Don’t Be a Blockhead: Zoned Namespaces Make Work
on Conventional SSDs Obsolete

Theano Stavrinos
Princeton University

Ethan Katz-Bassett

Columbia University

ABSTRACT

Research on flash devices almost exclusively focuses on con-
ventional SSDs, which expose a block interface. Industry,
however, has standardized and is adopting Zoned Namespaces
(ZNS) SSDs, which offer a new storage interface that domi-
nates conventional SSDs. Continued research on conventional
SSDs is thus a missed opportunity to unlock a step-change im-
provement in system performance by building on ZNS SSDs.
We argue for an immediate and complete shift in research to
ZNS SSDs and discuss research directions.

ACM Reference Format:

Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett, and Wyatt
Lloyd. 2021. Don’t Be a Blockhead: Zoned Namespaces Make Work
on Conventional SSDs Obsolete. In Workshop on Hot Topics in Op-
erating Systems (HotOS 21), May 31-June 2, 2021, Ann Arbor, M1,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3458336.3465300

1 INTRODUCTION

Cloud and datacenter services demand low-latency access to
massive datasets. Flash-based solid-state drives (SSDs) have
become critical to meeting these needs by offering orders-
of-magnitude lower latency and higher I/O throughput than
hard disk drives (HDDs), while providing more capacity at
lower cost than DRAM. As a consequence, SSDs are used for
latency-sensitive applications, e.g., caching [6, 11, 41, 47, 49]
and key-value stores [1, 28, 30]. SSDs are now so common
that even latency-insensitive applications like general-purpose
filesystems [44] are built on top of SSDs, and cloud providers
do not offer HDDs as part of general-purpose VMs (and
typically use only SSDs in general-purpose server blades).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465300

144

Daniel S. Berger

Microsoft Research

Wyatt Lloyd

Princeton University

Unfortunately, flash storage has significant physical limita-
tions. Flash cells in an erasure block can only be re-written
after the block is fully erased. Flash cells wear out with each
write-and-erase cycle, eventually losing the ability to reliably
store data, limiting cell endurance.

In conventional SSDs, flash cells and their peculiarities are
hidden behind the traditional block interface. This interface
is implemented via a sophisticated piece of firmware on the
SSD, the flash translation layer (FTL) (§2). The block inter-
face exposes to the host a flat address space that can be ran-
domly written at a page granularity (typically 4 KB), similar
to HDDs. This interface is familiar to application developers
and is supported by major operating systems. However, be-
cause flash cells cannot be overwritten and must be erased at
the erasure block granularity (typically several megabytes),
random writes force the FTL to implement garbage collection
to reclaim space from old data that was overwritten in the log-
ical address space. Garbage collection copies forward valid
data into overprovisioned (spare) flash space before erasing
an erasure block. This causes write amplification, where a
byte that is written to the logical address space once is written
physically on flash multiple times. Write amplification re-
duces device lifetime by using excess write-and-erase cycles.
Placing data together that will be invalidated around the same
time is key for avoiding write amplification. Unfortunately,
the FTL does not have access to the application-level informa-
tion needed for such data placement, and applications have
limited control over how the FTL arranges data on the device.

Significant research effort has gone toward managing the
ill effects of conventional SSDs’ block interface. This in-
cludes much work on managing the performance reduction
and unpredictability caused by garbage collection and other
FTL tasks [19, 29, 55, 56]. Prior work has reverse-engineered
FTLs to find access patterns that work best with the FTL’s
internal operations [20, 62]. Systems also frequently throttle
flash writes to extend the lifetimes of their flash devices as
their workloads cause high write amplification [6, 16, 25].

This paper argues that the systems community should stop
researching conventional SSDs today. Our efforts should shift
to Zoned Namespaces (ZNS) SSDs [52]. ZNS is a new SSD
interface that dominates the conventional block interface in

https://doi.org/10.1145/3458336.3465300
https://doi.org/10.1145/3458336.3465300
https://doi.org/10.1145/3458336.3465300

HotOS "21, May 31-June 2, 2021, Ann Arbor, MI, USA

nearly every way (§2). The benefits of ZNS come from the
interface matching how data is written to physical flash while
abstracting the messy details of flash hardware. A ZNS SSD is
divided into logical regions called zones. Writes can go to any
zone but must be sequential within a zone. ZNS is a reality:
the interface specification was added to the NVMe standard
in 2020, ZNS SSDs are available from several vendors [38,
39, 51], and large cloud providers are adopting them. On the
software side, a growing list of ZNS-compatible filesystems,
key-value stores, and development frameworks is removing
barriers to adoption (§2.5).

Because the ZNS interface more closely matches how data
is written, the FTL is thinner: compared to conventional FTLs,
it does coarser-grained address translation (i.e., at the erasure
block granularity instead of the much smaller page granu-
larity), and it does not do garbage collection. As a result,
performance variability and other impacts of garbage col-
lection are eliminated; performance modeling and reverse-
engineering the FTL are unnecessary. Hosts control write
amplification and can make application-aware data placement
and I/O scheduling decisions. Devices are cheaper because
overprovisioned flash capacity for garbage collection is un-
necessary, and a fraction of the DRAM is required for address
translation. Some ZNS use cases may need host resources
for tasks traditionally carried out by the FTL. Crucially, with
ZNS application developers can choose how many system
resources (if any) to devote to flash-related tasks (§2.3). In
conventional SSDs, DRAM and overprovisioned flash capac-
ity are fixed costs, whether they are needed or not.

We conduct a survey of recent systems literature on SSDs
and find that only 18% of papers will not be affected by the
shift to ZNS SSDs; 23% of papers address problems that are
simplified or solved by ZNS. The remaining 59% of papers
will be affected or need revisiting once industry inevitably
shifts to using ZNS SSDs for their cost and performance
benefits (§3).

Instead of conventional SSD problems that are obsolete,
research going forward should focus on making our systems
cheaper, faster, and more efficient with ZNS SSDs. We pro-
pose several broad research directions (§4) that will improve
system performance and target the specific limitations and
challenges introduced by ZNS SSDs.

2 ZNS DEVICES DOMINATE!

Zoned Namespaces SSDs dominate conventional devices in
nearly every way: they are cheaper, expose a more useful
abstraction to hosts, and may get better performance.

2.1 A Quick Flash Primer

Flash architecture. Flash is composed of NAND cells. A
cell can store one (SLC), two (MLC), three (TLC), four

145

Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett, and Wyatt Lloyd

(QLCQ), or five (PLC) bits, depending on the number of pro-
grammed and retained voltage levels.

To achieve high capacity, flash cells are arranged in three
dimensions: two-dimensionally in arrays, and then stacked.
To achieve high throughput, read and write operations exploit
parallelism across thousands of cells.

This architecture forms a deep multi-layer hierarchy. Mul-
tiple cells form a page, which includes significant redundancy
to store error-correcting codes. Multiple pages form an era-
sure block, which in turn form planes. Multiple planes finally
form a channel (or die).

Reading and writing flash. Flash exposes a read/write/erase
interface. Reads can happen at page granularity (often 4 KB).
Before a page can be written (programmed), it must be erased.
Erasing takes several times longer than programming (~6 X
for TLC) [54]. To hide this latency, erasures are batched at
block granularity (tens of MB). Within an erasure block, pages
are programmed sequentially until no empty pages remain.

Multiple read/write operations are typically scheduled to
happen in parallel across multiple planes in each channel.
Programming multi-level cells involves significantly more
steps, and manufacturers often implement variants of this
geometry to further improve parallelism, which increases
erasure block sizes to hundreds of megabytes [9, 12].

Conventional SSDs. In a conventional SSD, the flash trans-
lation layer (FTL) hides the intricacies of device geometry
and the presence of erasure blocks. If adjacent logical pages
are written at different times, they may be mapped to different
block offsets, or even different blocks and planes. The FTL is
responsible for:

e translating each logical address into the hierarchy of chan-
nels, planes, erasure blocks, and pages.

e garbage collection: when erasing an erasure block that con-
tains a mixture of valid and invalid pages (i.e., pages that
have been logically overwritten on flash), the FTL copies
forward the valid pages into an erasure block with free
pages remaining, then erases the old block.

e storing FTL data structures durably and in a consistent state
to prepare for power-off events.

e wear leveling: ensuring erasure blocks wear as evenly as
possible by balancing erasures across all blocks.

Zoned Namespaces SSDs. ZNS SSDs partition the address
space into zones, which behave similarly to erasure blocks: a
zone can only be written sequentially. When full, it must be
reset (erased) before it can accept new data. The current write
position is tracked with a write pointer.

Zones can be in six different states: empty, open, closed,
full, read-only, and offline. Zones start empty, are opened and
written to until full, and then are reset to the empty state, after
which they can be opened again. Only a limited number of

Don’t Be a Blockhead: Zoned Namespaces Make Work on Conventional SSDs Obsolete

zones can be active at once, since each active zone consumes
resources (from, e.g., write buffers [52]). However, all zones
can be in read-only mode at the same time. Flash cell failures
are handled transparently by decreasing the length of a zone
after a reset, or by marking a zone as offline.

Zones are at least as large as erasure blocks. For instance, a
device evaluated in recent work uses 1GB zones and supports
14 active zones [10].

2.2 7ZNS Costs Less per Gigabyte

ZNS SSDs need fewer dedicated resources on each device,
which significantly reduces their cost.

Less on-board DRAM. In conventional SSDs, the FTL
keeps the address mapping table (logical to physical) and
garbage collection metadata in the device’s on-board DRAM.
In ZNS SSDs, the FTL maintains address translations at the
granularity of zones, which requires minimal DRAM.!

To estimate DRAM overhead, we assume pages are 4 KB.
An optimized mapping table in a conventional SSD requires
about 4 bytes per page [14]. This is around 1 GB of on-board
DRAM per TB of flash on current devices [7]. In ZNS SSDs,
the FTL maps zones to erasure blocks. Assuming a similar 4-
byte overhead per block and 16 MB erasure blocks, it requires
only ~256 KB of on-board DRAM. Constructing a more com-
plex interface over ZNS requires some host resources (§2.3).

Less overprovisioning. Conventional SSDs reserve a large
fraction of flash cells as spare capacity. This overprovision-
ing is typically 7-28 of the usable capacity% [10, 32]. The
FTL uses this spare capacity to reduce garbage collection
overheads. Rather than needing to reclaim space immedi-
ately when overwriting a logical address, the SSD can simply
write the new data to a clean flash page and update the ad-
dress mapping. Delaying garbage collection also increases
the likelihood that data in an erasure block will be invalidated
before the block’s space needs to be reclaimed. In our lab
experiments with random write workloads and a variable over-
provisioning factor, the write amplification (additional bytes
written) from garbage collection improves from 15 x with no
overprovisioning to about 2.5 x with ~25% overprovisioning.

Overprovisioning inflates SSD prices, as flash cells are
the most costly part of a device [46]. ZNS SSDs do not do
garbage collection, since the erasure blocks in a zone are al-
ways completely invalidated and erased when the zone is reset.
The host therefore has access to nearly all of the flash capacity
(some is reserved to replace bad flash blocks). Although some
applications will do host-side garbage collection, moving this
responsibility to the host means that system resources can

A few DRAM-less conventional SSDs exist, which store the mapping data
in host DRAM or on-board flash. However, they have not gained momentum
in datacenters, as they lack the performance and functionality of ZNS SSDs.

146

HotOS "21, May 31—June 2, 2021, Ann Arbor, MI, USA

be allocated according to an application’s needs, rather than
being fixed for all applications.

2.3 ZNS Is a More Useful Abstraction

The block interface exposed by conventional SSDs is familiar
to anyone who has developed software that reads or writes
to a hard disk drive. However, the block interface abstracts
too much of flash’s write constraints. This makes it extremely
difficult for applications to tune their I/O patterns to maximize
performance and device endurance. The interface exposed
by ZNS SSDs hits a sweet spot that balances being easy
to use and faithfully representing how the device handles
data. Writers may write to any zone, but each zone must be
written sequentially. This thin interface gives applications
more control over data placement on flash, and hence more
control over write amplification.

The zoned interface is amenable to building other abstrac-
tions on top. For example, it was straightforward to imple-
ment the block interface on the host using ZNS SSDs (§2.5).
This task is aided by the simple copy command in the NVMe
standard [36], which allows the host to issue device controller-
managed data copy operations. With this command, copying
forward valid data before erasing a zone does not use any
PCle bandwidth, enabling performance comparable to con-
ventional SSDs.

Building an abstraction over the device’s interface shifts
some computational and DRAM burden to the host, one of
the few drawbacks of ZNS SSDs. However, buying a large
DRAM DIMM for a host is cheaper than multiple small
embedded DRAM chips in each SSD.? Additionally, since
the host has insight into application specifics, it can manage
garbage collection and other data management tasks better
than an on-board FTL (§4.1). Hosts can choose whether to
pay the additional host resource cost to construct a different
interface.

ZNS is a refinement of two existing abstractions. Open-
channel SSDs expose device geometry to the host, enabling
fine-grained control over data placement [9, 37]. Zoned Names-
paces standardizes a slightly higher-level interface based on
lessons learned from Open-Channel SSDs [7]. The multi-
stream writes NVMe directive is conceptually similar to
ZNS [34]. Hosts label related writes with the same stream
ID, and the device writes each stream to its own set of era-
sure blocks. Multi-streams are a workaround to hosts’ limited
control over data placement in conventional SSDs; the high
hardware costs of conventional devices remains.

2Using end-user prices as a proxy, we find that a IGB DIMM costs more
than twice as much per GB as 16-32GB DIMM:s.

HotOS "21, May 31-June 2, 2021, Ann Arbor, MI, USA

2.4 ZNS May Get Better Performance

The key performance strategies used by FTLs in conventional
SSDs—buffering writes and placing writes strategically to
leverage parallelism—are equally available to a ZNS device.
While it requires further research to validate, ZNS SSDs
should be able to accomplish these tasks as well as and of-
ten better than an on-board FTL (§4.1). It is clear, though,
that information about applications is the key bottleneck for
near-optimal garbage collection, and conventional FTLs do
not have this information [43]. The host, on the other hand, is
empowered to make application-aware data placement deci-
sions. Because the host can control what data will be erased
together by writing it to the same zone, it has fine-grained
control over write amplification. The host may be able to
significantly reduce write amplification by grouping data into
zones based on when it expects the data will expire.

The host can also leverage application knowledge to make
better scheduling decisions. In conventional SSDs, garbage
collection increases tail latency by interfering with I/O. Garbage
collection also makes performance unpredictable because the
FTL uses opaque internal algorithms to schedule it [19, 55].
Hosts explicitly reclaim space on ZNS SSDs, increasing per-
formance predictability and reducing read tail latency by al-
lowing hosts to schedule garbage collection around I/O.

Early ZNS SSD experiments highlight their performance.
Western Digital reports 60% lower average read latency and
3% higher throughput in benchmarks [51]. Western Digital
also reports 2 —4 x lower read tail latency and 2 x higher write
throughput for RocksDB over ZNS [10]. CMU researchers
showed that RocksDB’s write amplification drops from 5x to
1.2x on ZNS SSDs [3]. IBM reports 22 x lower tail latencies
and 65% higher application throughput [39].

2.5 ZNS SSD Adoption

ZNS devices are already on the market from some vendors [38,
39, 51]. All major SSD manufacturers have working ZNS pro-
totypes, with most being tested at hyperscalers for months.

One hyperscaler shared with us that ZNS SSDs are a cru-
cial building block for deploying QLC flash and realizing
significant cost savings in the future. In preparing for this
deployment, significant investments are being made to make
backend software compatible with ZNS. A second hyperscaler
publicly shared performance results from porting their storage
software stack to ZNS SSDs [39].

In the open-source world, Linux supports two native zoned
filesystems (ZoneFS and F2FS) [53]. Additionally, main-
stream filesystems Btrfs and ext4 are close to running natively
on ZNS SSDs. Until then (and for XFS in the near future),
as of version 4.14, Linux provides the dm-zoned device
mapper which emulates a standard block device on top of any
ZNS SSD [53]. Additionally, large applications like Ceph [4]

147

Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett, and Wyatt Lloyd

and RocksDB [3, 10] have been ported to natively use ZNS
SSDs, while realizing significant performance gains. The Stor-
age Performance Development Kit (SPDK), a framework for
developing kernel-bypass storage applications, supports ZNS
as of version 20.10 [50].

3 REEVALUATING THE FOCUS OF SSD
R&D

To understand the impact that this shift in technology will
have on future systems research, we survey recent work on
flash and SSDs published at OS and storage conferences.
Specifically, we are interested in whether we would still carry
out this research in a future where ZNS devices are dominant.
To be clear, we do not question the papers’ value or impact.
These works solve real problems with conventional SSDs,
and until now there was no alternative, similarly-priced tech-
nology that avoided those problems. However, ZNS changes
that, and we must reevaluate our research agenda accordingly
or we needlessly delay using this new technology to its fullest
potential. Our survey thus aims to quantify the effort that
would be misdirected if the systems community continued
working on conventional SSDs.

We survey papers published in the last five years at FAST,
OSDI, SOSP, and MSST. We collected 465 papers in total
and narrowed them down to 104 papers where flash-based
SSDs are a prominent part of the research or the system
implementation; we classified these manually. This is not an
exhaustive survey; our goal is to get a broad-strokes sense
of the targets of recent systems research. We omit papers on
ultra low-latency SSDs (e.g., Samsung Z-NAND [40]) and
non-volatile memory (e.g., 3D XPoint [33]) since they have
different systems implications than traditional flash SSDs.

We define four broad categories for the papers (bold indi-
cates the column header in Table 1):

o Simplified/Solved: the paper’s main problem is solved or
simplified with ZNS SSDs. E.g., building the FTL for a
flash simulator [26] or improving garbage collection [60].
Approach: the paper’s approach to solving the problem
may change with ZNS. E.g., the system implementation
may change [15].

Results: the results of the research or evaluation may change.
E.g., the system performance may change [18], or the find-
ings of a measurement study may be different [17].
Orthogonal: the problem addressed in the paper is orthogo-
nal to ZNS. E.g., it proposes a low-level security technique
for flash [61].

The taxonomy is shown in Table 1. We find that 23%
of SSD papers focus on problems ZNS either simplifies or
solves. Papers in this category focus on mitigating the neg-
ative performance effects of garbage collection [19, 21, 55]

Don’t Be a Blockhead: Zoned Namespaces Make Work on Conventional SSDs Obsolete

Venue | #Pubs. Simpl Appr Res Orth
FAST | 126 9 8 23 8
OSDI | 164 3 0 4 0
SOSP | 77 2 2 2 0
MSST | 98 10 7 16 10
Total | 465 24 17 45 18

Table 1: Impact of ZNS adoption on existing work on
flash-based SSDs. Columns are counts. # Pubs. indicates
the total publications in the venue over the last 5 years.

or on managing write amplification to preserve device en-
durance [13, 23, 29]. Other papers reverse-engineer or re-
design the FTL to reduce performance variability [24, 58];
this is much simpler in ZNS SSDs because the FTL is simpler.
An additional 59% of SSD papers would need to change
their approach or revisit results, as they will change with
ZNS SSDs. Many systems with a significant flash component
would need to be redesigned for ZNS [6, 18, 45]. Systems
that rely heavily on flash may show different endurance or
performance characteristics after porting to ZNS and would
need to be re-evaluated. Performance and reliability measure-
ment studies that characterize device behavior in the field or
under extreme workloads would need to be re-run to properly
characterize systems that include ZNS SSDs [17, 31, 42].

4 RESEARCH AGENDA

Now that ZNS has been standardized and devices are com-
mercially available, it is time to revisit many of the questions
we asked about conventional SSDs, this time with ZNS, and
ask new questions about how best to integrate this technology
into our systems.

This section first describes several opportunities for im-
proving performance that arise from co-locating garbage col-
lection with applications on the host. Then it describes several
challenges introduced by ZNS’s new interface.

4.1 Improving Performance

How can application-level information improve zone man-
agement? Information about applications and their access
patterns is precious when allocating writes to erasure blocks
and zones. Garbage collection overheads are minimal if most
of the data that is written to an erasure block expires at the
same time. Software can often make educated guesses about
data expiration, e.g., pages in the same file are more likely
to get deleted or overwritten together than pages in different
files. Files created at similar times are also more likely to ex-
pire together (e.g., intermediate files in analytics workloads).
At an even higher level, sets of files created by the same appli-
cation, container, or virtual machine are more likely to expire
at the same time, compared to those with different creators

148

HotOS "21, May 31—June 2, 2021, Ann Arbor, MI, USA

and owners (e.g., when an application exits or when a virtual
machine migrates or shuts down).

This crucial information has never been available to con-
ventional SSDs. This information barrier has historically
capped FTLs to suboptimal performance, even with near-
optimal garbage collection algorithms [43]. The filesystem
has this information readily available and can use it with ZNS
SSDs; however, current Linux kernel filesystems for ZNS
SSDs (e.g., F2FS) do not yet use this information. Conse-
quently, this is a rich topic for exploration. How much can
filesystem knowledge (owners, creators, timestamps) reduce
write amplification? Beyond the filesystem, how much does
application-specific information further reduce overheads?
Given the additional information, how does the theoretically
optimal garbage collection algorithm change?

How should applications interact with zones? Section 2.3
outlines the interfaces through which applications can access
ZNS SSDs. Each of these interfaces makes performance and
usability tradeoffs: raw zoned storage access offers the most
control over I/O and data placement; filesystems and key-
value stores offer less control but are easy to use (e.g., many
filesystems handle metadata management and data integrity).
There is variety even within a class of interfaces. For instance,
F2FS [22] is a fully-featured, POSIX-compliant filesystem,
while ZoneFS [2] treats zones as files with the same restric-
tions as zones themselves. Raw zoned storage may go through
the kernel [52] or not [57]. Finally, individual applications
have configurations that can be adjusted for performance (e.g.,
the active zone count in ZNS-enabled RocksDB [10]).

Flash’s limited endurance means there is a cost to using
the wrong interface beyond just performance, as we see with
conventional SSDs and the block interface (§2). Zoned stor-
age devices (e.g., SMR HDDs) existed before ZNS, but they
do not suffer the same endurance limitation as flash devices.
Interacting with zoned flash devices in a way that maximizes
I/O performance, usability, and device endurance has thus
not been fully explored. In general, will applications prefer
to use the zoned interface, a filesystem, or some other API?
What is the best way to make the endurance, performance,
and usability tradeoffs explicit for different applications and
system settings? How can the process of experimenting with
different interfaces (and interface configurations) be made as
pain-free as possible?

What is the best approach to I/O scheduling with host-
driven device management? In conventional SSDs, the timing
of garbage collection was known neither to the OS nor ap-
plications. This led to complex workarounds, e.g., predicting
the latency of an I/O request to a conventional SSD and using
multiple SSDs to hedge against slow requests [19]. With ZNS
SSDs, the performance of individual zones is independent
of one another, beyond sharing bandwidth. (Bandwidth is

HotOS "21, May 31-June 2, 2021, Ann Arbor, MI, USA

already not a limitation with current second-generation PCle4
SSDs and will be even less of a limitation with PCIe5 products
available in the near future.) Thus, the host is in full control
and can precisely schedule zone erasures and maintenance
operations. This flexibility enables new policies to prioritize
one goal over the other, e.g., read latency over write latency
and write amplification. Additionally, these policies can differ
across sets of zones, enabling efficient co-location of multiple
applications or tenants. What are the interfaces for application
developers to communicate these goals and preferred trade-
offs to applications or the OS? How do developers choose
these trade-offs in a principled fashion?

How can we best exploit transparent data placement? In
conventional SSDs, applications have to rely on tricks to force
the FTL to place data as intended. For example, large-scale
flash caching applications [6, 49] maintain several buckets
of objects, where each bucket should be written to the same
erasure block. In conventional SSDs, concurrent write opera-
tions are interleaved on an erasure block even if they are far
apart in the logical address space. Applications have evolved
to use DRAM as a buffer to coalesce many writes into one
very large write. With ZNS SSDs, these buffers are no longer
necessary. How can we identify and modify these applications
at scale to reclaim the wasted DRAM? Is there a common
abstraction that works for such applications?

4.2 Managing Limitations

How should hosts manage active zone limits? Current ZNS
SSDs limit the number of zones that can be writable at the
same time (see Section 2). This limitation is not a problem
for existing kernel filesystem implementations, which already
achieve enough parallelism to fully use available flash band-
width. However, it becomes a problem when a ZNS SSD is
divided among multiple applications that bypass the kernel.
A simple strategy is to assign a fixed number of zones to each
application together with a fixed active zone budget. How-
ever, this approach does not scale for typical bursty workloads
as it does not allow multiplexing of this scarce resource. Is
there a good strategy for dynamically assigning zones on
demand? Assuming manufacturers will make devices with
many more zones given the modest on-device resource re-
quirements, what is a sufficient number of zones?

Are there workloads that perform worse on ZNS SSDs than
on conventional SSDs? One well-known workload challenge
with ZNS SSDs, which was discovered in prototypes after the
specification was finalized, is that a zone’s write pointer can
suffer from lock contention. It is a problem for multi-writer
workloads where writes are concentrated in a single zone,
such as persistent queues and append-only data structures.
This happens because the specification assigns responsibility

149

Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett, and Wyatt Lloyd

to move the write pointer to host-side software. An addition
to the ZNS specification resolves this problem: the append
command, which does not specify an offset and allows the
device to serialize concurrent writes to the same zone [8, 35].
Given the novelty of the ZNS interface and limited hardware
deployments so far, it remains an open question if there are
other workloads that will perform worse over ZNS than over
conventional SSDs. Can we systematically test representative
and synthetic workloads to discover if any perform worse
over ZNS? Can their performance be rectified with extensions
to the ZNS specification?

How do ZNS SSDs fit with recent trends to offload I/0O
tasks from the host to dedicated hardware? At the same time
that hyperscalers are embracing ZNS SSDs, which shift re-
sponsibilities to the host, they are also offloading I/O pro-
cessing from host CPUs to dedicated hardware: to ASICs
at AWS [5], to ARM SoCs at Microsoft [27], and to FP-
GAs at Alibaba [59]. This apparent contradiction in system
design philosophies calls for academic scrutiny. Similar to
Facebook’s Accelerometer for computation offloading [48],
we envision research on how to decide which parts of the
hardware stack should be responsible for which functionality
on the I/O control and datapaths.

S CONCLUSION

While much SSD research has focused on the problems with
conventional SSDs, industry has moved ahead, standardizing
and beginning to adopt Zoned Namespaces. This inflection
point opens up exciting and impactful research directions
around how to use these emerging devices to their full po-
tential. It also points to a problem facing the systems com-
munity: a lot of research is intended for settings such as
large cloud providers, but often only those in industry or with
close industry connections have privileged access to emerging
technologies and problems. This disadvantages researchers
without such connections, but it also harms the field as a
whole. Progress is stymied when access to relevant problems
is restricted and when the diversity of thinkers attacking the
most pressing problems is curtailed. This era of online work-
shops and conferences lowers barriers to participation; we
hope organizers will take advantage by encouraging participa-
tion from researchers from a range of institutions worldwide
and by organizing industry panels as an informal avenue for
discussion of emerging trends and challenges.

6 ACKNOWLEDGEMENTS

We thank the anonymous reviewers, Matias Bjgrling, and Kai
Li for their helpful comments, which substantially improved
the paper. Theano Stavrinos is supported by the National
Science Foundation grant CNS-1910390.

Don’t Be a Blockhead: Zoned Namespaces Make Work on Conventional SSDs Obsolete

REFERENCES
[1] RocksDB. https://rocksdb.org/, 2020. Accessed: 2021-1-17.

[2] ZoneFS - Zone filesystem for Zoned block devices. https:/
www.kernel.org/doc/html/latest/filesystems/zonefs.html, 2020. Ac-
cessed: 2021-1-17.

[3]1 A. Aghayev. Adopting Zoned Storage in Distributed Storage Systems.
PhD thesis, Carnegie Mellon University, 2020.

[4] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and

G. Amvrosiadis. The Case for Custom Storage Backends in Distributed

Storage Systems. ACM Transactions on Storage (TOS), 16(2):1-31,

2020.

Amazon Web Services. AWS Nitro System. https://aws.amazon.com/

ec2/nitro/, 2020. Accessed: 2021-2-3.

B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gunasekar, J. Lu,

M. Uhlar, J. Carrig, N. Beckmann, M. Harchol-Balter, and G. R. Ganger.

The CacheLib Caching Engine: Design and Experiences at Scale. In

14th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI’20), 2020. USENIX Association.

M. Bjgrling. From Open-Channel SSDs to Zoned Namespaces. In
Proceedings of the 2019 Linux Storage and Filesystems Conference
(Vault’19), 2019. USENIX Association.

[8] M. Bjgrling. Zone Append: A New Way of Writing to Zoned Storage.
In Proceedings of the 2020 Linux Storage and Filesystems Conference
(Vault’'20), 2020. USENIX Association.

[9] M. Bjgrling, J. Gonzilez, and P. Bonnet. LightNVM: The Linux Open-

Channel SSD Subsystem. In Proceedings of the 15th USENIX Con-

ference on File and Storage Technologies (FAST’17), 2017. USENIX

Association.

M. Bjgrling, A. Aghayev, H. Holmberg, A. Ramesh, D. L. Moal,

G. Ganger, and G. Amvrosiadis. ZNS: Avoiding the Block Interface

Tax for Flash-based SSDs. In Proceedings of the 2021 USENIX Annual

Technical Conference (USENIX ATC’21), 2021. USENIX Association.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,

J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,

L. Puzar, Y. J. Song, and V. Venkataramani. TAO: Facebook’s Dis-

tributed Data Store for the Social Graph. In Proceedings of the

2013 USENIX Annual Technical Conference (USENIX ATC’13), 2013.

USENIX Association.

Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai. Program Interference in

MLC NAND Flash Memory: Characterization, Modeling, and Mitiga-

tion. In IEEE International Conference on Computer Design, pages

123-130, 2013.

Z. Chen and K. Shen. OrderMergeDedup: Efficient, Failure-Consistent

Deduplication on Flash. In Proceedings of the 14th USENIX Con-

ference on File and Storage Technologies (FAST’16), 2016. USENIX

Association.

[14] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song.
A survey of flash translation layer. Journal of Systems Architecture, 55
(5-6):332-343, 2009.

[15] J. Cui, W. Wu, X. Zhang, J. Huang, and Y. Wang. Exploiting latency
variation for access conflict reduction of NAND flash memory. In
Proceedings of the 32nd International Conference on Massive Storage
Systems and Technology (MSST’16), 2016. IEEE Computer Society.

[16] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich, R. Stutsman,

M. Alizadeh, and S. Katti. Flashield: a Hybrid Key-value Cache

that Controls Flash Write Amplification. In Proceedings of the 16th

USENIX Conference on Networked Systems Design and Implementation

(NSDI’19), 2019. USENIX Association.

[5

—_

[6

[t}

[7

—

[10]

[11]

[12]

[13]

150

HotOS "21, May 31—June 2, 2021, Ann Arbor, MI, USA

[17] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X.Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, et al. Fail-Slow
at Scale: Evidence of Hardware Performance Faults in Large Production
Systems. In Proceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST’18), 2018. USENIX Association.

S. Han, D. Jiang, and J. Xiong. LightKV: A Cross Media Key Value
Store with Persistent Memory to Cut Long Tail Latency. In Proceedings
of the 36th International Conference on Massive Storage Systems and
Technology (MSST’20), 2020. IEEE Computer Society.

M. Hao, L. Toksoz, N. Li, E. E. Halim, H. Hoffmann, and H. S. Gunawi.
LinnOS: Predictability on Unpredictable Flash Storage with a Light
Neural Network. In 74th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20), 2020. USENIX Association.
J. Kim, P. Park, J. Ahn, J. Kim, J. Kim, and J. Kim. SSDcheck: Timely
and accurate prediction of irregular behaviors in black-box SSDs. In
Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’18), 2018. Association for Computing
Machinery (ACM).

J. Kim, K. Lim, Y. Jung, S. Lee, C. Min, and S. H. Noh. Alleviating
Garbage Collection Interference Through Spatial Separation in All
Flash Arrays. In Proceedings of the 2019 USENIX Annual Technical
Conference (USENIX ATC’19), 2019. USENIX Association.

C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A new file system for
flash storage. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST’15),2015. USENIX Association.

E. Lee, J. Kim, H. Bahn, and S. H. Noh. Reducing Write Amplification
of Flash Storage through Cooperative Data Management with NVM. In
Proceedings of the 32nd International Conference on Massive Storage
Systems and Technology (MSST’16), 2016. IEEE Computer Society.
B. Li, W. Tong, J. Liu, D. Feng, Y. Feng, J. Qin, P. Li, and B. Liu.
Maximizing Bandwidth Management FTL Based on Read and Write
Asymmetry of Flash Memory. In Proceedings of the 36th International
Conference on Massive Storage Systems and Technology (MSST’20),
2020. IEEE Computer Society.

C. Li, P. Shilane, F. Douglis, and G. Wallace. Pannier: Design and
Analysis of a Container-Based Flash Cache for Compound Objects.
ACM Transactions on Storage (TOS), 13(3):1-34, 2017.

[26] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjgrling, and H. S.
Gunawi. The CASE of FEMU: Cheap, Accurate, Scalable and Extensi-
ble Flash Emulator. In Proceedings of the 16th USENIX Conference on
File and Storage Technologies (FAST’18), 2018. USENIX Association.
H. Li, M. Hao, S. Novakovic, V. Gogte, S. Govindan, D. R. Ports,
I. Zhang, R. Bianchini, H. S. Gunawi, and A. Badam. LeaplO: Effi-
cient and Portable Virtual NVMe storage on ARM SoCs. In Proceed-
ings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’20), 2020.
Association for Computing Machinery (ACM).

H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A memory-
efficient, high-performance key-value store. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP’11), 2011.
Association for Computing Machinery (ACM).

C.-y. Liu, J. Kotra, M. Jung, and M. Kandemir. PEN: Design and
Evaluation of Partial-Erase for 3D NAND-Based High Density SSDs.
In Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST’18), 2018. USENIX Association.

L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. WiscKey: Separating Keys from Values in SSD-
Conscious Storage. ACM Transactions on Storage (TOS), 13(1):1-28,
2017.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

(27]

(28]

[29]

(30]

https://rocksdb.org/
https://www.kernel.org/doc/html/latest/filesystems/zonefs.html
https://www.kernel.org/doc/html/latest/filesystems/zonefs.html
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/

HotOS "21, May 31-June 2, 2021, Ann Arbor, MI, USA

[31] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder. A Study
of SSD Reliability in Large Scale Enterprise Storage Deployments.
In Proceedings of the 18th USENIX Conference on File and Storage
Technologies (FAST’20), 2020. USENIX Association.

[32] S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder. Reliability of
SSDs in Enterprise Storage Systems: A Large-Scale Field Study. ACM
Transactions on Storage (TOS), 17(1):1-27, 2021.

[33] Micron Technology, Inc. 3D XPoint Technology. https:
//www .micron.com/products/advanced- solutions/3d-xpoint-
technology, 2020. Accessed: 2021-2-3.

[34] NVM Express Workgroup. NVM Express Specification. https:

/Mmvmexpress.org/developers/nvme-specification/, 2020. Accessed:
2021-4-19.

[35] NVM Express Workgroup. NVM Express Technical Proposal for New
Feature: 4053 - Zoned Namespaces. https://nvmexpress.org/, 2020.
Accessed: 2021-1-17.

[36] NVM Express Workgroup. NVM Express Technical Proposal for New
Feature: 4065a - Simple Copy Command. https://nvmexpress.org/,
2020. Accessed: 2021-1-17.

[37] 1. L. Picoli, N. Hedam, P. Bonnet, and P. Toziin. Open-Channel SSD
(What is it Good For). In Proceedings of the 2nd Biennial Conference on
Innovative Data Systems Research (CIDR’20), 2020. www.cidrdb.org.

[38] Radian Memory Systems, Inc. RMS-325. https:

/Iwww .radianmemory.com/edge-card-ssd-rms-325/, 2020. Ac-

cessed: 2021-1-17.

Radian Memory Systems, Inc. Case Study: Integration of SALSA, a

unified storage software stack developed by IBM Research, with Ra-

dian’s Zoned Flash SSD. https://www.radianmemory.com/wp-content/

uploads/2020/07/RMS-Salsa_Case_Study_Final_Approved.pdf, 2020.

Accessed: 2021-1-17.

Samsung. Ultra-Low Latency with Samsung Z-NAND SSD.

https://www.samsung.com/semiconductor/newsroom/tech-

leadership/ultra-low-latency- with-samsung-z-nand-ssd/,

Accessed: 2021-2-3.

M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: a lightweight, con-

sistent and durable storage cache. In Proceedings of the 7th European

Conference on Computer Systems (EuroSys’12),2012. Association for

Computing Machinery (ACM).

B. Schroeder, R. Lagisetty, and A. Merchant. Flash Reliability in

Production: The Expected and the Unexpected. In Proceedings of the

14th USENIX Conference on File and Storage Technologies (FAST’16),

2016. USENIX Association.

M. Shafaei and P. Desnoyers. Near-Optimal Offline Cleaning for Flash-

Based SSDs. In Proceedings of the 33rd International Conference

on Massive Storage Systems and Technology (MSST’17), 2017. IEEE

Computer Society.

[44] S. Shamasunder. Hybrid XFS—Using SSDs to Supercharge HDDs at
Facebook. In SREconl9 Asia/Pacific, 2019. USENIX Association.

[45] Z. Shen, F. Chen, Y. Jia, and Z. Shao. DIDACache: A Deep Integra-
tion of Device and Application for Flash Based Key-Value Caching.
In Proceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST’17), 2017. USENIX Association.

[46] R. Smith. SSD Cost/Pricing Calculator. https://www.soothsawyer.com/
ssd-cost-pricing-calculator, 2019. Accessed: 2021-5-2.

[47] Z. Song, D. S. Berger, K. Li, and W. Lloyd. Learning Relaxed Belady
for Content Distribution Network Caching. In Proceedings of the 17th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’20), 2020. USENIX Association.

(391

[40]

2020.

[41]

[42]

[43]

151

Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett, and Wyatt Lloyd

[48] A. Sriraman and A. Dhanotia. Accelerometer: Understanding Accel-
eration Opportunities for Data Center Overheads at Hyperscale. In
Proceedings of the 25th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’20),
2020. Association for Computing Machinery (ACM).

L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ: Advanced
Photo Caching on Flash for Facebook. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST’15), 2015.
USENIX Association.

Tomasz Zawadzki. SPDK v20.10: NVMe-oF multipath, NVMe
ZNS, iSCSI login redirection. https://spdk.io/release/2020/10/30/
20.10_release/, 2020. Accessed: 2021-4-16.

Western Digital Corporation. Ultrastar DC ZN540 Now Sam-
pling. https://blog.westerndigital.com/zns-ssd-ultrastar-dc-zn540-
sampling/, 2020. Accessed: 2020-12-16.

[52] Western Digital Corporation. Zoned Storage. zonedstorage.io, 2020.
Accessed: 2020-12-16.

[53] Western Digital Corporation. Zoned File Systems and Block De-
vices. https://zonedstorage.io/linux/fs/#file-systems-and-zoned-block-
devices, 2021. Accessed: 2021-01-16.

G. Wu and X. He. Reducing SSD Read Latency via NAND Flash Pro-
gram and Erase Suspension. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies (FAST’12),2012. USENIX
Association.

S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi. Tiny-tail flash: near-perfect elimination of garbage
collection tail latencies in NAND SSDs. In Proceedings of the 15th
USENIX Conference on File and Storage Technologies (FAST’17),2017.
USENIX Association.

P. Yang, N. Xue, Y. Zhang, Y. Zhou, L. Sun, W. Chen, Z. Chen, W. Xia,
J. Li, and K. Kwon. Reducing garbage collection overhead in SSD
based on workload prediction. In Proceedings of the 11th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage’19),
2019. USENIX Association.

T. Zawadzki. SPDK v20.10: NVMe-oF multipath, NVMe ZNS, iSCSI
login redirection. https://spdk.io/release/2020/10/30/20.10_release/,
2020. Accessed: 2021-1-7.

J. Zhang, M. Kwon, M. Swift, and M. Jung. Scalable Parallel Flash
Firmware for Many-core Architectures. In Proceedings of the 18th
USENIX Conference on File and Storage Technologies (FAST’20), 2020.
USENIX Association.

T. Zhang, J. Wang, X. Cheng, H. Xu, N. Yu, G. Huang, T. Zhang, D. He,
F. Li, W. Cao, et al. FPGA-Accelerated Compactions for LSM-based
Key-Value Store. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST’20), 2020. USENIX Association.
K. Zhou, S. Hu, P. Huang, and Y. Zhao. LX-SSD: Enhancing the Lifes-
pan of NAND Flash-based Memory via Recycling Invalid Pages. In
Proceedings of the 33rd International Conference on Massive Storage
Systems and Technology (MSST’17),2017. IEEE Computer Society.
A. Zuck, Y. Li, J. Bruck, D. E. Porter, and D. Tsafrir. Stash in a Flash.
In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’18), 2018. USENIX Association.
A. Zuck, P. Giihring, T. Zhang, D. E. Porter, and D. Tsafrir. Why and
How to Increase SSD Performance Transparency. In Proceedings of
the 17th Workshop on Hot Topics in Operating Systems (HotOS’19),
2019. Association for Computing Machinery (ACM).

[49]

[50]

[51]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/
https://nvmexpress.org/
https://www.radianmemory.com/edge-card-ssd-rms-325/
https://www.radianmemory.com/edge-card-ssd-rms-325/
https://www.radianmemory.com/wp-content/uploads/2020/07/RMS-Salsa_Case_Study_Final_Approved.pdf
https://www.radianmemory.com/wp-content/uploads/2020/07/RMS-Salsa_Case_Study_Final_Approved.pdf
https://www.samsung.com/semiconductor/newsroom/tech-leadership/ultra-low-latency-with-samsung-z-nand-ssd/
https://www.samsung.com/semiconductor/newsroom/tech-leadership/ultra-low-latency-with-samsung-z-nand-ssd/
https://www.soothsawyer.com/ssd-cost-pricing-calculator
https://www.soothsawyer.com/ssd-cost-pricing-calculator
https://spdk.io/release/2020/10/30/20.10_release/
https://spdk.io/release/2020/10/30/20.10_release/
https://blog.westerndigital.com/zns-ssd-ultrastar-dc-zn540-sampling/
https://blog.westerndigital.com/zns-ssd-ultrastar-dc-zn540-sampling/
zonedstorage.io
https://zonedstorage.io/linux/fs/#file-systems-and-zoned-block-devices
https://zonedstorage.io/linux/fs/#file-systems-and-zoned-block-devices
https://spdk.io/release/2020/10/30/20.10_release/

	Abstract
	1 Introduction
	2 ZNS Devices Dominate!
	2.1 A Quick Flash Primer
	2.2 ZNS Costs Less per Gigabyte
	2.3 ZNS Is a More Useful Abstraction
	2.4 ZNS May Get Better Performance
	2.5 ZNS SSD Adoption

	3 Reevaluating the Focus of SSD R&D
	4 Research Agenda
	4.1 Improving Performance
	4.2 Managing Limitations

	5 Conclusion
	6 Acknowledgements
	References

