〉n as input
and returns 〈x ∗` y〉`. The communication complexity of this
protocol is roughly λ(3µ+ν)+µ(µ+2ν)+16(m+n) where
µ = min(m,n) and ν = max(m,n). Signed multiplication is
denoted by x∗′` y = intm(x) · intn(y) mod 2`, and its protocol
Πm,n,`

SMult has the same communication as the unsigned case.
d) MSNZB: For an `-bit number x, MSNZB(x) is de-

fined as the index of the most significant non-zero bit. That is,
MSNZB(x) = k ∈ {0, . . . , `−1} such that xk = 1 and xi = 0
for all i > k. We make slight modifications10 to protocol from
[64] to create a protocol Π`

MSNZB that takes 〈x〉` as input and
outputs {〈zi〉`}i∈[`] such that zi = 1 for i = MSNZB(x) and
0 otherwise. Given {〈zi〉`}, the parties can locally compute
〈k〉` =

∑
i∈[`] i · 〈zi〉` and 〈K〉` =

∑
i∈[`] 2`−1−i · 〈zi〉`.

Alternatively, garbled circuits (GC) can be used to get boolean
shares of one-hot encoding of MSNZB using 2(` − 1) AND
operations and ` B2A operations, which costs λ(5`− 4) + `2

bits. The MSNZB protocol from [64] is more communication-
efficient than the GC solution; please refer [64] for the exact
cost expression.

e) Comparison.: We require a protocol that takes 〈x〉`
and 〈y〉` as input and returns 〈1{x < y}〉B as output. Special-
ized protocols for this function instead compute 1{x−y < 0}
and hence, for correctness require that |x − y| < 2`−1 for

10 [64] produces boolean shares of one-hot encoding. To get arithmetic
shares, we append it with COT-based boolean-to-arithmetic share conversion
from [65].

unsigned inputs and |x| + |y| < 2`−1 for signed inputs. Due
to this constraint, while invoking the comparison protocol for
greater-than Π`

GT, we set the bitwidths of x, y such that this
condition is met. We use the protocol for comparison from
[65] that has communication of < λ` + 14` bits (for both
signed and unsigned numbers).

f) Equality.: We use a slightly modified version of the
millionaires’ protocol from [65] to compute equality-check. In
particular, their millionaires’ protocol already does most of the
work required for equality-check, and we can get an equality-
check protocol Π`

EQ straightforwardly from it by avoiding
the extra AND computations. The communication cost of the
resultant protocol is < 3

4λ`+ 9` bits.
g) Lookup Tables.: The lookup table (LUT) protocol

Πm,n
LUT takes a table L with 2m entries of n-bits each and 〈x〉m

as inputs, and outputs 〈z〉n such that z = L[x]. A single call
to
(
2m

1

)
-OTn realizes this functionality with communication

2λ+ 2mn bits [30].

2) New Building Blocks: Our new building blocks, namely,
less-than-and-equal (LT&EQ) and truncate-and-reduce-with-
sticky-bit (TRS), reduce to a functionality called wrap-and-all-
zeros Wrap&All0s(〈x〉`). This functionality on 〈x〉` outputs
two secret-shared bits 〈w〉B and 〈z〉B , where wrap w =
1{〈x〉`0 + 〈x〉`1 ≥ 2`}, and all-zero result z = 1{〈x〉`0 +
〈x〉`1 = 0 mod 2`}. The reductions of LT&EQ and TRS to
Wrap&All0s are as follows:
• LT&EQ: Since |x|+ |y| < 2`−1, we can express the 2 output

bits as cLT = 1{c < 0} and cEQ = 1{c = 0}, respectively,
where c = x−y. From [65], cLT = MSB(c) = MSB(〈c〉`0)⊕
MSB(〈c〉`1)⊕dw, where dw = 1{d0+d1 ≥ 2`−1}, with di =
〈c〉`i mod 2`−1. Similarly, cEQ = ¬MSB(c)∧dz = ¬cLT∧dz ,
where dz = 1{d0 + d1 = 0 mod 2`−1}. Now, observe that
Wrap&All0s on 〈d〉`−1 outputs precisely (dw, dz). Hence
LT&EQ can be computed by a single call to Wrap&All0s
and a single AND.

• TRS: For i ∈ {0, 1}, let x`−s,i ∈ {0, 1}`−s and xs,i ∈
{0, 1}s be the upper ` − s and lower s bits of 〈x〉`i ,
respectively. Now, TRS(x, s) = TR(x, s) ∨ ¬tz , where
tz = 1{xs,0 + xs,1 = 0 mod 2s}. From [64], TR(x, s) =
x`−s,0+x`−s,1+ZXt(tw, `−s), where tw = 1{xs,0+xs,1 ≥
2s}. Wrap&All0s on 〈xs〉s outputs tw and tz and from this
TRS can be computes using a 1 OR and 1 zero-extension.
Finally, to compute Wrap&All0s, we use ideas similar

to what was used in [64] to compute Mill&Eq(x, y). This
functionality takes 〈x〉`, 〈y〉` as input and outputs 〈c〉B =
1{x > y} and 〈e〉B = 1{x = y} and could be computed
at nearly the same communication cost as computing only
〈c〉B (λ` + 14` bits). By writing w and z in Wrap&All0s
as w = 1{x0 > 2` − x1} ⊕ 1{x0 = 2` − x1} and
z = 1{x0 = 2` − x1} ∧ 1{x0 = x1 = 0}, the values
a = 1{x0 > 2` − x1} and b = 1{x0 = 2` − x1} can be
computed using Mill&Eq on (`+1)−bit inputs. Now, w = a⊕b
and z = b ∧ 1{x0 = 0} ∧ 1{x1 = 0}. Hence, Wrap&All0s
can be computed with a single call to Mill&Eq and 2 AND
operations.

Functionality Fp,qFPLT(α1, α2)
1: sEQ = 1⊕ α1.s⊕ α2.s
2: (eLT, eEQ) = LT&EQ(α1.e, α2.e)
3: (mLT,mEQ) = LT&EQ(α1.m, α2.m)
4: if 1{sEQ = 1} then
5: Return (α1.s⊕ eLT ⊕ (eEQ ∧mLT)) ∧ ¬(mEQ ∧ eEQ)
6: else
7: Return α1.s ∧ ¬(α1.z ∧ α2.z)

Fig. 15: Floating-Point Less Than: α1 <p,q α2

E. Floating-Point Comparison <p,q
In Figure 15, given two floating-point values α1 and α2, to

check if α1 < α2, we start by comparing their signs. If the
signs are unequal then we return the sign of α1, except if α1

and α2 are both ±0, in which case we return false. If the signs
are equal and positive (the negative case is similar) then we
compare the exponents and return true if exponent of α1 is
smaller. If the exponents are equal as well then we compare
the mantissa and return true if the mantissa of α1 is smaller.
If the sign, exponent, and mantissa of α1 and α2 are equal
then we return false.

F. Correctness of Floating-Point Addition

In Figure 5, the operands are reordered according to mag-
nitude in Step 3 such that β1 is larger of the two. Next, we
compute the difference between the exponents d = β1.e−β2.e
in p+ 2 bits in Step 4 and check if d > q+ 1 in Step 5. Note
that p + 2 bits suffice for this comparison assuming q < 2p.
If d > q + 1 (Case I), the output is simply set to β1 in
Step 6 as β2 < β1 · 2−q−1, which implies that ignoring β2
leads to a < 0.5 ULP error when q bits of the mantissa are
preserved. If d ≤ q + 1 (Case II), we add the mantissas of
β1 and β2 in 2q + 2 bits as follows: We left shift β1.m by d
and extend β2.m in Steps 8 & 9 to ensure that alignment and
addition of mantissas can be done without losing any bits.
Next, β2.m is multiplied by −1 if the signs of β1 and β2
differ. With a common exponent (β2.e), the mantissas are then
added in Step 11 to get m. Note that m fits in 2q + 2 bits as
its maximum value is 22q+2 − 1 and its smallest value is 0.
In Steps 12 & 13, we normalize m and adjust the exponent
to get a 2q + 2-bit mantissa with scale 2q + 1 such that
JmK2q+2,2q+1 ∈ [1, 2) ∪ {0}. To get the correctly rounded
mantissa with q fractional bits, we perform a rounding by
q+1 bits using Fp,q,2q+1

Round∗ from Section V-B on m in Step 14.
Finally, we set the sign and zero-bit in Step 15 and return the
result after checking for overflows and underflows.

It is easy to see that our functionality does not discard any
bits in the case the smaller operand can affect the final rounded
output and only perform the rounding after computing the
result exactly. Thus, our functionality returns correctly rounded
results and admits at most 0.5 ULP error due to rounding.

G. Correctness of division

Let c = 1{α1.m < α2.m} and e = intp+2(α1.e) −
intp+2(α2.e) − c, and let ñ = m1

m2
, where m1 = 2c · α1.m

and m2 = α2.m. Then, ignoring the sign and zero-bit, it is
easy to see that the division output is equal to 2e · ñ. Now, if
ñ (correctly) rounded to q bits is normalized ∈ [1, 2), then we
can simply set it as the output mantissa m, along with output
exponent as e, and be done. Note that 1 ≤ ñ ≤ 2 − 2−q

as 1 ≤ α1.m
α2.m

= ñ ≤ α1.m
2q ≤ 2 − 2−q if c = 0 and

1 < 2q+1

α2.m
≤ ñ ≤ 2α1.m

α1.m+1 = 2 − 2q+1

α1.m+1 ≤ 2 − 2−q

otherwise. This implies that 1 ≤ bñ·2qe
2q < 2, and thus, ñ

rounded to q bits is always normalized. Now, we show that
m in Step 14 is indeed ñ (correctly) rounded to q bits, i.e.,
|ñ− JmKq+1,q| ≤ 2−q−1, and that will conclude our proof.

For any fixed-point integer z ∈ Z2` with scale s, let z̃ =
JzK`,s denote the real value it represents. From Lemma 2 and
Lemma 3, for all i ∈ [0, t], ri (in Steps 6 & 10) of Figure 6
satisfies |1 − m̃2 · r̃i| < 2−(2

i(g−1)+1) as m̃2 ∈ [1, 2) and
ki = 2 ·

(
2i−1(g−1)+1

)
+1. Since g = d q+1

2t e+1 (in Step 4),
we have |1− m̃2 · r̃t| < 2−q−2. Next, observe that |ñ− m̃′′| =
|ñ− m̃1 · r̃t| = |ñ · (1− m̃2 · r̃t)| < 2−q−1 as m′′ (in Step 11)
exactly computes m1 · rt. From Lemma 1, m̃′ = m̃′′ − e1,
where e1 ∈ [0, 2−q), and we have −2−q−1 < ñ − m̃′ =
ñ−m̃′′+e1 < 3

2 ·2
−q . Thus, if −2−q−1 < ñ−m̃′ < 2−q−1, m′

is correctly rounded and if 2−q−1 < ñ−m̃′ < 3
2 ·2
−q , m′+1 is

the correct output. If ñ− m̃′ = 2−q−1, then the correct output
is the one which is an even integer. We capture these checks in
Steps 12–14, which check if ỹ = JyKq+3,2q = 2m̃1−(ỹ1+ ỹ2)
is greater than and equal to 0, where ỹ1 = m̃2 · Jm′Kq+2,q and
ỹ2 = m̃2 · Jm′+ 1Kq+2,q . This helps determine the position of
m̃1 relative to ỹ1 and ỹ2, and consequently, decides between
m′ and m′ + 1. We use q + 3 bits for this check as |y| ≤
(|m̃1−ỹ1|+|m̃1−ỹ2|)·22q < m̃2·(1

2 ·2
−q+ 3

2 ·2
−q)·22q < 2q+2.

Lemma 1. Let x ∈ Z2` be a fixed-point integer with scale
s, and let y = TR(x, s′). Then, it holds that JyK`−s′,s−s′ =
JxK`,s − e, where e ∈ [0, 2−(s−s

′)).

Lemma 2. Let x ∈ Z2q+1 , y ∈ Z2g+3 such that x̃ =
JxKq+1,q ∈ [1, 2) and y = Lrecp−init(z), where z = TR(x, q −
g) mod 2g and Lrecp−init(i) =

⌊
2g+1

1+ i
2g

⌋
mod 2g+3. Then, it

holds that |1− x̃ · ỹ| < 2−g , where ỹ = JyKg+3,g+1.

Proof. For every x ∈ [2q + z · 2q−g, 2q + (z + 1) · 2q−g),
y = Lrecp−init(z) = 2g+1

1+ z
2g
− e1, where z ∈ Z2g and e1 ∈

[0, 1). Alternatively, we can write for x̃ ∈ [1 + z
2g , 1 + z+1

2g),
ỹ = 1

1+ z
2g
− e1

2g+1 . Since for a fixed z, and consequently, a
fixed ỹ, 1− x̃ · ỹ is a monotonically decreasing function of x̃,
the following inequalities hold:

1− x̃ · ỹ ≤ 1−
(

1 +
z

2g

)
·
(1

1 + z
2g
− e1

2g+1

)
≤
(

1 +
z

2g

)
· e1

2g+1
<

1

2g

1− x̃ · ỹ > 1−
(

1 +
z + 1

2g

)
·
(1

1 + z
2g
− e1

2g+1

)
>
−1

2g
·
(1

1 + z
2g

)
+
(

1 +
z + 1

2g

)
· e1

2g+1
≥ −1

2g

Lemma 3. Let x ∈ Z2q+1 and y1 ∈ Z2k1+2 such that |1− x̃ ·
ỹ1| < 2−k, where x̃ = JxKq+1,q ∈ [1, 2), ỹ1 = Jy1Kk1+2,k1 ,
and k1 > k > 0. Consider y2 ∈ Z2k2+2 , for k < k2 ≤ q+ k1,
which is defined as follows:

f = 2k2 − TR(x ∗k1+q+1 y1, q + k1 − k2)

y2 = y1 ∗k2+2 2k2−k1 + TR(y1 ∗′k2+k1+2 f, k1)

Then, for ỹ2 = Jy2Kk2+2,k2 , it holds that |1− x̃ · ỹ2| < 2−2k +
2−k2+1.

Proof. Observe that exact (unsigned) multiplication of x and
y1 can be done in k1 + q + 1 bits as x̃ · ỹ1 < (1 + 2−k) ·
2k1+q < 2k1+q+1. Then, from Lemma 1, it is easy to see that
f̃ = JfKk2+1,k2 = 1− x̃ · ỹ1 + e1, where e1 ∈ [0, 2−k2).

Next, note that (signed) multiplication between y1 and f is
also exact in k2 + k1 + 2 bits as |y1 · f | < (1 + 2−k) · (2−k +
2−k2) · 2k2+k1 < 2k1+k2+1. Again from Lemma 1, we have
ỹ2 = Jy2Kk2+2,k2 = ỹ1 · (1 + f̃) − e2, where e2 ∈ [0, 2−k2),
and we can write 1− x̃ · ỹ2 as follows:

= 1− x̃ · (ỹ1 · (2− x̃ · ỹ1 + e1)− e2)

= 1− 2 · x̃ · ỹ1 + (x̃ · ỹ1)2 + x̃ · (e2 − ỹ1 · e1)

= (1− x̃ · ỹ1)2 + x̃ · e2 − x̃ · ỹ1 · e1
Thus, −2−k2+1 < −2−k2 · (1 + 2−k) < 1− x̃ · ỹ2 < 2−2k +
2−k2+1.

H. Optimizations

1) Floating-point Multiplication: In our floating-point mul-
tiplication functionality (Figure 4), we can use the TRS opera-
tion on m in Step 2 to discard its lower q−2 bits and work with
smaller bitwidths in the subsequent operations. Specifically,
the comparison in Step 3 changes to m < 2q+3 − 2 in q + 4
bits, and the rounding in Step 4 and Step 6 is done by 2 and 3
bits, respectively. The main benefit of this optimization is the
cheaper comparison in Step 3. Since (TRS(x, s− k))�Rk =
x�Rs, where s−k ≥ 2, this optimization does not change the
behaviour of the above rounding operations, and consequently,
the output of the functionality.

2) Cheap Floating-Point Addition: In Figure 16, we pro-
vide the cheap variant of our floating-point addition function-
ality which is imprecise. Apart from using truncate-reduce in
place of rounding, it differs from our correct addition func-
tionality (Figure 5) in one major way: to align the mantissas
of the operands, instead of left-shifting the larger operand (in
magnitude) by the difference of exponents, we right-shift the
smaller operand by the same amount. As a result, we are
able to work with nearly half the bitwidth in all subsequent
steps, while losing precision due to significant bits being
discarded. Concretely, this functionality has 1.57× and 1.63×
less communication than Figure 5 for p = 8, q = 23 and
p = 8, q = 27, respectively.

3) Cheap Floating-Point Division: Our cheap floating-point
division functionality is given in Figure 17. It is the same as
our correct division functionality (Figure 6), except it returns
m′ as the mantissa which has at most 1 ULP error. Using this
functionality leads to 1.22× less communication than Figure 6.

Functionality Fp,qCheapFPAdd(α1, α2)

1: (eLT, eEQ) = LT&EQ(α1.e, α2.e)
2: mLT = 1{α1.m < α2.m}
3: (β1, β2) = eLT ⊕ (eEQ ∧mLT) ? (α2, α1) : (α1, α2)
4: d = β1.e− β2.e
5: if 1{d > q + 1} then
6: Return β1
7: else
8: m1 = ZXt(β1.m, q + 2)
9: m2 = TR(β2.m ∗2q+3 2q+1−d, q + 1)

10: m2 = (β1.s⊕ β2.s ? − 1 ∗q+2 m2 : m2)
11: m = m1 +m2; e = β2.e
12: k,K = MSNZB(m)
13: m = TR(m ∗q+2 K, 1); e = e+ k − q
14: z = 1{m = 0}; s = β1.s
15: Return α = (z, s, e,m)

Fig. 16: Cheaper Floating-Point Addition: α1 �∗p,q α2

Functionality Fp,qCheapFPDiv(α1, α2)

1: Perform Steps 1 – 11 from Figure 6 to get e and m′

2: s = α1.s⊕ α2.s, z = α1.z
3: Return α = Fp,qFPCheck(z, s, e,m′)

Fig. 17: Cheaper Floating-point Division: α1 �∗p,q α2

I. Generating splines.

We use splines, or piecewise polynomials for polynomial
approximations for elementary math functions f . As discussed
in Section VI-A, an n-piece spline is characterized by config-
urations c = (K, d), consisting of knots K and a polynomial
degree d, and the polynomial coefficients Θ = {θ(j)i }

d,n
i=0,j=1.

We decompose the problem to determine splines into gener-
ating polynomial coefficients Θ (given a configuration) and
generating a configuration (K, d):

1) Generating coefficients given a configuration: For a
given configuration, RLIBM [53] provides a mechanism to
generate Θ from three inputs, f(α), range reduction func-
tion and output compensation, using linear programming and
CEGIS (counterexample guided inductive synthesis). RLIBM
uses it to generate polynomials that when evaluated with
double precision floating-point give correctly rounded single-
precision floating-point results after output compensation. We
generalize RLIBM’s implementation in two aspects to obtain
our coefficient generator. First, instead of being limited to
correctly rounded results, we create linear programs whose
solutions are polynomial coefficients which ensure that the
final result is within 1 ULP of f(α). Second, instead of limit-
ing to polynomials over doubles, we provide general support
for evaluating polynomials using floating-point numbers with
parameters (p, q). This generalized implementation determines
the coefficients for a given configuration automatically if they
exist and fails otherwise.

2) Generating configurations: To generate an appropri-
ate polynomial approximation, SECFLOAT explores candi-
date configurations in increasing cryptographic cost and runs
the coefficient generator for each such configuration. The

Functionality F8,23
FPcosπ(α)

1: p = 8; q = 23; Q = 27; (cLT, cEQ) = LT&EQ(23, α.e)
2: if cLT ⊕ cEQ then
3: Return (0, (α.m mod 2) ∧ cEQ, 0, 2

q)
4: else if 1{α.e < −14} then
5: Return Floatp,q(1)
6: else
7: m′ = α.m ∗q+15 2α.e+14

8: m = m′ + 2q+13 mod 2q+15

9: Perform Steps 10 - 28 on m from Figure 8 to get µ, a
10: Return (µ.z, a,Fp,q,QRound∗(µ.e, µ.m)).

Fig. 18: Floating-point cosπ8,23(α).

cryptographic cost crucially depends on the degree d of the
polynomials and number of bits ` of the input that determine
the active interval and hence the configurations are explored in
increasing d, `. (Note that the cryptographic cost of a spline
is entirely governed by its configuration and is independent
of the actual polynomial coefficients.) The exploration stops
when the coefficient generator succeeds.

J. Cosine

The functionality for cosine is given in Figure 18, which
first handles the easy cases of input α ∈ (−∞,∞) in Steps 1-
5 as follows:
• If the input |α| ≥ 223, cosπ(α) = 1 if α is an even

integer and 0 if α is an odd integer. Since all floats with
exponent > 23 are even integers, we only set the output
to −1 if α.e = 23 and α.m mod 2 = 1.

• If the input |α| < 2−14, it is small enough that approxi-
mating cosπ(α) as 1 has less than 1 ulp error.

For the rest of the inputs, we reduce the computation to
evaluating sine, for which we already have a functionality.
Specifically, using identity cosπ(α) = sinπ(α + 0.5), we add
0.5 to the fixed-point integer m′ representing α in Step 8, and
then the remaining steps are the same as that in sine. Like sine,
our cosine functionality also uses two splines F 1 and F 2 with
identical configuration, but with different sets of coefficients
Θ1

cos and Θ2
cos, respectively. Since cosπ(α) = cosπ(−α), we

do not flip the sign of the final output depending on the sign
of α.

K. Knots for Math Functions

In this section, we provide details on the knots used in
splines for our math implementations. The polynomial coeffi-
cients can be obtained from the source code of SECFLOAT.

1) Sin/Cosine: Sine has two splines F 1 and F 2 which cover
the input range [2−14, 1

32) and [1
32 , 0.5], respectively. F 1 has

knots at powers of 2: κj+1 = 2j−14, j ∈ [0, 9]. The knots in
F 2 are at multiples of 1

32 in the range [1
32 ,

9
32), at multiples

of 1
64 in the range [9

32 ,
10
32), and lastly at multiples of 1

128 in
the remaining input range [1032 , 0.5]. The last interval in F 2 is
closed on the right to include 0.5. The splines used in cosine
have configuration identical to sine’s splines, and thus, use the
same sets of knots.

2) Tangent: Tangent uses a single spline for the input range
[2−14, 1

512] and has knots at {2j , 1.25·2j , 1.5·2j , 1.75·2j}, for
j ∈ [−14,−10]. Apart from these, there are two more knots
at 1

512 and 1.25 · 1
512 . Note that the final piece has just one

possible input.
3) Exponentiation: Exponentiation has two splines F+ and

F− that share the same configuration. They handle the input
range [2−24, 1), and have all knots at multiples of 1

64 in the
range [1

64 , 1], except the first one which is at 2−24.
4) Logarithm: Logarithm uses four splines F 1, F 2, F 3,

and F 4. F 1 and F 3 handle the input range [2−24, 1
32) and

[2−23, 1
32), respectively, and both have knots at powers of

2. The input domain for F 2 is [1
32 , 0.5] and it has knots

at multiples of 1
32 in [2

32 ,
13
32) and at multiples of 1

64 in
[1
32 ,

2
32) ∪ [1332 ,

33
64]. Note that the final piece has just one

possible input, i.e., 0.5. Finally, F 4 covers the input range
[1
32 , 1) and has knots at multiples of 1

32 in [2
32 , 1], along with

two more knots at { 1
32 ,

3
64}.

	Introduction
	Importance of accurate floating-point
	Secure computation of floating-point code
	Our contributions
	Why standard libraries are not suitable for 2PC?
	IEEE Standard
	Intel's MKL

	SecFloat's design
	Other Related Work

	Walk-through example
	Floating-point background
	Special values
	Correct results
	Precise results

	Preliminaries
	Notation
	Secret sharing
	2PC and Security Model
	2PC Building Blocks

	Primitive operations
	Rounding R3.7pt
	Round&Check Fp, q, QRound
	Multiplication p,q
	Addition p,q
	Division p,q

	Math functions
	Spline Evaluation
	Sine
	Range Reduction
	Polynomial Evaluation (Steps 15-28)
	Output Compensation (Step 29)

	Tangent
	Range Reduction
	Polynomial Evaluation (Steps 22-28)
	Output Compensation (Steps 29-33)

	Logarithm
	Range Reduction (Steps 2-6)
	Polynomial Evaluation (Steps 7-21)
	Output Compensation (Steps 23-25)

	Exponentiation
	Range Reduction (Steps 9-13)
	Polynomial Evaluation (Steps 14-23)
	Output Compensation ([step:exp2-compensation]Step 24)

	2PC protocols for floating point
	SecFloat implementation
	Evaluation
	Microbenchmarks and Comparison
	SecFloat evaluation
	Imprecise baselines
	Precise baselines

	Privacy-Preserving Proximity Testing
	Machine Learning

	Conclusion and future work
	References
	Appendix
	Example inputs with imprecise outputs in ABY-F
	Performance numbers of ABY
	Silent OT and extensions.
	2PC Building Blocks
	Existing building blocks
	New Building Blocks

	Floating-Point Comparison <p,q
	Correctness of Floating-Point Addition
	Correctness of division
	Optimizations
	Floating-point Multiplication
	Cheap Floating-Point Addition
	Cheap Floating-Point Division

	Generating splines.
	Generating coefficients given a configuration
	Generating configurations

	Cosine
	Knots for Math Functions
	Sin/Cosine
	Tangent
	Exponentiation
	Logarithm

