
Neurocompositional computing
in human and machine intelligence:

A tutorial

Paul Smolensky,1,2∗ R. Thomas McCoy,1∗ Roland Fernandez,2

Matthew Goldrick,3 Jianfeng Gao2

1Department of Cognitive Science, Johns Hopkins University
3400 N. Charles St., Baltimore, MD 21218, USA

2Microsoft Research; Redmond, WA 98052, USA.
3Department of Linguistics, Northwestern University; Evanston, IL 60208, USA.

∗To whom correspondence should be addressed;
E-mail: {tom.mccoy,paul.smolensky}@jhu.edu.

Wednesday 4th May, 2022

1

CONTENTS 2

Contents

0 Neurocompositional computing 4
0.1 The computational anatomy of human intelligence: Two principles 7
0.2 The anatomy of machine intelligence . 11
0.3 Main claims: Continuous compositional structure within neural states 12
0.4 Two analogies . 14

1 Why neurocompositional AI? 14
1.1 Why respect the Compositionality Principle? . 15

1.1.1 Robustness of compositional generalization 16
1.1.2 Partial compositional structure . 17
1.1.3 Compositional processing? . 17

1.2 Why respect the Continuity Principle? . 18
1.2.1 Flexibility . 18
1.2.2 Neurons-in-Structure vs. Structure-in-Neurons computing 19
1.2.3 Tractable inference . 21
1.2.4 Optimized compositional encodings . 22

2 How to realize neurocompositional AI? NECST computing 24
2.1 Neurally encoding discrete structure . 25

2.1.1 Continuous encoding of discrete structure 25
2.1.2 Systematicity . 29
2.1.3 Computability of symbolic functions . 30
2.1.4 Grammars emerging from neural computing 30

2.2 Neurally encoding continuous structure . 32
2.2.1 Continuous structure in linguistic cognition 33
2.2.2 Learnability of continuous compositional structure in NECST models 34

3 Improved comprehensibility of neurocompositional systems and its benefits 40
3.1 Interpreting learned internal encodings . 40
3.2 Inserting structural knowledge: Biasing structure learning 45
3.3 Diagnosing errors and controlling output . 47

3.3.1 Diagnosing errors . 47
3.3.2 Controlling output by manipulating learned compositional encodings 47

4 Summary 50

5 Towards full neurocompositionality 53

6 Appendix A. Compositional-structure processing:

Formalizations for symbolic and neural computing 55

7 Appendix B. CopyNet experiments 57
7.1 Data . 57
7.2 Models . 57
7.3 Training . 58
7.4 Learning curve experiments . 58
7.5 Full training set experiments . 58
7.6 Analysis of errors . 59

8 Appendix C. Online sentence processing in a NECST network 60

Neurocompositional computing in human and machine intelligence: A tutorial 3

Abstract

The past decade has produced a revolution in Artificial Intelligence (AI), after a half-
century of AI repeatedly failing to meet expectations. What explains the dramatic
change from 20th-century to 21st-century AI, and how can remaining limitations of
current AI be overcome?

Until now, the widely accepted narrative has attributed the recent progress in AI to
technical engineering advances that have yielded massive increases in the quantity of
computational resources and training data available to support statistical learning in
deep artificial neural networks. Although these quantitative engineering innovations
are important, here we show that the latest advances in AI are not solely due to
quantitative increases in computing power but also qualitative changes in how that
computing power is deployed. These qualitative changes have brought about a new
type of computing that we call neurocompositional computing.

In neurocompositional computing, neural networks exploit two scientific prin-
ciples that contemporary theory in cognitive science maintains are simultaneously
necessary to enable human-level cognition. The Compositionality Principle asserts
that encodings of complex information are structures that are systematically composed
from simpler structured encodings. The Continuity Principle states that the encoding
and processing of information is formalized with real numbers that vary continuously.
These principles have seemed irreconcilable until the recent mathematical discov-
ery that compositionality can be realized not only through the traditional discrete
methods of symbolic computing, well developed in 20th-century AI, but also through
novel forms of continuous neural computing—neurocompositional computing.

The unprecedented progress of 21st-century AI has resulted from the use of
limited—first-generation—forms of neurocompositional computing. We show that
the new techniques now being deployed in second-generation neurocompositional
computing create AI systems that are not only more robust and accurate than current
systems, but also more comprehensible—making it possible to diagnose errors in, and
exert human control over, artificial neural networks through interpretation of their
internal states and direct intervention upon those states.

Note: This tutorial is intended for those new to this topic, and does not assume
familiarity with cognitive science, AI, or deep learning. Appendices provide more
advanced material. Each figure, and the associated box explaining it, provides an
exposition, illustration, or further details of a main point of the paper; in order to
make these figures relatively self-contained, it has sometimes been necessary to repeat
some material from the text. For a brief introduction and additional development of
some of this material see [212].

Overview

A landmark achievement of the 21st century is the widespread deployment of Artificial
Intelligence (AI) [117, 220], a turning point that has been compared to the industrial
revolution of the 18th century [224]. Properly understanding this breakthrough is critical
for controlling how AI develops in the future, both for maximizing its benefits and
minimizing its hazards [62]. Adopting a cognitive-science perspective, we present a new
analysis of this progress, an analysis which has led to a new generation of AI systems that
we introduce.

Neurocompositional computing in human and machine intelligence: A tutorial 4

0 Neurocompositional computing

AI has been a long time in the making. It was in 1843 that the real possibility of AI arose
through a confluence of philosophy and technological design [65]. For millennia, philoso-
phers had argued that rational thought was a type of calculation over ideas [49, 195].
Then, in 1838, Charles Babbage conceived a mechanical device for general calculation over
numbers [18]. It was Ada Lovelace who quickly recognized the profound implications,
extending far beyond numerical calculation: with the machine, “in enabling mechanism to
combine together general symbols, in successions of unlimited variety and extent, a uniting
link is established between the operations of matter and . . . abstract mental processes”
[14, Note A, p. 368].

A century later, engineering caught up with theory. In the 1940s, general-purpose
computing machines were physically realized [178], and the power of such machines as
a bridge to mental processes was soon manifest in the birth of AI [100, 215]. Although
Lovelace herself was skeptical that computers could ever generate original ideas [14, Note
G, p. 398], eminent computer scientists since the 1950s have predicted that machines
would match human intelligence within a few decades: by 2000 (Alan Turing, writing
in 1950 [228, p. 442]); by 1973 (John McCarthy, writing in 1963 [149, p. 20]); by 1985
(Herbert Simon, writing in 1965 [194, p. 96]); or by about 1992 (Marvin Minsky, writing
in 1967 [144, p. 2]) (all cited in [40, p. 109]).

Such predictions pervaded not just science but also science fiction: futurist Arthur C.
Clarke’s 1968 work 2001: A Space Odyssey features a computer named HAL-9000 capable
of sophisticated conversation and planning [36]. As each predicted arrival date came and
went, however, the technology consistently fell short of the predictions [143] (see [40, Ch.
5] for a review). Even today—over two decades after the titular year for 2001: A Space
Odyssey—contemporary AI systems still cannot come close to HAL-9000’s sophisticated
conversational abilities (not to mention its skill in planning a mutiny) [19].

But while they are still a far cry from human-level cognition, AI systems in the new
millennium have now achieved feats unimaginable even 15 years ago. AI systems now
power everyday technology from search engines [180] to smartphone apps [101], and have
decisively defeated human champions in games ranging from the quiz show Jeopardy!
[24] to the famously intractable board game Go [192].1 Perhaps most impressively, AI
has enabled breakthroughs in longstanding scientific grand challenge problems such as
predicting protein folding [4, 189] and modeling turbulent fluid flow [119].

This recent progress in AI—specifically, AI based on artificial neural networks ex-
ploiting deep learning [12, 110] (§1.2.4, p. 22)—has typically been attributed to merely
quantitative technological advances: greatly increased computing power and data quantity
[109]. Correct as far as it goes, this view overlooks a major qualitative factor, namely the
advent of a new type of computing that we call neurocompositional computing [212]: the
form of computing underlying human intelligence, according to a contemporary theory in
cognitive science [210]. We argue that, in addition to the critical expansion of computing
resources,2 it is the unrecognized emergence of neurocompositional computing—albeit

1Neural-computing-based AI may even be destined to become an everyday part of continuous, real-time
strategizing in American football [238].

2Vital computing resources include massive datasets for learning the statistical patterns hidden within AI

Neurocompositional computing in human and machine intelligence: A tutorial 5

only implicitly, in an acutely restricted form—that has powered the dramatic progress in
AI in the 21st century.

In this tutorial we present neurocompositional computing and show how it has enabled
progress on three fundamental problems that have challenged current-generation AI (1).

(1) Fundamental challenges for contemporary AI

a. compositional generalization

b. data efficiency

c. comprehensibility

The first problem concerns compositional generalization, the ability to correctly solve
any novel problem that is composed of familiar parts; here current neural AI systems are
erratic, falling significantly short of the robust abilities of human cognition [53, 75, 160].
The second is poor data efficiency: the partial compositional generalization that neural
AI systems do achieve is dependent on orders of magnitude more learning data than
is required by human learners [123]. The last is the extremely limited extent to which
current AI systems are comprehensible, which introduces serious impediments for the
use and further development of AI [2, 227].

The framework we present for addressing these three problems derives from a per-
spective on intelligence that has arisen in cognitive science, a field that emerged in close
connection with AI in the 1950s [154]. What fueled the recent unprecedented advances in
AI were developments in understanding human cognition, enabled by the fundamental
insight that what we have in our heads is a computer [172]. To bring the level of general
intelligence in machines closer to that of humans, the framework presented here extends
the cross-fertilization of AI and cognitive science by bringing the type of computing used
in AI systems closer to that of the human cognitive computer.

This turns out to require integrating the types of computing used by traditional and
contemporary AI, which, as we discuss below, are respectively modeled on computing
in the human mind and computing in the human brain. Recent progress in cognitive
science provides a unified mathematical theory of computing in the human mind/brain:
neurocompositional computing. Emulating this type of computing provides a road map
for next-generation AI. This new type of AI exploits the major strengths of each of
traditional and contemporary AI to overcome the serious limitations inherent in the other
(Fig. 1, p. 9).

The work presented here realizes neurocompositional computing through techniques
developed for modeling the human mind/brain: Neurally-Encoded Compositionally-
Structured Tensor (NECST) computing. We illustrate how this NECST-generation of AI
systems yields progress in the three areas of weakness of current AI identified in (1).

For reference, the main contributions of the work presented here are previewed in
(2); many of these points are illustrated in the figures cited. A detailed summary is given
below in (6), p. 52.

tasks, as well as sheer computing power: the speed of a processor’s basic operations, the number of processors
that can efficiently compute simultaneously (increased by algorithmic, software and hardware innovations),
data storage capacity, higher-level programming languages that automatically perform calculus, and massive
internet sharing of program code supporting a large community of researchers.

Neurocompositional computing in human and machine intelligence: A tutorial 6

(2) Contributions of this work
We provide evidence for the following claims:

a. Key to the possibility of human intelligence is that cognitive computing simul-
taneously respects two general principles: the Compositionality Principle—the
basis of traditional AI—and the Continuity Principle—the basis of most con-
temporary AI systems. Together, these define neurocompositional computing
(§1, p. 14).

b. Neurocompositionality unifies compositional-structure computing with neural
computing, using the strengths of each to overcome major limitations of the
other (Fig. 1, p. 9, discussed throughout the tutorial).

c. Neurocompositionality is a ‘Structure-in-Neurons’ approach to unifying com-
positional and neural computing, which offers the potential for modeling the
general intelligence typical of human cognition; ‘Neurons-in-Structure’ hy-
brid computing does not, although it has great power in particular formal
problem domains which, unlike most natural domains, are purely discrete by
construction (Fig. 2, p. 20).

d. The extremely productive Transformer architecture, responsible for much of
the recent jump in AI performance, gains its power from using first-generation
(1G) neurocompositional computing (§2.2.2.2, p. 36).

e. Deeper, 2G neurocompositional computing can be achieved through techniques
developed in cognitive science including NECST computing, presented infor-
mally in the text (§2, p. 24) and more formally in Appendix A (Fig. 9, p. 55);
a visualization and analogy are also offered (Fig. 3, p. 25). Theoretical re-
sults show that NECST computing affords neural networks key elements of
the power of symbolic compositional-structure processing, and advances the
theory of natural language grammars (§2, p. 24 and Fig. 11, p. 60).

f. Neurocompositional models use deep learning to invent their own forms of
compositional-structure representation and processing (Fig. 5, p. 41; Fig. 6,
p. 44).

g. 2G neurocompositional models, in particular numerous NECST-generation
models (§3, p. 40), make significant progress against the challenges in (1a–b)
(Fig. 4, p. 37; Fig. 7, p. 46).

h. Addressing challenge (1c), the additional comprehensibility of neurocomp-
ositional models affords important benefits, including informing structure
learning, diagnosing errors, and controlling neural network behavior (Fig. 8,
p. 48).

Neurocompositional computing in human and machine intelligence: A tutorial 7

0.1 The computational anatomy of human intelligence: Two principles

To emulate the type of computing used in cognition, AI systems need to match the human
computer in two fundamental respects. To process information, a computer needs that
information to be encoded in some form that the machine can operate on: the form of
these information encodings is the first fundamental characteristic of a type of computing.
The second is the set of basic operations the machine can perform on these encodings,
and the ways these simple operations can be composed together to create more complex
operations.

So, then, what is the type of computing used in cognition? It seems clear that the
entire machine is a neural network. Information is encoded within the brain by the
numerical activation levels of large populations—or ‘layers’—of neurons, and is processed
by passing this activation through myriad synapses of varying strengths that interconnect
these neurons. In this neural computing [34], both the encoding and the operations
performed on them respect the Continuity Principle: they are both continuous in that
they are formalized with real numbers, which can vary to an arbitrarily small degree.
It is mathematical theories of human neural computing that led ultimately to the deep
learning revolution in AI.3

The neural-network organization of cognition may appear obvious. But since antiquity
[99, 195], virtually all aspects of intelligence in the human mind have been understood in
terms of a very different type of computing: compositional structure processing [86]. In
this type of computing, complex information is encoded in large structures—compositional
encodings—which are built by composing together smaller substructures that encode
simpler information. These encodings respect the Compositionality Principle: to process
the complex information encoded in a large structure, it suffices to compose together
the results of processing the simpler information encoded in the smaller substructures
[54, 147, 222]. The decomposition of information provided by effective compositional
encodings carves the task domain at its joints.

To exploit compositionality, a computer must possess compositional encodings as
well as the basic operations that compose smaller encodings together to form larger ones,
and basic operations that decompose larger encodings into their smaller parts. These
requirements are the focus of this tutorial. In addition, the computer must have the
means to process the individual parts appropriately to achieve its task: this involves much
further analysis that goes beyond the scope of this tutorial (but see, e.g., [128]).

Compositionality has long been seen as a key to the power of human cognition [75]:
it provides strong compositional generalization, enabling us to understand any one of a
potentially infinite number of novel states of the world by encoding the state internally as
a novel composition of familiar, simpler parts, and composing together our understanding

3Methods widely used by deep learning practitioners today that were developed by cognitive scientists
in the 1980s and 1990s include the back-propagation learning algorithm [182]—the foundation of deep
learning—as well as energy methods [79] including Boltzmann Machines, both Restricted [196] and general
[1]), and other methods of unsupervised learning [74], reinforcement learning [235], Convolutional Neural
Networks [111], next-symbol prediction and symbol-sequence-to-symbol-sequence mapping [51, 90], Long-
Short-Term-Memory recurrent networks [76], tree-structured networks for recursive processing [168], neural
networks for learning finite-state-machines [44] and grammars [190], mixtures of experts [84], network
distillation [150], distributional vector word embeddings [107], the vector-difference model of analogies
[181], and many other trailblazing techniques [72, 183].

Neurocompositional computing in human and machine intelligence: A tutorial 8

of those parts (but cf. [161]). In virtually all domains of cognition—from vision and
speech to reasoning and planning—extensive empirical investigation over centuries has
consistently shown how cognitive functions can be well approximated as computation
over appropriate compositional structures, the structures with respect to which human
cognition exhibits strong compositional generalization. The parts which compose to
form such encodings are sometimes familiar elements like objects, words, concepts, and
actions, and sometimes scientifically-discovered units like phonemes—the basic sounds
of speech which combine to form words, each of which is typically denoted by a single
letter in alphabetic writing systems. Robust compositionality is all-pervasive in cognition:
it underlies the power of both fast, automatic, intuitive, largely unconscious cognition
(the ‘System 1’ of [94], from [218]), as well as slow, controlled, deliberative, conscious
cognition (‘System 2’) [197, 204].

The compositionality of human cognition provides a powerful learning bias (or in-
ductive bias) that pushes learning towards compositional analysis of novel task domains.
Such a bias is needed for strong compositional generalization to emerge after learning
from only a modest amount of experience (see discussion of Fig. 4, p. 37 and Fig. 7, p. 46
below). Thus compositionality holds the key to addressing two of the three fundamental
problem areas facing current AI: limited compositional generalization (1a), p. 5, and
extreme data inefficiency in learning (1b).

Compositional encodings have traditionally been formalized as intricate arrangements
of symbols—symbol structures like those we use to represent expressions in algebra
or formal logic [153]. To illustrate with an extremely simple example from language,
the symbols un, lock, able can be composed to form unlockable in two ways. In one
arrangement, the symbols form the structure [un [lock able]]: to get the meaning of this
structure, we first compose the meanings of lock and able to get the meaning of lockable,
which we then compose with the meaning of un, yielding “not able to be locked”. The
structure [[un lock] able] is different: it means “able to be unlocked” because the same
symbols are composed differently.

Compositionality has proved to play an important role in virtually all areas of cogni-
tion, extending far beyond language [75]. In planning, for example, plans to achieve a
goal comprise sub-plans to achieve sub-goals; in reasoning, the derivation of a conclusion
is the result of smaller derivations that derive subordinate conclusions [68]. In these and
many other problem domains, traditional AI (and traditional cognitive theory) have made
extensive use of compositional structure formalized as symbol structures [153, 172, 177].

In this context, symbols are abstract entities that are by definition inherently discrete:
unlike real numerical values, they cannot be modified by arbitrarily small amounts
(although physical drawings of what we perceive as symbols can be). The identity of a
symbol, and its position in a symbol structure, are all-or-none: a symbol either is an A
or it isn’t; it either occupies the first position of a symbol sequence or it doesn’t. Symbol
structures admit no shades of gray. We will see, however, that compositional structures
need not be formalized as symbol structures—they need not be discrete. It is the discovery
of this surprising fact that gave rise to the new work presented here.

Thus formal theories of the human brain have given us neural computing, while formal
theories of the human mind have given us compositional-structure processing, histori-
cally in the form of symbolic computing. Clearly, symbolic and neural computers are
profoundly different (see Fig. 1, p. 9). Yet, somehow, the computer in our heads apparently
is simultaneously a neural computer and a compositional-structure-processing computer.

Neurocompositional computing in human and machine intelligence: A tutorial 9

How can this be? This is the Central Paradox of Cognition [211].

a.

 (2.1, 1.7, …)
 fasten

 lock
 (2.4, 1.7, …)

h.

b.

𝑧 =
#𝑥 𝑦& '
(𝑢 𝑣⁄) ↦ 𝑧 = .

𝑥
𝑦/ ∙ 1

𝑣
𝑢2

i.

.𝜆𝑥. 𝑥 + 1
𝑥
22

!
/ #√𝑎' ↦ √𝑎 + 9

√𝑎
2 :

!

 j.

c.

[q → r & r → s] ↦ [q → s] k.

[∃r. A(q, r) & A(r, s)] ↦ A(q, s) l.

 Neural Computing Symbolic Compositional-Structure Computing

d.
learns task-optimized continuous

encodings from task data
(gives similarity-based generalization)

↢
in non-formal domains, human-designed

discrete structures and rules are often
too rigid to fit data well

m.

e.
exploits statistical patterns within

(numerically encoded) data ↢ intractable search over exponentially huge
spaces of candidate compositional structures n.

f. erratic compositional generalization ↣
robust compositional generalization from
explicitly compositional representations,

particularly in formal domains
o.

g. poor comprehensibility ↣ good comprehensibility p.

1

	 S

	NP	 	 VP

	 	 V	 	 NP

	Kim	hates		symbols

	 	 S

	NP	 	 	 VP

	 	 really		 VP	 	

	Kim	 	 V	 	 NP

	 	 	hates 		symbols

	 VP

really	VP ↦

Output

Agent

B

D C F by

E GPatient
Aux

F

G B

D C
Patient

Input

W

Aux A

P
byV

Passive sentence

V
PA

Meaning	(Logical	Form)

ƒ

Weights

Input

Output

Weights

Figure 1: Neural and symbolic computing—Strikingly different (top), affording comple-
mentary strengths (bottom).

Figure 1: Neural and symbolic computing—Strikingly different, affording com-
plementary strengths.

Left Top: Neural computing. Information is encoded as continuous numerical
vectors, each a list of the activation levels of a layer of model neurons. Information
is processed in neural networks by spreading activation from input vectors through
weighted connections (model synapses) (c). Similar input vectors (a) yield similar
output vectors: this is similarity-based generalization (d). For vector encodings of
word sequences, relative position in vector space reflects structural similarity (b).

Right Top: Symbolic computing. Information is represented as arrangements of
discrete symbols into structures (h), processed by functions mapping input symbol

Neurocompositional computing in human and machine intelligence: A tutorial 10

structures (left of 7→) to output symbol structures (right of 7→). These functions
are defined over variables: for algebraic structures, the ratio-of-ratios inference
rule in i takes any input structure that matches the left side (with variables x, y,
u, v replaced by specific symbol structures, potentially complex) and constructs
the corresponding structure matching the right side; similarly for the function-
evaluation instance in j, where the function f (x) = x+(x/2)2 is evaluated with x =

√
a;

the implication-chaining inference rule k for manipulating logical structures: q
implies r and r implies s entails q implies s; and the inference rule l for a transitive
relation A such as above: there exists r such that q is above r and r is above s entails q is
above s. The functions in h (tree adjoining [92]) and j (β-reduction in the λ-calculus
[33]) are crucial to symbolic linguistic theory’s formalization of compositionality
for human syntax [91] and semantics [148], respectively.

Bottom. d-g, m-p identify strengths (in green) and limitations (in red) of each
type of computing (see §1, p. 14 for explanation). A limitation of either type of
computing may potentially be overcome by a strength of the other (arrows↢,↣).
For instance, symbolic computing’s often prohibitively long searches through huge
spaces of possible symbol structures to find problem solutions (n) can be replaced
by neural computing’s rapid calculation of predictions via statistical inference (e).
But merging the strengths of both types of computing requires solving the Central
Paradox of Cognition: how can the computer in our heads be formally describable
by both the left and right columns, given their fundamental differences?

A resolution of this puzzle is provided by a current theory positing that cognition
is realized in neurocompositional computing [210]: computing with encodings each of
which simultaneously respects both the Continuity and Compositionality Principles. This
theory crucially relies on viewing the human cognitive computer at multiple scales. At
a small scale, it is a neural computer. At a large scale, exactly the same machine is a
compositional structure processor [77]. Recent research—comprising NECST and related
theories—provides a mathematical account of exactly how this can come about [203].
(Visualizations will be provided in Fig. 2, p. 20 and Fig. 3, p. 25.)

This neurocompositional theory places cognitive science among the many other sci-
ences that study system organization at multiple scales—most dramatically, biology. In
physics too, the same material can be characterized at a large scale—by bulk-matter prop-
erties like temperature—and at a small scale—by molecular properties like kinetic energy.
In computer science, the same machine is simultaneously, at a large scale, our familiar
virtual machine offering us folders of documents and images and, at a small scale, a huge
collection of 0s and 1s. In cognitive science, a cognitive state can be characterized by its
large-scale compositional structure—perhaps containing something like [[un lock] able] as
a part—and the same state can also be characterized at a small scale as a particular numer-
ical pattern of neural activity. We will see in Sec. 2, p. 24 that, as in physics and computer
science, in cognitive science, the cross-level linkage is fundamentally mathematical.

Neurocompositional computing in human and machine intelligence: A tutorial 11

0.2 The anatomy of machine intelligence

How do AI systems relate to human cognitive computing? Many contemporary AI systems
emulate the small-scale organization of cognition: they are entirely neural computers.
Traditional AI systems, on the other hand, emulate the large-scale organization of cog-
nition: they are compositional structure processors, formalized discretely, with symbol
structures. The work presented below derives from the hypothesis—defended in Sec. 1,
p. 14—that, to approach human-level intelligence, an AI system needs to fully emulate
the organization of the human cognitive computer, both at small and large scales.

This requires a type of higher-level organization that is new to AI. To coexist with
their small-scale neural organization, which is continuous, the large-scale compositional
structures must be formalized in a continuous framework. Importantly, these compu-
tational structures can be usefully approximated as discrete symbol structures—but a
precise description requires that they be formalized as a new type of encoding: con-
tinuous structures, built not of symbols, but of large-scale neural activation patterns.
We will provide evidence that the flexibility inherent in a continuous formalization of
compositional-structure processing addresses a fundamental limitation of traditional
symbolic theories of machine and human intelligence: the rigidity of discretely formalized
compositionality.

Below we will argue that the most successful models that have driven the recent
deep-learning revolution derive their power from limited forms of compositional high-
level structure. This is first-generation (1G) neurocompositional computing. A prime
example is the Transformer architecture [229, 237, 120].

As we explain below (§2.2.2.2, p. 36), Transformer networks are distinguished by two
types of large-scale structure: one is literally wired in (sequential structure), the other
arises from special small-scale capabilities that enable the network to build larger-scale
compositional structures of one specific type (graphs) [67].

Although there are important open questions here that we take up below, the success
of the Transformer suggests that, to develop still more powerful network types which de-
ploy stronger compositional structures—of the many types observed in human cognition,
robustly across cognitive domains, without requiring astronomical quantities of data for
learning—a new generation of AI models is needed. Carrying the limited compositional-
structure-processing enhancements of the Transformer considerably further, these new
models possess general low-level network capabilities that enable them to construct an
open-ended class of large-scale compositional structure types, and the capabilities neces-
sary to exploit this structure explicitly via the Compositionality Principle: the capability
to decompose complex structures into their parts, and to produce complex structures by
composing together simpler structures. Any particular model of this new generation can
invent its own types of large-scale structures through deep learning; as we will see, this means
inventing compositional structures that are optimized for the model’s performance on
its particular tasks. These new models we present rely on a more full-blown realization
of neurocompositionality: they comprise second-generation (2G) neurocompositional
computing.

As mentioned, a specific technical framework for achieving neurocompositional com-
puting is presented here: Neurally-Encoded Compositionally-Structured Tensor (NECST)
computing. We present evidence from theory and applications for the far-reaching po-

Neurocompositional computing in human and machine intelligence: A tutorial 12

tential of a NECST generation of AI systems. As discussed below in §2, p. 24, we focus
on NECST computing because, while other fruitful frameworks for neurocompositional
computing have been developed, many of these turn out to be compressed forms of NECST
encodings. Development of NECST is thus a good branching off point for studying other
frameworks for neurocompositional computing.

We also discuss below (§1.2.2, p. 19) how neurocompositional computing relates to
existing hybrid neuro-symbolic computing, in which only parts of the system have the
small-scale organization of neural networks; all compositional structure is relegated to
the remaining parts, which are standard discrete symbolic computers. This is Neurons-in-
Structure organization, in contrast to the Structure-in-Neurons organization of neurocomp-
ositional machines (illustrated in Fig. 2, p. 20).

Bringing AI systems into closer alignment with human cognition provides oppor-
tunities for important additional benefits: these systems have the potential to be more
human-comprehensible than current AI models, which are notoriously opaque [23].
Neurocompositional computing thus addresses the third problem area of contemporary
AI: impenetrability to human understanding (1c), p. 5. Improved understanding of the
internal encodings of neural networks could enable us to bias networks performing a
particular task towards learning particular types of compositional structure that have
been shown to be useful by our theories of the task. Sufficiently thorough understanding
of a network should allow us to diagnose internal errors and to even intervene and directly
alter the network’s internal encodings to partially control its outputs. In Sec. 3, p. 40, we
present early evidence that such new types of human/neural-computer interaction can
indeed be realized through neurocompositional models.

0.3 Main claims: Continuous compositional structure within neural states

In summary, the main claims argued for in the remainder of this tutorial are these.

(3) Section summary: Main claims of the tutorial

a. Despite dramatic recent progress, contemporary AI systems still fall signifi-
cantly short of general human intelligence in a number of respects, including
compositional generalization and learning-data efficiency; in addition, these
systems suffer from extreme impenetrability to human understanding (1), p. 5.

b. Traditional AI, although stronger in these respects, also suffers from its own
major limitations: see point e below.

c. To overcome all these shortcomings, AI needs to emulate the organization
of human cognition, at both small and large scales. This means AI systems
that are neurocompositional computers: at a small scale, they are entirely
neural network computers; at a large scale, they are computers which process
encodings that possess structure that is simultaneously compositional and
continuous.

d. Neurocompositional computing addresses the three weaknesses of AI identified
in (1). It derives improved compositional generalization from its large-scale
organization as a compositional structure processor. This organization provides
a learning bias that pushes towards treating tasks compositionally; such a bias
is needed for improved data efficiency, enabling modest-sized training sets to

Neurocompositional computing in human and machine intelligence: A tutorial 13

produce strong compositional generalization. And emulating the large-scale
organization of human cognition reduces the impenetrability of AI models.

e. Because the large-scale compositional structure of encodings is realized in con-
tinuous numerical vectors, neurocompositional computing also addresses two
key limitations of traditional AI discussed below (§1.2, p. 18): inflexibility of
discrete symbolic encodings and intractability of inference over exponentially
large spaces of symbol structures.

f. To achieve neurocompositional computing, at the small scale, new capabilities
need to be built into neural networks: capabilities that enable, at a large scale,
basic composition and decomposition operations with which deep learning can
invent and process a wide variety of compositional structures.

g. First-generation neurocompositional computing—e.g., the Transformer—has
already greatly advanced AI. Second-generation neurocompositional comput-
ing, developed in the work presented here, takes these advances considerably
further. The mathematical techniques we deploy for this—NECST computing—
are derived from contemporary cognitive science.

h. NECST is supported by strong theoretical results and by successful results
from a diverse collection of early models addressing a range of applications.

i. The incorporation of more human-like organization makes NECST models
more interpretable, instructible, and controllable than the inscrutable deep
learning models that now dominate AI.

The structure of the tutorial is given in (4)

(4) Tutorial outline

a. In this section, we have defined what neurocompositional computing is (§0,
p. 4). In the following sections we argue:

b. why neurocompositional AI is needed (§1, p. 14);

c. how neurocompositional AI can be realized using NECST computing (§2, p. 24);
and

d. that early NECST AI systems show how neurocompositional AI improves
compositional generalization and benefits from its enhanced comprehensibility
(§3, p. 40).

e. We close with an overall summary (§4, p. 50) and then

f. look ahead at the future of NECST-generation AI (§5, p. 53).

g. Appendix A provides more detail on the foundations of NECST encoding of
compositional structure (§6, p. 55).

h. Appendix B provides details of the reported experiments on compositional
generalization in a simple compositional task (§7, p. 57).

i. Appendix C illustrates how continuous NECST processing constructs the com-
positional grammatical structure of a sentence heard a word at a time (§8,
p. 60).

Neurocompositional computing in human and machine intelligence: A tutorial 14

The weaknesses in neural computing that derive from lack of compositionality and
related aspects of symbolic computing have been emphasized in the influential work of
Jerry Fodor and Zenon Pylyshyn [22, 53], Gary Marcus [128, 131] and others, and they
have been a focal point of contemporary deep learning research by Marco Baroni [6, 102],
Yoshua Bengio [11, 146, 185], and many others [56, 60, 69, 78, 82, 83, 104, 118]. The
NECST research program we present has greatly benefited from the foundational work of
these researchers, although there is of course no implication of their endorsement of the
claims made here.

0.4 Two analogies

In this tutorial, we offer two analogies that may help convey the subtle sense in which
continuous compositional structures are “in” the neural activation patterns of NECST
systems. In the deepest analogy, words reside in a NECST encoding of a sentence as
notes reside in music. We defer presentation of this analogy until explanation of NECST
encodings in §2, p. 24 (Fig. 3). A less faithful, but simpler, analogy is provided by the
spiral structure of a galaxy. Limited as we are to viewing the stars in the Milky Way
from “nearby”, we can’t see directly the large-scale structure of our galaxy, although an
extraterrestrial viewing it through a telescope from light-years away could clearly identify
the barred spiral structure. To see the large-scale compositional structure of NECST
encodings, we too need to look at them from afar, through a metaphorical telescope
(see Fig.2, p. 20)—in reality, a certain type of well-specified mathematical analysis of
large-scale structure that actually has much in common with the computations that
must be performed to identify notes in the acoustic waveforms of music. The parts
that compose together to form a NECST large-scale compositional structure—perhaps
including encodings of un, lock, able—are in fact encoded as different spatial “waves”
of neural activation that superimpose, exactly like simultaneous sounds, to encode the
structure as a whole.

1 Why neurocompositional AI?

This section (§1) presents our arguments for why a new generation of AI based on neuro-
compositional computing is needed; the following section (§2, p. 24) then turns to how
this new type of computer can be realized using the NECST framework. Here in section
§1, we take up, in turn, the two principles that define neurocompositional computing:
individual encodings must respect both the Compositionality Principle and the Conti-
nuity Principle. We discuss what goes wrong when each principle is flouted, and why
those weaknesses turn to strengths when the principle is respected. Also discussed is
the need for providing networks with new capabilities for assembling and disassembling
compositional structures. Along the way, we identify important open questions bearing
on the future developments needed to narrow the gap separating machine and human
intelligence. The impatient reader may choose to skip to the summary of section 1 (5),
p. 23 and continue from there.

Neurocompositional computing in human and machine intelligence: A tutorial 15

1.1 Why respect the Compositionality Principle?

The most fundamental requirement for neurocompositional computing is compositional
encodings. What problems arise from the absence of compositional structure in encodings?
First and foremost, inadequate compositional generalization: the ability to correctly
process any novel input that is composed of familiar parts [6, 96, 103].

In standard neural networks, encodings have no built-in compositional structure. To
illustrate the limitations this can bring, consider the seemingly trivial task of reproducing
a sequence of digits: having been given the input 98052 one digit at a time, we want a
standard neural network model—call it CopyNet-0—to produce the output 98052 one
digit at a time. Using deep learning methods discussed below, CopyNet-0 extracts its
knowledge from a training set of example pairs of its desired input-output behavior, such
as 98052→ 98052. Suppose that, with malice aforethought, we impose a constraint on
the training set such that CopyNet-0 never sees training examples containing the digit
1 in position 1, nor 2 in position 2, and so forth. Simulations discussed below (Fig. 4,
p. 37) show that CopyNet-0 can learn to perform perfectly on all its training examples,
and on novel test examples that follow the constraint imposed on its training set, yet still
perform very poorly on sequences containing any digit in an unfamiliar position—even
though it has seen each digit in all other positions, and seen all other digits in any given
position. This is a blatant failure of compositional generalization in what may be the
simplest possible task.

A non-trivial task on which compositional generalization was tested is the transfor-
mation from a sentence to an expression in logic that denotes its meaning, for a set of
English sentences produced by a formal grammar. The two types of neural network
tested (including the Transformer) mastered the complex examples in the training set, but
failed a range of tests of compositional generalization. For example, although the models
could correctly process a training input like Sandy loves Kim, they could not do so for a
novel test item such as Sandy loves Robin even though they had learned the meaning of
Robin in isolation [96]. In contrast, 2-year-old children already exhibit similar types of
generalization [225].

Failures of compositional generalization can reveal the shallowness of understanding
even in models that are deemed to have mastered their task. In the natural language
inference task, two sentences are presented and a model must indicate whether the second
follows logically from the first [234]. On a standard measure of success, the landmark
Transformer language model BERT [46] achieved 84% correct. But when tested on new,
carefully-designed questions, the model’s performance plummeted to 4% [136]. For
instance, BERT asserted that the truth of the sentence the judge chastised the lawyer
entails the truth of the lawyer chastised the judge. The new questions were not difficult
for humans to answer, but they were constructed to foil the model if it were responding
based on specific superficial properties like whether the words in the two sentences
were the same, ignoring ordering—which is critical in the new test cases. The standard
competitions among AI research teams for the highest score on fixed test sets is an
evolutionary process that optimizes success on the exact test; performance on alternative,
equally valid tests of the desired knowledge can be vastly lower. With this method of
evolving champion models, the research field is in effect “teaching to the test”, which
notoriously can render test results meaningless, giving the false impression of a level of

Neurocompositional computing in human and machine intelligence: A tutorial 16

mastery indicative of significant compositional generalization. On the original test, the
model was often getting the right answer—but for the wrong reasons.

1.1.1 Robustness of compositional generalization

To what extent can current neural networks trained with deep learning in fact achieve
compositional generalization? This is a fundamental issue that is crucial to the future
of AI [55]. It is currently an open question, but on balance, such generalization is a
weak area of current AI systems [7]. The degree of compositional generalization that
such systems do display is dependent on enormous quantities of training data that
adequately exemplify the exponentially many ways parts can compose in the given task. In
neurocompositional computing, one function of compositionally-structured encodings—
and the operations needed to exploit this structure—is to give these models a learning
bias that pushes towards treating a task compositionally. Such a bias is needed to enable
strong compositional generalization from training sets that are not gigantic.

This question of the degree to which current AI models display compositional gen-
eralization is receiving increasing attention, and a complex picture is only starting to
emerge. A network’s compositional generalizations are of course highly sensitive to the
range of examples it learned from, and carefully augmenting the training set can improve
generalization [142]. But overall, compositional generalization in networks has proved
highly erratic (Fig. 1f, p. 9)—for example, it turns out to be highly sensitive to the random
values of connection strengths at the start of learning [135]. There are striking failures
but also impressive successes. An example of an evolving model that displays both these
features is the gargantuan neural language model GPT, which has generated numerous
well-publicized long stretches of text in highly fluent English [20, 174]—composing new
combinations of parts it has extracted from the astronomically-sized dataset it was trained
on, sometimes in ways that suggest the model has deep understanding of what it’s saying.
But it also displays shocking failures to compose these parts in coherent ways, revealing
how much apparent understanding is contributed by the human reader, not the model
[48, 130].

Another case is a Transformer network we will call IntNet [106], which learns to
compute indefinite integrals of functions given in symbolic form, generalizing from the
complex examples it was trained on to novel complex functions built of parts seen in
training: an impressive degree of compositional generalization. But even here, what
IntNet has learned is not as general as we imagine it to be. It does extremely well on
novel problems that are created using the same procedure that generated the examples
it was trained on, but not on novel problems generated by a different procedure [45]:
apparently, it has learned to process the particular compositional patterns it saw during
training, but many other equally relevant patterns of composition cannot be processed
correctly.

How does the situation change when encodings do possess appropriate compositional
structure? Returning to the simple digit-sequence copying network CopyNet-0, its clear
failure of compositional generalization surprises us because we assume—since the model
performs this ridiculously simple task perfectly, on a huge range of inputs—that it has
learned a general procedure that will reproduce any input.

Now consider a hypothetical (perhaps symbolic) model CopyComp whose internal
encoding of any input, e.g., 1234, has the following two-part compositional structure: the
first part is the encoding of the first digit of the input, 1, and the second part encodes the

Neurocompositional computing in human and machine intelligence: A tutorial 17

rest, 234. (The second part is itself a smaller compositional structure embedded within
the larger input sequence.) Then the model can perform its task by taking the encoding
of the first part, outputting that same encoding, and then starting the process over, now
taking the second part as its input. Unlike CopyNet-0, CopyComp is guaranteed to
correctly reproduce any input.

Consistent compositional generalization is a strength of traditional AI because it oper-
ates over encodings with explicit compositional structure using explicitly compositional
operations (Fig. 1o, p. 9). If a symbolic AI system’s knowledge includes a grammar, it
necessarily can process any of the typically infinite varieties of grammatical sentences; if
its knowledge includes procedures for certain steps of logical inference, then it necessarily
can infer, from a given set of premises, any conclusion that follows from those premises
by some (potentially extensive) chain of such steps.

1.1.2 Partial compositional structure

What conclusions should be drawn from the partial compositional generalization ob-
served in networks like CopyNet-0 which (unlike Transformer networks) have no built-in
capabilities for building structured encodings? Does it mean that such generalization
does not require compositional encodings? Or do these networks in fact have partially-
compositional encodings at a large scale, where this structure arises purely through
learning, without the benefit of built-in structure-building capabilities? These are further
urgent questions on which the future direction of AI depends.

There is some evidence that, when properly viewed, the large-scale organization
of the encodings learned by current language-processing neural networks does bear
remarkable resemblances to the symbolic compositional structures posited by traditional
linguistic theories [223]. This evidence is strongest for Transformer models which, as
we explain below (§2.2.2.2, p, 36), are 1G neurocompositional systems that are provided
with low-level capabilities for building compositional structure: in this case, structure
of a particular type—a graph, in the computer science sense: a structure which places
links that, in the encoding of a sentence, connect pairs of words that network computation
has determined to be related. In the Transformer language model BERT, the learned
graph structure has significant commonalities with linguistic-theory relations between
words, but unlike traditional graphs, the Transformer’s graphs are not discrete but rather
continuous structures: between a given pair of words, a link is present to a continuously-
variable degree—its presence is not all-or-none. The general power provided by such
continuity will be taken up in the next subsection (§1.2, p. 18). In the particular case of
BERT, the learned continuous encodings of words have a striking large-scale organization
within their vector space: when properly computed, the distance between the vectors that
encode two words in a sentence correlates with the distance between those words in the
linguist’s compositional phrase structure (tree diagram) of the sentence [127].

1.1.3 Compositional processing?

In what ways do the learned implicit large-scale partial structures embedded in models
like BERT contribute to their generalization capacity? This is another important question
that is currently open. Because of the still-intractable problem of understanding how
particular internal features of a network causally affect its performance, it is unknown
whether the compositional aspects of the large-scale organization extracted by analysts

Neurocompositional computing in human and machine intelligence: A tutorial 18

from some networks can be, and in fact are, used by these networks [9, 85, 176]. (Section
§3.1, p. 40 discusses compositional processing in MathNet, a neurocompositional model
for math problem-solving.)

In contrast, the techniques we propose below endow NECST networks with the general
capability to create explicitly-compositional structures of a wide range of types, and to
directly compose and decompose these structures during the performance of their tasks.

In the next section (§2, p. 24), we discuss evidence that, under certain conditions
(which demand extensive training examples), networks without the built-in structure-
building capability of Transformers also learn encodings with some degree of large-scale
compositional structure. Nonetheless, as we discuss below, we consider it likely that,
to achieve strongly compositional encodings and thereby achieve robust compositional
generalization without massive training datasets, networks need built-in capabilities for
inventing, and computing with, general structure.

We now pass from compositionality to the second requirement on neurocompositional
encodings: continuity.

1.2 Why respect the Continuity Principle?

To obtain the benefits of compositionality, why not just do what has been done for
thousands of years: formalize compositional structure discretely with symbols [162]? Why
develop neurocompositional computing, which requires a new, continuous formalization
of compositionality, embedded within neural computing?

1.2.1 Flexibility

What limitations arise from compositional structure that is discrete? First of all, inflex-
ibility of encodings. Theories of human cognition that encode information in discrete
compositional structures have provided unparalleled understanding of most cognitive do-
mains [236], but they have often encountered difficulties, as have the traditional symbolic
AI models using such structures [16, 21, 97, 132]. There are important cognitive domains
in which information has exact discrete compositional structure, by construction: these
are artifacts of deliberate human design such as mathematics, logic, programming, and
many games. But outside such formal domains, for instance in natural language, discrete
compositional descriptions have proven to be seriously limiting. Discrete structures seem
too rigid for non-formal domains4—or perhaps the needed degree of flexibility can only
be approximated with discrete structures of greater complexity than theorists have been
able to craft. In any case, these limitations are a primary factor in the shortcomings of
traditional symbolic AI. In natural language, the subtle variations in meaning of even a
single word surpass the capabilities of symbolic structures: having to create a separate
symbol for each of the distinct meanings listed in a dictionary merely begins to capture
the magnitude of this problem [171].

In contrast, the continuous vector space of neural encodings has proved much more
adequate (Fig. 1a, d, p. 9) [139, 163]. Machine processing of natural language has been
revolutionized by vector encodings of words [221], particularly those that are sensitive
to their context [164], like those produced by BERT [156]. Well beyond language, vector

4In this tutorial we refer to a problem domain as a ‘formal domain’ if its states and state transitions
are defined by discrete formal rules, such as inference with algebraic expressions or execution of computer
programs.

Neurocompositional computing in human and machine intelligence: A tutorial 19

encodings have fueled major advances in virtually all areas of AI [35]—even in formal
domains, as we see below (§1.2.3, p. 21).

Continuous vector encodings derive their power in part from their support of general-
ization based on vector similarity: what is learned about one vector encoding generalizes
to similar encodings, located nearby in vector space [71, 73]. For example, because of
their similar distributions in training text, the words fasten and lock will tend to have
similar learned encodings (Fig. 1a, p. 9), enabling a language-processing model to leverage
its extensive experience with the word lock when processing the rarer word fasten. The
structure of the vector space can capture other types of relationships as well, such as hav-
ing a consistent offset that represents a systematic difference between pairs of sentences
(Fig. 1b). But most important to the power of vector encodings, discussed in detail in
§1.2.4, p. 22, is what their continuity facilitates: optimization for task performance.

1.2.2 Neurons-in-Structure vs. Structure-in-Neurons computing

It is the limitations arising from the rigidity of discrete symbolic formalization of compo-
sitional structure that lead us to argue that general human-level intelligence will require
neurocompositional computing rather than a style of neuro-symbolic computing currently
being pursued by some AI researchers. In this approach, a symbolic computer program is
designed to build and process discrete compositional structure, and then, for some of the
functions executed within this program, the internal symbolic subprograms that perform
these functions are removed and replaced with neural sub-computers that perform similar
functions (see Fig. 2, left half). We call this this type of computing Neurons-in-Structure;
these are hybrid systems in which there are distinct symbolic and neural parts of the
machine. The small-scale organization of such computers is neural for only certain compo-
nents of the machine, in contrast to neurocompositional computing, where the small-scale
organization of the entire machine is neural and so compositional structure must be em-
bedded within neural activation patterns: this is Structure-in-Neurons computing (Fig. 2,
right half; see also Fig. 3, p. 25).

In Neurons-in-Structure computing, all compositional processing is carried out with
discrete symbolic computing, so as in traditional symbolic AI, for informal problem
domains, the inflexibility of symbolic compositional structures is a serious limitation.
Symbolic formalizations of compositionality are well-suited, however, to formal prob-
lem domains (including synthesizing computer programs, proving theorems, and play-
ing many games) and as we discuss next, Neurons-in-Structure systems have produced
impressive results in such domains. Because non-formal domains are central to gen-
eral intelligence, however, we argue here that human-level general intelligence calls for
Structure-in-Neurons style—neurocompositional—computing.

Neurocompositional computing in human and machine intelligence: A tutorial 20

find[circle]

Is	there	a	red	shape	above	a	circle?

symbolic	parser

find[red]

(a) NMN for answering the question What color is his
tie? The find[tie] module first identifies the loca-
tion of the tie. The describe[color] module uses this
heatmap to produce a weighted average of image fea-
tures, which are finally used to predict an output label.

\HV

(b) NMN for answering the question Is there a red shape above a circle? The
two find modules locate the red shapes and circles, the transform[above]
shifts the attention above the circles, the combine module computes their
intersection, and the measure[is] module inspects the final attention and
determines that it is non-empty.

Figure 2: Sample NMNs for question answering about natural images and shapes. For both examples, layouts, attentions, and answers are
real predictions made by our model.

the inferential computations operate on continuous repre-
sentations produced by neural networks, becoming discrete
only in the prediction of the final answer.

Layout These symbolic representations already deter-
mine the structure of the predicted networks, but not the
identities of the modules that compose them. This final as-
signment of modules is fully determined by the structure
of the parse. All leaves become find modules, all inter-
nal nodes become transform or combine modules dependent
on their arity, and root nodes become describe or measure

modules depending on the domain (see Section 6).
Given the mapping from queries to network layouts de-

scribed above, we have for each training example a net-
work structure, an input image, and an output label. In
many cases, these network structures are different, but
have tied parameters. Networks which have the same
high-level structure but different instantiations of indi-
vidual modules (for example what color is the cat? /
describe[color](find[cat]) and where is the truck? /
describe[where](find[truck])) can be processed in the
same batch, allowing efficient computation.

As noted above, parts of this conversion process are task-
specific—we found that relatively simple expressions were
best for the natural image questions, while the synthetic
data (by design) required deeper structures. Some summary
statistics are provided in Table 1.

Generalizations It is easy to imagine applications where
the input to the layout stage comes from something other
than a natural language parser. Users of an image database,
for example, might write SQL-like queries directly in order
to specify their requirements precisely, e.g.

COUNT(AND(orange, cat)) == 3

or even mix visual and non-visual specifications in their
queries:

IS(cat) and date taken > 2�14-11-5

Indeed, it is possible to construct this kind of “visual SQL”
using precisely the approach described in this paper—once
our system is trained, the learned modules for attention,
classification, etc. can be assembled by any kind of outside
user, without relying on natural language specifically.

4.3. Answering natural language questions

So far our discussion has focused on the neural module
net architecture, without reference to the remainder of Fig-
ure 1. Our final model combines the output from the neu-
ral module network with predictions from a simple LSTM
question encoder. This is important for two reasons. First,
because of the relatively aggressive simplification of the
question that takes place in the parser, grammatical cues that
do not substantively change the semantics of the question—
but which might affect the answer—are discarded. For ex-
ample, what is flying? and what are flying? both get con-
verted to what(fly), but their answers might be kite and
kites respectively given the same underlying image features.
The question encoder thus allows us to model underlying
syntactic regularities in the data. Second, it allows us to
capture semantic regularities: with missing or low-quality
image data, it is reasonable to guess that what color is the
bear? is answered by brown, and unreasonable to guess
green. The question encoder also allows us to model effects
of this kind. All experiments in this paper use a standard
single-layer LSTM with 1000 hidden units.

To compute an answer, we pass the final hidden state
of the LSTM through a fully connected layer, add it ele-
mentwise to the representation produced by the root mod-
ule of the NMN, apply a ReLU nonlinearity, and finally an-

transform[above]

combine[and]

measure[is]

yes

NEURONS-IN-STRUCTURE STRUCTURE-IN-NEURONS

Output

Agent

B

D C F by

E GPatient
Aux

F

G B

D C
Patient

Input

W

Aux
A

P
byV

Passive	sentence

V

PA

Meaning	(Logical	Form)

ƒ

HYBRID	
COMPUTING

NEUROCOMPOSITIONAL	
COMPUTING	(NECST)

all	
structure	
encoding	
here

byAux
E

B
D C F

G

ƒ(s) =
 cons(ex1(ex0(ex1(s)),
 cons(ex1 (ex1(ex1(s))),
 ex0(s)))

F

E G B
D C

Modern AI was anticipated
by Ada Lovelace

anticipated(Ada
Lovelace, modern AI)

all	
structure	
encoding	
here

Figure 2: Neurons-in-Structure vs. Structure-in-Neurons computing.

Figure 2: Neurons-in-Structure vs. Structure-in-Neurons computing.

Left: Neurons-in-Structure—hybrid—computing. In this approach, a symbolic
computer program is designed to build and process discrete compositional struc-
ture, and then, for some of the functions executed within this program, the internal
symbolic subprograms that perform these functions are removed and replaced with
neural sub-computers that are trained to perform similar functions. In a visual
question-answering model [3], a symbolic parsing algorithm takes as input a ques-
tion about an image and constructs a program, here drawn as a graph: teal boxes
are operations, with data flowing along arrows. The data are activation vectors
and each operation (box) is performed by a separate neural network: the find[red]
operation is a network that depresses activation representing non-red regions of
the image. All compositional structure is encoded in the symbolic algorithm graph;
the embedded neural networks do not themselves encode or process the large-scale
structure of the operations being executed.

Right: Structure-in-Neurons—NECST—computing. In this approach, a neural
computational system manipulates activation vectors that have special large-scale
structure that mirrors the compositional structure of the information they encode.
In this model, LFNet, each neuron’s activity level is depicted as the size of a disk:

Neurocompositional computing in human and machine intelligence: A tutorial 21

white/positive or black/negative [114]. The input vector is a sum of vector embed-
dings, each of which represents a constituent in a structure. The input shown is the
encoding, in a vector space, of a passive English sentence (e.g., Modern Artificial
Intelligence was anticipated by Ada Lovelace), with a tree structure given by the
diagram of the sentence’s phrases nested inside one another. Analogously to identi-
fying the temperature, pressure, and entropy of a gas of molecules, or the spiral
form of a galaxy, recognizing that the input vector encodes this structure requires
the analyst to observe it at a larger scale than that of individual neurons (shown
schematically by the telescopes and teal thought bubbles): the global structure of
the vector must be computed, identifying which symbol-encoding vectors have been
superimposed to form it (see also Fig. 3, p. 25, right half). Similarly for the output
vector, which encodes the LF or logical form (meaning) of the input sentence (e.g.,
anticipated(Ada Lovelace, modern artificial intelligence)). The connection weights
governing the flow from input to output also form a pattern with special structure:
an appropriate larger-scale analysis reveals it to be the structure-manipulating func-
tion f (central teal box). This is Neurally-Embedded Compositionally-Structured
Tensor (NECST) computing. All structure is internal to the activation and weight
patterns themselves.

1.2.3 Tractable inference

Does compositionality formalized using discrete symbol structures create problems other
than inflexible encodings? Yes: inferring outputs from inputs is often computationally
intractable; this is another serious limitation of traditional AI, one which applies even
in formal domains. While the ability to insert symbol structures inside other symbol
structures ad infinitum may enable strong compositional generalization, it also creates
exponentially huge spaces of candidate problem solutions over which symbolic algorithms
must search to find an actual solution (Fig. 1n, p. 9). For example, symbolically encoding
board configurations in the game of Go yields more structures than there are atoms in
the universe [155]. The prohibitively long search times of traditional AI systems for
performing symbolic integration enables neural IntNet (§1.1.1, p. 16) to outperform
them, even in such a highly formal domain as symbolic calculus [106].

In contrast, as we see next in §1.2.4, deep learning’s exploitation of statistical relations
among optimized vectors that compactly encode examples from a problem domain has
proved remarkably capable of quickly producing problem solutions that are excellent
(Fig. 1e), although they may fall somewhat short of the perfect solutions a symbolic algo-
rithm might have found had it started searching at the Big Bang. Neurons-in-Structure
models exploit this strength of neural computing, enabling them to make major progress
on AI in formal domains. Well-publicized breakthroughs have come from such hybrid
models, in which search in huge symbolic problem spaces is guided not by symbolic
computing but by predictions of promising search directions by neural networks trained
with deep learning by observing a large number of successful and unsuccessful searches
[192]. This has produced super-human models for playing games, like Go, that were
thought, until very recently, to be well beyond the reach of AI in the foreseeable future
[193]. Neurons-in-Structure models are also making major strides in automatic generation

Neurocompositional computing in human and machine intelligence: A tutorial 22

of computer programs that solve a problem stated in English [121], or programs that
compute a function partially specified with a small set of example input/output pairs
[47]. While we have argued that neurocompositional, Structure-in-Neurons computing is
needed in the long term for modeling general human-like intelligence, we also acknowl-
edge the value of Neurons-in-Structure computing for its ability to make progress in the
immediate term on AI in formal problem domains: it can exploit today the full power of
symbolic computing in such domains [17, 230].

1.2.4 Optimized compositional encodings

Neurocompositional computing meets the requirement of continuous encodings by using
vector encodings consisting of a list of continuous real numbers. These numbers constitute
the encodings of the input, the output, and the intermediate information used to compute
the output. Where do these numbers come from? Typically, from optimizing the encodings
for performance of a task—through deep learning.

The problem solved by deep learning within a model performing a particular task is
this: how can inputs and outputs from the task be encoded in numerical vectors such that
the numbers in the output vectors can be predicted from the numbers in the input vectors
via the numbers in appropriately designed intermediate vectors? Once a computational
task is encoded in numerical vectors, solving it becomes a problem in statistical inference.
A neural network is a complex statistical model; learning is estimating its many parameters
(primarily, connection weights)—fitting the model to the training data. During learning,
the network can compute and store in its weights the relations between the numbers in
the vector encodings produced when processing the training examples; after learning,
during testing, it can use these learned relations to infer an output vector given an input
vector that encodes a novel input from a test set.

Thus there are two problems to solve. How should task information be encoded in
numbers? And what are the interrelations among those numbers? The extraordinary
power of deep learning is that it allows these two problems to be solved simultaneously:
it figures out how to encode information in numbers such that the relations among those
numbers optimize the predictability of the output numbers given the input numbers. To
do this, it relies on a function that quantifies, at any point during learning, the total error
made by the network in processing the set of training examples. For each parameter to
be learned—principally each connection strength—it computes the rate at which this
error would decline if that parameter were increased by an arbitrarily small amount: the
negative of the derivative of the error with respect to the parameter. It then changes each
parameter by a very small amount proportional to this negative derivative: this lowers
the error, changing most those parameters that have greatest influence on the error. This
optimization process drives the network’s parameters to produce lower error while at the
same time discovering the encodings of information that achieve this [182]. Note that the
very existence of the error derivatives that drive deep learning depends crucially on the
continuity of neural computing.

The astounding discovery that launched the recent leap in AI is that, by minimizing
a single number that measures the overall error made by a network with trillions of
parameters when processing trillions of bytes of data—and precisely when the size of the
network and the training set are both enormous—this simple learning procedure, with
no human input on how to perform a task, can produce AI systems that dramatically
outperform the vastly more intricately designed, richly human-informed AI systems of

Neurocompositional computing in human and machine intelligence: A tutorial 23

previous generations (Fig. 1d–e, p. 9).
What links the properties of continuity, achieved with real numerical vectors, and

optimization, then, is statistical inference. The encodings within the network, designed
by deep learning, reflect a sophisticated analysis of the statistical patterns within the
input/output pairs of a given task. Neural networks compute outputs from inputs
by statistical inference, rather than the discrete logical inference deployed by many
traditional AI methods.

Statistical inference has also been used in non-neural AI systems that compute the
probabilities, given an input, of alternative discrete symbol structures that encode inter-
mediate information used to compute the output; these symbol structures are generated
with symbolic computing, and do not reside in neural encodings [89, 108]. Such proba-
bilistic symbolic methods have in common with the Neurons-in-Structure approach to
neuro-symbolic computing that the structure is discrete and housed within subsystems ca-
pable of symbolic computing. In contrast, Structure-in-Neurons systems use no symbolic
computing, with structure residing entirely inside neural activation vectors—continuous,
rather than discrete, compositional structure. How this can be done is the topic of the
next section (§2).

To summarize:

(5) Summary of Section 1

a. Current AI systems display erratic compositional generalization, whereas hu-
man cognition is characterized by widespread, robust compositional general-
ization.

b. To imbue AI with such capabilities, AI systems should emulate the large-scale
organization of cognition: they should be compositional-structure processors.

c. Properly endowing networks with explicit capabilities for processing large-
scale compositional structure with neural computing would provide them a
powerful learning bias directing learning towards compositional analyses of
the task, so that stronger compositional generalization can result from learning
over less data.

d. Discrete formalization of compositional-structure processing has provided
much insight into cognition, but, especially in non-formal problem domains,
it brings fundamental limitations to traditional symbolic AI due to the in-
flexibility of discrete encodings and the intractability of inference over such
encodings.

e. Continuous vector encodings in current AI models have provided powerful
leverage for addressing both the problems of inflexibility and intractability.
But while standard neural networks employ small-scale continuous encodings,
they only possess limited aspects of the large-scale compositional structure
that we have argued is crucial for strong compositional generalization.

f. To overcome the limitations of discreteness, compositional structure itself must
be continuously encoded neurally. This calls for the Structure-in-Neurons
approach of neurocompositional computing.

g. In the alternative Neurons-in-Structure computing, compositional structure
is handled with symbolic computing and so is necessarily discrete; neural
computing is relegated to only part of the hybrid system, and does not operate

Neurocompositional computing in human and machine intelligence: A tutorial 24

compositionally. While this does not overcome the limitations of discrete com-
positionality, it does offer the full power of symbolic computing immediately,
and has enabled much progress on modeling formal domains such as automatic
computer program synthesis.

h. This section has provided arguments in favor of developing neurocompositional
systems for AI, defined to be models in which information encodings have
compositional structure and are continuous rather than discrete: models which
possess built-in capabilities for creating and using this compositional structure.

i. Compositionally-structured encodings promise stronger compositional general-
ization than that of standard neural AI models, even given limited training data;
continuity delivers more flexible encodings and tractable inference than does
discrete symbolic AI; optimization during learning provides data-driven design
of these continuous compositional encodings to maximize the effectiveness of
statistical inference for task performance.

So how, in theory, can neurocompositional computing be realized? And does it work
in practice?

2 How to realize neurocompositional AI? NECST computing

Neurocompositional computing arises from the discovery that compositional encodings
can be formalized not just in the traditional way, with discrete symbol structures, but also
in a new way, with continuous neural activation vectors. Several fruitful frameworks for
neurocompositional computing have been developed, a number of them under the rubric
of Vector Symbolic Architectures [57, 116]. Some use binary-valued neurons [95], some
use spiking [50, 191] or oscillating [231] neurons, and many depend on certain random
distributions of neuron values in encodings [167]. A number of these seemingly quite
different methods turn out to be linearly compressed forms of NECST encodings [214], so
NECST is thus a good starting point for studying other methods of neurocompositional
computing. And NECST is among the simplest and most thoroughly-developed of the
neurocompositional approaches. For all these reasons, we focus here on NECST as a
framework for developing neurocompositional computing.5

This section gives a non-technical description of how NECST computing provides a
continuous formalization of compositional-structure computing. We start with the special
case of how discrete compositional structure is formalized in NECST, and then turn to
the general case: continuous structure. For readers seeking more development of NECST
methods, Fig. 9, p. 55, steps through the construction, introducing several details that are
omitted from the simplified discussion contained in this section.

5 Tensor Product Representations (TPRs), the encodings forming the basis of NECST computing, are
introduced next (§2.1.1). A range of compression methods are used to derive other neurocompositional
encoding systems from TPRs, some of them anticipated in psychological memory models [151]. While such
compression produces smaller encodings (fewer neurons), it also introduces noise that interferes with exact
compositional computing. The need to compress TPRs has often been exaggerated in the literature because
the sizes of TPRs have been miscomputed, yielding values that are overestimated by orders of magnitude:
[128, p. 106], 3–4 orders; [219, p. 607] repeated [39, p. 815], 6.5 orders. Controlling the noise in compressed
TPRs requires increasing their size, so that (noisy) compressed encodings used in published models are
typically actually larger than the full TPRs needed to encode the same information noise-free [208, p. 1112].

Neurocompositional computing in human and machine intelligence: A tutorial 25

2.1 Neurally encoding discrete structure

In this subsection, we first present the NECST method for realizing discrete neurocompos-
itional encodings; we then discuss evidence for the adequacy of this method. As previously
mentioned, words are “in” NECST encodings of sentences as notes are “in” music: this
analogy is presented in Fig. 3 through a visualization of the method developed in this
section.

2.1.1 Continuous encoding of discrete structure

What are the most fundamental ideas of NECST? The first idea is to make explicit what
is typically left implicit in notations for symbolic compositional structure: the ’roles’
that define a type of structure by characterizing the positions within the structure where
content—e.g., symbols—can be placed. This explicitly disentangles bits of content—the
‘what’—from bits of form—the ‘where’ (see also [66, 70, 185]).6The second basic idea is
to encode not just symbols, but also structural roles, continuously: as neural activation
vectors.

Any type of discrete symbol structure can be formalized as a set of structural roles,
which can be visualized as all possible positions within the structure that a symbol (or a
smaller symbol structure) could occupy [153]. Although these roles are often left implicit
in the notation used for symbol structures, they are crucial, and we make them explicit
in our notation. The discreteness of symbol structures means that roles themselves are
discrete: a symbol either fills a particular role, or it does not.

waveform neural
activations

ENTIRE STRUCTURE

instruments filler:role
bindings

STRUCTURAL COMPONENTS

[un]

[[this desk] [is []]]

[lock able]

Left-of-Right
lock able

Right-of-RightLeft
un

notes fillers &
roles

ATOMIC UNITS

form phrases

ABSTRACT COMPOSITIONAL
STRUCTURE

themes words

INTERMEDIATE COMPOSITIONAL
STRUCTURE

[A B] [A′ B′ A″ B″] [A B]

sonata-allegro

exposition development recapitulation

un3un:Left 34 =

un3

Left 4

Left 4×

Figure 3: The levels of structure “in” the NECST encoding of a sentence (right half) are
analogous to the levels of structure “in” a symphonic movement (left half).

6For evidence that the brain uses two distinct streams for processing structure and content, see, e.g., [175]
p. 719, 721, and [233], which deploys tensor product binding (p. e6; Fig S4).

Neurocompositional computing in human and machine intelligence: A tutorial 26

Figure 3: An analogy—Words are in neurocompositional encodings as notes are
in music

How is the structure of a sentence encoded in a NECST activation pattern? The
NECST encoding (right side) has a compositional structure analogous to that of a
symphonic movement (left side). Words and phrase structure reside in a NECST
encoding of a sentence in much the same way that notes and melodic themes reside
in classical music.

Left: The levels of a symphonic movement, from sound wave to sonata-allegro
form. Consider an orchestra conductor listening to the first movement of a classical
symphony. At a small scale, the music is a single continuous sound wave striking
her eardrums. But her highly skilled perceptual system enables her to extract
larger-scale structure, what amounts to the musical score of the piece: the single
waveform is recognized as the superposition of many separate waveforms emanat-
ing from distinct types of instruments, and each separated waveform is analyzed as
a sequence of notes with approximately discrete pitches and durations. The notes
of this multi-instrument score are “in” the sound wave in much the same way that
individual words or concepts are “in” the neural state of a NECST model processing
language: it takes some math to pull them out of the small-scale structure, but they
are there, and they can be used for complex computation.

Beyond the score—and analogous to the phrase-, sentence-, and discourse-
structure that can organize words at multiple levels in NECST language models—
our listener perceives the still larger-scale structure of the movement: a sonata-
allegro form in which two ‘themes’ (A, B) are introduced in the initial ‘exposition’
section, then repeated with variations in the second ‘development’ section (A’, B’,
. . .), and then repeated in their original form in the final ‘recapitulation’ section.
The large-scale themes and the sonata-allegro structure built from them are also “in”
the sound wave, but a great deal of additional complex computation upon the score
must be performed in our conductor’s head to extract them.

Right: The levels of a NECST sentence encoding, from neural activation pattern
to sentence structure. At the finest resolution, our sentence is encoded as a dis-
tributed pattern of continuous neural activation levels (black grid). To identify the
global structure of this information encoding, called a Tensor-Product Representation
(TPR), we decompose this black pattern into the superposition (sum) of multiple
patterns (only four shown here: lime, brown, yellow, violet). Each of these colored
patterns is decomposed further; this decomposition is shown only for the violet
pattern, which is decomposed into the superposition of two patterns, red and teal.

As shown in the insert at lower right (see explanation below), the red pattern

is now broken down further, factored as the (tensor) product of two smaller pat-
terns (shown as red strips): one encodes the prefix un, and the other encodes the
Left-position role within an ordered-pair structure:

[
x —

]
. The red grid pattern

thus encodes the partial structure
[

un —
]
; in technical terms, this is the binding

of the filler un to the role Left-position, written un:Left. The other pattern (teal) is
also decomposed as the sum of two patterns (green, blue), each of which is in turn
factored as the tensor product of two smaller patterns: together, these reveal that
the teal pattern encodes the substructure

[
lock able

]
.

Neurocompositional computing in human and machine intelligence: A tutorial 27

When all colored patterns are decomposed and factored in this way, we expose
the global structure implicit in the original black pattern: the structure of an
entire sentence. The patterns encoding the atomic fillers—–un, lock, etc.—–vary
continuously depending on the context in which they appear. Furthermore, the
patterns encoding Left and Right can also vary continuously, encoding more than
just the discrete positions left and right: this produces a novel type of encoding in
which the compositional structure itself is inherently continuous (see §2.2, p. 32).

Insert. The filler vector −−→un (which encodes the symbol un), and the role vector
−−−→
Left

(which encodes the role Left) are bound together by the tensor product ⊗, producing

the binding vector
−−−−−−−−→
un : Left = −−→un ⊗ −−−→Left . This type of vector is an order-2 tensor;

its elements are visualized as forming a 2-D grid, each a number that is indexed by
two subscripts specifying its row, column location. Each element is the product of

two elements of −−→un and
−−−→
Left . For example, in the 3rd row, 4th column position,

there is
−−−−−−−−→
un : Left 34 = −−→un 3 ×

−−−→
Left 4.

A TPR can be embedded within a larger TPR; e.g., the vector that encodes
[un [lock able]] is:

−−−−−−−−−−−−−−−−−→
[un [lock able]] = −−→un ⊗ −−−→Left ⊕

−−−−−−−−−−−→
[lock able] ⊗ −−−−−→Right

= −−→un ⊗ −−−→Left ⊕ [
−−−→
lock ⊗ −−−→Left ⊕ −−−−→able ⊗ −−−−−→Right]⊗ −−−−−→Right

= −−→un ⊗ −−−→Left ⊕ −−−→lock ⊗ −−−→Left ⊗ −−−−−→Right ⊕ −−−−→able ⊗ −−−−−→Right ⊗ −−−−−→Right

The role of lock in this embedded structure is Left-of-Right; this embedded role has
encoding vector

−−−→
Left ⊗ −−−−−→Right . The direct sum operation ⊕ is simply a generalization

of vector addition that enables summing tensors of different order, which lie in
different subspaces of the overall vector space. Binding operations other than the
tensor product have also been used for neurocompositional modeling: see the first
paragraph of §2 and note 5, p. 24.

Consider a simple type of symbol structure with only two positions: the ordered pair,
exemplified by [lock able]; it is defined by two roles we can call L (left) and R (right).
We can visualize L as

[
x —

]
and R as

[
— x

]
. In [lock able], role L is filled by lock

and role R is filled by able. This structure has two parts, each being a role filled by a
particular symbol: each part is a filler-role binding which we write filler:role. Our pair
can be written as lock:L & able:R and visualized as

[
lock —

]
&

[
— able

]
: here two

bindings are aggregated (by ‘&’) to form a single structure. In NECST computing, this
formal characterization of the structure is neurally encoded as a vector, as follows.

Each filler symbol is encoded by an activity vector, some list of real numbers (typically
resulting from deep learning); this is commonplace in neural network modeling. A key
innovation of NECST is that each structural role is similarly encoded by an activity vector.
Then the two operations—‘:’ for binding each filler to its role and ‘&’ for combining the
bindings—are realized as operations on vectors. The aggregation operation ‘&’ becomes
the direct summation of vectors: ⊕; this is represented by superimposing of patterns in
Fig. 3. The binding operation ‘:’ is a little more complex: it becomes the tensor product ⊗;
this is shown in the inset at the lower right of Fig. 3.

Neurocompositional computing in human and machine intelligence: A tutorial 28

To summarize, the symbol-pair [lock able] is formalized as a collection of filler-role
bindings, lock:L & able:R, which in turn is encoded neurally as the vector arising by
replacing each filler and each role by the vectors that encode them, and combining these
vectors using two vector operations, one realizing ‘:’ and the other ‘&’. The resulting
vector is the Tensor Product Representation (TPR) that encodes the structure as a whole
[198]. (This was also proposed in psychological memory models [166].) [Technically:
−−−−−−−−−−−→
[lock able] =

−−−→
lock ⊗−→L ⊕ −−−−→able ⊗−→R , where

−→
X is the vector encoding of X.]

A technical consequence of using the tensor product to realize filler:role binding is
that a TPR is a special type of vector—a tensor—in which the numerical elements are
best visualized as arrayed in a multi-dimensional grid, rather than the one-dimensional
sequence ordinarily used to display vectors; the dimensionality of the grid of values
constituting a tensor is the order of the tensor. But the tensorial nature of TPR vectors will
not matter for the non-technical presentation here.

Compositional encodings derive much of their power from compositional operations
that allow one such encoding to be embedded within another [114]. Having composed lock
and able together by respectively binding them to the L and R roles of the pair structure,
we can now place that structure within a larger pair structure, by having it fill the role
R of the larger pair: this is how we get [un [lock able]] (see Fig. 3). Crucially, the vector
operations used to construct the TPR encodings of these structures can be embedded

within one another. [Technically:
−−−−−−−−−−−−−−−−→
[un [lock able]] = −−→un ⊗−→L ⊕

(−−−→
lock⊗−→L ⊕ −−−−→able⊗−→R

)
⊗ −→R .

The direct sum operation ⊕ is a version of vector addition that enables summation of
tensors of different orders, which arise from different numbers of tensor products and lie
in different subspaces of the overall vector space of all structural encodings.]

The notion of structural role is highly general, and subsumes the notion of structural
relation. Some types of compositional structure are most conveniently defined in terms
of structural relations between parts of the structure. A type of taxonomy structure, for
example, can be defined by the relation is-a-kind-of ; e.g., this could relate poodle and dog
in a taxonomy of English animal names. In symbol structures, structural relations, too,
are discrete: an X either is-a-kind-of Y or it is not.

This is the complete description of the neural realization of compositional operations
that are built into NECST computers. What about decomposition operations, which take a
structure and from it, extract its parts? These too are built into NECST computers, where
decomposition means taking the TPR vector that encodes a structure—such as the pair [un
[lock able]]—and computing from this vector the filler of some role, that is, unbinding the
role: extracting the first part means unbinding the role L to get the vector that encodes un;
extracting the second part means unbinding R to get the vector that encodes the smaller,
embedded pair, [lock able]. The reason that the tensor product and direct summation
are used for composition in NECST is that they naturally enable decomposition. There
is a simple vector operation that takes as input the TPR for a structure and the vector
encoding of a role to unbind, and produces as output the TPR for the filler of that role in
the input structure. [Technically, unbinding a role is taking the tensor inner product with
the dual vector of the role encoding; see Fig. 9, p. 55].

Crucial to the power of symbol structures is that symbols maintain their identity as
they play different roles [145, p. 1394]. The role R of [un lock] and the role L of [lock able]
are filled by the same symbol, lock; in a symbolic language-processing model, this is why
lock contributes the same meaning to both unlock and lockable—making compositional
generalization possible. This critical property also holds for the continuous, explicitly

Neurocompositional computing in human and machine intelligence: A tutorial 29

compositional vector encodings provided by TPRs, because the same vector that encodes
lock appears in the vectors that encode the binding lock:R and the binding lock:L. TPR
binding and unbinding operations preserve symbol identity: a filler can be bound to
one role, then unbound and rebound to another role, then unbound again, all the while
retaining its original encoding. The vector encodings of the bindings lock:L (

[
lock —

]
)

and lock:R (
[

— lock
]
) disentangle, in a way that neural network operations can exploit,

what is in common—the filler—from what is different—the roles.

2.1.2 Systematicity

The way TPRs disentangle fillers from roles—or what from where, or content from
form—provides an opportunity for the processing of TPRs to deliver a strong form of
compositional generalization. It is straightforward to constrain the strengths of the
connections from a TPR encoding in one neural layer to a TPR encoding in another layer
so that filler and roles are processed independently: this is the systematicity constraint
[216]. Under this constraint, what is learned about how to process a filler when it is
observed in one role immediately generalizes to processing that filler in any other role.
And correspondingly, what is learned about processing a role when it is observed to be
bound to one filler immediately generalizes to processing that role when it is bound to
any other filler.

The intuition behind the systematicity constraint is illustrated by the translation task,
where the English Adjective Phrase (AP) [black cat] becomes French [chat noir]. The fillers
black, cat are respectively transformed to the fillers noir, chat, and the left- and right AP
roles AP-L, AP-R are respectively transformed to AP-R, AP-L: they are reversed. To a first
approximation, this translation mapping obeys the systematicity constraint, according to
which the filler black is transformed to noir regardless of its role (e.g., adjective or noun)
and the positional roles of the adjective and noun within the Adjective Phrase are reversed
regardless of what particular words fill them.

Certain artificial tasks, like digit-copying, are so perfectly compositional that they
exactly respect the systematicity constraint under an appropriate TPR encoding. But
natural tasks, even those with a high degree of compositionality, will typically not observe
the systematicity constraint perfectly. Natural languages exhibit many strong regularities,
but unlike formal languages such as those designed for computer programming, most
of these regularities have exceptions—so the systematicity constraint is not respected
exactly. For example, the role transformation from English to French Adjective Phrases
is not perfectly systematic: below we will see that little friend becomes petit ami—petit
(‘little’) is one of a few exceptional adjectives in French that precedes the noun it modifies.
Current work explores the design of networks that impose a systematicity bias which
pushes learning towards processing that observes the systematicity constraint, but in a
‘soft’ manner that also enables exceptional non-systematic processing to the extent that
the task requires it.

The remainder of this subsection (§2.1.3 – §2.1.4) presents a high-level summary of some
of the evidence concerning the adequacy of NECST computing for providing neural
computing with key elements of the compositional processing capabilities of symbolic
computing.

Neurocompositional computing in human and machine intelligence: A tutorial 30

2.1.3 Computability of symbolic functions

Do the capabilities built into NECST systems enable them to compute the kind of compo-
sitional functions needed for intelligent processing? Here ‘function’ has its mathematical
sense of a transformation or mapping that takes an input and produces a specified output.
Are the capabilities for creating and using compositional structures that are built into
NECST models sufficient to enable neural networks to compute the powerful discrete func-
tions for manipulating symbol structures that symbolic computing provides for intelligent
information processing? These functions give traditional AI its strong compositional
generalization ability. Since NECST-generation AI seeks to surpass the computational
capabilities of traditional AI, we need to ensure that TPRs endow neural networks with at
least the major aspects of the power of symbolic computing that is essential for AI.

Mathematical analysis has proved that, by encoding discrete symbol structures as
TPRs, neural networks can in principle specify any Turing-computable function [203];
such analysis has shown explicitly how to compute classes of recursive functions that
symbolic theories have shown to be important for human-level intelligence [206]7. Even
simple networks consisting only of an input layer and an output layer, each hosting the
TPR encoding of a discrete structure, and simple linear connections from input to output,
can compute functions like the one shown in Fig. 2, p. 20 (right panel) [205]: this model,
LFNet, takes the phrase structure of an English passive-voice sentence such as Modern
Artificial Intelligence was anticipated by Ada Lovelace and maps it to its meaning in logical
form (LF): anticipated(Ada Lovelace, Modern Artificial Intelligence).

A more complex NECST network, TreeAdjNet, can compute the Tree Adjoining
function in Fig. 1h, p. 9, which takes as input the phrase-structure trees for the sentence
Kim hates symbols and the adverb really and inserts the latter into the middle of the
former to produce as output the phrase-structure tree for Kim really hates symbols. This
is an operation that is known to give grammars sufficient power to achieve the level of
complexity displayed by the syntax of sentences in human languages [91].

Regarding sentence meaning, a NECST network βRedNet can compute the composi-
tion operation that is fundamental to the formalization of the principle of compositionality
in linguistic semantics, β-Reduction: applying a function defined over variables to par-
ticular values of those variables. A simple example from the domain of algebra, rather
than sentence meaning, is shown in Fig. 1j, which applies the function f (x) = x+ (x/2)2

to the value x =
√
a. A NECST network InfNet can also perform basic logical reasoning,

including transitive inference, illustrated in Fig. 1k–l [209].

2.1.4 Grammars emerging from neural computing

Can neurocompositional computing—in particular the NECST theory of how large-
scale compositional-structure computing emerges from small-scale neural computing—
contribute to our understanding of cognition at the large scale? A demanding test of any
general framework for modeling cognition is its ability to advance our understanding
of cognitive phenomena in which symbolic theory has made great strides but still faces
fundamental challenges. One such arena, formally studied in depth since the 1960s

7NECST has thus made it possible, arguably for the first time, to explain by reduction to smaller-scale
principles the systematic generative capacity of human cognition [201, 200], providing a resolution for an
extended debate with Fodor and colleagues [125, 137] by correcting the influential but erroneous claim [53]
that this capacity can be explained by theories of cognition based on symbolic, but not neural, computing.
For a succinct resume of the debate through 2000, see [201, p. 513].

Neurocompositional computing in human and machine intelligence: A tutorial 31

[31, 32, 42], is the space of possible grammars of human languages: formal linguistic
theory. NECST has led to formal answers to the question: what types of grammar can
emerge from neural computing [169, 202]? These new grammatical theories are a major
departure from previous grammatical frameworks and have transformed parts of formal
linguistics [61]. This provides evidence that NECST is a useful description of human
linguistic intelligence.

The principle underlying the NECST approach to grammar is that encodings of lin-
guistic structures are computed in networks with feedback loops in which activation from
the input flows around continuously until it settles into a stable equilibrium pattern,
the model’s output (Fig. 11, p. 60). A class of networks of this sort compute encodings
that maximize a numerical measure—Harmony—of the well-formedness of a neural state:
co-activation of a pair of neurons raises (or lowers) Harmony whenever they are joined by
an excitatory (or an inhibitory) connection [196]. The simple structure of TPRs allows the
Harmony of the TPR of a discrete structure to be calculated directly from the symbolic
description of the structure. The symbolic structures that maximize this Harmony are the
grammatical ones.

Calculating the Harmony of a symbol structure involves summing the penalties in-
curred by that structure if it violates some of a set of proposed constraints that define a
Harmonic Grammar, constraints such as ‘a sentence must have a subject’; the magnitude
of the penalty resulting from violating a constraint is the strength of the constraint in
the grammar [113, 158]. A surprising empirical discovery is that for many grammatical
phenomena, the strength of each constraint is greater than the sum of the strengths of
all the weaker constraints, so that each constraint has absolute priority over all weaker
constraints. In such a case, computing the grammatical structures requires only knowing
the priority ranking of the constraints: the numerical strengths need not be consulted.
This is a grammar of Optimality Theory [93, 112, 115, 170], which contributed to grammat-
ical theory a fundamental new principle: the constraints of the grammars of all human
languages are the same—grammars only vary in their priority ranking. This gives a formal
means of calculating the set of all possible human languages predicted by a theory, by
computing the properties following from all possible rankings of its proposed constraints
[138].

It is possible to express standard symbolic probabilistic grammars as Harmonic Gram-
mars and thereby encode them into feedback networks [63, 199]. Given such a grammar,
a NECST network ParseNet can be designed in which the outputs are, to a good approxi-
mation, TPR encodings of discrete phrase-structures trees for grammatical sentences (see
Fig. 11, p. 60). These sentence encodings are computed by continuous processing in con-
tinuous time over continuous distributed encodings in which each neuron simultaneously
contributes to the encoding of all parts of the sentence [29]. Theoretical results show that
in an idealized limit of unlimited processing time, these networks correctly output these
grammatical structures with the correct probabilities [226]. Simulation results show that
such convergence is often possible in psychologically plausible time [30]. These networks
have been used to address empirically observed psychological and neurophysiological
phenomena in human sentence comprehension [8] and production [15].

Neurocompositional computing in human and machine intelligence: A tutorial 32

2.2 Neurally encoding continuous structure

How can non-discrete compositional structure be realized in continuous neural encodings?
We now see that the NECST technique just presented for neurally encoding discrete
compositional structure—TPRs—already provides encodings of continuous compositional
structure as well. But why is continuous structure even useful? In this subsection, we
discuss continuous structure present in cognition, and then the continuous structure
invented by the early NECST models that have been constructed to date.

In neurocompositional computing, continuous structure is ubiquitous. The vectors
that encode all discrete structures, such as [lock able], form a set of isolated points in
the continuous vector space in which they lie: all the other vectors in the space encode
continuous structures [208].

For an intuitive example of continuous compositional structure, consider a visual scene.
In this type of structure, parts are linked by relations that are continuous. In a scene with
a painting above a table, the painting and table are related by the above relation, which
has a whole continuum of instantiations: directly-above-by-1.23m, and partially-above-
by-0.8m-and-partially-to-the-right-by-0.24m, and so forth ad infinitum. Although spatial
relations provide a concrete, intuitively clear case of continuous structural relations, in
neurocompositional computing, continuous abstract structural relations are also crucial in
domains in which structure has traditionally been considered to be fully discrete. One
such domain is language, to which we now turn.

The simplest kind of continuous structure is a discrete structural type—say, the
ordered-pair structure discussed above—in which a position is filled by a partially-active
symbol. Whereas a role in a discrete structure can be filled with a vector encoding of
a symbol, here the role is filled by a scaled-down version of that vector, in which all
activation levels are multiplied by a value between 0 and 1. In the continuous ordered
pair [0.1t a], the left role is filled by a very weak t, with activity level 0.1; the right role is
filled by a full-strength a.

But continuous structure goes further than this. The vector that encodes the symbol
t can be bound to the vector that encodes the discrete structural role L (visualized as[

t —
]
), as it is in the encoding of the discrete structure [t a], or to R (visualized as[

— t
]
), as in [a t]. But t can also be bound to the role that is encoded by the vector

half-way between the vectors that encode L and R: this encodes a role we can visualize
as

[]
. When the vector encoding t is bound to this continuous role, the result can be

visualized as
[

t

]
: t fills a weak (half-strength) role that spans both the left and right

halves of the pair. An equivalent visualization of the same encoding vector is
[

t t

]
or

[0.5t 0.5t]: L and R are both filled with a weak t, one that has half the activity level of a

full, discrete t. [Technically: this continuous role’s encoding is 0.5
−→
L ⊕ 0.5

−→
R , and binding

the filler encoding −→t to it yields the TPR −→t ⊗ (0.5
−→
L ⊕ 0.5

−→
R); this is the same as the vector

(0.5−→t)⊗−→L ⊕ (0.5−→t)⊗−→R which is the TPR of a pair in which both the left and right positions
are filled by a t with activity level 0.5.]

Neurocompositional computing in human and machine intelligence: A tutorial 33

2.2.1 Continuous structure in linguistic cognition

How could an odd structure such as
[

t

]
be relevant to cognition? In fact, just such

a continuous compositional structure has recently been proposed within theoretical
linguistics to analyze a problematic phenomenon in the phonology of French: liaison
[41]. The phrase written petit ami, which means ‘boyfriend’ (literally, ‘little friend’) is
pronounced as a sequence of four consonant-vowel syllables: pe.ti.ta.mi. To which word
does the second t belong? The spelling places it at the end of the first word, but the
pronunciation groups it with the beginning of the second word. Having access only to
pronunciation, young children often treat tami as one possible form for ‘friend’, and peti
as one possible form for ‘small’ [26]—which adults do too, since, when not followed by a
vowel, the word written petit is actually pronounced without a final t.

The proposed analysis [207] is precisely that t fills a weak role that spans the end of
the first word and the beginning of the second; or equivalently, that the final position
of the first word and the initial position of the second word are filled with a weak t,
with respective activities 0.48 and 0.09, as revealed by a learning algorithm which shows
how the location of the t starts at the beginning of the second word (as in children), and
gradually shifts during learning to finally occupy the continuous role that spans the two
words [152, 213]. This role can also be viewed as a (weighted) role blend of L and R.

This analysis of French liaison also illustrates another important aspect of continuous
structure: filler blending. The word for friend actually needs to be (0.09 t+0.09n+0.09z)ami:
its first position is a blend of consonants, containing not only a weak t, but also a weak n
and a weak z. These appear in bon ami, bo.na.mi ‘good friend’ and les amis, le.za.mi ‘the
friends’: just as petit has a final weak t, bon and les respectively have a final weak n and a
final weak z.

The consonant blend in the initial position of ami is a conjunctive mixture, in which all
elements are simultaneously present. This is a new type of structure in language analysis,
quite unlike a superficially similar type previously used—a probabilistic mixture, which is
disjunctive: it represents uncertainty about which one of the alternatives in the mixture is
present—but certainty that only one is [13]. It is crucial that each time ami is pronounced,
all its weak initial consonants are simultaneously present, so that the one that matches
the final weak consonant of the preceding word (if there is one), will be selected for
pronunciation.

The full analysis of French liaison shows that the proposed continuous structure
can account for a wide range of data including both facts that have led some to favor a
discrete word-final-t structure and facts that have led others to favor a discrete word-
initial-t structure: neither discrete structure can explain all these data. In fact, in the
past few years, continuous structures have resolved apparent paradoxes in a number of
domains within theoretical linguistics: the relative weakness of certain consonants and
vowels—‘ghosts’—in a range of languages (like the final t of petit) [239, 213]; learning
extremely complex systems of word forms [179]; the blending of two sentence structures
in which a phrase simultaneously occupies two structural positions [16, 97]; the blending
of grammars and expressions in bilingual speech, where phrases from two languages
are composed within the same sentence [59]; and many other phenomena that have long
defied satisfactory explanations within theoretical linguistics, which has previously been
limited to purely discrete compositional structures.

Neurocompositional computing in human and machine intelligence: A tutorial 34

Continuous compositional structure also provides a natural formalism for modeling
human language processing. Consider the encoding, midway through a sentence, con-
structed by a listener having heard only Jay saw, in a discourse context containing two
plausible candidates for who Jay saw: Kay and Dee [28]. A plausible encoding (highly
simplified) is a continuous structure in which Jay fills the role of subject, saw fills the role
of verb, and the role of object is filled with a vector encoding that is halfway between the
encodings of Kay and Dee (an equal blend of the two). NECST neural models of human
real-time sentence comprehension and production have shed fresh light on fundamental
empirical patterns observed in laboratory psycholinguistic experiments [28, 29, 30] (see
Fig. 11, p. 60).

These examples illustrate some of the ways in which the continuous compositional
structure formalized in the NECST framework has strengthened the explanatory power
of theoretical linguistics and psycholinguistics. This is evidence for our claim that the
human cognitive computer uses neurocompositional computing—which is what we argue
AI should emulate.

2.2.2 Learnability of continuous compositional structure in NECST models

How can neurocompositional computing incorporate deep learning to enable AI models to
invent, and process, their own forms of continuous structure in order to optimally perform
their task? We now present a few examples of how this has been done in early NECST-
generation AI models; other examples are discussed in subsequent sections. First, however,
we take up the question of whether existing networks can already learn compositionally
structured encodings—specifically, TPRs—without having been endowed with special
capabilities for doing so.

2.2.2.1 Spontaneously learned TPR structure. Recall the CopyNet-0 neural model
tasked with accepting a sequence of digits as input, one at a time, encoding and storing
the entire sequence, and then producing the same sequence as output, one digit at a time.
One portion of the network takes in the input sequence and produces an encoding of
that sequence; the other portion of the network takes in that encoding and then produces
from it the output. When the network is trained on an unconstrained set of examples—
a large randomly-chosen set of sequences—the resulting model performs perfectly on
novel test items (unobserved during training). This is a successful case of compositional
generalization. Could it be that this success results from the model having learned to
produce compositionally-structured encodings? Perhaps even TPRs? Remarkably, it turns
out the answer is yes: the learned encodings are TPRs (up to a linear transformation) [134].
So standard networks that lack explicit compositional-processing operations do learn TPR
encodings—under ideal training conditions in which the network is exposed to a great
variety of compositional configurations.

However, as mentioned in §1.1, p. 15 and shown in Fig. 4, p. 37 , when the training set
is systematically constrained—e.g., excluding sequences with 1 in position 1, 2 in position
2, etc.—the result does not display compositional generalization.

The story is similar for a non-trivial, but still artificial, task: producing an appropriate
sequence of basic commands for a robot to carry out a simple task described in highly
simplified English [103]. This model, which we call RoboNet, displays compositional
generalization when trained on unconstrained examples—and learns TPR encodings [216].
But when the training set is systematically constrained, compositional generalization fails.

Neurocompositional computing in human and machine intelligence: A tutorial 35

Thus there is something so natural about TPRs for neurally encoding compositional
structures that networks learn them spontaneously: but only if the training set provides
overwhelming evidence for the compositionality of the task—which is possible in the
simple, artificial tasks just discussed. However for the natural task of encoding sentences,
even large training sets appear insufficient. There is only partial compositional general-
ization, and only partial evidence for learned TPR structure. The NECST method that
revealed the covert TPRs in CopyNet and RoboNet also showed partial evidence of TPR
structure in BERT [87].

Another indirect source of evidence that standard models learn representations sharing
important properties with TPRs comes from ‘analogies’. These were first proposed in
psychology the 1970s [181] and rose to prominence in this century when reported in the
highly influential neural model Word2Vec [140] that learned vector encodings of words:
the vector difference between the encodings of king and queen is approximately equal to
the difference between man and woman [141], a linear expression of the analogy ‘king is
to queen as man is to woman’ ([124], but cf. [122, 165]). Such linear analogy relationships
have been observed in many neural models since: they are now legendary, but their origin
has been unclear. TPRs provide a principled explanation [52]: if words are encoded as
structures with roles being semantic features such as social status and gender, the TPR
relations are:

−−−−→
king − −−−−−−→queen = [

−−−−−→
royal ⊗ −−−−−−→status +

−−−−→
male ⊗ −−−−−−−→gender]

− [
−−−−−→
royal ⊗ −−−−−−→status +

−−−−−−−→
female ⊗ −−−−−−−→gender]

= (
−−−−→
male − −−−−−−−→female)⊗ −−−−−−−→gender

Since the bindings to the status role cancel in the subtraction, this result is the same if we
replace royal with commoner, giving −−−−→man − −−−−−−−→woman .

Moving from words to sentences, the vector encodings of sentences produced by
a recent mainstream model (Long-Short-Term Memory recurrent network, LSTM) [38]
displayed analogies: e.g., the vector difference between the encodings of the two sentences
the banker believed the professor and the judge believed the professor is approximately
equal to the difference between the encodings of the banker helped the scientist and
the judge helped the scientist: this must be true if the encodings are TPRs in which the
corresponding words in each pair of sentences have the same fillers and roles, except for
the replacement of the filler judge for the filler banker [134].

As mentioned previously, to learn robust compositional generalization without over-
whelming evidence of the relevant compositional structure, we believe that neural net-
works need to be provided with special built-in capabilities for creating and using compo-
sitional structure: this provides them a bias that directs learning towards compositional
analyses of the task, so that stronger compositional generalization can result from learning
with smaller quantities of data. Whether such special capabilities are in fact necessary is,
at this point, an open question.

What we now present is initial evidence that such capabilities, as provided by NECST
computing, are sufficient to take AI in the direction of greater compositional generalization.

Neurocompositional computing in human and machine intelligence: A tutorial 36

2.2.2.2 The NECSTransformer network . Recall that the structure built into one of the
currently most powerful neural architectures, the Transformer, makes it a key example of
1G neurocompositional computing (§0.2, p. 11) [173]. We now present its upgrade to 2G
neurocompositional computing, the NECSTransformer network.

A Transformer network [229] takes a sequence of symbols as input and produces
a sequence of symbols as output; built into the network is a sequential structure of
encodings that aligns with these symbol sequences. There are multiple neural populations
or layers, each containing one sub-population for each symbol (in input or output); its
activation pattern is often considered to be the encoding of that symbol in that layer.
The encoding vector in a given layer for a given symbol collects a portion of its input
activation from encoding vectors of other symbols in that layer. The network decides
which other symbols a given symbol draws activation from—which it attends to—when
processing a particular input symbol sequence. The input to one symbol’s encoding from
another’s is multiplied by an attention weight computed by the network. Thus the flow of
activation, or information, takes the form of a graph, where the link in the graph from
one symbol to another has a continuous strength: the attention weight. The population
of neurons that encodes a symbol (at a given layer) is subdivided into several subgroups,
each with their own attention weights computed by their own attention ‘head’. Thus there
is a separate information-flow graph for each head (at each layer). We can think of each
head as computing its own structural relation linking symbols: the greater the attention
weight on information flow from one symbol to another, the more strongly the network
deems those two symbols to be associated by this relation.

As noted above, in the Transformer language model BERT, some of these relations
can be interpreted as approximating relations identified by linguists. For example, one is
the co-reference relation that links two words referring to the same entity; in the input
sequence She got some expert opinions on the damage to her home, this relates she and
her. The head interpreted as computing this relation assigns a high attention weight
for activation flow between the encodings of she and her, and relatively low attention
weights for flow to these two encodings from the encodings of the other words [127]. Note
that each head encodes the same relation throughout its layer, and the relations have no
encodings of their own, hence no similarity to one another.

In the NECSTransformer, these relations are upgraded to first-class status with an
encoding of their own: they serve as the roles defining a TPR compositional structure. For
each head and layer, the network computes a relation-encoding vector for each symbol:
these can vary across symbols, and the relation-encoding vectors have varying degrees
of similarity to one another. For a given head, the attention-weighted activation flowing
into a given symbol’s encoding from other symbols serves as the filler for the relation
computed by that symbol: this filler and role are bound by the NECST binding operation,
the tensor product (or a compression of it); the binding vectors so produced at a given
symbol—one per head—are assembled by the NECST combination operation, summation,
to form a TPR structure that encodes a particular symbol in a given layer. The network
uses deep learning to invent its own relations, distinguished by their encoding vectors;
how these relations are filled is determined by the learned attention mechanism. Learning
is driven to design structures that are optimal for performing the task.

Note that the TPRs invented by the NECSTransformer are bona fide information encod-
ings: activity patterns passed on to other layers for further processing. In contrast, the
graph structure implicit in a plain Transformer layer only transiently governs process-
ing within that layer, and disappears after that processing terminates; it is not a stable

Neurocompositional computing in human and machine intelligence: A tutorial 37

encoding that carries information to other parts of the network.
Once learning in the NECSTransformer is complete, it is up to the network’s creators

to try to interpret the learned structures: perhaps in terms of our pre-existing concepts
about the task (such as co-reference), or perhaps by the modelers learning new concepts
from the network’s encodings. Interpretation of a NECSTransformer model for solving
mathematics problems is discussed in the next section (§3.1, p. 40).

Returning to our expository example of the simple sequence-copying task discussed
previously (§1.1, p. 15; §2.2.2.1, p. 34), we now ask: What happens when we upgrade
the non-neurocompositional model CopyNet-0 to 2G-neurocompositional computing: a
NECSTransformer network, CopyNet-2G? With this network’s bias towards compositional
encoding, an order of magnitude fewer examples of the copy task are needed to achieve the
same degree of generalization as that of the plain (1G) Transformer model, CopyNet-1G
(Fig. 4a–b). When multiple distinct instances of CopyNet-1G are separately trained on
the task, only about 1/3 of them learn the task perfectly; upgrading to CopyNet-2G gives
a 100% improvement (Fig. 4d).

a.

●●●●
●

●

●

●

●
●
●

●
●

●
●

●
● ●

●
●

●

●

●

●
●

●
● ●

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500
Training set size

N
on

−
n

−
in

−
n

 A
cc

ur
ac

y

Model
● CopyNet−0

CopyNet−1G
CopyNet−2G

b.

●●●●
●

●

●●
●
●●

●
● ● ● ●

●
● ● ●

●

●

●

●

●

●

● ●

●
●

● ●
● ●

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500
Training set size

n
−

in
−

n
 A

cc
ur

ac
y

Model
● CopyNet−0

CopyNet−1G
CopyNet−2G

c. CopyNet−0 CopyNet−1G CopyNet−2G

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

Number of Digits in a Novel Position

A
cc

ur
ac

y

d.

0.00

0.25

0.50

0.75

1.00

CopyNet−0 CopyNet−1G CopyNet−2G

P
ro

po
rt

io
n

of
 R

un
s

th
at

A
tta

in
 P

er
fe

ct
io

n

Figure 4: Successive increases in a model’s degree of neurocompositional structure bring
successive improvements in compositional generalization.

Figure 4: Neurocompositionality and compositional generalization

Increasingly deep implementation of neurocompositionality brings increasingly
robust compositional generalization (for details, see Appendix B, §7, p. 57). This
can be illustrated transparently by observing a sequence of successively more neuro-
compositional networks—called CopyNet-0, CopyNet-1G, and CopyNet-2G—
that are trained to perform an extremely simple task: taking as input a sequence of
5 digits (e.g., ⟨3,9,7,4,7⟩), encoding the entire sequence as a vector representation,
and then using that encoding to output the same sequence one digit at a time.

Neurocompositional computing in human and machine intelligence: A tutorial 38

Compositional generalization is tested by withholding from training all sequences
of a certain type: ‘n-in-n’ sequences, in which there is a 1 in position 1, or a 2

in position 2, etc. After training, correctly copying the unseen n-in-n sequences
requires a type of compositional generalization.

CopyNet-0 is a non-neurocompositional, pre-Transformer neural network which
has little built-in neurocompositional structure (an LSTM [76]). CopyNet-1G is a
Transformer, which uses a mildly neurocompositional graph structure (1G neuro-
compositional computing). CopyNet-2G is a more thoroughly neurocompositional
NECST model (2G neurocompositional computing: a NECSTransformer, described
in §2.2.2.2, 36).

a–b show how models with greater degrees of neurocompositionality perform
better with smaller quantities of data. a gives accuracy on easier test examples
which differ little from training examples, i.e., non-n-in-n sequences; note that
CopyNet-2G achieves 100% correct with an order of magnitude fewer training
examples. b gives accuracy on n-in-n test examples, which differ from the training
examples and require more substantial compositional generalization.

c shows that CopyNet-0 does progressively worse on sequences with more and
more digits in positions they never occupied during training, while CopyNet-1G
and CopyNet-2G show little degradation in performance.

d. How do these neural learners’ final performance levels compare to a symbolic
learner, which would be expected to reach perfect accuracy (like CopyComp, §1.1.1,
p. 16)? We trained each type of model 100 distinct times and counted how many of
the 100 instances learned the task perfectly (scoring 100% on the set of all possi-
ble digit sequences of length 5—including all n-in-n sequences). No CopyNet-0
instances performed perfectly; about one third of CopyNet-1G instances reached
perfect performance; and over two thirds of CopyNet-2G instances attained per-
fection.

2.2.2.3 Approximately-discrete structure in factual knowledge. Can NECST emulate
an important property of the large-scale compositional structure of human cognition:
approximately discrete compositionality? We now illustrate one approach to constructing
such neural encodings during the inference of an output given an input. The idea is to
first create the TPR vector that encodes a discrete structure appropriate for processing the
input, and to then improve this encoding by sliding it continuously in its vector space to
maximize some measure of the encoding’s quality. This is optimizing the encodings of
transient structures created during inference of outputs, building on the optimization,
during learning, of the network’s overall scheme (embedded in its connection strengths)
for encoding the atomic concepts that combine to form these structures. This formalizes
the contextual determination of meaning that concepts undergo when they are combined
with other concepts to form a conceptual structure.

FactNet is a NECST model of the storage and retrieval of factual knowledge. A useful
discrete approximation of human factual knowledge, frequently employed in symbolic
computational models, consists of a graph structure in which a set of symbols naming
entities and properties are joined by links labelled by symbols naming relations. One fact
in such a graph might be expressed by the symbol Barack Obama being joined by a link

Neurocompositional computing in human and machine intelligence: A tutorial 39

labelled office title to the symbol US President. FactNet has a priori knowledge of the
structure of this information: each of these three symbols is encoded by a learned vector,
and the discrete approximation of the fact is encoded by a (compressed) TPR built from
these vectors. The space containing these TPRs includes vector encodings of all assertions
that can be built from the available symbols, e.g. “Hillary Clinton’s office title was US
President”; only some of these assertions are facts included within a given knowledge
base. The set of these facts is thus encoded as a large collection of isolated vectors in the
TPR space. This is discretely-formalized factual knowledge encoded within a continuous
vector space.

The continuous character of this space is exploited by FactNet to allow the encoding
vector of any assertion to be optimized by being nudged in the encoding vector space
away from its discrete approximation vector; this produces an encoding of a non-discrete,
continuous structure. The model learns a validity function defined over the TPR space:
it assigns high values to TPR vectors that encode assertions that are facts in a given
knowledge base. These facts are the assertions that are, in a semantic sense, ‘well formed’;
they are analogous to grammatical linguistic structures, and the validity function is called
Harmony, like its counterpart in the NECST-derived theories of grammar discussed above
(§2.1.4, p. 30).

The optimized encoding of any assertion maximizes Harmony within the neighbor-
hood of its discrete approximation. For each assertion, this has the effect of shading the
encodings of all its constituent symbols to optimize validity within the context of the
assertion they jointly define. So among the discrete approximation encodings of assertions
of the form “x’s office title was US President”, the two closest assertions to the assertion
where x = Barack Obama are the assertions where x = Hillary Clinton and x = Al Gore;
this is a consequence of the closeness of the encoding vectors—out of context—for Obama,
Clinton and Gore. But, of course, these two closest assertions are not facts. After opti-
mization, assertion encodings have shifted from their discrete approximations to improve
their Harmony or validity scores, and now all of the five assertion encodings closest to
the x = Obama case are assertions in which x actually was a US President. Out of context,
Obama and Gore have similar encodings, but in the context of “office title”, they do not.
Evaluated on queries of a standard test knowledge base (WordNet18), the optimized
continuous encodings of FactNet set a new state of the art, raising the most stringent
accuracy measure from 78% to 93%; optimized continuous encodings were essential to
this improvement.

We have now outlined the NECST principles for achieving neurocompositional computing,
illustrated how NECST AI systems are designed, and reported some of the improved per-
formance that results. Finally, we pass to the matter of understanding NECST-generation
AI systems, and exploring what benefits such understanding can bring.

Neurocompositional computing in human and machine intelligence: A tutorial 40

3 Improved comprehensibility of neurocompositional systems

and its benefits

Neurocompositonal computing imbues deep learning models with large-scale organi-
zation that emulates that of human cognition: encodings with approximately-discrete
compositional structure. Does this better alignment with cognition begin to make the
internal encodings of these systems less thoroughly opaque than those of typical deep
neural models? This is of course an open question, as NECST-generation AI systems have
only begun to be developed. Initial results, however, although fragmentary, do provide
some grounds for optimism. For starters, as already discussed, the graph-structure build-
ing capabilities built into the 1G-neurocompositional Transformer architecture—which
partially motivates building general compositional-structure capabilities into NECST
systems—yield considerable insights when these networks’ internal encodings are probed.

We now briefly describe early evidence of several benefits that enhanced comprehensi-
bility can bring to 2G-neurocompositional NECST systems: learned internal encodings
are more human-interpretable, more accessible for inserting structural knowledge that is
expected to be valuable, and better for enabling human diagnosis of errors and control
of system behavior. Such benefits have the potential for overcoming serious problems
arising from the opaque nature of standard neural AI models, including difficulties in
developing more explainable, trustworthy, and controllable AI systems [43].

3.1 Interpreting learned internal encodings

Interpreting the learned continuous compositional structure of NECST encodings can
be illustrated with the MathNetmodel [188]; this is a new version of the Transformer
deploying 2G neurocompositional computing: the NECSTransformer, described above
(§2.2.2.2, p. 36). This model learns to take in a sequence of characters spelling out a
mathematics problem and to output a sequence of characters spelling out the answer;
evidencing improved compositional generalization, the model succeeded in advancing
the state of the art on this challenging task to 84.2% from the previously-reported 76%
[187] (see Fig. 7a, p. 46 below). Recall that at each layer of such a network, each input
symbol is represented by a TPR containing multiple bindings, where the roles and fillers
are vectors generated within the network. The roles that MathNet learns allow us to
partially characterize the types of continuous structures it invents, as shown in Fig. 5.
Each binding is computed by a different sub-network or head, and what is shown via
color in Fig. 5l, for each of the input symbols, is the role generated by one head in the
final layer of the input-encoding portion of the model. For interpretive purposes only,
the role vectors generated by a head are grouped into discrete clusters, with similar role
vectors in the same cluster interpreted to be encodings of essentially the same role; each
cluster is assigned a color in visualizations such as Fig. 5l. Such a role can be interpreted
by identifying the properties shared by symbols generating that role, and the properties
relating those symbols to the symbols that provide the filler for that role. This enables
interpretation of numerous roles invented by MathNet.

Neurocompositional computing in human and machine intelligence: A tutorial 41

Figure 5: Decrypting the structures invented by MathNet [187]

Neurocompositional computing in human and machine intelligence: A tutorial 42

Figure 5: Decrypting the structures invented by MathNet

Top: Standard structure. A ratio of ratios (a) can be represented as a tree struc-
ture (b). The topmost tree position (occupied by the central division operator ‘/’)
denotes the overall fraction, which is composed of two parts, occupying the two
tree positions one level down. Each of these parts is also a ratio, again denoted
by the division operator ‘/’. In the overall fraction, the leftmost ratio contributes
the numerator role, marked by the green ‘num’ arrow; the rightmost ratio, the
denominator role, marked by the red ‘denom’ arrow. Each of these two internal
ratios in turn has two subparts, the first contributing the ‘num’ role, the second the
‘denom’ role. In the linear notation (which is what the MathNetmodel sees), we
denote the relations by arrows (c) and color each symbol by its role (e). Thus the
colored version of a for this structure is d.

Upper mid: Learned structure (simplified). But the structure invented by Math-
Net is different: f , or in linear form, g. Now it is x and v, rather than x and u,
that contribute the same role. The denominator of the denominator (v) fills the
same role as the numerator of the numerator (x). The model’s structural encoding
reveals implicit use of the inference rule in Fig. 1i, p. 9: it has simplified the ratio
of ratios into a product of ratios (h). Now the top-level operator, written ‘/⧹’, is the
‘/’ symbol reinterpreted as the multiplication operator ‘×’, with the two internal
ratios now serving as multiplicands 1 (‘mult1’, gold arrow) and 2 (‘mult2’, yellow
arrow). The invented roles shown here in teal and orange can be interpreted as
effective-numerator (‘eff num’, including the denominator of a denominator) and
effective-denominator (‘eff denom’, including the numerator of a denominator): the
structure MathNet has invented can be approximated as in i–j.

Lower mid: The learned structure. For the ratio of ratios k, the colors in l show the
actual roles assigned by MathNet. Effective numerator digits employ three roles,
ranging from light to dark teal, marking leftmost, middle, and rightmost digits.
Effective denominator digits use two roles, light to dark orange, the latter marking
the rightmost digit.

Bottom: Additional structural roles learned. The structure MathNet invents
for the more complex structure m is shown in n. Again, the teal and orange roles
respectively mark three effective numerator factors and an effective denominator
factor in a fraction; each of the former takes its filler from the latter and vice versa.
(Fillers flow along the arrows.) The multiplication operators ‘∗’ involve a different
role (gold). The pair of roles generated by the first two negation operators ‘−’
(lighter blues) correspond to negations that cancel each other, whereas the last,
uncancelled, ‘−’ employs a different role (dark blue). The purple role is one of two
that mark matching parentheses.

Important note: These diagrams do not show the continuous nature of the actual
invented structure: fillers actually result from combining contributions from multi-
ple symbols, not a single one; the arrows have different numerical strengths; the
fillers flowing along them are continuous vectors; and the roles themselves are
continuous vectors that have been artificially made discrete, in order to make the
visualization more human-interpretable, by clustering nearby vectors together and
marking them with the same color.

Neurocompositional computing in human and machine intelligence: A tutorial 43

There is one role that is typically generated by both an outermost opening parenthesis
‘(’ and its matching closing parenthesis ‘)’, but not the potentially many parentheses
between them; e.g., it is generated by the first and last parenthesis of (((−10)/(−4))/1 +
−1) but not by any of the six intervening parentheses. (In another problem, two such
matching parentheses are successfully paired in this way, despite 31 intervening characters,
including 10 parentheses.) Another role is typically assigned to plus signs ‘+’ and also to
each of two minus signs ‘–’ that cancel each other, but not to uncancelled ‘–’ signs. Other
roles mark the position of digits within numerals that fall in the ‘effective numerator’
of a fraction, including numerators of simple fractions but also the denominator of a
denominator in a complex fraction: at the layer in question, an expression like (3/4) / (5/6)
is assigned the same structure as (3/4) ∗ (6/5), a ratio-of-ratios having been simplified to
an equivalent product of ratios, in accord with the inference rule of Fig. 1i, p. 9.

Three other NECST models processing English invent structures that are partially
interpretable in grammatical terms, although no information is given to the models about
grammar or the structure of English. In a model that learns to answer questions about
Wikipedia articles, QANet, the roles learned for TPR encodings of English questions
partially align with recognizable linguistic structural properties, at levels ranging from
small features of words (such as plural), to general semantic categories like predicate
(expressed by verbs and adjectives) to an invented type of multi-word sequence that
could be called a wh-restrictor-phrase, like what famous event in history. Another model,
CaptionNet, learns to generate figure captions, in the process inventing roles that are
highly predictive of the sequence of parts of speech (noun, adjective, etc.) in its captions
[80, 81] (Fig. 8b, p. 48). In a NECSTransformer model that generates text summaries,
SummaryNet, the invented structure parcels syntax into roles—and semantics into fillers
[88].

Beyond the compositional structure within the representations of neurocompositional
models, can we understand the processing within these models compositionally? (Recall
the question raised in §1.1.3, p. 17 of whether the partial compositional structure that
can be observed in some Transformer models plays a causal role in the processing within
those models.) In MathNet’s evaluation of numerical expressions, the vector encodings
of digits turn out to be sequentially arranged within the vector space according to their
numerical value, from smallest to largest. This means that the semantic—numerical—
value of a representation can be inferred from its position in vector space. Looking at a set
of problems evaluating various numerical expressions with a given structure, we observe
encodings consistent with a compositional process in which the innermost operators in
the expression have representations corresponding to the numerical value resulting from
applying the operator to its arguments, with values then propagating from the innermost
to the outermost operators: see Fig. 6 [184]

Neurocompositional computing in human and machine intelligence: A tutorial 44

Figure 6: Compositionality of processing within MathNet [184]

Figure 6: Compositionality of processing within MathNet

Interpreting the encodings in the final layer of MathNet [187], we see that the vec-
tor encodings of digits are sequentially arranged within the vector space according
to their numerical value, from smallest to largest. The plot in the figure interprets
the encodings of all symbols in expressions of the form x1+x2

x3
+ x4+x5

x6
, where each xi

is a digit. Vertical dotted lines delineate sub-expressions, and underscores indicate
space characters.

The vector encoding of the ‘+’ symbol in x1 + x2 correlates with the numerical
value of the sum of the values of the digits x1 and x2. (More precisely, the distance in
vector space between the encoding of ‘+’ when evaluating x1 + x2 and the encoding
of ‘+’ when evaluating y1 +y2 correlates well with the difference between the values
of the two sums.) Similarly, the vector encoding of ‘/’ in x1+x2

x3
correlates with the

numerical value of the ratio of the value of x1 + x2 to the value of x3: the strength
of such correlations are plotted by the curves in the figure. The value of sub-
expressions propagates to the evaluation of the larger expressions of which they are
a part: compositional processing.

The plot shows the alignment of correlation measures across the entire input
sequence with the parse tree of the expression, which has been colored to match
the lines in the plot for the appropriate quantities. (Colored envelopes show the
minimum and maximum correlation across heads.) As shown by the colored
rounded rectangles overlaying the expression, correlations with the values of an
intermediate result are maximal at the vectors associated with the corresponding
operator (or an adjacent blank ‘ ’), and are elevated over the constituent containing
its arguments (shown by matching colors in the parse tree, and matching colored
horizontal bars covering the extent of the appropriate constituent). Where the
correlations exceed 0.2 (above the grayed-out region at the bottom of the plot), the
stacking of the correlation curves parallels remarkably well (although not perfectly)
with the stacking of the colored bars marking the nesting of constituents.

An example is highlighted by the black boxes at the left: the vectors representing
each element in the constituent (x1 + x2) show the highest correlations with the
value of the sum of x1 and x2 (blue), but also show correlations with its division by
x3 (orange), and the result of the whole expression (green).

Neurocompositional computing in human and machine intelligence: A tutorial 45

3.2 Inserting structural knowledge: Biasing structure learning

Can the improved interpretability of neurocompositional computing enable us to endow
a model with structural knowledge that we expect to be useful for its task? NECST-
generation AI promises many opportunities of this sort. The method we illustrate here
biases networks to create TPRs of a certain type of structure, pushing deep learning
towards encodings of the task that use this structure.

The NECST model ProgNet (Fig. 7c) accepts a statement of a problem in English and
outputs a program that solves the problem: the program takes the form of a sequence
of commands, each consisting of an operator (such as ‘plus’, or ‘sort’) together with 1–3
entities (such as numbers or symbol-lists) that it operates on—its arguments. What is
given to the model is knowledge of the structure of the output: a list of operator-argument
commands; previous models typically generate output programs symbol-by-symbol,
oblivious to any larger-scale structure.

ProgNet has been applied to two cases: mathematics word problems and program-
ming problems in the Lisp programming language (modified to consist in a sequence of
commands). The input problem is encoded by a network component that takes in one
word at a time, assigning each a vector that encodes a filler:role binding, where the filler-
and role-encoding vectors are each selected from a learned dictionary of such vectors. (No
prior knowledge relevant to understanding English is provided.) These individual-word
binding vectors are aggregated to form a single TPR that encodes the entire problem
statement.

This TPR is transformed by a second model component into an encoding that drives
the entire output-generation process, which is executed by a third model component. This
third generation component produces a sequence of command encodings, each of which it
uses to generate a program command, using TPR unbinding, as follows. Each command
encoding is assumed to take the form of a TPR for a 4-tuple: there are four roles, one for
the operator, the others for its arguments. The generator uses TPR unbinding to extract
the fillers of these roles from the command encoding, outputting for each such extracted
filler encoding the closest symbol encoding in a learned dictionary of encodings of all
possible operator and argument symbols.

This model uses TPR binding to encode the input problem (using the method of
QANet [157]), and TPR unbinding to generate the output commands (using the method of
CaptionNet [81]). The built-in compositional-structure processing capabilities produce
an input TPR, by construction; but the unbinding capability’s job is more subtle. The
command encoding is not forced by construction to be a TPR; it is produced by standard
network operations which themselves impose no structure on the encoding. However
this encoding is processed by TPR unbinding, so to succeed at its task, the model must
learn to create command encodings that are TPRs, as far as the command-generator can
see. In this way, the learning process is biased to produce command encodings with TPR
structure: it is via this bias that useful structural knowledge is provided to ProgNet.

With this learning bias, ProgNet’s performance set a new state of the art for both
the mathematics and programming problem-solving tasks. Lisp programs as long as 55
commands were generated perfectly. The use of TPR structure for encoding the English
input, and the bias for TPR structure in the output-generation process, were both essential
for the model’s strong performance (Fig. 7c).

Neurocompositional computing in human and machine intelligence: A tutorial 46

a. MATHNET
Let r(g) be the second derivative of 2*g**3/3 – 21*g**2/2 + 10*g. Let z
be r(7). Factor –z*s + 6 – 9*s**2 + 0*s + 6*s**2. → –(s + 3)*(3*s – 2)

c. PROGNET
given numbers a , b , c and e , let d be c , reverse digits in d , let a
and the number in the range from 1 to b inclusive that has the
maximum value when its digits are reversed be the coordinates of
one end and d and e be the coordinates of another end of segment f ,
find the length of segment f squared →
(digits c) (reverse #0) (* arg1 10) (+ #2 arg2) (lambda2 #3)
(reduce #1 0 #4) (– a #5) (digits c) (reverse #7) (* arg1 10)
(+ #9 arg2) (lambda2 #10) (reduce #8 0 #11) (– a #12)
(* #6 #13) (+ b 1) (range 0 #15) (digits arg1) (reverse #17)
(* arg1 10) (+ #19 arg2) (lambda2 #20) (reduce #18 0 #21)
(digits arg2) (reverse #23) (* arg1 10) (+ #25 arg2)
(lambda2 #26) (reduce #24 0 #27) (> #22 #28) (if #29 arg1 arg2)
(lambda2 #30) (reduce #16 0 #31) (– #32 e) (+ b 1)
(range 0 #34) (digits arg1) (reverse #36) (* arg1 10)
(+ #38 arg2) (lambda2 #39) (reduce #37 0 #40) (digits arg2)
(reverse #42) (* arg1 10) (+ #44 arg2) (lambda2 #45)
(reduce #43 0 #46) (> #41 #47) (if #48 arg1 arg2) (lambda2 #49)
(reduce #35 0 #50) (– #51 e) (* #33 #52) (+ #14 #53)

Lisp Problems

b. STORYNET
Daniel picked up the football. Daniel dropped the football. Daniel got
the milk. Daniel took the apple. How many objects is Daniel holding?
→ two

Previous
STORYNET

STORYNET Compositional Generalization

100 75 50 25 12.5

% Tasks with Novel Character Names during Training

MATHNET: 2048 Transformer 1920 512

Previous PROGNET

50

60

70

80

90

100

LSTM TPR: Input Output All

Figure 7: NECST-generation AI models—Improved compositional generalization: Math-
Net [187], StoryNet [186], ProgNet [25]

Figure 7: NECST-generation AI models—Improved compositional generalization

a. An example problem (in blue) to which MathNet [187] gives the correct answer
(in green). Performance on the 15 particularly challenging test sets that require
most combinatorial generalization away from the training examples are shown
in the plot. For 11 of these test sets, the plain (1G) Transformer (green bars) is
surpassed by the (2G) NECSTransformer model, MathNet (shown in three model
sizes: yellow, red and blue, in increasing order).

b. An example narrative with a question correctly answered by StoryNet [186].
Compositional generalization was tested by restricting training examples that
included certain character names to only some fraction of the multiple subtasks
in this dataset. A name that was included in all subtasks is plotted on the left;
one that was included in only 12.5% is shown on the right. Green shows the level
of generalization on the ‘novel’ names by StoryNet; blue, the performance by a
previous state-of-the-art model. As the percentage of subtasks in which each ‘novel’
name was included in training decreases, StoryNet increasingly dominates.

c. An example Lisp programming problem that ProgNet [25], but not the previ-

Neurocompositional computing in human and machine intelligence: A tutorial 47

ous state-of-the-art (LSTM) model, answers correctly (matching all 55 commands
exactly). (‘#n’ refers to the result of the nth command.) The plot compares the
overall performance of the LSTM model to versions of ProgNet in which TPRs
were used for only the input, only the output, or both.

Another NECST model that was provided with valuable learning biases for compo-
sitional learning was a model for answering questions about short narratives like the
one in Fig. 7b [232]: StoryNet [186]. This network learned to encode abstractions of
entities and relations as vectors and to use built-in operations to bind them together into
a TPR encoding of a continuous graph structure capturing knowledge of the events in
the narrative. The learning bias provided to this network was a set of built-in useful
operations for updating the knowledge graph as each sentence of the narrative arrives,
and for sequentially extracting information from the graph to answer a question. The
model successfully learned how to use these operations. Not only did this model advance
the state of the art on its task, it exhibited dramatically improved compositional general-
ization when tested with novel words on which it had received quite limited additional
training (Fig. 7b).

3.3 Diagnosing errors and controlling output

Is the comprehensibility of NECST AI models sufficient to enable us to identify internal
processing errors and to intervene on the internal encodings to exert control of the models’
outputs? Initial results show that the interpretability of the fillers and roles in internal
TPR encodings can sometimes reveal where the model selected the wrong filler or role,
and allow us to control model output by altering the fillers and roles directly.

3.3.1 Diagnosing errors

Recall that the NECST model QANet, which answers questions about a set of Wikipedia
articles, invents a number of roles that can be interpreted grammatically (§3.1, p. 40). In
addition, some fillers can be interpreted semantically (see Fig 8c). The word Who has
several meanings, and which filler is assigned to a particular instance of Who correlates
well with which meaning is appropriate for the specific context of that instance. In the
many mentions of the TV character Dr. Who in the articles, the model sometimes mis-
assigns Who the filler that would be appropriate for a question word, as in Who died?
(although QANet made this error at a considerably lower rate than a state-of-the-art
probabilistic symbolic system designed for analyzing English sentences [126]). When
the model made this internal “error”, it was 5 times more likely to produce an incorrect
output: an output that would have been appropriate had Who actually been a question
word rather than a character name [157].

3.3.2 Controlling output by manipulating learned compositional encodings

The incomprehensibility of contemporary black-box non-compositional neural AI models
severely limits our ability to control the socially toxic biases these models often display
[10]. The relative comprehensibility of NECST encoding vectors—TPRs of continuous

Neurocompositional computing in human and machine intelligence: A tutorial 48

compositional structures that can often be approximated by symbol structures—can,
however, enable ‘precision surgery’ on internal activation patterns to control the output
of a network, something that is very difficult with traditional non-compositional neural
models (but cf. [58]; related operations are also possible with other 1G neurocompositional
Transformer models [118]).

Simple command:
⟨1⟩ jump twice
⟨2⟩ — encoder → 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠!"#$****************************⃗ → decoder →

⟨3⟩ JUMP JUMP

⟨4⟩ Explicit manipulation of 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠!"#$****************************⃗ :
 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠%&'*****************************⃗ 	= 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠!"#$****************************⃗ – 𝐭𝐰(𝐜𝐞(**************⃗ + 𝐭𝐡𝐫(𝐜𝐞(***************⃗

⟨5⟩ 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠%&'*****************************⃗ —decoder→ JUMP JUMP JUMP

Complex command:
⟨6⟩ run left twice after jump opposite right thrice
⟨7⟩ — encoder → 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠!"#$****************************⃗ → decoder →
⟨8⟩ TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN

⟨9⟩ Explicit manipulation of 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠!"#$****************************⃗ :
 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠%&'*****************************⃗ 	= 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠!"#$****************************⃗ +

4−𝐫𝐮𝐧))************⃗ + 𝐥𝐨𝐨𝐤))**************⃗ 9 + 4−:𝐮𝐦𝐩)****************⃗ + 𝐰𝐚𝐥𝐤)****************⃗ 9 +
4−𝐥𝐞𝐟𝐭+,************⃗ + 𝐫(𝐠𝐡𝐭+,***************⃗ 9 + 4−𝐭𝐰(𝐜𝐞(**************⃗ + 𝐭𝐡𝐫(𝐜𝐞(***************⃗ 9 +
4−𝐨𝐩𝐩𝐨𝐬(𝐭𝐞)-************************⃗ + 𝐚𝐫𝐨𝐮𝐧𝐝)-*********************⃗ 9

⟨10⟩ 𝐞𝐧𝐜𝐨𝐝(𝐧𝐠%&'*****************************⃗ → decoder →
⟨11⟩ TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK

TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK
TR LOOK TR LOOK TR LOOK

⟨12⟩ ~	 look right thrice after walk around right thrice

 b. CAPTIONNET
Length-7 sequences of roles ⇒ grammatical category

sequence of generated words with 94.4% accuracy.

Role sequence of the form [9 7+ 0/8 (1) 7+] ⇒

⟨1⟩ [Determiner (Adjective)* Noun Preposition
(Determiner) (Adjective)* Noun], e.g.,

⟨2⟩ [a yellow yellow umbrella with a man]

 c. QANET
what type/genre of TV show is Doctor Who? → Time Lord
If the filler selected by Who is:

filler52 = main question word (incorrect)
	 ⇒ 44% output errors (answer given is a person)

filler98= proper noun (correct)
	 ⇒ 9% errors (91% correct: answer is the genre)

a. ROBONET

Figure 8: NECST-generation AI models—Benefits from increased comprehensibility:
controllability, RoboNet [216]; interpreting internal dynamics, CaptionNet [81]; error
diagnosis, QANet [157].

Figure 8: New capabilities resulting from increased comprehensibility of neuro-
compositional computing

a: Controlling behavior [216]. In this task, the input ⟨1⟩ is a description in
simplified English of a maneuver for a hypothetical robot; the output ⟨3⟩ is a
sequence of primitive operations the robot can perform to carry out the maneuver.
(TL/TLdenote ‘turn left/right’ by 90°.) Depicted schematically in ⟨2⟩, this model,
RoboNet, is a standard, non-neurocompositional neural network (Gated Recurrent
Unit network, GRU [27]) in which an encoder subnetwork takes the input in, one

symbol at a time, and produces a single vector (
−−−−−−−−−−−−−→
encodingorig) that encodes the

entire input; this vector is then fed to a decoder subnetwork to produce the output,
one symbol at a time. NECST analysis methods show that RoboNet’s learned

Neurocompositional computing in human and machine intelligence: A tutorial 49

encodings are well approximated by TPRs, yielding a closed-form expression for
the learned vector ⟨2⟩ that internally encodes any given input ⟨1⟩. This expression
tells us exactly how to take the internal encoding of an input such as jump twice
and directly modify it into the encoding that would be produced by the input
jump thrice: we subtract the vector hidden in this encoding that encodes twice
and add the vector that would encode thrice ⟨4⟩—in the process, changing the
activation level of every neuron by a precisely-determined amount. Now the output
of the model changes from JUMP JUMP ⟨3⟩ to JUMP JUMP JUMP ⟨5⟩; that is, the
alterations that we have made to the model’s internal encodings produce exactly the
output alteration we intended to make, illustrating how the interpretable structure
of TPRs facilitates control of a model’s behavior.

As shown in ⟨6− 12⟩, this procedure can be repeated to effect considerably more
complex modifications, changing the internal encoding ⟨7⟩ of the eight-word input
⟨6⟩ to what would be the encoding of the virtual input ⟨12⟩, which differs in five
words. The eight-word input in ⟨6⟩ produces the encoding vector ⟨7⟩ and output
⟨8⟩. We can change this encoding to match that of a virtual input that differs
from it in five words ⟨12⟩ by taking five steps of subtracting the encoding of an
existing word and adding in the encoding of a new virtual word ⟨9⟩. (−−−−−→run11 is the
vector encoding of run:role11, the binding of filler run to role role11. The analysis
technique determines the role that run fills—–role11—–as well as the vector that
encodes this role,

−−−−−→
role11 , and the vector −−−→run that encodes its filler, run; thus we

can explicitly compute this contribution: −−−−−→run11 = −−−→run ⊗ −−−−−→role11). The resulting
encoding, when fed to the decoder ⟨10⟩, produces the output ⟨11⟩ that correctly
corresponds to the virtual new input ⟨12⟩: the original 13 output commands have
been replaced by 30 new ones. The plot shows how, even after many such successive
substitutions, the internal modifications specified by our NECST analysis continue
to control behavior with good accuracy.

b: High-level interpretation of network-internal dynamics [81]. Given an input
image, the NECST model CaptionNet generates an appropriate caption one word
at a time by first computing an encoding for the entire caption, which it then
treats as a TPR: it generates one role at a time and extracts from the encoding
the filler of that role, which is the word it produces. The roles it invents carry
significant information about the grammatical category (part of speech) of the
words it generates, such that if we know that it selected a particular sequence of 7
roles to generate 7 words then we can predict the grammatical categories of those 7
words with 94.4% accuracy. It learns to produce recurring sequences of roles which
function like subprograms. One example is the pattern [9 7+ 0/8 (1) 7+] where ‘7+’
means one or more repetitions of role 7, ‘0/8’ means either role 0 or role 8, and ‘(1)’
means one or zero instances of role 1. This subprogram generates words forming
the sequence of grammatical categories given in ⟨1⟩, where ‘(Adjective)*’ denotes a
sequence of zero or more adjectives. An example word sequence this produced is
given in ⟨2⟩.
c: Diagnosing errors [157]. Given a Wikipedia article and a question about it,
the NECST model QANet produces an answer. It encodes each word as a simple
TPR consisting of a single filler:role binding, choosing from learned dictionaries of

Neurocompositional computing in human and machine intelligence: A tutorial 50

20 possible roles and 100 possible filler symbols: none of these has any meaning
prior to learning. After learning, several fillers can be interpreted as carrying
identifiable meaning, including fillers 52 and 98, which respectively correspond
to the meanings of Who as either a main question word or a part of a name (Dr.
Who, that is). For the example question shown in blue, the model gave the incorrect
answer in green. We can explain this error by looking at the network’s internal
encodings of the words in the question: we see that Who was encoded with filler 52,
and the answer reflects this error, as the answer is a character name, which would
be an appropriate type of response if Who were indeed the main question word. We
can validate this explanation by observing that, on questions about Dr. Who, the
model’s error rate was 44% when it chose filler 52, but when Who was correctly
encoded as filler 98, the error rate was 5 times lower: 9%.

This surgery is illustrated by RoboNet, the previously-introduced model that learns
to map a simplified-English description of a robot maneuver into a sequence of primi-
tive commands executable by the robot [216] (§2.2.2.1, p. 34; see Fig. 8a). As discussed,
although RoboNet has no built-in capabilities for using TPRs, when trained on exten-
sive, unconstrained examples, the internal encoding of the input that it learns is closely
approximated by a specified TPR, revealing directly its otherwise covert compositional
structure and providing an explicit formula expressing, in closed form, the vector that
internally encodes any input. In the simplest type of example (Fig. 8a⟨1− 5⟩), although
every neuron simultaneously contributes to the encoding of all input words, the network’s
internal vector encoding of the input jump twice can be directly altered, changing the
activation of every neuron by a precise amount, in such a way as to subtract the vector
contribution to the TPR from twice and add the vector that would have been contributed
by thrice—thereby changing the model’s output from jump jump to jump jump jump.
Much more complex changes, and extended sequences of successive changes, can also be
successfully effected in this way (Fig. 8a⟨6− 12⟩).

4 Summary

The long-anticipated arrival of Artificial Intelligence is surely one of the singular mile-
stones of our time, and it seems an appropriate moment to reflect upon the field: its
current status, where it’s been, and where it’s going. At the beginning of the computa-
tional era in the mid-20th century, modern AI and cognitive science were born together
and developed hand-in-hand for several decades before gradually diverging [37]. We
suggest it is time for the study of intelligence in humans and in machines to join forces
once again.

The analysis of AI we have offered in this tutorial is the product of a cognitive sci-
ence perspective on intelligence. We now summarize major symptoms of malaise that
we perceive in current AI, our diagnosis, our treatment plan, and some early outcome
assessments.

Among the symptoms of current difficulties are a failure to satisfactorily achieve
human-like generalization, the pursuit of which has given AI an insatiable appetite for
more learning data, for bigger models, and for more computing power to make it possible

Neurocompositional computing in human and machine intelligence: A tutorial 51

to train these models on these data—exacerbating already pressing societal problems
[10, 159].

Recent progress has already led to genuinely useful AI systems in myriad application
areas: computing will never be the same. But while performance of AI systems has
dramatically improved, how current systems actually perform their amazing feats is now
a great new mystery.

Further, despite all this progress, there remains a large gap between machine and
human intelligence. This leaves plenty of room for skeptics to say, “we’ve heard over-
hyped stories about AI for 70 years; why should we believe that things are different now?”.
The history of AI has indeed been infamous for its multiple cycles of boom-and-bust.8

Traditional AI blossomed for decades and then collapsed in the 1980s: the first “AI winter”
[40, p. 203]. Artificial neural network AI systems then flourished, only to see the same
fate in the 1990s. Is it inevitable that the current imposing edifice of neural-network AI
will come crashing down as well?

Our diagnosis is that traditional AI and neural network AI—both drawing heavily from
cognitive science—each got the story half right. Rather than continuing the pendulum
swing between these two types of computing, we can stop the oscillation by properly
understanding the type of computing that constitutes human cognition. The human
mind/brain has organization at multiple scales. At a small scale, it is a neural network:
the brain, with information encoded in numbers—neural activity levels. At a large
scale, it has quite a different organization: the mind encodes information in intricate
compositional structures. Traditional AI got right the large-scale compositional structure,
but went wrong in formalizing this as discrete symbol structures. These have proved too
rigid for adequately encoding the subtleties of information in non-formal intelligence-
requiring tasks, and intractable to use because of the explosion of possible structures
that must be sifted to find the correct one. Neural AI got right the small-scale structure:
continuous, optimized numerical encodings supporting statistical inference, but went
wrong in having no appropriate large-scale compositional structure. This omission has
led to the inadequate compositional generalization that plagues contemporary AI systems.
And the missing large-scale structure means the lack of the kind of anchors onto which
human concepts can be attached to build understanding.

The treatment then is clear: design AI systems in which large-scale compositional
structures are built not of discrete symbols, but of continuous neural activation vectors.
This is neurocompositional computing. Having acquired a highly limited degree of
neurocompositional computing as a side-effect of pursuing quite different goals, the
Transformer architecture has led to great breakthroughs in language processing, and
increasingly in many other areas of AI too—e.g., in mathematics: MathNet (§3.1, p. 40)
and IntNet (§1.1.1, p. 16). A way to take this progress much further, and achieve general,
fully-neurocompositional computing is provided by Neurally-Encoded Compositionally-
Structured Tensor computing: NECST (§2, p. 24; Appendix A, §6, p. 55).

Although it is certainly much too early for definitive assessment of the efficacy of this
treatment, the accomplishments of the earliest examples of NECST-generation AI systems
are encouraging. The results we presented are summarized in (6); these include theoretical

8Interestingly, such a cycle was also anticipated by Lovelace: “It is desirable to guard against the possibility
of exaggerated ideas that might arise as to the powers of the Analytical Engine. In considering any new
subject, there is frequently a tendency, first, to overrate what we find to be already interesting or remarkable;
and, secondly, by a sort of natural reaction, to under value the true state of the case, when we do discover that
our notions have surpassed those that were really tenable” [14, Note G., p. 398].

Neurocompositional computing in human and machine intelligence: A tutorial 52

results (6a–b), network analysis methods (6e), and, as illustrations, 5 hand-designed (6a)
and 7 deep-learning (6b–d) NECST models. In (6), ‘*’ marks NECST models that set a new
state-of-the-art level of performance.

(6) Summary of results presented in this tutorial

a. Discrete symbolic compositional functions known to provide important approx-
imations to cognitive functions targeted by AI tasks are provably computable by
precisely-designed neural networks (including LFNet, TreeAdjNet, βRedNet,
InfNet) using computing that is fully continuous, parallel, and distributed
[205, 206] (§2.1.3, p. 30; Fig. 9, p. 55). Arbitrarily close approximations to
discrete grammatical structures can be computed by neural networks that are
fully interpretable, continuous, and distributed; these networks are formally
derived from general theoretical principles, and can be used to model neural
[8] and behavioral data on real-time human language processing (ParseNet
[29] §2.1.4, p. 30; Fig. 11, p. 60).

b. New theories of grammar (Harmonic Grammar, Optimality Theory) can be
derived from formally characterizing the compositional structure emerging
from language-processing neural networks; these theories have led to signif-
icant progress in linguistic theory [158, 170] (§2.1.4, p. 30). Explanations in
theoretical linguistics and psycholinguistics can be strengthened using en-
codings with continuous compositional structure [179, 213] (§2.2.1, p. 33).
For answering questions through inference from a factual knowledge base,
approximately-discrete transient encodings, partially interpretable as contextu-
alized encodings of concepts, can be constructed during inference (FactNet*
[105], §2.2.2.3, p. 38).

c. Novel, partially-interpretable continuous structured internal encodings opti-
mized for mathematics problem-solving are invented by the NECSTransformer
enhancement of the original Transformer network architecture (MathNet*
[187], Figs. 5–6, p. 41). Continuous structured internal encodings learned for
comprehension and production of English are partially interpretable in terms
of grammatical concepts (QANet [157], CaptionNet* [81], SummaryNet*
[88], §3.1, p. 40; Fig. 8b, p. 48). Such interpretation enables certain errors in the
output of a question-answering model to be diagnosed as due to incorrect use
of its learned internal vector encodings (QANet [157], §3.3.1, p. 47; Fig. 8c).

d. Neural networks can be informed by directing their learning towards useful
types of continuously-structured encodings for generating computer programs
to solve math and programming problems (ProgNet* [25], §3.2, p. 45; Fig. 7c,
p. 46). Dramatically improved compositional generalization by neural networks
answering questions about narratives can be achieved through providing them
a novel framework for processing events by encoding them with continuous
compositional structure (StoryNet* [186], §3.2, p. 45; Fig. 7b, p. 46).

e. For any given input to a neural network generating simplified robot control
sequences, the output can be controlled by directly modifying the model’s
learned internal vector encoding of the input (RoboNet [216], §3.3.2, p. 47;
Fig. 8a). The precise alterations necessary are derived from a closed-form for-
mula for this vector, which results from novel analysis methods for uncovering
latent compositional structure in neural encodings [134] (§2.2.2.1, p. 34).

Neurocompositional computing in human and machine intelligence: A tutorial 53

5 Towards full neurocompositionality

The NECST work to date is only a first step towards fully achieving neurocompositional
computing; to imbue networks with greater capabilities for processing continuous compo-
sitional encodings, several further steps are clear, mapping out a road to 3G neurocomp-
ositional computing.

The early work within the NECST paradigm reported here has incorporated only the
most fundamental features of neurocompositional structure processing (those identified
in Fig. 9a–j of Appendix A, p. 55). This has just begun to manifest the power inherent
in symbolic computing: it has improved compositional generalization, advancing the
state of the art in several problem domains where compositional structure processing is
particularly important, and it has improved interpretability of internal representations.
The gains, however, are clearly still short of those expected from full achievement of
human-level neurocompositional computing.

Further progress is expected from endowing deep learning with three additional
capabilities of compositional-structure computing. The first is the capability provided by
TPRs to explicitly embed smaller structures within larger structures, such as how [lock
able] can be embedded within [un [lock able]] (Fig. 3, p. 25 and Fig. 9k–l, p. 55). Initial
results in this direction have yielded promising results.

The second additional capability pertains to the connection weights that process the
structured representations in these networks (Fig. 9m). NECST representations disentan-
gle the filler (‘what’) and role (‘where’) aspects of structural constituents, but to date there
is no explicit bias in NECST models that leads network processing to exploit this disen-
tanglement. Building such a bias into the network structure will be a key component of
3G neurocompositional computing. A strong form of compositional generalization—pure
systematicity—arises when fillers and roles are processed independently, as exemplified
above by the transformation of English black cat to French chat noir (§2.1.2, p. 29 and
Fig. 9n). Currently under development are NECST models that bias learning in this
direction by favoring weight matrices that factor as the tensor product of weights that
process fillers and weights that, independently, process roles.

The third new capability is the most complex. The transformative advances in gram-
matical theory derived from NECST center on the innovation that grammatical expressions
are encoded in activation vectors that optimally satisfy grammatical constraints that are
encoded in the strengths of connections joining neurons [169, 170]. Incorporating such
optimization-based processing into 3G neurocompositional computing may set the stage
for major breakthroughs in machine language processing [152], as it did in linguistic
theory. An initial step in this direction, discussed above (§2.2.2.3, p. 38), shows how
NECST can strengthen inference ability by enabling the meaning of symbols denoting
particular entities and relations to adapt continuously to—to be optimized for—their
structural context within a knowledge graph of facts (FactNet, [105]). This just begins to
show how continuous NECST compositional representations can show greater flexibility
than their discrete symbolic counterparts.

The NECST generation of AI models promises to enable us to overcome the limita-
tions of discrete symbolic implementations of compositional-structure computing while
allowing us to interpret internal continuous representations, alter them in controllable

Neurocompositional computing in human and machine intelligence: A tutorial 54

ways, and explain their consequences. NECST computing also offers the potential to instill
in AI models information that is known from symbolic theories to be generally useful,
including knowledge that is purportedly innate in human infants, greatly reducing the
quantity of experience needed to achieve the levels of cognitive competence observed in
human adults [129, 133]. The NECST paradigm, perhaps, may even allow us to gain new
insights into specific cognitive capacities from the structures invented by these models to
solve intellectually-challenging problems.

Cognitive science and AI emerged in close contact in the 1960s [37], but have since
gone their separate ways. The research program reviewed here pursues a reconvergence
of AI and cognitive science through a unified theory of the computing underlying both
human and machine intelligence. Recognizing the importance of such a synergy is not
new: it was already envisioned nearly two centuries ago by Ada Lovelace, who saw that in
the general purpose computer, “not only the mental and the material, but the theoretical
and the practical, are brought into more intimate and effective connexion with each other.”
[14, Note A, p. 369].

So why was Lovelace skeptical about the possibility of creativity in machines? “The
Analytical Engine has no pretensions whatever to originate anything. It can do whatever
we know how to order it to perform.” [14, Note G, p. 398]. Regarding a deep-learning
network, it may be true that we do not “know how to order it to perform” creatively: but
what is new is that we don’t have to—because the capabilities of the network emerge from
its statistical analysis of its experience: we don’t program these capabilities into networks
in the sense that Lovelace knew from her programming of the Analytical Engine, nor
in the sense that traditional AI systems were programmed. In deep-learning systems,
large-scale organization arises from small-scale learning processes: it is not supplied by a
programmer. AI systems that deploy neurocompositional computing have the capability to
emulate both the small- and large-scale structure of human cognition; perhaps small-scale
learning processes operating under strong compositional inductive biases will ultimately
enable the emergence of the large-scale creative abilities characteristic of human cognition.

Neurocompositional computing in human and machine intelligence: A tutorial 55

6 Appendix A. Compositional-structure processing:

Formalizations for symbolic and neural computing

Figure 9: Encoding structural primitives of compositional-structure processing in sym-
bolic and neural computing.

Figure 9: Neurally encoding structural primitives of compositional computing

Left column. Structuring information compositionally starts with atomic elements
(a), aggregates them into groups (b), and arranges them into distinct, inter-related
roles (c). Thus a compositional structure is a collection of constituents (h), each of
which has a filler (‘what’) and a role (‘where’) aspect (e–f) that are bound together
(g).

A structure for a simple sentence consists in three roles: subject, object, verb
(d). A particular instance of that structure, Jay sees Kay, is a collection of filler:role
bindings: Jay:subj, Kay:obj, sees:verb. Given a structure, the filler of a specified
role can be extracted (or unbound) (i); crucially, the filler retains its identity as it is
bound to different roles (j). Structures can be embedded within larger structures
(k): the filler of a role can itself be a structure, like the role obj in Jay sees Kay cue
Em which is filled by the structure Kay cue Em; Kay’s role is subj-of-obj—roles can
be recursive (l).

Neurocompositional computing in human and machine intelligence: A tutorial 56

Computation over structures maps an input structure to an output structure
(m). Such functions can be (fully or partially) systematic—the fillers and roles can
be mapped (completely or largely) independently (n), as in the mapping from the
English Adjective Phrase (AP) black cat to French chat noir: fillers black, cat are
mapped to noir, chat while roles AP-L, AP-R are mapped to AP-R, AP-L, respectively
(§2.1.2, p. 29).

Middle column. The middle column (left large oval) shows how these concep-
tual primitives of compositional-structure processing are formalized in symbolic
computing.

Right column. The right column (right large oval) shows how these same primi-
tives are vector-encoded in Neurally-Embedded Compositionally-Structured Ten-
sor (NESCT) computing, one approach to neurocompositional computing. These
neurally-encoded structures are Tensor Product Representations (TPRs; h), named
after the operation used to bind neurally-encoded fillers (a) to neurally-encoded
roles (d): the tensor product ⊗, defined in the inset of Fig. 3, p. 25, (g). This is a gen-
eralization of the outer product of matrix algebra that allows recursive application
(e.g., [(1,3,2)⊗ (0.1,10)]⊗ (1,−1) = (((0.1, 0.3, 0.2), (10, 30, 20)), ((–0.1, –0.3, –0.2),
(–10, –30, –20))); the elements of the order-3 tensor u ⊗ v ⊗ w are all the possible
products of the elements of u, v and w).

Aggregating filler:role bindings is done with ⊕, the direct sum (b–c): a general-
ization of simple vector addition that allows for the addition of tensors of different
order. A filler can itself be an entire structure; this gives rise to multiple tensor
products for the multiple levels of embedding in the structure (k–l). The general
TPR is a concatenation (or list) of tensors of order 1 (encoding symbols at embed-
ding depth 1), order 2 (encoding symbols at embedding depth 2), etc. (k), and the
direct sum simply applies ordinary vector addition separately within the subspaces
of tensors of different orders. (For an alternative approach to TPRs for trees, see
[64].)

Extracting fillers from a TPR—unbinding a role to identify its filler—is done
with a tensor inner product (i–j). To unbind any of a set of n role encodings {ri}ni=1,
we need the unbinding (or dual) vectors {r+

i }
n
i=1 defined by the requirement that

rj · r+
k = δjk = 1 if j = k and 0 otherwise. A set of dual vectors exists if the number

of neurons that encode the roles is sufficient (at least as large as the number of
possible roles n). Then, from the TPR S of a structure S in which the role encodings
{ri}ni=1 are bound to the particular filler encodings {fi}ni=1, we can unbind any rk by
taking the inner product of S and r+

k : [S · r+
k]i =

∑n
j=1 Sij [r+

k]j = [fk]i .

Mathematical results show that complex recursive symbolic functions can be
computed by networks on entire TPR encodings, operating on all embedded con-
stituents in parallel [206]. Many interesting functions (like the one computed by
LFNet, right half of Fig. 2, p. 20) can even be performed by a linear network, which
simply multiplies an input TPR S by a weight matrix W to produce an output TPR
S′ (m). Independent transformation of fillers and roles (n)—pure systematicity—
arises if this weight matrix W factors as the tensor product of two smaller matrices,
one that transforms fillers (WF) and the other that transforms roles (WR).

Neurocompositional computing in human and machine intelligence: A tutorial 57

7 Appendix B. CopyNet experiments

In the CopyNet experiments illustrated in Figure 4, p. 37, we trained models on the task
of copying sequences of digits: Given a five-digit sequence as input (e.g., ⟨3,9,7,4,7⟩), the
model had to produce the same sequence as its output. During training, models encoun-
tered all digits from 0 to 9 and all positions from first to fifth, but certain digit/position
pairs were withheld (e.g., 3 in the third position). Correctly handling such sequences
therefore required compositional generalization. The code for these experiments is avail-
able at https://github.com/tommccoy1/copynet; below we provide more details about
the experiments.

7.1 Data

We divided sequences into two types: n-in-n sequences, in which at least one position
in the sequence is occupied by the digit corresponding to that position (e.g., ⟨3,9,7,4,7⟩
contains 4 in position 4), and non-n-in-n sequences, which contain no n-in-n digits. We
generated 10,000 non-n-in-n training sequences, 1,000 non-n-in-n validation sequences,
1,000 non-n-in-n test sequences, and 1,000 n-in-n test sequences. Because all training
sequences were non-n-in-n sequences, the n-in-n test items required deeper generalization
from the training set than the non-n-in-n test items did. All sequences were 5 digits long
and were drawn randomly from the set of sequences satisfying the relevant n-in-n or
non-n-in-n constraint. No sequences were repeated within or across data splits. The digits
in the sequences could have values ranging from 0 to 9 inclusive.

7.2 Models

We trained three types of neural-network models on the copying task: LSTMs, Transform-
ers, and NECSTransformers. All three were structured as sequence-to-sequence models,
in which the model has two sub-networks: an encoder, which receives a sequence as input
and converts it to a vector representation called the encoding, and a decoder, which takes
in the encoding and uses it to produce the output sequence.

LSTMs [76] are a type of recurrent neural network [51, 90]. An LSTM encoder takes in
the input sequence one element at a time and stores information about what it has seen so
far in a pair of vectors (the hidden state and cell state), where these vectors are updated
after each input element. The hidden state and cell state at the end of the input together
serve as the encoding. The LSTM decoder then takes in the encoding and produces output
elements one at a time. The LSTMs that we used did not involve attention.

In Transformers [229], the encoder and decoder each feature several layers of process-
ing. In the encoder, there is one vector for each input element. The vectors at a given layer
are produced by selectively combining and modifying information from all of the vectors
in the previous layer using a mechanism called attention [5]. The collection of vectors
in the final encoder layer serves as the encoding. The decoder then produces the output
one element at a time; at each time step of decoding, the decoder can access information
from the full set of input encoding vectors as well as the vector representations of the
previously-produced output tokens.

https://github.com/tommccoy1/copynet

Neurocompositional computing in human and machine intelligence: A tutorial 58

The NECSTransformer [187] is a Transformer enhanced to incorporate Tensor Product
Representations (see §2.2.2.2, p. 36). Where the standard Transformer produces a vector
representing each token, the TP-Transformer additionally binds this token representation
to a role vector so that the TP-Transformer can explicitly represent each token’s role in
the sequence. The NECSTransformer is not provided with any information about which
roles it should use or how to encode them; it must construct its own role scheme through
learning.

In the plots in Fig. 4, p. 37, we refer to the LSTM as CopyNet-0 because it is non-
neurocompositional, the Transformer as CopyNet-1G because it uses first-generation
neurocompositional computing, and the NECSTransformer as CopyNet-2G because it
uses second-generation neurocompositional computing.

The LSTMs had a hidden and embedding size of 257; the Transformers had a hidden
and embedding size of 256; and the NECSTransformers had a hidden and embedding size
of 230. These varying values were chosen so that all models would have similar overall
parameter counts: 2,131,056 for LSTMs, 2,115,584 for Transformers, and 2,115,366 for
NECSTransformers. All models used 2 hidden layers and had dropout [217] applied
between all layers with a dropout probability of 0.1. The Transformers and NECSTrans-
formers both used 4 attention heads and a feedforward dimensionality of 256. When
producing outputs, all models generated tokens until they produced a special end-of-
sequence token, which signalled that they had finished their output.

7.3 Training

Models were trained using negative log likelihood loss over the correct output tokens,
using the Adam optimizer [98] with a learning rate of 0.0001 and a batch size of 10.
Teacher forcing was used during training but not evaluation. Models could loop over their
training examples as many times as necessary for them to converge. After every complete
pass over the model’s training examples, each model was evaluated on the validation
set. Training halted when, for 5 consecutive validation set evaluations, the loss had not
improved. In all evaluations, a model-produced output sequence was only counted as
correct if it exactly matched the correct output sequence, digit-for-digit; no credit was
given for partially-correct outputs.

7.4 Learning curve experiments

To produce the learning curves shown in Figs. 4a and 4b, we trained models on subsets
of the training set. The subset sizes that we used were 1, multiples of 10 from 10 to 200
inclusive, multiples of 50 from 250 to 1000 inclusive, and multiples of 100 from 1000
to 2000 inclusive. For each subset of size k, the specific examples used were the first
k examples in the training set, meaning that each successively larger k yields a strict
superset of the examples used in smaller values of k. For each model and training set size,
we performed 10 re-runs with different random seeds. The y-axis value for each point in
Figs. 4a and 4b is the mean across all 10 re-runs.

7.5 Full training set experiments

For each model type, we also performed 100 runs of training the model on the full training
set (10,000 examples) to generate the plots in Fig. 4c and 4d. We evaluated these models

Neurocompositional computing in human and machine intelligence: A tutorial 59

CopyNet−0 CopyNet−1G CopyNet−2G

Insertio
n

Deletion

Substitu
tion

Swap
Other

Insertio
n

Deletion

Substitu
tion

Swap
Other

Insertio
n

Deletion

Substitu
tion

Swap
Other

0.0

0.5

1.0
P

ro
po

rt
io

n
of

 e
rr

or
s

Figure 10: Categorization of errors made by CopyNet models. Within each model
category, all bars sum to 1.

not on the 1,000-item test sets but rather on the complete set of all 100,000 possible
5-digit sequences. Fig. 4c shows results on this set of 100,000 examples, where each bar is
the mean across the 100 runs of the model. Fig. 4d shows the proportion of the 100 runs
of each model that attained perfect performance—producing the correct output for all
100,000 possible inputs.

7.6 Analysis of errors

In addition to the results shown in Fig. 4, here we also categorize the types of errors that
models make. Though errors are rare overall, all models make at least some errors in at
least some runs. We consider 5 error categories:

• Insertion: Producing the correct output except with a single additional digit inserted
(e.g., ⟨3,9,6,7,4,7⟩ instead of ⟨3,9,7,4,7⟩).

• Deletion: Producing the correct output except with a single digit deleted (e.g.,
⟨3,9,7,4⟩ instead of ⟨3,9,7,4,7⟩).

• Substitution: Producing the correct output except with a single digit replaced by
some other digit (e.g., ⟨0,9,7,4,7⟩ instead of ⟨3,9,7,4,7⟩).

• Swap: Producing the correct output except with two digits swapped (e.g., ⟨4,9,7,3,7⟩
instead of ⟨3,9,7,4,7⟩).

• Other: Errors not falling into any of the above categories, such as inserting more
than one digit.

The breakdown by category for each model type’s errors is in Fig. 10. CopyNet-0’s errors
are typically swaps; CopyNet-1’s errors are most often substitutions; and CopyNet-
2’s errors are usually deletions. The differences in these error patterns may arise from
differences in the strategies that the models use for encoding information, but we leave
the investigation of this possibility for future work.

Neurocompositional computing in human and machine intelligence: A tutorial 60

8 Appendix C. Online sentence processing in a NECST network

 N Vi P N
Kay left for lunch

PP

VP

S

S
*Vi

*N

*N

Figure 11: Real-time sentence processing in a NECST network [29]

Figure 11: Real-time sentence processing in a NECST network: ParseNet

The NECST model ParseNet [29, 30] can produce and interpret sentences governed
by a grammar encoded in its connections. Here we consider its use in a first
stage of sentence comprehension, constructing a parse tree showing the embedded
constituent-phrase structure of a string of words presented one at a time. The
distributed vector encodings of all symbols in the tree are superimposed upon each
other and spread over the entire network, so to ‘see’ the tree being constructed,
the modeler must mathematically analyze the network state at a large scale, as
schematically depicted by the telescopes and thought bubbles in Fig. 1, p. 9 and
visualized more precisely in the right half of Fig. 3, p. 25.

On the left of Fig. 11 is a plot of a ParseNet’s continuous computation over
time of (the neural encoding of) the discrete tree structure on the right. In the
activation plot, each of the 10 rectangular blocks corresponds to a tree-position role
indicated by the dots labeled by symbols on the tree at the right. (We will use the
shortcut ‘X role’ to refer to a position filled by the symbol X in the tree shown.) The
modeler analyzes the network state (views it through a mathematical telescope) as
it evolves continuously over time, computing the activation of each filler (symbol)
in each role (position): the activation of each possible filler:role binding is one of the
colored curves in the plot. Within each block, the full processing time for the entire
sentence is shown on the x-axis; activation is on the y-axis. In this simulation, the
network received the input sequence N Vi P N (Noun Verb[intransitive] Preposition
Noun), the grammar’s representation of a sentence such as Kay left for lunch. One
word is presented to the network at a time; within each block, the time interval
during which each of the words was presented is demarcated by dashed vertical

Neurocompositional computing in human and machine intelligence: A tutorial 61

lines.

First block in the lowest row (corresponding to the tree role filled by the first
N, Kay). While the first word is presented, we see (during the pink-shaded time
interval) that one filler rises to dominate the activity: this is the symbol N, the upper
symbol displayed at the right of the block (the lower symbol, *N, is the second-most
active filler, which rises to medium activity before falling to activity zero; this
symbol is used to propagate the N label up the tree to its true parent node, S =
sentence). The :0 after N indicates that N is the left child of its parent node; :1
denotes a right child.

Second block in the lowest row (the ‘Vi role’). During the second time interval
(now marked by the pink band), the input is Vi; the fillers that rise to prominent
activity levels are Vi:0 and Vi:1. Given only the first two words, N Vi, the grammar
is ambiguous: this is a complete sentence on its own (Kay left), but may be the
beginning of a longer sentence. The first possibility is shown by the small red
dashed tree on the right; in this case, Vi is a right child (of S): Vi:1. In the second
possibility, Vi is a left child (ultimately, of VP = Verb Phrase): Vi:0. As the third
and fourth words are presented, the competition resolves in favor of the black tree
(Vi:0): the red tree (Vi:1) fades out as the last word is presented.

First block of the second-lowest row. Simultaneously, during presentation of the
second word, in the ‘*N/S role’, both possibilities are entertained: the S symbol
(from the red tree) has highest activation, but just below is the symbol *N (from the
black tree). As later words are presented, this symbol *N overtakes S as required in
the grammatically correct parse (black tree) of the full sentence.

Each of the remaining blocks. In each role, the correct filler rises to full activa-
tion as the sentence is processed one word at a time (e.g., the PP = Prepositional
Phrase filler in the ‘PP role’). (Technical details: S[1] is one type of sentence in the
grammar—the type of the red tree—while S[2] is another—the type of the black
tree; similarly for PP[1] and VP[1]. @ is the ‘empty symbol’ used for a role with no
proper filler; this would correctly apply to the ‘P role’ if the input actually had only
two words.)

Acknowledgments

We gratefully acknowledge, for crucial support and valuable conversations, Johannes Gehrke, Li Deng, Qi Lu,

Yi-Min Wang, Harry Shum, Eric Horvitz, Susan Dumais, Xiaodong He, Aslı Çelikyılmaz, Chris Meek, Hamid

Palangi, Qiuyuan Huang, Nebojsa Jojic, Imanol Schlag, Kezhen Chen, Shuai Tang, Laurel Brehm, Najoung

Kim, Matthias Lalisse, Paul Soulos, Eric Rosen, Caitlin Smith, Coleman Haley, Géraldine Legendre, Jason

Eisner, Ben Van Durme, Alan Yuille, Hynek Hermansky, Tal Linzen, Robert Frank, Jürgen Schmidhuber, Ken

Forbus, Gary Marcus, Yoshua Bengio, Steven Pinker, Jay McClelland, Alan Prince, Ewan Dunbar, Dapeng

Wu, Randy O’Reilly, François Charton, Guillaume Lample, Peter beim Graben, Daniel Crevier, and all our

collaborators on the papers reviewed here. The work reported here was supported in part by NSF (GRFP

1746891, BCS-1344269, DGE-0549379) and by Microsoft Research. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the authors and do not necessarily reflect the

views of the National Science Foundation or Microsoft.

REFERENCES 62

References

[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm
for Boltzmann Machines. Cognitive Science, 9:147–169, 1985.

[2] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on
explainable artificial intelligence (XAI). IEEE access, 6:52138–52160, 2018.

[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module
networks. In IEEE Conference on Computer Vision and Pattern Recognition, pages
39–48, 2016.

[4] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, and al. Ac-
curate prediction of protein structures and interactions using a three-track neural
network. Science, 2021. 10.1126/science.abj8754.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. In International Conference on Learning
Representations, 2015.

[6] Marco Baroni. Linguistic generalization and compositionality in modern artificial
neural networks. Philosophical Transactions of the Royal Society B: Biological Sciences,
375(1791):20190307, 2020.

[7] Joost Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, and Douwe
Kiela. Jump to better conclusions: SCAN both left and right. arXiv preprint
arXiv:1809.04640, 2018.

[8] Peter Beim Graben and Roland Potthast. A dynamic field account to language-
related brain potentials. Principles of Brain Dynamics: Global State Interactions,
2012.

[9] Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and alternatives.
Computational Linguistics, 2021. arXiv preprint arXiv:2102.12452.

[10] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. On the dangers of stochastic parrots: Can language models be too
big? In ACM Conference on Fairness, Accountability, and Transparency, pages 610–
623, 2021.

[11] Yoshua Bengio. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

[12] Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for AI. Communi-
cations of the Association for Computing Machinery, 64(7):58–65, June 2021.

[13] Rens Bod, Jennifer Hay, and Stefanie Jannedy. Probabilistic linguistics. MIT Press,
2003.

[14] Bertram Vivian Bowden. Faster than thought: A symposium on digital computing
machines. Pitman Publishing, Inc., 1953.

[15] Laurel Brehm, Pyeong Whan Cho, Paul Smolensky, and Matthew A. Goldrick. PIPS:
a parallel planning model of sentence production. Cognitive Science, in press.

10.1126/science.abj8754

REFERENCES 63

[16] Laurel Brehm and Matthew Goldrick. Distinguishing discrete and gradient cate-
gory structure in language: Insights from verb-particle constructions. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 43(10):1537, 2017.

[17] Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polo-
zov. Generative code modeling with graphs. In International Conference on Learning
Representations, 2019.

[18] Allan G Bromley. Charles Babbage’s analytical engine, 1838. IEEE Annals of the
History of Computing, 20(4):29–45, 1998.

[19] Rodney Brooks. Predictions scorecard, 2021 January 01, 2021.
https://rodneybrooks.com/predictions-scorecard-2021-january-01/, retrieved
Nov. 15, 2021.

[20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[21] Joan Bybee and James L. McClelland. Alternatives to the combinatorial paradigm
of linguistic theory based on domain general principles of human cognition. The
Linguistic Review, 22(2–4), 2005.

[22] Paco Calvo and John Symons. The architecture of cognition: Rethinking Fodor and
Pylyshyn’s systematicity challenge. MIT Press, 2014.

[23] Supriyo Chakraborty, Richard Tomsett, Ramya Raghavendra, Daniel Harborne,
Moustafa Alzantot, Federico Cerutti, Mani Srivastava, Alun Preece, Simon Julier,
Raghuveer M. Rao, Troy D. Kelley, Dave Braines, Murat Sensoy, Christopher J.
Willis, and Prudhvi Gurram. Interpretability of deep learning models: A survey of
results. In Proceedings of the 2017 IEEE SmartWorld Conference, pages 1–6, 2017.

[24] R. Chandrasekar. Elementary? Question answering, IBM’s Watson, and the Jeop-
ardy! challenge. Resonance, 19:221–241, 2014.

[25] Kezhen Chen, Qiuyuan Huang, Hamid Palangi, Paul Smolensky, Kenneth D. For-
bus, and Jianfeng Gao. Mapping natural-language problems to formal-language
solutions using structured neural representations. In International Conference on
Machine Learning, pages 1566–1575. PMLR, 2020.

[26] Jean-Pierre Chevrot, Céline Dugua, and Michel Fayol. Liaison acquisition, word
segmentation and construction in french: a usage-based account. Journal of child
language, 36(3):557–596, 2009.

[27] Kyunghyun Cho, Bart Van Merriënboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2014. arXiv preprint arXiv:1406.1078.

[28] Pyeong Whan Cho, Matthew Goldrick, Richard L Lewis, and Paul Smolensky.
Dynamic encoding of structural uncertainty in gradient symbols. In Proceedings of

REFERENCES 64

the 8th Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2018),
pages 19–28, 2018.

[29] Pyeong Whan Cho, Matthew Goldrick, and Paul Smolensky. Incremental pars-
ing in a continuous dynamical system: Sentence processing in gradient symbolic
computation. Linguistics Vanguard, 3(1), 2017.

[30] Pyeong Whan Cho, Matthew Goldrick, and Paul Smolensky. Parallel parsing in a
gradient symbolic computation parser. PsyArXiv/utcgv, 2020.

[31] Noam Chomsky. Aspects of the theory of syntax. MIT Press, 1965.

[32] Noam Chomsky. Lectures on government and binding. Foris, 1981.

[33] Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58(2):345–363, 1936.

[34] Patricia Smith Churchland and Terrence Joseph Sejnowski. The computational brain.
MIT press, 2016.

[35] Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners
over language. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 3882–3890, 2020.

[36] Arthur C Clarke. 2001: A space odyssey. New American Library, 1968.

[37] Allan Collins and Edward E Smith. Readings in cognitive science: A perspective from
psychology and artificial intelligence. Morgan Kaufmann, 1988.

[38] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes.
Supervised learning of universal sentence representations from natural language
inference data. arXiv preprint arXiv:1705.02364, 2017.

[39] Eric Crawford, Matthew Gingerich, and Chris Eliasmith. Biologically plausible,
human-scale knowledge representation. Cognitive Science, 40(4):782–821, 2016.

[40] Daniel Crevier. AI: The tumultuous history of the search for artificial intelligence. Basic
Books, Inc., 1993.

[41] Marie-Hélène Côté. French liaison. In Marc van Oostendorp, Colin J Ewen, Beth
Hume, and Keren Rice, editors, Blackwell Companion to Phonology, pages 2685–2710.
Wiley-Blackwell, Malden, MA, 2011.

[42] Roberta D’Alessandro. The achievements of generative syntax: A time chart and
some reflections. Catalan journal of linguistics, pages 7–26, 2019.

[43] Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and
Prithviraj Sen. A survey of the state of explainable ai for natural language processing.
In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on Natural
Language Processing, pages 447–459, 2020.

[44] Sreerupa Das and Michael C Mozer. A unified gradient-descent/clustering architec-
ture for finite state machine induction. In Advances in Neural Information Processing
Systems, pages 19–26, 1994.

PsyArXiv/utcgv

REFERENCES 65

[45] Ernest Davis. The use of deep learning for symbolic integration: A review of
(Lample and Charton, 2019). arXiv preprint arXiv:1912.05752, 2019.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1, pages 4171–4186. Association for Computational Linguistics,
2019.

[47] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. RobustFill: Neural program learning under noisy
I/O. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pages 990–998. JMLR.org, 2017.

[48] Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski, Noah A Smith, and Yejin
Choi. Scarecrow: A framework for scrutinizing machine text. arXiv preprint
arXiv:2107.01294, 2021.

[49] Stewart Duncan. Thomas Hobbes. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2021
edition, 2021.

[50] Chris Eliasmith. How to build a brain: A neural architecture for biological cognition.
Oxford University Press, 2013.

[51] Jeffrey L Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[52] Roland Fernandez, Asli Celikyilmaz, Rishabh Singh, and Paul Smolensky. Learn-
ing and analyzing vector encoding of symbolic representations. arXiv preprint
arXiv:1803.03834, 2018.

[53] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture:
A critical analysis. Cognition, 28(1-2):3–71, 1988.

[54] Gottlob Frege and Michael Beaney. The Frege reader. Blackwell, 1997.

[55] Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli. Compositional
generalization in semantic parsing: Pre-training vs. specialized architectures. arXiv
preprint arXiv:2007.08970, 2020.

[56] Artur d’Avil Garcez, Marco Gori, L Luciano Serafini Lamb, Michael Spranger, and
Son N. Tran. Neural-symbolic computing: An effective methodology for principled
integration of machine learning and reasoning. Journal of Applied Logics, 6(4):611–
632, 2019.

[57] Ross W Gayler. Vector symbolic architectures answer jackendoff’s challenges for
cognitive neuroscience. In Joint International Conference on Cognitive Science, 2003.

[58] Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem
Zuidema. Under the hood: Using diagnostic classifiers to investigate and improve
how language models track agreement information. In EMNLP BlackboxNLP Work-
shop on Analyzing and Interpreting Neural Networks for NLP, 2018.

REFERENCES 66

[59] Matthew Goldrick, Michael Putnam, and Lara Schwarz. Coactivation in bilingual
grammars: A computational account of code mixing. Bilingualism: Language and
Cognition, 19(5):857–876, 2016.

[60] Edward Grefenstette. Towards a formal distributional semantics: Simulating log-
ical calculi with tensors. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared
Task: Semantic Textual Similarity, pages 1–10, Atlanta, Georgia, USA, June 2013.
Association for Computational Linguistics.

[61] Joshua M Griffiths. On the rapid expansion of optimality theory at the end of the
twentieth century. Historiographia Linguistica, 46(1-2):133–162, 2019.

[62] Barbara J Grosz and Peter Stone. A century-long commitment to assessing artifi-
cial intelligence and its impact on society. Communications of the Association for
Computing Machinery, 61(12):68–73, 2018.

[63] John Hale and Paul Smolensky. Harmonic grammars and harmonic parsers for for-
mal languages. In Paul Smolensky and Géraldine Legendre, editors, The Harmonic
Mind: From Neural Computation to Optimality-Theoretic Grammar. Vol. 1: Cognitive
Architecture, pages 393–416. MIT press, 2006.

[64] Coleman Haley and Paul Smolensky. Invertible tree embeddings using a crypto-
graphic role embedding scheme. In Proceedings of the 28th International Conference
on Computational Linguistics, pages 3671–3683, 2020.

[65] John Haugeland. Artificial Intelligence: The very idea. MIT press, 1989.

[66] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-
enhanced BERT with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

[67] James Henderson. The unstoppable rise of computational linguistics in deep
learning. In Association for Computational Linguistics, 2020.

[68] James A. Hendler, Austin Tate, and Mark Drummond. AI planning: Systems and
techniques. AI magazine, 11(2):61–61, 1990.

[69] Geoffrey Hinton. How to represent part-whole hierarchies in a neural network.
arXiv preprint arXiv:2102.12627, 2021.

[70] Geoffrey E. Hinton. Implementing semantic networks in parallel hardware. In
Geoffrey E. Hinton and James A. Anderson, editors, Parallel Models of Associative
Memory, pages 201–232. Erlbaum, 1981.

[71] Geoffrey E. Hinton. Learning distributed representations of concepts. In Proceedings
of the Eighth Annual Conference of the Cognitive Science Society, 1986.

[72] Geoffrey E. Hinton and James A. Anderson, editors. Parallel models of associative
memory. Erlbaum Publishers, 1981.

[73] Geoffrey E Hinton, James L McClelland, and David E Rumelhart. Distributed
representations. In David E. Rumelhart, James L. McClelland, and the PDP Re-
search Group, editors, Parallel Distributed Processing: Explorations in the microstruc-
ture of cognition: Vol. 1, Foundations, pages 77–109. MIT Press, 1986.

REFERENCES 67

[74] Geoffrey E Hinton and Terrence Sejnowski, editors. Unsupervised learning: Founda-
tions of neural computation. MIT press, 1999.

[75] Wolfram Hinzen, Edouard Machery, and Markus Werning, editors. The Oxford
Handbook of Compositionality. Oxford University Press, 2012.

[76] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[77] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books,
1979.

[78] Keith J Holyoak and John E Hummel. The proper treatment of symbols in a con-
nectionist architecture. In Eric Dietrich and Arthur B. Markman, editors, Cognitive
dynamics: Conceptual and representational change in humans and machines, pages
229–264. Psychology Press, 2000.

[79] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–
2558, 1982.

[80] Qiuyuan Huang, Li Deng, Dapeng Wu, Chang Liu, and Xiaodong He. Attentive
tensor product learning. In 33rd AAAI Conference on Artificial Intelligence, pages
1344–1351, 2019.

[81] Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng, and Dapeng Wu. Tensor
product generation networks for deep NLP modeling. In North American Association
for Computational Linguistics, 2018.

[82] John E Hummel, Keith J Holyoak, Collin B Green, Leonidas A A Doumas, Derek
Devnich, Aniket Kittur, and Donald J Kalar. A solution to the binding problem for
compositional connectionism. In Simon D Levy and Ross Gayler, editors, Compo-
sitional Connectionism in Cognitive Science: Papers from the AAAI Fall Symposium,
pages 31–34, 2004.

[83] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality
decomposed: How do neural networks generalise? Journal of Artificial Intelligence
Research, 67:757–795, 2020.

[84] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adap-
tive mixtures of local experts. Neural computation, 3(1):79–87, 1991.

[85] Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
3543–3556, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[86] Theo M. V. Janssen. Compositionality: Its historical context. In Wolfram Hinzen,
Edouard Machery, and Markus Werning, editors, The Oxford Handbook of Composi-
tionality. Oxford University Press, 2012.

REFERENCES 68

[87] Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does BERT learn about the
structure of language? In 57th Annual Meeting of the Association for Computational
Linguistics, 2019.

[88] Yichen Jiang, Asli Celikyilmaz, Paul Smolensky, Paul Soulos, Sudha Rao, Hamid
Palangi, Roland Fernandez, Caitlin Smith, Mohit Bansal, and Jianfeng Gao. En-
riching transformers with structured tensor-product representations for abstractive
summarization. In North American Chapter of the Association for Computational
Linguistics, pages 4780–4793, 2021.

[89] Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan Riezler. Es-
timators for stochastic “unification-based” grammars. arXiv preprint cs/0008028,
2000.

[90] Michael I Jordan. Attractor dynamics and parallelism in a connectionist sequential
machine. In Proceedings of the 1986 Cognitive Science Conference, pages 531–546.
Lawrence Erlbaum, 1986.

[91] Aravind K. Joshi. Tree adjoining grammars: How much context-sensitivity is
required to provide reasonable structural descriptions? In David R. Dowty, Lauri
Karttunen, and Arnold M. Zwicky, editors, Natural language parsing: Psychological,
computational, and theoretical perspectives, pages 206–250. Cambridge University
Press, 1985.

[92] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct grammars.
Journal of Computer and System Sciences, 10(1):136–163, 1975.

[93] René Kager. Optimality theory. Cambridge university press, 1999.

[94] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

[95] Pentti Kanerva. Binary spatter-coding of ordered k-tuples. In International Confer-
ence on Artificial Neural Networks, pages 869–873. Springer, 1996.

[96] Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge
based on semantic interpretation. In Empirical Methods in Natural Language Process-
ing, November 2020.

[97] Najoung Kim, Kyle Rawlins, and Paul Smolensky. The complement-adjunct dis-
tinction as gradient blends: The case of English prepositional phrases. https:

//ling.auf.net/lingbuzz/004723 , 2019.

[98] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference for Learning Representations, 2015.

[99] Paul Kiparsky and Johan F Staal. Syntactic and semantic relations in Pān. ini. Foun-
dations of Language, pages 83–117, 1969.

[100] Ronald Kline. Cybernetics, automata studies, and the Dartmouth conference on
artificial intelligence. IEEE Annals of the History of Computing, 33(4):5–16, 2010.

[101] Nitin Lahoti. Machine learning in mobile applications: The next wave of enterprise
mobility. Mobisoft blog, 2020. /mobisoftinfotech.com/resources/blog/machine-
learning-in-mobile-applications/, retrieved Oct. 31, 2021.

https://ling.auf.net/lingbuzz/004723
https://ling.auf.net/lingbuzz/004723

REFERENCES 69

[102] Brenden M. Lake and Marco Baroni. Generalization without systematicity: On
the compositional skills of sequence-to-sequence recurrent networks. In 35th
International Conference on Machine Learning (ICML 2018), 2017.

[103] Brenden M Lake and Marco Baroni. Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks. In International
Conference on Machine Learning, pages 2879–2888, 2018.

[104] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman.
Building machines that learn and think like people. Behavioral and Brain Sciences,
40:e253, 2017.

[105] Matthias R Lalisse and Paul Smolensky. Augmenting compositional models for
knowledge base completion using gradient representations. In Society for Computa-
tion in Linguistics, pages 257–266, 2019.

[106] Guillaume Lample and François Charton. Deep learning for symbolic mathematics.
arXiv preprint arXiv:1912.01412, 2019.

[107] Thomas K. Landauer and Susan T. Dumais. A solution to plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychological review, 104(2):211–240, 1997.

[108] Karim Lari and Steve J. Young. The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer speech & language, 4(1):35–56, 1990.

[109] Yann LeCun. Deep learning hardware: Past, present, and future. In IEEE Interna-
tional Solid-State Circuits Conference, pages 12–19, 2019.

[110] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[111] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[112] Géraldine Legendre, Jane Grimshaw, and Sten Vikner. Optimality-theoretic syntax.
MIT Press, 2001.

[113] Géraldine Legendre, Yoshiro Miyata, and Paul Smolensky. Harmonic grammar—A
formal multi-level connectionist theory of linguistic well-formedness: Theoretical
foundations. In Proceedings of the 12th Meeting of the Cognitive Science Society, pages
388–395, 1990.

[114] Géraldine Legendre, Yoshiro Miyata, and Paul Smolensky. Distributed recursive
structure processing. In Advances in Neural Information Processing Systems, pages
591–597, 1991.

[115] Géraldine Legendre, Michael T Putnam, Henriette De Swart, and Erin Zaroukian.
Optimality-theoretic syntax, semantics, and pragmatics: From uni- to bidirectional
optimization. Oxford University Press, 2016.

REFERENCES 70

[116] Simon D Levy and Ross Gayler. Vector symbolic architectures: A new building ma-
terial for artificial general intelligence. In Proceedings of the Conference on Artificial
General Intelligence, pages 414–418, 2008.

[117] Gideon Lewis-Kraus. The great AI awakening. The New York Times Magazine, 14:12,
2016.

[118] Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Implicit representations of meaning
in neural language models. arXiv preprint arXiv:2106.00737, 2021.

[119] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for
parametric partial differential equations. In International Conference on Learning
Representations, 2021.

[120] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transform-
ers. arXiv preprint arXiv:2106.04554, 2021.

[121] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, Luke Zettlemoyer, and
Michael D Ernst. Program synthesis from natural language using recurrent neural
networks. University of Washington Department of Computer Science and Engineering,
Seattle, WA, USA, Tech. Rep. UW-CSE-17-03-01, 2017.

[122] Tal Linzen. Issues in evaluating semantic spaces using word analogies. arXiv
preprint arXiv:1606.07736, 2016.

[123] Tal Linzen. How can we accelerate progress towards human-like linguistic general-
ization? In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 5210–5217, 2020.

[124] Tal Linzen, Emmanuel Dupoux, and Benjamin Spector. Quantificational features in
distributional word representations. In Proceedings of the Fifth Joint Conference on
Lexical and Computational Semantics, pages 1–11, 2016.

[125] Cynthia MacDonald and Graham MacDonald. Debates on psychological explanation:
Connectionism. Blackwell Publishers, 1995.

[126] Christopher D. Manning. Stanford parser, 2017. nlp.stanford.edu/software/

lex-parser.shtml.

[127] Christopher D. Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer
Levy. Emergent linguistic structure in artificial neural networks trained by self-
supervision. Proceedings of the National Academy of Sciences, 117(48):30046–30054,
2020.

[128] Gary Marcus. The algebraic mind: Integrating connectionism and cognitive science.
MIT press, 2001.

[129] Gary Marcus. Innateness, AlphaZero, and artificial intelligence. arXiv preprint
arXiv:1801.05667, 2018.

[130] Gary Marcus. The next decade in AI: Four steps towards robust artificial intelligence.
arXiv preprint arXiv:2002.06177, 2020.

nlp.stanford.edu/software/lex-parser.shtml
nlp.stanford.edu/software/lex-parser.shtml

REFERENCES 71

[131] Gary Marcus and Ernest Davis. Rebooting AI: Building artificial intelligence we can
trust. Pantheon, 2019.

[132] James L McClelland and Joan Bybee. Gradience of gradience: A reply to jackendoff.
The Linguistic Review, 24(4), 2007.

[133] R. Thomas McCoy, Erin Grant, Paul Smolensky, Thomas L. Griffiths, and Tal Linzen.
Universal linguistic inductive biases via meta-learning. In Proceedings of the 42nd
Annual Meeting of the Cognitive Science Society, 2020.

[134] R Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul Smolensky. RNNs implicitly
implement tensor product representations. In International Conference on Learning
Representations, 2019.

[135] R. Thomas McCoy, Junghyun Min, and Tal Linzen. BERTs of a feather do not
generalize together: Large variability in generalization across models with similar
test set performance. In Proceedings of the Third BlackboxNLP Workshop on Analyzing
and Interpreting Neural Networks for NLP, pages 217–227, 2020.

[136] R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons:
Diagnosing syntactic heuristics in natural language inference. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 3428–
3448, 2019.

[137] Brian P. McLaughlin. Can an ICS architecture meet the systematicity and pro-
ductivity challenges? In Paco Calvo and John Symons, editors, The architecture of
cognition: Rethinking Fodor and Pylyshyn’s systematicity challenge, pages 31–76. MIT
Press Cambridge, MA, 2014.

[138] Nazarré Merchant and Alan Prince. The mother of all tableaux: Order, equivalence,
and geometry in the large-scale structure of Optimality Theory. Rutgers Optimality
Archive 1382, 2021.

[139] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[140] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems, pages 3111–3119, 2013.

[141] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in contin-
uous space word representations. In North American Chapter of the Association for
Computational Linguistics: Human language Technologies, pages 746–751, 2013.

[142] Junghyun Min, R Thomas McCoy, Dipanjan Das, Emily Pitler, and Tal Linzen. Syn-
tactic data augmentation increases robustness to inference heuristics. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages
2339–2352, 2020.

[143] Marvin Minsky. Logical vs. analogical or symbolic vs. connectionist or neat vs.
scruffy. AI Magazine, 12(2):34–51, 1991.

[144] Marvin L. Minsky. Computation: Finite and infinite machines. Prentice-Hall, 1967.

REFERENCES 72

[145] Jeff Mitchell and Mirella Lapata. Composition in distributional models of semantics.
Cognitive Science, 34(8):1388–1429, 2010.

[146] Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish, Yoshua Bengio, and Guil-
laume Lajoie. Compositional attention: Disentangling search and retrieval. arXiv
preprint arXiv:2110.09419, 2021.

[147] Richard Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

[148] Richard Montague. The proper treatment of quantification in ordinary english. In
K. J. J. Hintikka, J. M. E. Moravcsik, and P. Suppes, editors, Approaches to natural
language, pages 221–242. Springer, 1973.

[149] Hans Moravec. Mind children: The future of robot and human intelligence. Harvard
University Press, 1988.

[150] Michael C. Mozer and Paul Smolensky. Skeletonization: A technique for trimming
the fat from a network via relevance assessment. In Advances in Neural Information
Processing Systems, pages 107–115, 1989.

[151] Bennet B Murdock. A theory for the storage and retrieval of item and associative
information. Psychological Review, 89(6):609, 1982.

[152] Max Nelson. Joint learning of constraint weights and gradient inputs in Gradient
Symbolic Computation with constrained optimization. In Proceedings of the 17th
SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and
Morphology, pages 224–232. Association for Computational Linguistics, 2020.

[153] Allen Newell. Physical symbol systems. Cognitive Science, 4(2):135–183, 1980.

[154] Allen Newell, J Clifford Shaw, and Herbert A Simon. The processes of creative
thinking. RAND Corporation Reports, 1958.

[155] Peter Norvig. On the (small) number of atoms in the universe, 2016.
http://norvig.com/atoms, retrieved Nov. 4, 2021.

[156] D. W. Otter, J. R. Medina, and J. K. Kalita. A survey of the usages of deep learning
for natural language processing. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–21, 2020.

[157] Hamid Palangi, Paul Smolensky, Xiaodong He, and Li Deng. Question-answering
with grammatically-interpretable representations. In American Association for Arti-
ficial Intelligence, pages 5350–5357, 2018.

[158] Joe Pater. Weighted constraints in generative linguistics. Cognitive Science,
33(6):999–1035, 2009.

[159] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and
large neural network training. arXiv preprint arXiv:2104.10350, 2021.

[160] Ellie Pavlick. Semantic structure in deep learning. Annual Review of Linguistics,
8(1):447–471, 2022.

REFERENCES 73

[161] Francis Jeffry Pelletier. The principle of semantic compositionality. Topoi, 13(1):11–
24, 1994.

[162] Gerald Penn and Paul Kiparsky. On Pān. ini and the generative capacity of contextu-
alized replacement systems. In Proceedings of COLING 2012: Posters, pages 943–950,
2012.

[163] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[164] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proceedings of NAACL-HLT, pages 2227–2237, 2018.

[165] Joshua C. Peterson, Dawn Chen, and Thomas L. Griffiths. Parallelograms revisited:
Exploring the limitations of vector space models for simple analogies. Cognition,
205:104440, 2020.

[166] Ray Pike. Comparison of convolution and matrix distributed memory systems for
associative recall and recognition. Psychological Review, 91(3):281, 1984.

[167] Tony A Plate. Holographic Reduced Representations. IEEE Transactions on Neural
networks, 6(3):623–641, 1995.

[168] Jordan B Pollack. Implications of recursive distributed representations. In Advances
in Neural Information Processing Systems, pages 527–536, 1989.

[169] Alan S. Prince and Paul Smolensky. Optimality Theory: Constraint interaction in
generative grammar. Blackwell Publishers, 1993/2004.

[170] Alan S. Prince and Paul Smolensky. Optimality: From neural networks to universal
grammar. Science, 275(5306):1604–1610, 1997.

[171] James Pustejovsky and Bran Boguraev, editors. Lexical semantics: The problem of
polysemy. Oxford University Press, 1997.

[172] Zenon Walter Pylyshyn. Computation and cognition. MIT Press, 1984.

[173] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
Pre-trained models for natural language processing: A survey. Science China Tech-
nological Sciences, pages 1–26, 2020.

[174] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[175] Charan Ranganath and Maureen Ritchey. Two cortical systems for memory-guided
behaviour. Nature Reviews Neuroscience, 13(10):713–726, 2012.

[176] Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing
paradigm: Does probing accuracy entail task relevance? In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume, pages 3363–3377, Online, April 2021. Association for Computational
Linguistics.

REFERENCES 74

[177] Frank E Ritter, Farnaz Tehranchi, and Jacob D Oury. ACT-R: A cognitive archi-
tecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science,
10(3):e1488, 2019.

[178] Raúl Rojas. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals
of the History of Computing, 19(2):5–16, 1997.

[179] Eric R. Rosen. Learning complex inflectional paradigms through blended gradient
inputs. In Society for Computation in Linguistics, pages 102–112, 2019.

[180] Kevin Rowe. How search engines use machine learning: 9 things we know for
sure. Search Engine Journal, 2021. searchenginejournal.com/ml-things-we-know/,
retrieved Oct. 31, 2021.

[181] David E Rumelhart and Adele A Abrahamson. A model for analogical reasoning.
Cognitive Psychology, 5(1):1–28, 1973.

[182] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. In David E Rumelhart, James L McClelland,
and the PDP Research Group, editors, Parallel Distributed Processing: Explorations in
the microstructure of cognition: Vol. 1, Foundations, pages 318–362. MIT Press, 1986.

[183] David E. Rumelhart, James L. McClelland, and the PDP Research Group. Par-
allel Distributed Processing: Explorations in the microstructure of cognition: Vol. 1,
Foundations. MIT Press, 1986.

[184] Jacob Russin, Roland Fernandez, Hamid Palangi, Eric Rosen, Nebojsa Jojic, Paul
Smolensky, and Jianfeng Gao. Compositional processing emerges in neural networks
solving math problems. In 43rd Annual Meeting of the Cognitive Science Society,
pages 1767–1773, 2021. arXiv preprint arXiv:2105.08961.

[185] Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua Bengio. Compositional
generalization in a deep seq2seq model by separating syntax and semantics. arXiv
preprint arXiv:1904.09708, 2019.

[186] Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor
products. In Advances in Neural Information Processing Systems, pages 9981–9993,
2018.

[187] Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen Schmidhu-
ber, and Jianfeng Gao. Enhancing the transformer with explicit relational encoding
for math problem solving. In NeurIPS Workshop on Context and Composition in
Biological and Artificial Neural Systems, 2019. arXiv:1910.06611v2.

[188] Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen Schmidhu-
ber, and Jianfeng Gao. Enhancing the transformer with explicit relational encoding
for math problem solving. arXiv preprint arXiv:1910.06611v2, 2020.

[189] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre,
Tim Green, Chongli Qin, Augustin Žı́dek, Alexander WR Nelson, Alex Bridgland,
et al. Improved protein structure prediction using potentials from deep learning.
Nature, 577(7792):706–710, 2020.

REFERENCES 75

[190] David Servan-Schreiber, Axel Cleeremans, and James L McClelland. Graded state
machines: The representation of temporal contingencies in simple recurrent net-
works. Machine Learning, 7(2-3):161–193, 1991.

[191] Lokendra Shastri and Venkat Ajjanagadde. From simple associations to systematic
reasoning: A connectionist representation of rules, variables and dynamic bindings
using temporal synchrony. Behavioral and Brain Sciences, 16:417–494, 1993.

[192] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484, 2016.

[193] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of Go without human knowledge. Nature, 550(7676):354–359,
2017.

[194] Herbert Alexander Simon. The shape of automation for men and management, vol-
ume 13. Harper & Row New York, 1965.

[195] Robin Smith. Aristotle’s logic. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, summer 2020 edition,
2020. plato.stanford.edu/archives/sum2020/entries/aristotle-logic/.

[196] Paul Smolensky. Information processing in dynamical systems: Foundations of
harmony theory. In David E Rumelhart, James L McClelland, and the PDP Re-
search Group, editors, Parallel Distributed Processing: Explorations in the microstruc-
ture of cognition: Vol. 1, Foundations, pages 194–281. MIT Press, 1986.

[197] Paul Smolensky. On the proper treatment of connectionism. Behavioral and Brain
Sciences, 11(1):1–23, 1988.

[198] Paul Smolensky. Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 46(1-2):159–216, 1990.

[199] Paul Smolensky. Harmonic grammars for formal languages. In Advances in neural
information processing systems, pages 847–854. Citeseer, 1993.

[200] Paul Smolensky. Constituent structure and explanation in an integrated connec-
tionist/symbolic cognitive architecture. In Cynthia MacDonald and Graham Mac-
Donald, editors, Connectionism: Debates on Psychological Explanation. Blackwell,
1995.

[201] Paul Smolensky. Computational levels and integrated connectionist/symbolic
explanation. In Paul Smolensky and Géraldine Legendre, editors, The harmonic
mind: From neural computation to Optimality-Theoretic grammar. Vol. 2: Linguistic
and Philosophical Implications, pages 503–592. MIT Press, 2006.

[202] Paul Smolensky. Harmony in linguistic cognition. Cognitive science, 30(5):779–801,
2006.

plato.stanford.edu/archives/sum2020/entries/aristotle-logic/

REFERENCES 76

[203] Paul Smolensky. Tensor Product Representations: Formal foundations. In Paul
Smolensky and Géraldine Legendre, editors, The harmonic mind: From neural com-
putation to Optimality-Theoretic grammar, pages 271–344. MIT press, 2006.

[204] Paul Smolensky. Cognition: Discrete or continuous computation? In S. Barry
Cooper and Jan van Leeuwen, editors, Alan Turing – His Work and Impact, pages
35–41. Elsevier, 2012.

[205] Paul Smolensky. Subsymbolic computation theory for the human intuitive processor.
In Computability in Europe, pages 675–685. Springer, 2012.

[206] Paul Smolensky. Symbolic functions from neural computation. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
370(1971):3543–3569, 2012.

[207] Paul Smolensky and Matthew Goldrick. Gradient symbolic representations in
grammar: The case of French liaison. Rutgers Optimality Archive, 1552, 2016.

[208] Paul Smolensky, Matthew Goldrick, and Donald Mathis. Optimization and quanti-
zation in gradient symbol systems: A framework for integrating the continuous and
the discrete in cognition. Cognitive Science, 38(6):1102–1138, 2014.

[209] Paul Smolensky, Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, and
Li Deng. Basic reasoning with tensor product representations. arXiv preprint
arXiv:1601.02745, 2016.

[210] Paul Smolensky and Géraldine Legendre. The harmonic mind: From neural computa-
tion to Optimality-Theoretic grammar. Vol. 1: Cognitive architecture; vol. 2: Linguistic
and philosophical implications. MIT press, 2006.

[211] Paul Smolensky, Géraldine Legendre, and Yoshiro Miyata. Principles for an inte-
grated connectionist/symbolic theory of higher cognition. University of Colorado
Computer Science Technical Reports, CU-CS-600-92, 1992.

[212] Paul Smolensky, R. Thomas McCoy, Roland Fernandez, Matthew Goldrick, and
Jianfeng Gao. Neurocompositional computing: From the Central Paradox of Cog-
nition to a new generation of AI systems. AI Magazine, in press. arXiv preprint
arXiv:2205.01128.

[213] Paul Smolensky, Eric Rosen, and Matthew Goldrick. Learning a gradient grammar
of French liaison. In Annual Meeting on Phonology, volume 8, 2020.

[214] Paul Smolensky and Bruce B Tesar. Symbolic computation with activation patterns.
In Paul Smolensky and Géraldine Legendre, editors, The harmonic mind: From neural
computation to Optimality-Theoretic grammar. Vol. 1: Cognitive architecture, volume 1,
pages 235–270. MIT press, 2006.

[215] Grace Solomonoff. Ray Solomonoff and the Dartmouth Summer Research Project
in Artificial Intelligence, 1956, no date. raysolomonoff.com/dartmouth/dartray.
pdf.

raysolomonoff.com/dartmouth/dartray.pdf
raysolomonoff.com/dartmouth/dartray.pdf

REFERENCES 77

[216] Paul Soulos, R. Thomas McCoy, Tal Linzen, and Paul Smolensky. Discovering the
compositional structure of vector representations with role learning networks. In
Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP,
pages 238–254, 2020.

[217] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[218] Keith E. Stanovich and Richard F. West. Individual differences in reasoning: Im-
plications for the rationality debate? Behavioral and Brain Sciences, 23(5):645–665,
2000.

[219] Terrence Stewart and Chris Eliasmith. Compositionality and biologically plausible
models. In Wolfram Hinzen, Edouard Machery, and Markus Werning, editors, The
Oxford Handbook of Compositionality. Oxford University Press, 2012.

[220] Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg
Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, et al.
Artificial intelligence and life in 2030: The one hundred year study on artificial
intelligence, 2016. Stanford University.

[221] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems, pages
3104–3112, 2014.

[222] Zoltan Szabó. The case for compositionality. In Wolfram Hinzen, Edouard Machery,
and Markus Werning, editors, The Oxford Handbook of Compositionality, pages 64–80.
Oxford University Press, 2012.

[223] Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP
pipeline. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4593–4601, 2019.

[224] Rob Thomas. How AI is driving the new industrial revolution. Forbes, 2020.

[225] Michael Tomasello and Raquel Olguin. Twenty-three-month-old children have a
grammatical category of noun. Cognitive development, 8(4):451–464, 1993.

[226] Paul Tupper, Paul Smolensky, and Pyeong Whan Cho. Discrete symbolic optimiza-
tion and Boltzmann sampling by continuous neural dynamics: Gradient Symbolic
Computation. arXiv preprint arXiv:1801.03562, 2018.

[227] Matt Turek. Explainable artificial intelligence (xai). DARPA website, 2016. www.

darpa.mil/program/explainable-artificial-intelligence.

[228] Alan M Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

[229] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–6008, 2017.

www.darpa.mil/program/explainable-artificial-intelligence
www.darpa.mil/program/explainable-artificial-intelligence

REFERENCES 78

[230] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richard-
son. RAT-SQL: Relation-aware schema encoding and linking for text-to-SQL parsers.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, pages 7567–7578, Online, July 2020. Association for Computational Linguistics.

[231] Markus Werning. Non-symbolic compositional representation and its neuronal
foundation: Towards an emulative semantics. In Wolfram Hinzen, Edouard Mach-
ery, and Markus Werning, editors, The Oxford Handbook of Compositionality. Oxford
University Press, 2012.

[232] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van
Merriënboer, Armand Joulin, and Tomas Mikolov. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698,
2015.

[233] James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell
Barry, Neil Burgess, and Timothy EJ Behrens. The Tolman-Eichenbaum machine:
Unifying space and relational memory through generalization in the hippocampal
formation. Cell, 183(5):1249–1263, 2020.

[234] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge
corpus for sentence understanding through inference. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122,
2018.

[235] Ronald J Williams. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[236] Robert Andrew Wilson and Frank C Keil. The MIT Encyclopedia of the Cognitive
Sciences. MIT press, 2001.

[237] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander
Rush. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, October 2020. Association for Computational
Linguistics.

[238] Ronald Yurko, Francesca Matano, Lee F Richardson, Nicholas Granered, Taylor
Pospisil, Konstantinos Pelechrinis, and Samuel L Ventura. Going deep: models for
continuous-time within-play valuation of game outcomes in american football with
tracking data. Journal of Quantitative Analysis in Sports, 16(2):163–182, 2020.

[239] Eva Zimmermann. Gradient symbolic representations and the typology of ghost
segments. In Annual Meeting on Phonology, volume 7, 2019.

	Neurocompositional computing
	The computational anatomy of human intelligence: Two principles
	The anatomy of machine intelligence
	Main claims: Continuous compositional structure within neural states
	Two analogies

	Why neurocompositional AI?
	Why respect the Compositionality Principle?
	Robustness of compositional generalization
	Partial compositional structure
	Compositional processing?

	Why respect the Continuity Principle?
	Flexibility
	Neurons-in-Structure vs. Structure-in-Neurons computing
	Tractable inference
	Optimized compositional encodings

	How to realize neurocompositional AI? NECST computing
	Neurally encoding discrete structure
	Continuous encoding of discrete structure
	Systematicity
	Computability of symbolic functions
	Grammars emerging from neural computing

	Neurally encoding continuous structure
	Continuous structure in linguistic cognition
	Learnability of continuous compositional structure in NECST models

	Improved comprehensibility of neurocompositional systems and its benefits
	Interpreting learned internal encodings
	Inserting structural knowledge: Biasing structure learning
	Diagnosing errors and controlling output
	Diagnosing errors
	Controlling output by manipulating learned compositional encodings

	Summary
	Towards full neurocompositionality
	Appendix A. Compositional-structure processing: Formalizations for symbolic and neural computing
	Appendix B. CopyNet experiments
	Data
	Models
	Training
	Learning curve experiments
	Full training set experiments
	Analysis of errors

	Appendix C. Online sentence processing in a NECST network

