
We Need Kernel Interposition over the
Network Dataplane

Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S. Berger,‡•
James C. Hoe, Aurojit Panda,† Justine Sherry

Carnegie Mellon University ‡ Microsoft Research • University of Washington † New York University

Abstract
Kernel-bypass networking, which allows applications to cir-

cumvent the kernel and interface directly with NIC hardware,
is one of the main tools for improving application network
performance. However, allowing applications to circumvent
the kernel makes it impossible to use tools (e.g., tcpdump) or
impose policies (e.g., QoS and filters) that need to interpose
on traffic sent by different applications running on a host.
This makes maintainability and manageability a challenge
for kernel-bypass applications. In response, we propose Kernel
On-Path Interposition (KOPI), in which traditional kernel data-
plane functionality is retained but implemented in a fully pro-
grammable SmartNIC. We hypothesize that KOPI can support
the same tools and policies as the kernel stack while retaining
the performance benefits of kernel bypass.

ACM Reference Format:
Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S.
Berger, James C. Hoe, Aurojit Panda, Justine Sherry. 2021. We Need
Kernel Interposition over the Network Dataplane. In Workshop on
Hot Topics in Operating Systems (HotOS ’21), May 31-June 2, 2021,
Ann Arbor, MI, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3458336.3465281

1 Introduction
Network throughput and latency dictates the performance

of many applications including web servers, big data engines,
and deep learning frameworks. While network line rates are
growing rapidly, the OS software stack has emerged as a bot-
tleneck when accessing the network. Consequently, kernel-
bypass architectures are gaining popularity as a means
to ‘speed up’ network access [12, 21, 38, 56]. This move
to kernel-bypass architectures is not limited to the net-
work interfaces alone, and other I/O devices, such as disks,
have moved in the same direction for much the same rea-
son [9, 21, 27, 47]. The key idea behind kernel bypass is to
allow applications to interface directly with I/O devices and

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465281

hence avoid the overheads of context switching and copying
data between the kernel and applications [7, 25, 38]. Kernel
bypass designs are quickly becoming the de rigeur approach
to designing high throughput, low-latency networked sys-
tems [14, 22, 36, 40].
Unfortunately, kernel bypass architectures have brought a

maintenance and manageability nightmare for administrators.
For example, system admins are accustomed to setting se-
curity and QoS policies like, ‘only application A can send
packets on port 22’ or ‘application A has priority access to the
network over application B’; when applications are given raw
I/O access the administrator can no longer enforce such poli-
cies. Similarly, developers are used to debugging networked
applications by inspecting traffic traces intercepted in the
kernel using tcpdump; a kernel-bypass approach means that
interception can only be performed within the application
(which is not very helpful when the question at hand iswhich
application is acting up or misbehaving in the first place). In
the absence of mechanisms to enforce these policies admin-
istrators must rely on ad-hoc and kludgy solutions (such as
deploying one virtual machine per application) which have
high costs, additional performance overheads, and manage-
ment complexity.
The root problem is that kernel bypass implies that no

single, privileged component has global visibility into net-
work traffic and source applications. Enforcing policies like
the QoS example above or providing administrative tools
like tcpdump traditionally involve OS interposition on the
dataplane, but current approaches to interposition entail
undesirable performance overheads.
These overheads result, broadly, from the need for data

movement between the application, interposition layer, and
the NIC itself. Virtual movement occurs when network traffic
must traverse an isolation boundary on the same core, e.g.,
moving from userspace to the kernel in the OS stack, which
introduces well-known overheads [25, 38, 46]. A few recent
proposals such as IX [3] and Snap [32] replace this virtual
movement with physical movement, placing a dataplane in-
terposition layer on a dedicated, independent processor core
and routing traffic through this secondary core. Unfortu-
nately, physical movement also induces overheads due to
coherence traffic or copies [11, 37]. The core performance
benefits of kernel bypass stem from reducing data movement

152

https://doi.org/10.1145/3458336.3465281
https://doi.org/10.1145/3458336.3465281
https://doi.org/10.1145/3458336.3465281


HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA H. Sadok, Z. Zhao, V. Choung, N. Atre, D. S. Berger, J. C. Hoe, A. Panda, J. Sherry

when sending or receiving packets, from two transfers (ap-
plication, to interposition layer, to NIC) to one (application
to NIC).
Prior work, such as Arrakis [38] and SplitFS [21], have

argued that kernel policy enforcement should be carried
out entirely in the control plane, i.e., policies should merely
dictate (and limit) the physical resources (NIC queues, file
system blocks, etc.) that an application can access. The data-
plane, on the other hand, should be unhindered by the OS.
We argue that, in the context of networking, restricting kernel
policies in this manner makes it impossible to maintain and
manage deployed networked applications.

In this paper, we instead advocate a natural solution to the
tension between dataplane interposition and performance:
implement the interposition layer on the NIC. This avoids any
additional physical or logical data movement (since the NIC
is on the data path) and has visibility over all of the traffic
sent by the host, regardless of what application produces the
traffic. A key challenge with this approach, as we discuss in
§3 lies in ensuring that a NIC-based implementation can sup-
port a rich set of evolving policies. Kernel developers expect
an unrestricted platform for enforcing arbitrary types of poli-
cies that can also evolve quickly. In the past year alone, the
Linux kernel filtering stack (net/netfilter) registered 377
commits, and the Linux network scheduler (net/sched) reg-
istered 249 commits. For this reason, ‘fixed function offloads’
such as TCP-offload NICs cannot meet the demands of devel-
opers [52]. Instead, today’s technology trends provide a new
opportunity: programmable SmartNICs—which include em-
bedded CPUs, FPGAs or other programmable elements—for
the first time allow an on NIC interposition layer to change
and evolve as demanded by developers. We refer to this ap-
proach of implementing interposition logic on the NIC as
Kernel On-Path Interposition (KOPI) and describe it in this
paper.

Recent work [13] moves hypervisor functionality (includ-
ing network isolation and traffic filtering) into the SmartNIC
and is motivated by the same desire to avoid virtual and phys-
ical data movement. Given this, one might wonder whether
our approach is in fact new, or even necessary? The prob-
lem with relying on the hypervisor for interposition is that
policies and tools such as flow-scheduling, debugging (using
tools like iptables, and netstat) require access not just
to network traffic but also to other kernel datastructures
including the process table. Hypervisors, which are logically
isolated from the OS, cannot implement these policies and
tools. As a result we focus on developing OS-integrated KOPI
approaches.
We begin our exposition by looking at how the use of

kernel-bypass networking impacts manageability and main-
tainability (§2), before laying out requirements for KOPI (§3).
We then describe early work on our KOPI-based OS called
Norman (§4), before concluding with a discussion (§5), and
related work (§6).

2 What Kernel Bypass Has Cost Us
In this section, we consider Alice, a system administrator

managing a server with users Bob and Charlie.1 Alice is in
a bare-metal deployment environment (e.g., deployments
at Facebook [43, 48], containers at Google [5, 54], etc. [55]).
Her server has a single high performance NIC which must
be shared by Bob and Charlie’s processes. We consider four
common management scenarios which require dataplane
interposition: debugging, partitioning ports across users and
processes, process scheduling, and QoS. As we will see, all of
these examples require that an interposition layer (a) have
a ‘global view’ of traffic crossing multiple applications (not
just one application at a time), and (b) have a ‘process view’
of users, processes, and on-host datastructures. Because of
the need for both a global view and a process-level view,
alternative approaches to dataplane interposition that do not
directly involve the kernel are kludgy at best and impossible
at worst. Dataplane interposition implemented by applica-
tions lack a global view; interposition implemented using the
network (e.g., P4 [20] or a middlebox [6]) or by introducing a
hypervisor switch (e.g., AccelNet [13]) lack the process-level
view.
Debugging: Alice uses RSS [15] custom hashing to parti-
tion her NIC into two ‘virtual interfaces’ each with its own
IP address—one for Bob, and one for Charlie. Alice notices
a flood of ARP requests in her network with an unknown
source MAC address. Without kernel bypass, Alice can in-
spect her server’s ARP cache and ifconfig to determine if
her server is the source of the problem. In the kernel bypass
setup, however, each application is responsible for generat-
ing their own ARP traffic. Unfortunately, Alice has no global
view of her server’s network traffic and cannot trace traffic
to the correct source process. Similarly. interposing at the
network or hypervisor level does not help tracing traffic to a
specific process. Instead, Alice must manually inspect every
application installed by Bob and Charlie, one by one, to trace
down the buggy ARP sender—which is tedious and scales
poorly as the number of applications grows.2

Partitioning Ports: In another scenario, Alice assigns a
single IP address to the server and wants to ensure that
(a) only Postgres instances run by Bob can send or receive
traffic on port 5432, and (b) only MySQL instances run by
Charlie can send or receive traffic on port 3306. When using
the kernel network stack, Alice can enforce this policy by
adding iptables rules that match on cmd-owner (to match
on process name) and uid-owner (to match on user ID). In a
kernel bypass setup, Alice cannot enforce such a policy, and

1We note that the problems we present, for the most part also apply to
machines used by a single user who is also the administrator. Individual
administrators often run several programs on a single server and hence
Alice, Bob, and Charlie may represent different levels of privilege assigned
to applications owned by a single human operator.
2This example is in fact based on a true story from our research lab!

153



We Need Kernel Interposition over the Network Dataplane HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

violations can occur through simple application misconfig-
uration or bugs. Interposing at the network or hypervisor
level also cannot enforce this policy since neither is able to
determine what process a packet originated at, or what user
started the process. As a result, this policy is unenforceable
when using kernel-bypass libraries and requires an on-host
interposition layer.
Process Scheduling: Charlie and Bob run multiple applica-
tions which access the network intermittently. The applica-
tions rely on blocking I/O operations and are willing to sleep
until the OS ‘wakes’ the application on the arrival of data.
Linux supports both blocking and non-blocking operations.
With kernel bypass the blocking option is not available since
the kernel is not able to detect packet arrivals in the data-
plane to ‘wake’ an application. As a consequence, Charlie
and Bob are forced to use non-blocking operations and poll
for packets, ‘burning’ CPU cores unnecessarily for applica-
tions that might be better served by blocking operations.
Although interposition at the hypervisor or network level
does have visibility into packet arrivals, neither can signal
and unblock processes.
QoS: Alice notices that both Bob and Charlie occasionally
SSH into the server to play an online-multiplayer game, and
she decides to apply traffic shaping to the game’s network
bandwidth, so that more productive applications are unaf-
fected. If the game uses the kernel network stack, Alice can
move the game to its own control group (cgroup) and then
use tc and qdisc to enforce a shaping policy. In a kernel
bypass setup, Alice cannot enforce her shaping policy. Ap-
plications cannot individually enforce any work-conserving
shaping policy (such as weighted fair queuing [10]) without
viewing all rates from all competing traffic sources. Interpo-
sition at the hypervisor and network level, where one can
observe all competing traffic sources, is also challenging as
the game server uses different ports in each session, hence,
one cannot simply set a policy to ‘de-prioritize game traffic
on port 1234 when it competes with traffic from applica-
tions on port 6789.’ Instead, similarly to the port partition
scenario, enforcing QoS requires visibility over which users
and processes are generating the traffic.

3 Kernel On-Path Interposition
To completely and simply implement the kinds of features

discussed in §2, we propose an intuitive design for imple-
menting dataplane interposition: embed a kernel-managed
dataplane in a fully programmable SmartNIC. We refer to this
approach as Kernel On-Path Interposition and it is illustrated
in Figure 1. As in systems like Arrakis [38], a KOPI operating
system allows applications to open socket-like connections
by requesting permission from the kernel. The kernel then
enables the application to route traffic directly to/from the
NIC; packets in the dataplane do not pass through the soft-
ware kernel. However—unlike prior work—the kernel can

install code on the NIC that also monitors, manipulates, and
filters traffic in the dataplane. In what follows, we identify a
few properties that are necessary for a modern interposition
layer to support the kinds of functionality discussed in §2
and why KOPI uniquely meets these requirements.
The interposition layer must be isolated from the application.
In the port partitioning and QoS examples from §2, we saw
that policies are often designed to control/limit the activity
of a particular user or process; implementing interposition
to enforce policies in the applications leads to a design that
is easily evaded by a malicious or compromised application.
Because KOPI is implemented fully on the NIC and managed
by the kernel, applications cannot evade policies enforced
by the interposition layer.
The interposition layer must be able to interpose on cross-
application traffic. In the debugging and QoS examples, we
also saw that some administrative actions require a global
view of traffic across multiple applications; instrumentation
within a single application hence cannot implement a global
traffic shaping policy and debugging using application-level
interposition can be tedious because it requires inspecting
every application individually. Sitting on the NIC, KOPI can
view the flow of traffic over all processes that share the
same interface—enabling effective traffic shaping/QoS and
debugging.
The interposition layer must be integrated with the OS. Many
interposition tasks require knowledge of processes, their
ownership and privileges, and how to signal/interrupt them—
as we saw in the process scheduling and partitioning ports
example. Because hypervisor switches are separated from
these OS-level data, they cannot implement these features
(and neither can an in-network solution such as a P4 switch
or a middlebox). As we will discuss in §4.3, a KOPI should be
implemented with explicit signaling mechanisms between
the interposition layer and the kernel.
The interposition layer must avoid unneeded data movement.
We will not belabor this point, as it is already the subject of
a sizable literature [11, 25, 37, 38, 56]: unnecessary transfers
of data—whether virtual (involving software copies or con-
text switches) or physical (involving moving data between
cores)—lead to performance overheads that are considered
unacceptable for today’s network workloads. Implementing
interposition on a SmartNIC avoids such data movement.
The interposition layer must be fully programmable. Many
off-the-shelf NICs incorporate a variety of fixed offload en-
gines e.g., for TCP segmentation [17, 18], TCP offload [8],
or filtering [17, 18]. Is implementing a useful interposition
layer simply a matter of developing the right collection of
hardware accelerators? Unfortunately, implementing com-
plex logic in fixed function hardware necessarily limits the
evolution of new protocols and policies (as new hardware

154



HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA H. Sadok, Z. Zhao, V. Choung, N. Atre, D. S. Berger, J. C. Hoe, A. Panda, J. Sherry

SmartNIC CPU

KOPI
Dataplane

Kernel (Control Plane)

AppLibrary
Syscall

MMIO

DMA + MMIO Ring
Buffers

Registers

Configuration

connect

read/write

Registers
iptables

tc

.
.
.

.
.
.

Figure 1. Norman Architecture.

comes out on timescales measured in years), where soft-
ware developers working on the kernel network stack are
accustomed to issuing hundreds of updates per year—as pre-
viously mentioned, in 2020 alone net/netfilter registered
377 commits and net/sched had 249 commits in the Linux
kernel. This lack of ability to upgrade is part of the reason
that the OS community has resoundingly rejected complex
offloads such as TCP Offload Engines [2, 52]. Programmabil-
ity is hence necessary to ensure that new networking policies
and features continue to be developed and adopted at the
same rate as they are today; a SmartNIC is capable of this
where a fixed-function NIC is not.

Until recently, most servers had no on-path location that
met these requirements: On most servers, data was gener-
ated in the application, and then transferred to NICs which
were not programmable, before leaving the host. Today, we
finally have a new opportunity which meets all of the above
requirements: modern SmartNICs.

4 Norman Design Sketch
We are developing Norman, an operating system which

implements KOPI. We first describe the hardware targeted by
Norman, and then give an overview of Norman’s architecture
and some of the mechanisms required to realize it.

4.1 Hardware Considerations
Norman targets servers that include FPGA-based Smart-

NICs, where the FPGA is ‘on-path’ [19], i.e., SmartNICs
where all packets traverse the FPGA by default. Our use
of an FPGA in the dataplane means that Norman includes
components written in C (running on the host CPU) and
in RTL (running on the FPGA NIC). We chose FPGAs since
(a) they are fully/generically programmable; (b) there exist
SmartNICs which include FPGAs on-path;3 and (c) recent
work [1, 4, 13, 29, 39, 57] has demonstrated exciting per-
formance results for network processing on FPGA-based
SmartNICs, and we hope to achieve similarly high perfor-
mance.

4.2 Norman Architecture
In Figure 1 we show an overview of Norman’s architecture.

Our goal in designing Norman was to provide the same
3Some SmartNICs include FPGAs as a ‘lookaside’ [35] but we do not use
these platforms to avoid unnecessary physical data movement.

separation as the kernel: the kernel should have complete
control over the NIC, and expose a narrow interface (similar
to the socket interface) for applications. Norman is comprised
of the following three components:

First, the on-SmartNIC dataplane implements all of the
interposition logic including packet filters, queueing disci-
plines, congestion control, and packet sniffing. The dataplane
sends and receives packets directly to/from userspace (§4.3),
but receives control plane signaling through a separate in-
terface with the kernel (§4.4).

TheNorman library provides abstractions that allow ap-
plications to interface with the network. It provides both
POSIX APIs—so that applications can be easily portable be-
tween Norman and other systems—as well as more efficient
abstractions that prevent unnecessary copies [38, 56]. As
we describe below, the Norman library interfaces with both
the in-kernel control plane and the on-SmartNIC dataplane
to implement its functionality. The library also implements
dataplane functionality that does not require privileged in-
terposition.
Finally, the in-kernel control plane is responsible for

allocating network resources to applications and for configur-
ing the on-SmartNIC dataplane. Tools such as tc, iptables
and tcpdump also call into the in-kernel control plane, which
updates the SmartNIC dataplane.

4.3 Applications’ Dataplane Interface
The Norman library allows applications to use the familiar

sockets interface to communicate over the network, while
ensuring that operations which send or receive data do not
go through any off-path interposition logic. In order to do so,
the library calls into the in-kernel control plane when han-
dling calls that establish a new connection (e.g., connect(2)
and accept(2)). In response to these calls, the in-kernel
control plane allocates (and pins) memory for a pair of per-
connection ring-buffers that the application uses to send and
receive data from the connection, and configures the NIC
so that packets belonging to the connection are written to
the appropriate ring buffer. The kernel also grants the ap-
plication access to SmartNIC MMIO registers that store the
head and tail pointer for each ring buffer. Using these MMIO
registers and ring buffers, the application can directly send
and receive data by merely accessing memory. Our approach
to implementing connection setup in the kernel and allow-
ing applications direct access to NIC resources for sending
and receiving data is similar to the approach adopted by
Arrakis [38] and TAS [25], however we can support richer
dataplane policies.
A second concern that Norman’s architecture needs to

address is how to provide blocking system calls. Similar to
kernel-bypass approaches, our use of memory reads and
writes is at odds with blocking for I/O. The Norman data-
plane therefore allows connections to be configured so that
the NIC adds notification to a shared notification queuewhen

155



We Need Kernel Interposition over the Network Dataplane HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

packets are added to a queue (allowing blocking receive calls)
or when a queue is drained (allowing blocking for sends).
A process’s notification queue is accessible to both the pro-
cess and the kernel, and the Norman kernel control plane
is responsible for monitoring notifications sent to blocked
threads, and unblocking the thread when necessary. The con-
trol plane on the kernel can also choose to enable interrupts
for notification queues with low activity. This allows Nor-
man to support both blocking and non-blocking I/O while
making efficient use of CPU cycles.

4.4 Configuring the On-SmartNIC Dataplane
Only the kernel has privilege to configure the Smart-

NIC, so any runtime configuration made using utilities like
iptables or tc continue to be routed through the kernel.
Under the hood, the kernel applies the new configurations to
the on-SmartNIC dataplane in twomain ways. Some changes,
like inserting a new firewall rule, simply require injecting
new data into memory on the SmartNIC and are made us-
ing commands passed through MMIO registers. However,
some changes require changing functionality on the fly, such
as applying a new queueing policy. For these changes we
adopt a new approach to designing FPGA programs called
an overlay [4, 28]. An overlay can be thought of as a custom,
potentially non-Turing complete processor with a domain-
specific instruction set (e.g., an instruction set for defining
traffic shaping policies). To load a new policy, one do not
need to change the underlying hardware, but load a new
‘program’ into the overlay.

In addition to configuration updates, one may wish to
install an entirely new bitstream to the FPGA—that is, to
rewrite the hardware. These operations take seconds or
longer, and can be thought of as the equivalent to upgrading
the kernel itself; Norman might require such an update to,
e.g., add support for eBPF to a dataplane which previously
did not offer eBPF, but should not require such an update
for most configuration changes including ones required by
tools such as tc or iptables.

5 Open Challenges
We are currently implementing Norman using a fork of

the Linux kernel and a Stratix 10 MX FPGA. Realizing the
design approach we have set out in the previous section is
continually revealing to us new systems challenges and we
outline several of our current open questions as follows.
How high can a per-connection application interface
scale? In §4.3 we discussed how Norman allocates a pair of
ring buffers for each connection, and configures the NIC to di-
rect packets from a connection to the appropriate ring buffer.
Our current implementation fails to sustain full (100Gbps)
throughput when there are more than 1024 concurrent con-
nections, although a single IP address should be able to sup-
port millions of connections! One possible reason for this

is that DDIO, which Intel uses to improve I/O performance,
can only use a fixed fraction of LLC cache space [31, 53],
and can slow down I/O if more cache space is necessary. We
suspect that the number of active ring buffers is outstripping
the DDIO cache thus impacting our performance. Beyond
performance concerns, resource limits on the NIC might
hold us back from scaling to more connections: NICs have
relatively little on-board memory [23, 45, 57], and prior work
has shown that the need for per-connection state at the NIC
can be a scalability bottleneck [23, 45]. One can reduce state
requirements by sharing buffers across connections, but this
brings its own challenges and might require changing appli-
cation abstractions. At present, it is simply not clear whether
per-connection semantics are feasible, or if sustaining high
throughput will necessitate sharing ring buffers between
connections from the same application.
Is an FPGA reconfigurable enough to support online
configuration updates? We chose to use an FPGA based
SmartNIC, in part because of FPGAs’ success in achiev-
ing high performance for a range of networking applica-
tions [1, 4, 13, 29, 39, 57]. However, they have one distinct
disadvantage relative to CPU and NPU based NICs: changing
the installed functionality on the dataplane takes longer for
an FPGA than it does to change the instructions running on
the CPU/NPU. In section 4, we discussed our proposal to use
‘overlays’ to swap out different custom behaviors, e.g., for
queueing disciplines, online. However, designing overlays
that are resource efficient (using limited memory and logic
gates), achieve high performance, and are flexible is an active
area of research on its own [28, 51]. It is yet unclear that
our FPGA overlay approach will prove superior to a similar
CPU/NPU based design to implement KOPI.
Can we prevent a KOPI from being vulnerable to re-
source exhaustion? SmartNICs inherently have limited
memory relative to the amount of available on-host memory.
This makes them vulnerable to resource-exhaustion attacks
(as has been noted in attempts to deploy TCP offloads [52]).
Given the complexity of functionality we aim to offload to the
NIC—filtering, queueing, per-connection state, NAT, and ev-
erything else the kernel does today—the potential to exhaust
NIC resources is all the more dramatic than prior, single-task
offloads to SmartNICs. Our hope is that a combination of
careful data structure design, as well as the option to route
‘low priority’ or ‘performance non-critical’ traffic through
a software datapath, will mitigate these challenges. But we
have yet to explore the limits of NIC memory on KOPI in
detail.

6 Related Work and Conclusion
KOPI can be seen as a natural evolution at the convergence

of several lines of research. First, the case for new operating
systems which bypass the kernel networking stack has been
made elegantly by Peter et al.with Arrakis [38], and by Belay

156



HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA H. Sadok, Z. Zhao, V. Choung, N. Atre, D. S. Berger, J. C. Hoe, A. Panda, J. Sherry

et al. with IX [3]; several other systems follow suit [32, 56].
At the same time, AccelNet [13] makes the case for hypervi-
sor dataplane offloads to SmartNICs. Finally, several works
have also explored offloading individual kernel functional-
ity, e.g., parts of the TCP stack [1, 33, 34, 44, 49], packet
steering[24, 42, 50], QoS [13, 30, 50], filtering [13, 24, 30, 49],
rate limiting [26, 30, 41, 50], and process scheduling [16].
KOPI is inspired by all of the above. Remove dataplane

operation from the software kernel (like Arrakis and IX),
offload network processing to a SmartNIC (like AccelNet),
and implement rich functionality—beyond the simple switch-
ing of AccelNet—in the hardware dataplane (like the many
offloads listed above).
Indeed, from the perspective of these authors, the ques-

tion now is not whether KOPI is the right next step for high-
performance networking, but what we need to do to achieve it.
Can current SmartNICs support all of the functionality we re-
quire? Do we need to extend SmartNIC hardware somehow,
e.g., to better support thousands of concurrent sockets? How
do we prevent resource exhaustion on the limited resources
of the SmartNIC? Is it really feasible to implement filtering
and queueing disciplines in a way that is updatable on de-
mand, resource-efficient, and achieves high performance?
Hence, our next steps are to continue developing Norman
and tackle these challenges head-on.

Acknowledgments
We thank the anonymous reviewers for their great com-

ments and feedback. This work was supported in part by
funding from a VMware Systems Research Award, NSF grant
2028832, and by Intel and VMware through the Intel/VMware
Crossroads 3D-FPGA Academic Research Center.

References
[1] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer

Rexford, David Walker, and David Wentzlaff. 2020. Enabling Pro-
grammable Transport Protocols in High-Speed NICs. In NSDI ’20. 93–
109.

[2] Michael C. Bazarewsky. 2017. Why Are We Deprecating Network
Performance Features (KB4014193)? https://techcommunity.microsoft.
com/t5/core-infrastructure-and-security/why-are-we-deprecating-
network-performance-features-kb4014193/ba-p/259053.

[3] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In OSDI ’14.
49–65.

[4] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salva-
tore Pontarelli, Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cam-
marano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco. 2020.
hXDP: Efficient Software Packet Processing on FPGANICs. InOSDI ’20.
973–990.

[5] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. 2016. Borg, Omega, and Kubernetes. Queue 14, 1 (2016),
70–93.

[6] B. Carpenter and S. Brim. 2002. Middleboxes: Taxonomy and Issues.
RFC 3234 (Informational). http://www.ietf.org/rfc/rfc3234.txt

[7] David D. Clark. 1985. The Structuring of Systems Using Upcalls. In
SOSP ’85. 171–180.

[8] Chelsio Communications. 2021. Terminator 5 ASIC. https://www.
chelsio.com/terminator-5-asic/.

[9] Jonathan Corbet. 2017. The future of DAX. https://lwn.net/Articles/
717953/.

[10] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation
of a Fair Queueing Algorithm. In SIGCOMM ’89. 1–12.

[11] Mihai Dobrescu, Katerina Argyraki, Gianluca Iannaccone, Maziar
Manesh, and Sylvia Ratnasamy. 2010. Controlling Parallelism in a
Multicore Software Router. In PRESTO ’10. Article 2.

[12] DPDK. 2021. Data Plane Development Kit. https://dpdk.org.
[13] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
NSDI ’18. 51–66.

[14] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. 2015. SoftNIC: A Software NIC to Augment
Hardware. Technical Report UCB/EECS-2015-155. EECS Department,
University of California, Berkeley.

[15] Ted Hudek. 2017. Introduction to Receive Side Scaling.
https://docs.microsoft.com/en-us/windows-hardware/drivers/
network/introduction-to-receive-side-scaling.

[16] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos
Kozyrakis. 2019. Mind the Gap: A Case for Informed Request Schedul-
ing at the NIC. In HotNets ’19. 60–68.

[17] Intel. 2019. Intel 82599 10 GbE Controller Datasheet.
[18] Intel. 2021. Intel Ethernet Controller X710/XXV710/XL710 Datasheet.
[19] Intel. 2021. Intel Stratix 10 MX FPGA Development Kit.

https://www.intel.com/content/www/us/en/programmable/
products/boards_and_kits/dev-kits/altera/kit-s10-mx.html.

[20] Intel. 2021. Intel Tofino. https://www.intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/tofino-
booktitle/tofino.html.

[21] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing
Software Overhead in File Systems for Persistent Memory. In SOSP ’19.
494–508.

[22] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for 𝜇second-Scale Tail Latency. In NSDI ’19. 345–360.

[23] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs Can Be General and Fast. In NSDI ’19. 1–16.

[24] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas An-
derson, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In ASPLOS ’16. 67–81.

[25] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Ac-
celeration as an OS Service. In EuroSys ’19. Article 24.

[26] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, Yaogong
Wang, Chonggang Li, Valas Valancius, Jake Adriaens, Steve Gribble,
Nate Foster, and Amin Vahdat. 2019. PicNIC: Predictable Virtualized
NIC. In SIGCOMM ’19. 351–366.

[27] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File
System. In SOSP ’17. 460–477.

[28] Maysam Lavasani. 2015. Generating Irregular Data-stream Accelerators:
Methodology and Applications. Ph.D. Dissertation. The University of
Texas at Austin.

157

https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-kb4014193/ba-p/259053
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-kb4014193/ba-p/259053
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-kb4014193/ba-p/259053
http://www.ietf.org/rfc/rfc3234.txt
https://www.chelsio.com/terminator-5-asic/
https://www.chelsio.com/terminator-5-asic/
https://lwn.net/Articles/717953/
https://lwn.net/Articles/717953/
https://dpdk.org
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-booktitle/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-booktitle/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-booktitle/tofino.html


We Need Kernel Interposition over the Network Dataplane HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

[29] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016.
ClickNP: Highly Flexible and High Performance Network Processing
with Reconfigurable Hardware. In SIGCOMM ’16. 1–14.

[30] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and
Aditya Akella. 2020. PANIC: A High-Performance Programmable NIC
for Multi-tenant Networks. In OSDI ’20. 243–259.

[31] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, and Justine
Sherry. 2020. Contention-Aware Performance Prediction For Virtual-
ized Network Functions. In SIGCOMM ’20. 270–282.

[32] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host
Networking. In SOSP ’19. 399–413.

[33] Jeffrey C. Mogul. 2003. TCP Offload Is a Dumb Idea Whose Time Has
Come. In HotOS ’03. 5.

[34] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. 2020. AccelTCP: Accelerating Network Applications
with Stateful TCP Offloading. In NSDI ’20. 77–92.

[35] Nvdia. [n.d.]. Nvidia Mellanox Innova-2 Flex Open Adapter Card.
[36] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-Sensitive Datacenter Workloads. In NSDI ’19. 361–378.

[37] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of NFV.
In OSDI ’16. 203–216.

[38] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, ThomasAnderson, and Timothy Roscoe. 2014. Arrakis:
The Operating System Is the Control Plane. In OSDI ’14. 1–16.

[39] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone,
Marco Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano,
Antonio Capone,MichioHonda, FelipeHuici, andGiuseppe Siracusano.
2019. FlowBlaze: Stateful Packet Processing in Hardware. In NSDI ’19.
531–548.

[40] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In SOSP ’17. 325–341.

[41] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Ab-
dul Kabbani, George Porter, and Amin Vahdat. 2014. SENIC: Scalable
NIC for End-Host Rate Limiting. In NSDI ’14. 475–488.

[42] Kaushik Kumar Ram, Jayaram Mudigonda, Alan L. Cox, Scott Rixner,
Parthasarathy Ranganathan, and Jose Renato Santos. 2010. sNICh:

Efficient Last Hop Networking in the Data Center. In ANCS ’10. Article
26, 12 pages.

[43] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. 2015. Inside the Social Network’s (Datacenter) Network. In
SIGCOMM ’15. 123–137.

[44] David Sidler, Gustavo Alonso, Michaela Blott, Kimon Karras, Kees
Vissers, and Raymond Carley. 2015. Scalable 10Gbps TCP/IP Stack
Architecture for Reconfigurable Hardware. In FCCM ’15. 36–43.

[45] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F.Wenisch, Monica
Wong-Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant
Chandra, Rob Cauble, Hassan M. G. Wassel, Behnam Montazeri, Si-
mon L. Sabato, Joel Scherpelz, and Amin Vahdat. 2020. 1RMA: Re-
Envisioning Remote Memory Access for Multi-Tenant Datacenters. In
SIGCOMM ’20. 708–721.

[46] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls. In OSDI ’10. 33–46.

[47] SPDK. 2021. Storage Performance Development Kit. https://spdk.io.
[48] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer:

Understanding Acceleration Opportunities for Data Center Overheads
at Hyperscale. In ASPLOS ’20. 733–750.

[49] Brent Stephens, Aditya Akella, and Michael M. Swift. 2018. Your
Programmable NIC Should Be a Programmable Switch. In HotNets ’18.
36–42.

[50] Brent Stephens, Aditya Akella, and Michael M. Swift. 2019. Loom:
Flexible and Efficient NIC Packet Scheduling. In NSDI ’19. 33–46.

[51] Ian Taras and Jason H. Anderson. 2019. Impact of FPGA Architecture
on Area and Performance of CGRA Overlays. In FCCM ’19. 87–95.

[52] The Linux Foundation. 2016. TOE. https://wiki.linuxfoundation.org/
networking/toe.

[53] Amin Tootoonchian, Aurojit Panda, Chang Lan, MelvinWalls, Katerina
Argyraki, Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ: Enabling
SLOs in Network Function Virtualization. In NSDI ’18. 283–297.

[54] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-Scale Cluster Man-
agement at Google with Borg. In EuroSys ’15. Article 18, 17 pages.

[55] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the Curtains of Serverless Plat-
forms. In ATC ’18. 133–145.

[56] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts, and
Anirudh Badam. 2019. I’m Not Dead yet! The Role of the Operating
System in a Kernel-Bypass Era. In HotOS ’19. 73–80.

[57] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and
Justine Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a
Single Server. In OSDI ’20. 1083–1100.

158

https://spdk.io
https://wiki.linuxfoundation.org/networking/toe
https://wiki.linuxfoundation.org/networking/toe

	Abstract
	1 Introduction
	2 What Kernel Bypass Has Cost Us
	3 Kernel On-Path Interposition
	4 Norman Design Sketch
	4.1 Hardware Considerations
	4.2 Norman Architecture
	4.3 Applications' Dataplane Interface
	4.4 Configuring the On-SmartNIC Dataplane

	5 Open Challenges
	6 Related Work and Conclusion
	Acknowledgments
	References

