Learning Relaxed Belady for Content Distribution Network Caching

Zhenyu Song Daniel S. Berger

Princeton University ~ Microsoft Research & CMU Princeton University

Abstract

This paper presents a new approach for caching in CDNs that
uses machine learning to approximate the Belady MIN (ora-
cle) algorithm. To accomplish this complex task, we propose
a CDN cache design called Learning Relaxed Belady (LRB)
to mimic a Relaxed Belady algorithm, using the concept of
Belady boundary. We also propose a metric called good deci-
sion ratio to help us make better design decisions. In addition,
the paper addresses several challenges to build an end-to-end
machine learning caching prototype, including how to gather
training data, limit memory overhead, and have lightweight
training and prediction.

We have implemented an LRB simulator and a prototype
within Apache Traffic Server. Our simulation results with 6
production CDN traces show that LRB reduces WAN traffic
compared to a typical production CDN cache design by 4—
25%, and consistently outperform other state-of-the-art meth-
ods. Our evaluation of the LRB prototype shows its overhead
is modest and it can be deployed on today’s CDN servers.

1 Introduction

Content Distribution Networks (CDNs) deliver content
through a network of caching servers to users to improve
latency, bandwidth, and availability. CDNs delivered 56%
of Internet traffic in 2017, with a predicted rise to 72% by
2022 [29]. Improving CDN caching servers can significantly
improve the content delivery of the Internet.

A CDN cache sits between users and Wide-Area Networks
(WANs). Whenever a user requests content that is not cur-
rently cached, the CDN must fetch this content across Internet
Service Providers (ISPs) and WANs. While CDNs are paid
for the bytes delivered to users, they need to pay for the band-
width required to fetch cache misses. These bandwidth costs
constitute an increasingly large factor in the operational cost
of large CDNss [6, 14,17,41,46,66]. CDNs are thus seeking
to minimize these costs, which are typically measured as byte
miss ratios, i.e., the fraction of bytes requested by users that
are not served from cache.

The algorithm that decides which objects are cached in
each CDN server plays a key role in achieving a low byte
miss ratio. Yet, the state-of-the-art algorithms used in CDN
caching servers are heuristic-based variants of the Least-
Recently-Used (LRU) algorithm (Section 2). The drawback

Kai Li Wyatt Lloyd

Princeton University

of heuristics-based algorithms is that they typically work well
for some access patterns and poorly for others. And, even
with five decades of extensive study since caching was first
proposed [84]—including using machine learning to adapt
heuristics to different workloads—the fundamental limitation
of heuristics remains. We still observe a large gap between the
byte miss ratios of the state-of-the-art online cache replace-
ment algorithms and Belady’s offline MIN algorithm [16] on
a range of production traces.

To bridge this gap, this paper presents a novel machine-
learning (ML) approach that is fundamentally different from
previous approaches to cache replacement. Our approach does
not build on heuristics, nor try to optimize heuristics-based
algorithms. Our approach is to approximate Belady’s MIN
(oracle) algorithm, using machine learning to find objects to
evict based on past access patterns. Belady’s algorithm always
evicts the object with the furthest next request. A naive ML
algorithm that imitates this behavior would incur prohibitively
high computational cost. To overcome this challenge, our key
insight is that it is sufficient to approximate a relaxed Belady
algorithm that evicts an object whose next request is beyond
a threshold but not necessarily the farthest in the future.

To set a proper threshold, we introduce the Belady bound-
ary, the minimum time-to-next-request of objects evicted by
Belady’s MIN algorithm. We show that the byte miss ratio of
the relaxed Belady algorithm using the Belady boundary as its
threshold is close to that of Belady’s MIN algorithm. Approx-
imating relaxed Belady gives our system a much larger set
of choices to aim for, which has two major consequences for
our design. It allows our system to run predictions on a small
sampled candidate set—e.g., 64—which dramatically reduces
computational cost. And, it allows our system to quickly adapt
to changes in the workload by gathering training data that
includes the critical examples of objects that relaxed Belady
would have selected for replacement.

Even with the insight of relaxed Belady, the design space
of potential ML architectures (features, model, loss function,
etc.) is enormous. Exploring this space using end-to-end met-
rics like byte miss ratio is prohibitively time-consuming be-
cause they require full simulations that take several hours for
a single configuration. To enable our exploration of the ML
design space we introduce an eviction decision quality metric,
the good decision ratio, that evaluates if the next request of an
evicted object is beyond the Belady boundary. The good deci-
sion ratio allows us to run a simulation only once to gather

_ Origin datacenter
)< Catdt o l |

.] : \ G o |
{ 33-“ m_re—— g ==
O mm ot ==

Figure 1: CDNs place servers in user proximity around the
world (e.g., in a user’s ISP). Incoming requests are sharded
among several caching servers, which use combined DRAM
and flash caches. Cache misses traverse expensive wide-area
networks to retrieve data from the origin datacenter.

training data, prediction data, and learn the Belady boundary.
Then we can use it to quickly evaluate the quality of decisions
made by an ML architecture without running a full simulation.
We use the good decision ratio to explore the design space
for components of our ML architecture including its features,
model, prediction target, and loss function among others.

These concepts enable us to design the Learning Relaxed
Belady (LRB) cache, the first CDN cache that approximates
Belady’s algorithm. Using this approach in a practical system,
however, requires us to address several systems challenges in-
cluding controlling the computational overhead for ML train-
ing and prediction, limiting the memory overhead for training
and prediction, how to gather online training data, and how to
select candidates for evictions.

We have implemented an LRB simulator and an LRB pro-
totype within Apache Traffic Server [1,2,10,43]." Our evalu-
ation results using 6 production CDN traces show that LRB
consistently performs better than state-of-the-art methods and
reduces WAN traffic by 4-25% compared to a typically de-
ployed CDN cache—i.e., using LRU replacement that is pro-
tected with a Bloom filter [22]. Our evaluation of the proto-
type shows that LRB runs at a similar speed to a heuristic-
based design and its computational overhead and memory
overhead are small.

2 Background and Motivation

In this section, we quantify the opportunities and challenges
that arise in CDN caching. We also discuss the constraints on
the design space of LRB.

2.1 The Challenge of Reducing WAN Traffic

A CDN user request is directed to a nearby CDN server (e.g.,
using DNS or anycast [33]), which caches popular web and
media objects. Each cache miss has to be fetched across the
wide-area network (WAN) (Figure 1). As WAN bandwidth
needs to be leased (e.g., from tier 1 ISPs), CDNs seek to

I'The source code of our simulator and prototype alongside with doc-
umentation and the Wikipedia trace used in our evaluation is available at
https://github.com/sunnyszy/lrb .

EEl Belady [TinyLFU B3 LeCaR [LFUDA HEE B-LRU

o
N

©
=

Byte Miss Ratio

o
o

Wiki A1 A2 Bl B2 B3

Figure 2: Simulated byte miss ratios for Belady and the top-
performaning policies from Section 6 for six CDN production
traces and a 1 TB flash cache size. There is a large gap of
25-40% between Belady and all other policies.

reduce WAN traffic, which corresponds to minimizing their
cache’s byte miss ratio.

CDN caching working sets are massive compared to avail-
able cache space. To reduce bandwidth, a CDN deploys
DRAM and flash caches in each edge server.> A commer-
cial CDN serves content on behalf of thousands of content
providers, which are often large web services themselves. This
leads to a massive working set, which is typically sharded
across the (tens of) servers in an edge cluster [25,77]. Even
after sharding traffic, an individual cache serves traffic with a
distinct number of bytes much larger than its capacity. Conse-
quently, there exists significant competition for cache space.

There are significant opportunities to improve byte miss
ratios. CDN traffic has a variety of unique properties com-
pared to other caching workloads. For example, a striking
property observed in prior work [63] is that around 75% of
all objects do not receive a second request within two days
(so-called “one-hit-wonders”). If these objects are allowed to
enter the cache, the vast majority of cache space is wasted.
Therefore, major CDNs deploy B-LRU, an LRU-eviction pol-
icy using a Bloom filter [63,67,74] to prevent one-hit-wonder
objects from being admitted to the cache.

We quantify the opportunity to improve byte miss ratios
over B-LRU. To this end, we use 6 production traces from
3 different CDNs, which are sharded at the granularity of
a single SSD (around 1-2 TB). Figure 2 compares the byte
miss ratios of B-LRU and the other top-performing policies
from Section 6 to Belady’s MIN [16], and we find that there
remains a gap of 25-40%.

Exploiting miss ratio opportunities is challenging in prac-
tice. The key challenge is that workloads change rapidly over
time and differ significantly between servers and geographic
locations. These changes occur due to load balancing dif-
ferent types of content, e.g., web traffic is more popular in
the morning and video more popular at night. Due to these
rapid changes and breadth of different access patterns, prior

2CDNs typically prefer flash storage over HDDs as cache reads lead to
random reads with very high IOPS requirements. While some CDNs have
hybrid deployments, many CDNs rely entirely on flash [46,67,74,78].

https://github.com/sunnyszy/lrb

PT-1 PD-2 ET-1 ET2 CET-1 CET2

Mean CPU 5% 3% 6% 16% 7% 18%
Peak CPU 19% 12% 10% 24% 13% 30%

Table 1: Mean and peak CPU load in Wikipedia’s produc-
tion deployment CDN across 6 datacenters in three different
timezones, for March 2019. Peak CPU load is below 30%.

caching policies (Section 7) only achieve marginal improve-
ments over B-LRU (Section 6). In fact, many recent caching
policies lead only to gains on some traces with certain cache
size configurations.

In conclusion, there is significant demand to realize caching
policies that can automatically adapt to a geographic loca-
tion’s workload and to changes in request patterns over time.
Machine learning is well suited to achieving this goal. But,
leveraging machine learning for CDN caching requires us to
overcome many challenges we describe in Section 4.

2.2 Opportunity and Requirements

Deployment opportunity. We find that today’s CDN caches
typically have spare processing capacity. Table 1 shows the
CPU load in six production deployments of Wikipedia’s CDN
for March 2019. We see that, on average, there is 90% spare
processing capacity. Even under peak load, there is still 70%
CPU capacity available, as disk and network bandwidth are
frequent bottlenecks. Thus, the opportunity in current deploy-
ment is that we can use this excess processing capacity as part
of more sophisticated caching algorithms.

Deployment requirements. There are three key constraints
when deploying on existing CDN caching servers.
* Moderate memory overhead of a few GBs but not 10s of

GBs because large quantities are not available [19].
* Not require TPUs or GPUs because these are not cur-

rently deployed in CDN servers [41,63].
* Handle tens of thousands of requests per second be-

cause this is the request rate seen at CDN caches [19].

3 Approximating Belady’s MIN Algorithm

In order to approximate Belady’s MIN algorithm in the design
of an ML-based cache, this section introduces the relaxed
Belady algorithm, Belady boundary, and good decision ratio.

3.1 Relaxed Belady Algorithm

It is difficult for an ML predictor to directly approximate
Belady’s MIN algorithm for two reasons. First, the cost of
running predictions for all objects in the cache can be pro-
hibitively high. Second, in order to find the object with the
farthest next request, an ML predictor needs to predict the
time to next request of all objects in the cache accurately.

Cache: {04, Oy, ..., Oy,
Figure 3: The relaxed Belady algorithm partitions objects into
two sets based on their next requests. The next requests of
Oi+1,...,0, are beyond the threshold (Belady boundary).

To overcome these two challenges, we define the relaxed
Belady algorithm, a variant of Belady’s MIN, that randomly
evicts an object whose next request is beyond a specific thresh-
old, as shown in Figure 3. The algorithm partitions the objects
of a cache into two sets each time it needs to make an eviction
decision: objects whose next requests are within the thresh-
old (set 1) and objects whose next requests are beyond the
threshold (set 2). If set 2 is not empty, the algorithm randomly
evicts an object from this set. If set 2 is empty, the algorithm
reverts to the classical Belady among object in set 1.

The relaxed Belady algorithm has two important properties.
First, if the threshold is far, its byte miss ratio will be close to
that of Belady’s MIN. Second, since the algorithm can evict
any of the objects in set 2, not necessarily the object with
farthest distance, there will be many eviction choices in the
cache each time it needs to evict an object.

These properties greatly reduce the requirements for an ML
predictor. Instead of predicting next requests for all objects
in the cache, the ML predictor can run predictions on a small
sample of candidates in the cache for an eviction as long as
the sample includes objects from set 2. This allows a dramatic
reduction of computational cost. In addition, it reduces the
required precision of the ML predictor. It only needs to find an
object whose next request is beyond the threshold instead of
the farthest. This greatly reduces the memory overhead when
gathering training data: instead of having to track objects
indefinitely, it is sufficient to track objects until they are re-
requested or cross the threshold.

Shorter thresholds thus make the task of the ML predictor
more tractable. While longer thresholds move the byte miss
ratio of relaxed Belady closer to Belady’s MIN. It is thus
important to find the proper threshold.

3.2 Belady Boundary

To systematically choose a threshold for the relaxed Belady al-
gorithm, we introduce the Belady boundary as the minimum
of time to next request for all evicted objects by Belady’s
MIN algorithm. It is intuitively meaningful—Belady’s MIN
kept all objects with a next request less than this boundary
in the cache—but requires future information to compute.
In practice, we assume that the Belady boundary is approxi-
mately stationary. This allows us to approximate the Belady
boundary by computing the minimum of the next requests of

Cache size (GB) 64 128 256 512 1024

Boundary (x cache size) 3 2 2 2 2
Objects beyond boundary 19% 19% 16% 12% 10%

Increase in byte miss ratio 10% 13% 12% 11% 9%
over Belady

Table 2: Comparison of the relaxed Belady algorithm to Be-
lady MIN for the Wikipedia trace with different cache sizes.

all evicted objects by the Belady MIN algorithm during the
machine learning warmup period.

Table 2 shows how the Belady boundary affects the byte
miss ratio of relaxed Belady on the Wikipedia trace. We find
that relaxed Belady applies random eviction to a set of objects,
e.g., 19% for a 64 GB cache. While this Belady boundary en-
ables efficient implementations, it comes at the cost of 9-13%
more misses. Compared to the 25%-40% gap between state-
of-the-art online algorithms and Belady’s MIN (Figure 2),
this increase seems acceptable.

Next, we show how to use the Belady boundary to estab-
lish a decision quality metric, which is used to make design
decisions throughout Section 4.

3.3 Good Decision Ratio

To design an algorithm that makes better decisions we need
to determine the quality of individual decisions. End-to-end
metrics like byte miss ratio, however, reflect the aggregated
quality of many decisions. When an algorithm has a byte miss
ratio higher than Belady we know it made some bad decisions,
but we cannot determine which of its decisions were bad. The
individual misses that comprise byte miss ratio are similarly
unhelpful because they are also the result of many earlier
decisions.

Our eviction decision metric is defined with respect to the
relaxed Belady algorithm with the Belady boundary as its
threshold. Evicting an object is a good decision if the next
request of the object is beyond the Belady boundary. It is a
bad decision if its next request is within the Belady boundary.

We find that an algorithm’s good decision ratio—i.e.,
good decisions / # total eviction decisions—correlates
strongly with the byte miss ratio it ultimately achieves (Sec-
tion 6.4). This metric plays a key part in the design of LRB.

4 Design of Learning Relaxed Belady Cache

This section presents the design details of LRB, which uses
ML to imitate the relaxed Belady algorithm. Accomplish-
ing this requires simultaneously addressing two previously
unsolved problems:

* How to design an ML approach that decreases byte miss
ratio relative to state-of-the-art heuristics?

l 1. Past info
T

2. TrainingC 3.ML model | 4. Evict |Cache

Figure 4: General architecture that uses ML for caching with
4 key design issues: 1) what past information to use for ML, 2)
how to generate online training datasets, 3) what ML model
to use, and 4) how to select eviction candidates.

* How to build a practical system with that approach?

Each problem introduces several challenges in isolation, si-
multaneously addressing them additionally requires us to
balance their often-competing goals.

Figure 4 presents a general architecture that uses ML to
make eviction decisions. We identify four key design issues:

(1) Past information. The first design issue is determining
how much and what past information to use. More data im-
prove training quality, but we need to limit the information in
order to build a practical system, as higher memory overhead
leads to less memory that can be used to cache objects.

(2) Training data. The second design issue is how to use
past information for training. As workloads vary over time
the model must be periodically retrained on new data. Thus, a
practical system must be able to dynamically generate training
datasets with proper labels.

(3) ML architecture. The third design issue is selecting a
machine learning architecture that makes good decisions. This
includes selecting features, the prediction target, and the loss
function as well as how to translate predictions into eviction
decisions. In addition, these decisions need to be compatible
with available hardware resources to build a practical system.

(4) Eviction candidate selection. The final design issue is
how to select eviction candidates. Although an approximation
of the relaxed Belady algorithm can evict any object whose
next request is beyond the Belady boundary and there are
many eviction choices, we still need a method to select a
small set of candidates that includes such objects with a high
probability.

The rest of this section describes the design decisions of
LRB for each of these design issues. Our general approach
is to guide our design using the good decision ratio metric
defined in Section 3.

4.1 Past information

LRB keeps information about an object only when its most
recent request is within the sliding memory window. The
information within the sliding memory window is used for
training and prediction.

Setting the size of the sliding memory window is important
to the performance of LRB. If the sliding memory window is
too short, LRB will not have enough training data to produce
a good model and may not have the information it needs
during prediction to make an accurate prediction. If the sliding
memory window is too long, it may take too much space away
from cached data.

LRB uses each trace’s validation prefix to set the sliding
memory window hyperparameter. For small cache sizes, the
validation prefix is long enough to derive the “optimal” sliding
memory window, which achieves the highest good decision
ratio. For large cache sizes, we use a least-squares regression
line fit to the relationship between small cache sizes and their
optimal sliding memory window parameters.

We remark that, at the beginning of a trace (or during initial
deployment), LRB requires training data to build an initial
model. Thus, our implementation uses LRU as a fallback until
sufficient training data is available.

4.2 Training Data

Acquiring training data for our problem is challenging be-
cause the features and corresponding label exist at widely
disparate times. Consider an object that is requested once and
then not requested again until 5 hours later. The features of
the object exist and vary at all times in the 5-hour range. The
label—i.e., what we want to predict—does not exist until the
end of that range, when we know the “future” by waiting until
it is the present. To address the time disparity, LRB decouples
generation of unlabeled training data from labeling that data.

Unlabeled training data generation. To generate unlabeled
training data LRB periodically takes a random sample of
objects in the sliding memory window and then records the
current features of those objects. We choose to randomly
sample over objects instead of over requests to avoid biasing
the training data towards popular objects with many requests.
Such popular objects should be represented in the training
data so the model learns not to evict them. Training data for
less popular objects, however, is more important because they
include the objects beyond the Belady boundary—the good
eviction decisions we want our model to learn. We choose
to randomly sample over all objects in the sliding memory
window instead of only those currently in the cache as cached
objects are similarly biased.

Labeling training data. LRB uses two methods for assign-
ing labels to training data. The first is to wait until an object
is requested again. When this happens, we know the “future”

and use that to determine the label. Some objects, however,
will not be requested until far—e.g., 5 days—in the future.

Waiting until such objects are requested again would intro-
duce many problems. First, it would require excessive mem-
ory overhead as we maintain features for many objects that
were requested a potentially very long time ago. Second, it
would make some of the training data excessively old, e.g., 5
days old. Finally, it would never include training data for ob-
jects that are never requested again—which are a significant
portion of the good decisions we want our method to learn.

LRB’s second method for labeling training data avoids
these problems by leveraging an insight related to the Belady
boundary: all objects that are not requested again for at least
a boundary amount of time are equivalent good eviction de-
cisions. Thus, once the time since last request for an object
exceeds the Belady boundary we can safely label it. LRB uses
this second labeling method when an object falls out of the
sliding memory window.

4.3 ML Architecture

This subsection describes the components of LRB’s ML archi-
tecture. For each component, we describe our choice, describe
its rationale, and then use the good decision ratio to explore
the design space. This exploration is complicated by the fact
that each component influences the others—feature set A may
be better for model X while feature set B may be better for
model Y. Even with our good decision ratio doing a full explo-
ration of all possible combinations is still prohibitive. Instead,
we fix each of the other components on what we ultimately
select in LRB’s design and then vary the specific component.

4.3.1 Features: Deltas, EDCs, and Static

LRB uses three different types of features: deltas, exponen-
tially decayed counters, and static features. The rationale for
these features is to provide a superset of the information used
by previous heuristics. Because our model learns the weight
for different features adding more features should not harm
its accuracy. Thus, the primary tradeoff for features is weigh-
ing how much they help the model against the overhead they
incur. To minimize the overhead of the features we strive to
make storing and updating them efficient (Section 5).

Deltas. Deltas indicate the amount of time between consec-
utive requests to an object. Delta; indicates the amount of
time since an object was last requested. Delta; indicates the
time in between an object’s previous two requests and so on,
i.e., delta,, is the amount of time between an object’s n'* and
(n— 1) previous requests. If an object has been requested
only n times, then above delta, are oo. We include deltas as
features because they subsume the information used by many
successful heuristics. For instance, LRU uses delta;, LRU-K
uses the sum of delta; to delta;, and S4LRU uses a combina-
tion of delta; to deltay.

[s B s+1d 30 s+1d+1le MM s+2d+2e [s+8d+8e W full

21.00

&2

~0.75

S

20.50

a

S0.25

S

©0.00-"61 256 64 128 128 512
Wiki CDN-A1 CDN-B1

Figure 5: Good decision ratios for accumulating features for
LRB on three traces at two cache sizes. LRB uses static
features, 32 deltas, and 10 EDCs (full).

Exponentially decayed counters (EDCs). EDCs track an
approximate per-object request count over longer time periods,
where keeping exact counts would require excessive memory
overhead. Each EDC,; is initialized to 0. Whenever there is
arequest to the object, we first update Delta; and then C; =
1+ C; x 2-Dela1 /27" Uplike Delta;, C; will not be updated
until another request arrives for the same object. The EDCs
with larger values of i cover larger periods, e.g., an object
that was highly popular 1 million requests ago but is now not
popular would have a low EDC; but still have a high EDCy.

The exact EDC equation is motivated by prior observation
in block storage caching [57] and video popularity predic-
tion [79], where EDCs accurately approximate the decay rate
of object popularities. Tracking long-term popularity is used
by many other algorithms such as LFU variants [11,75], Hy-
perbolic [21], and LRFU [57] (which uses a single EDC).
LRB uses multiple EDCs with different decay constants to
capture the request rate to the object over multiple time hori-
Zons.

Static features. Static features include additional unchang-
ing information about an object. They include the size of
the object and its type—e.g., video on demand segment, live
video segment, image. We include static features because
they are available, require little memory overhead, and intu-
itively correlate with different access patterns. For instance,
live video segments might be useful in a cache for only a short
period, whereas video on demand segments might be useful
in the cache for much longer.

Feature effectiveness, number of deltas, number of EDCs.
To determine if this set of features is effective for our ML
architecture we evaluate them using the good decision ratio
in the validation prefix of our traces at many cache sizes. We
also use the good decision ratio to determine how many deltas
we store and how many EDCs we store. Figure 5 shows the
results for an accumulation of static features, Delta;, EDCq,
Delta, and EDC,, Deltas 3—8 and EDCs 3—38, and then Deltas
9-32 and EDCs 9-10 (full). As expected, the addition of more
features improves the good decision ratio but has diminishing
returns. Results on the other three traces and at other cache

N GBM HEE lLogReg [LinReg HEE SVM IEE NN
1.00

o
g
- 0.75
S

£0.50

[
(a)
°

o

[e]
©0.00=5 64256 64 128

Wiki CDN-A1

128 512
CDN-B1

Figure 6: Good decision ratios for models. LRB uses GBM
as it robustly achieves high good decision ratios on all
traces/cache sizes.

sizes are not shown but are similar.

The number of deltas and EDCs is each a tradeoff between
giving the ML architecture more information to use for de-
cisions and storage overhead. We settle on 32 deltas and 10
EDCs because both appear to be past the point of diminishing
returns and thus we are not disadvantaging our ML archi-
tecture by stopping there. We go as high as these numbers
because of the efficiency of our feature storage and our ability
to control memory overhead with the sliding memory window.

4.3.2 Model: Gradient Boosting Machines

LRB uses Gradient Boosting Machines [39] (GBM) for its
model, which outperform all other models we explored and
are highly efficient on CPUs. We were inspired to explore
GBM based on their success in many other domains with
tabular data [23,30,42,61,62,72,80]. We also explored linear
regression, logistic regression, support-vector machines, and
a shallow neural network with 2 layers and 16 hidden nodes.
Figure 6 shows the good decision ratios of the different mod-
els on three traces at two cache sizes. Results on the other
traces and other cache sizes are similar and not shown. GBM
robustly achieve a high good decision ratio. Additionally,
GBM do not require feature normalization and can handle
missing values efficiently, which are common as objects have
a varying number of Deltas. In addition, GBM are highly effi-
cient to train and use for prediction. On typical CDN server
hardware, we can train our model in 300 ms. And, we can run
prediction on 64 eviction candidates in 30 us.

4.3.3 Prediction Target: log (time-to-next-request)

LRB uses regression to predict the time-to-next-request for
objects that are requested within the sliding memory win-
dow. Regression enables LRB to rank these objects (as re-
laxed Belady) and also serves as a confidence measure for
distance to the Belady boundary. Specifically, LRB predicts
the log(time-to-next-request) for an object as we primarily
care about which side of the boundary the next request is on.
If the Belady boundary is 1M (measured by the number of re-
quests), then the difference between predicting 100K and 2M

Memory window Now

Sampling
Labeling

l— Unlabeled dataset ‘
]Eviction

Labeled dataset [= CEM =

- S Samplin

00000 .. Ay pling

LY ST T8
Training

Prediction Eviction

candidates

0000

Figure 7: Detailed architecture overview of LRB.

is larger than the difference between 2M and 3M. For objects
that are not requested within the sliding memory window,
LRB assigns a label as 2x the window size.

We also explored predicting the time from the last request
to the next request, binary classification relative to a boundary,
and unmodified time-to-next-request. We chose log(time-to-
next-request) because it achieved a higher good decision ratio
than all of these alternatives.

4.3.4 Loss Function: L2

LRB uses L2 loss (mean square error). We also tried all eight
loss functions in the LightGBM library [54]. We chose L2
loss because it achieved the highest good decision ratio.

4.3.5 Training dataset Size: 128K

LRB trains a new model once it accumulates a dataset of 128K
labeled training samples. We also explored training dataset
sizes that were much smaller than 128K and up to 512K. We
found that good decision ratio increases with dataset size
but has diminishing returns. We choose 128K because larger
dataset sizes further increase training time and overhead with-
out a noticeable improvement in good decision ratio.

4.4 Eviction Candidate Selection.

LRB randomly samples cached objects to gain eviction can-
didates and runs a batch prediction for all candidates. LRB
evicts the candidate whose predicted next request distance is
the longest.

We determine the choice for our random sample size—
64 samples—using the good decision ratio. We find that 64
samples are past the point of diminishing returns, and thus
choosing it does not disadvantage our ML architecture. It
is also still low enough for low overhead—prediction on 64
samples takes LRB only 30 us.

4.5 Putting All Together

Putting our design decisions together with the general archi-
tecture (Figure 4) from the beginning of the section, we have
the complete design of LRB as shown in Figure 7.

LRB learns from the requested objects in a sliding memory
window whose length approximates the Belady boundary.
The features (deltas, EDCs, static) of these objects are stored
in a compact data structure that is updated as new requests
arrive, moving the sliding memory window forward.

A sampling process continuously samples data from this
data structure, generating an unlabeled dataset. A separate
labeling process continuously labels that data. When the la-
beled dataset is full (128K examples), LRB starts training
a GBM model, and empties the labeled dataset. After that,
whenever the labeled dataset is full again, LRB repeats the
process and replaces the old model with the new one. If a
current request is a cache miss and needs to evict an object,
LRB randomly draws k = 64 eviction candidates and runs
GBM predictions on them. LRB evict the candidate with the
farthest predicted next access time.

5 Implementation

We have implemented a LRB prototype within Apache Traffic
Server (ATS). We have also implemented a LRB simulator in
order to compare with a wide range of other algorithms. The
two implementations share the same code and data structures
as a C++ library with about 1400 lines of code.

5.1 Prototype

ATS is a multi-threaded, event-based CDN caching server
written in C++. A typical ATS configuration consists of a
memory cache and a disk/SSD cache. ATS uses a space-
efficient in-memory lookup data structure as an index to the
SSD cache, which is accessed using asynchronous I/Os to
achieve high performance.

To implement LRB, we have replaced the lookup data struc-
tures for ATS’s disk cache with the architecture described in
Section 4.5. We have also changed ATS to make eviction
decisions asynchronously by scheduling cache admissions
in a lock-free queue. A known challenge when implement-
ing SSD-based caches is write amplification due to random
writes [36,58]. In order to implement LRB, a production im-
plementation would rely on a flash abstraction layer such as
RIPQ [78] or Pannier [58]. Unfortunately, we have no access
to such flash abstraction layers (e.g., RIPQ is proprietary to
Facebook). Our implementation thus emulates the workings
of a flash abstraction layer, reading at random offsets and
writing sequentially to the SSD.

As the memory cache is typically small, which has a negli-
gible impact on the byte miss ratio [19], we leave this part of

Object class: 6- 13-

>
past requests b2 3 4 > 12 31 232
Obj fraction (%) 36 11 5 3 2 1 <1l <1

Overhead (bytes) 25 94 98 102 106 <134 <210 214

Table 3: LRB’s memory overhead depends on an object’s
number of past requests, which we call the object’s class.

ATS unchanged. In total, the changes to ATS, excluding the
LRB library, amount to fewer than 100 lines of code.

5.2 Simulator

We have implemented an LRB simulator based on the Adapt-
Size simulator [19]. Besides LRB, our simulator implements
14 state-of-the-art caching algorithms.®> These include clas-
sic and learning-based algorithms. The classic algorithms
include LRUK [68], LFUDA [11, 75], S4LRU [46], LRU,
FIFO, Hyperbolic [21], GDSF [11] and GDWheel [60].
The learning-based algorithms include an adaptive version
of TinyLFU [34] (which subsumes static TinyLFU [35]),
LeCaR [81], UCB [31] (reinforcement learning), LFO [17]
(supervised learning), LHD [15] and AdaptSize [19]. These
14 algorithms and the simulation environment take about 11K
lines of C++. For TinyLFU, LFO, LHD, and AdaptSize, we
verified parameter configurations match the authors’.

5.3 Optimizations

We have implemented two main optimizations to reduce over-
head and improve performance.

Computationally efficient feature updating. To minimize
the overhead of maintaining features we seek to update them
rarely and for necessary updates to be efficient. LRB accom-
plishes this by favoring time-invariant features when possible,
i.e., features that need only be calculated once. Static features
by definition fall in this category. We choose to make deltas
relative to the time in between consecutive requests instead of
the time between n requests ago and the most recent request
because this makes all deltas other than delta; time-invariant.
A new request to an object shifts delta, to delta, . The over-
head to compute delta; is low and we make EDC updates
efficient using a lookup table with precomputed decay rates.*

Overall, these optimizations result in a constant and small
feature update overhead per request. LRB updates an object’s
feature only at the times when it is requested and when it is
sampled as an eviction candidate.

We compress our features to minimize their memory over-
head. Our compression is based on the predominance of “one-
hit wonders” (Section 2). Consequently, we treat objects for

3For Adaptive-TinyLFU, we integrate the original author’s implementa-
tion (https://github.com/ben-manes/caffeine) into our simulator.

“The size of the table is W/2!°x4 B where W is the sliding memory
window size—e.g., if W is 228 (256 million), the table is 2185 4B = 1 MB.

which we registered only a single request separately. Since
such an object was requested only once in the sliding memory
window, there is no recency information and EDC values are
all 0. Instead of keeping this redundant information, we store
only the key, object size, object type, the last request time, and
a pointer to a struct. This reduces the memory overhead for
single-request objects to 25 B on the Wikipedia trace. When
objects receive more requests, we populate the struct with
only as many deltas as they have past requests. This further
reduces the memory overhead for all objects with fewer re-
quests than the maximum number of deltas, 32. The struct
also contains the EDCs, which are compressed to a single
float [57]. Table 3 shows the distribution and overhead of
objects with different number of requests.

6 Evaluation

This section evaluates our LRB prototype. We additionally
use simulations to compare LRB to a wide range of state-of-
the-art caching algorithms. We aim at answering the following
questions:

* What is the WAN traffic reduction using our LRB prototype
compared to the ATS production system (Sec 6.2)?

¢ What is the overhead of our LRB prototype compared to
CDN production systems (Sec 6.3)?

* How does the byte miss ratio of LRB compare to state-of-
the-art research systems on a wide range of CDN traces and
cache sizes (Sec 6.4)?

e What is the gap between Belady and LRB (Sec 6.5)?

* Can LRB be improved using a longer validation prefix to
select the sliding memory window (Sec 6.6)?

6.1 Experimental Methodology

This subsection describes the traces, competing cache algo-
rithms, warm-up, and the testbed in our experiments.

Traces Our evaluation uses CDN traces from three CDNs,
two of which chose to remain anonymous.

» Wikipedia: A trace collected on a west-coast node, serving
photos and other media content for Wikipedia pages.

¢ CDN-A: Two traces (A1 and A2) collected from two nodes
on different continents serving a mixture of web traffic for
many different content providers.

¢ CDN-B: Three traces (B1-B3) collected from nodes in the
same metropolitan area, each serving a different mixture of
web and video traffic for many different content providers.

Table 4 summarizes key properties of the six traces.

State-of-the-art algorithms. In the prototype experiments,
we compare our LRB implementation (Section 5) to unmod-
ified Apache Traffic Server (ATS, version 8.0.3), which ap-
proximates a FIFO eviction policy. Our simulations compare

https://github.com/ben-manes/caffeine

Wikipedia | CDN-A1 | CDN-A2 | CDN-B1 | CDN-B2 | CDN-B3

Duration (Days) 14 8 5 9 9 9
Total Requests (Millions) 2,800 453 410 1,832 2,345 1,986
Unique Obj Requested (Millions) 37 89 118 130 132 116
Total Bytes Requested (TB) 90 156 151 638 525 575
Unique Bytes Requested (TB) 6 65 17 117 66 104
Warmup Requests (Millions) 2,400 200 200 1,000 1,000 1,000
Request Obj Size Mean (KB) 33 644 155 460 244 351
Max (MB) 1,218 1,483 1,648 1,024 1,024 1,024

Table 4: Summary of the six production traces that are used throughout our evaluation spanning three different CDNS.

LRB with 14 state-of-the-art caching algorithms (Section 5.2).
In addition, our simulations include Belady’s MIN [16] and
relaxed Belady (Section 3) as benchmarks.

Testbed. Our prototype testbed consists of three Google
cloud VMs acting as a client, CDN caching server, and back-
end/origin server, respectively. The VMs are nl-standard-64
VMs with 64 VCPUs, 240 GB of DRAM. To maximize SSD
throughput, we use eight local 375 GB NVMe flash drives
and combine them into one logical drive using software raid.

Clients are emulated using our C++ implementation (=~ 200
LOC), which uses 1024 client threads. The backend/origin
server uses our own concurrent C++ implementation (= 150
LOC). This emulation method can saturate the network band-
width between client and caching server. The clients replay
requests in a closed loop to stress the system being tested and
accelerate evaluation.

In Section 6.3, clients send requests in an open loop, using
the original trace timestamps to closely emulate production
workloads for latency measurements. Both unmodified ATS
and LRB use a 1 TB flash cache size. Our simulations are
based on the request order following the request timestamps
and a range of different cache sizes.

To emulate network RTTs [19], we introduce around 10 ms
and 100 ms of delays to the link between client and proxy and
the link between origin and proxy respectively.

Metadata overhead. Different algorithms may have differ-
ent metadata overheads. For fairness, all algorithms except
Adaptive-TinyLFU > in the experiments have deducted their
metadata overheads from corresponding cache sizes in all
experiments. For example, if an experiment is for a 64 GB
cache, an algorithm with 2 GB of metadata overhead will use
62 GB to store its data.

Validation and warmup trace sections. The first 20% of ev-
ery trace is used as a "validation" section where LRB tunes its
hyperparameters (Section 4). Each experiment uses a warmup
during which no metrics are recorded. The warmup section
is always longer than the validation section and is defined by
the time by which every algorithm has achieved a stable byte
miss ratio. Table 4 lists each trace’s warmup section.

3Qur experiments used an existing implementation of Adaptive-TinyLFU
simulator which does not provide overhead information.

o o
[N) W

Byte Miss Ratio
©
=

—— LRB (Ours) —— ATS

0O 2 4 6 8 10 12 14
Trace Timestamp (Day)

Figure 8: The byte miss ratios of LRB and unmodified ATS
for the Wikipedia trace using a 1 TB cache size.

6.2 WAN Traffic Reduction of LRB Prototype

o
o

Figure 8 compares the byte miss ratios of LRB and unmod-
ified ATS for a 1 TB cache using the Wikipedia trace. LRB
achieves a better overall byte miss ratio than ATS. We ob-
serve that LRB reaches a lower miss ratio than ATS within
the first day, and LRB continues to improve as it obtains more
training data. Throughout the experiment, LRB’s miss ratio
is more stable than ATS’s. We wait for both to stabilize and
measure the WAN bandwidth consumption on days 12-14.
LRB reduces the average bandwidth by 44% over ATS. LRB
also reduces the 95" percentile bandwidth (the basis of some
CDN traffic contracts [6]) by 43% over ATS.

6.3 Implementation Overhead

Table 5 compares the overhead of LRB against unmodified
ATS. We measure throughput, CPU, and memory utilization
at peak throughput (“max” experiment). Note that Table 5
quantifies overheads for the Wikipedia trace, which is pes-

Metric Experiment ATS LRB
Throughput max 11.66 Gbps 11.72 Gbps
Peak CPU max 9% 16%
Peak Mem max 39GB 36 GB
P90 Latency normal 110 ms 72 ms
P99 Latency normal 295 ms 295 ms
Obj Misses normal 5.7% 2.6%

Table 5: Resource usage for ATS and LRB in throughput-
bound (max) and production-speed (normal) experiments.

—+— LRB (Ours) —— LFUDA —— LRU4 TinyLFU —— LeCaR -+- B-LRU —— LRU
2 30% 2 30% 2 30%
@ @ @
S 20% S 20% S 20%
s 5 5
T 10%] ElO%J "310%*’_,&_‘5/\
=] =] © =}
® > ® : - > -9 - :
e
< 0% < Q| E====== === === He————s % b_(?
= Y 9 B
€ _10% € 10% € 10%
= 64 128 256 512 1024 F 64 128 256 512 1024 F 64 128 256 512 1024
Log Cache Size (GB) Log Cache Size (GB) Log Cache Size (GB)
(a) Wikipedia (b) CDN-A1 (c) CDN-A2
2 30% 2 30% 2 30%
@ @ @
S 20% S 20% S 20%
5 5 s
T 10% T 10% T 10%
=] =) =]
® : ® ® ;
< 0% < 0% < 0%
€ _10% € 10%.— € _10%
- 128 256 512 1024 2048 4096 ~ 128 256 512 1024 2048 4096 ~ 128 256 512 1024 2048 4096

Log Cache Size (GB)
(d) CDN-B1

Log Cache Size (GB)
(e) CDN-B2

Log Cache Size (GB)
(f) CDN-B3

Figure 9: WAN traffic reduction over B-LRU at varying caches for Belady, LRB, and the six best state-of-the-art algorithms.
LRB typically provides 4-25% WAN traffic savings over B-LRU.

simistic as all object sizes in all other traces are at least 5x
larger, which results in significantly less overhead.

LRB has no measurable throughput overhead but its peak
CPU utilization increases to 16% from 9% for ATS and 12%
for B-LRU. We remark that even the busiest production cluster
at Wikipedia (“CET-2” in Table 1 in Section 2) has sufficient
CPU headroom.

We measure the number of object misses (which weights
requests equally) when replaying the Wikipedia trace using its
original timestamps (“normal” experiment in Table 5). LRB
has less than half as many object misses as ATS. This miss
reduction allows LRB to improve the 90" percentile latency
(P90) by 35% compared to ATS. At the 99 percentile (P99),
LRB achieves a similar latency to ATS because the origin
server latency dominates.

Cache size ~ Wiki Al A2 Bl B2 B3
64 GB 3.0% 1.0% 1.7% - - -
128 GB 21% 06% 14% 09% 08% 1.1%
256 GB 14% 05% 12% 08% 05% 0.6%
512GB 1.0% 04% 1.0% 0.6% 04% 0.5%
1TB 06% 03% 07% 05% 04% 0.4%
2TB - - - 04% 03% 03%
4TB - - - 03% 03% 03%

Table 6: Fraction of space allocated to metadata for LRB.

As LRB’s memory overhead depends on the cache size
and average object size in a trace, Table 6 measures the peak

I (RB (Ours) B LFUDA B LRU4 0 LeCaR mmm LRU

21.00

64 256
Wiki CDN-Al

64 128 128 512

CDN-B1
Figure 10: Good decision ratios for different algorithms. Good
decision ratio correlates strongly with byte miss ratio.

memory overhead for all traces and all evaluated cache sizes.
Across all configurations, LRB always uses less than 3% of
the cache size to store LRB metadata. While this overhead
reduces the effective cache size, the small loss in byte miss
ratio is more than offset by LRB’s significant miss ratio im-
provements.

We believe these experimental observations show that LRB
is a practical design for today’s CDNs and that it can be
deployed on existing CDN hardware.

6.4 LRB vs. State-of-the-art Algorithms

We compare the byte miss ratio of LRB to 14 state-of-the-art
caching algorithms using simulations with a wide range of
cache sizes using the six different traces.

Of the 14 algorithms, nine algorithms (FIFO, Hyperbolic,
GDSF, GDWheel, UCB, LFO, AdaptSize, S4LRU, and LHD)

HEEl Belady B RelaxedBelady BB LRB (Ours) 1 SOA

o
w
o
w

o
N
o©
N

o
S

Byte Miss Ratio
°
a

Byte Miss Ratio

o
o
o
S}

Wiki A1 A2 Bl B2 B3 : Wiki A1 A2 Bl B2 B3

(a) 256 GB (b) 1 TB

Figure 11: Comparison of byte miss ratios for Belady, relaxed
Belady, LRB, and the best state-of-the-art (SOA) policy.

achieve a low byte miss ratio on at least one CDN traces. To
improve readability, we show only the five best-performing
algorithms in the following figures (TinyLFU, LeCaR, LRUK,
LFUDA, and LRU). Figure 9 shows the wide-area network
traffic reductions of each of these algorithms relative to B-
LRU, with different cache sizes using the six traces.

LRB robustly outperforms the best state-of-the-art algo-
rithms. It achieves the lowest byte miss ratio for all 33 CDN
trace and cache size combinations. Overall, LRB reduces
WAN traffic by 4-25% on average.

Note that LRB’s WAN traffic reduction does not generally
decrease with larger cache sizes. For example, on CDN-B2
the traffic reduction steadily increases between 128 GB and
4 TB. Our interpretation is that these traces span a wide range
of different CDN request patterns. On average (across all
cache sizes), LRB reduces WAN traffic by over 13% com-
pared to B-LRU. Additionally, LRB is robust across all traces
whereas no prior caching algorithm consistently improves
the performance across traces and cache sizes. For example,
LRU4 is the best on Wikipedia, but among the worst on other
traces. LFUDA does well on Wikipedia, CDN-A1, but poorly
on CDB-B3. TinyLFU does well on CDN-B3 and CDN-A2,
but not on Wikipedia. These results indicate that heuristic-
based algorithms work well with certain patterns and poorly
with others.

To further understand where LRB’s improvement comes
from, Figure 10 shows the good decision ratio of LRB, the
three best-performing state-of-the-art algorithms, and LRU.
TinyLFU is not included as its implementation does not allow
us to evaluate individual decisions. LRB achieves 74—86%
good decision ratios, which are the highest for all but one
of six combinations. This implies that LRB learns a better
workload representation and is able to leverage its model to
make good eviction decisions. Overall, we find that the good
decision ratio of an algorithm strongly correlates with its byte
miss ratio. One exception is CDN-B1 512 GB, where LeCaR
has a higher good decision ratio than LRB, but with a worse
byte miss ratio.

6.5 Comparison to Belady

We have seen that LRB provides significant improvements
over state-of-the-art algorithms. We now compare LRB with

-=- LRB-OPT —— LRB —— LFUDA

TinyLFU --- B-LRU

30%

R

w
N
X

20% 20%

10%

)
X

raffic Reduction to BLRU
=
o
xX
) /
!
/
)
!

Traffic Reduction to BLRU

0%

Z-10% -10%

°128 256 512 1024 2048 4096
Log Cache Size (GB)

(b) CDN-B1

64 128 256 512 1024
Log Cache Size (GB)

(a) Wikipedia

Figure 12: Traffic reductions of LRB whose sliding memory
window parameter are trained by a small portion of trace vs.
LRB-OPT whose parameters are trained by the full trace.

the offline Belady MIN (oracle) and relaxed Belady algo-
rithms. Figure 11 compares their byte miss ratios on three
cache sizes. We further compare to the state-of-the-art policy,
i.e., best performing policy, on each trace and cache size.

We find that LRB indeed reduces the gap between state-of-
the-art algorithms and Belady, e.g., by about a quarter on most
traces. While a significant gap still remains to Belady, LRB
imitates relaxed Belady, which is thus a better reference point
for LRB (Section 2). Relaxed Belady represents an ideal LRB
with 100% prediction accuracy. The figure shows that LRB
is closer to relaxed Belady, e.g., one third to half the distance
on most traces. The remaining gap between LRB and relaxed
Belady is due to our model’s prediction error. This suggests
that improvements in the prediction model are a promising
direction for future work.

6.6 Sliding Memory Window Size Selection

LRB tunes its memory window on a 20% validation prefix.
However, as described in Section 4, the validation prefix is
short compared to the optimal sliding memory window choice.
To evaluate how much better LRB can do without this restric-
tion, we experimentally determine the best sliding memory
window for the full trace. We call the resulting LRB variant
“LRB-OPT”. LRB-OPT further improves the performance of
LRB. Figure 12 shows the traffic reduction over B-LRU for
the Wikipedia and CDN-B3 trace. For large cache sizes, LRB-
OPT achieves an additional 1-4% traffic reduction compared
to LRB. All in all, the ready availability of large amounts of
training data in production will be highly beneficial for LRB.

7 Related Work

Although cache design has been studied since 1965 [84], we
are only aware of three prior works that have studied how to
leverage Belady’s MIN [16]. Shepherd Cache [71] used a lim-
ited window to the future to emulate Belady’s algorithm and
defers replacement decisions until reuses occur. Hawkeye and
Harmony [47,48] applied Belady’s algorithm to the history
of memory accesses to help make better eviction or prefetch
decisions. These previous efforts are for hardware caches (in

the processor) and do not apply to software cache designs,
especially with variable-sized objects.

The rest of the extensive literature can be divided into two
major lines of work: caching algorithms and methods to adapt
these algorithms to the workload.

Heuristic caching algorithms. We classify these algorithms
by the features they use in the eviction decisions (Section 2).
The two most widely used features are recency and frequency.
Recency is typically measured as variants [3,44,52,68,70] of
Delta; (as defined in Section 4). Some works also consider
static features such as object sizes [4,5,12,24,37,76]. Appli-
cation ids are commonly considered in shared caches [27,28].
Some algorithms rely entirely on frequency-based features
(similar to individual EDCs) [7,11,38,53,63,75].

Another common approach is to combine a recency feature,
a frequency feature, and an object’s size. This is achieved with
either a fixed weighting function between these features [5,
15,18,21,26,35,40,46,56,59, 69,73, 86, 88], or by using a
single-parameter adaptation method to dynamically set the
weights [13,19,34,49-51,65, 81].

Two recent proposals consider a larger range of features [17,
55] and are evaluated using simulations. Unfortunately, they
are either outperformed [55] or barely match [17] the miss
ratio of recency/frequency-heuristics such as GDSF [26].

LRB uses a superset of all these features and introduces a
low-overhead implementation in the ATS production system.

Workload adaptation methods. There are three different
methods to adapt caching systems and their parameters to
changing workloads.

Only a few papers propose to use machine learning as
an adaptation method [8, 17, 20, 31, 32, 55, 87]. There are
two branches. The first branch uses reinforcement learn-
ing [31,32,55,87], where the state-of-the-art is represented by
UCB in our evaluation. The second branch uses supervised
learning [17,20], where the state-of-the-art is represented by
LFO in our evaluation. All of these proposals are evaluated us-
ing simulations. Unfortunately, both UCB and LFO perform
much worse than simpler heuristics such as GDSF [26] on
CDN traces (Section 6). In fact, recent work concludes that
caching “is not amenable to training good policies” [55]. LRB
overcomes this challenge using a different feature set (Sec-
tion 4) and shows the feasibility of implementing machine
learning in CDN production systems (Section 5).

The most common prior tuning approaches rely on shadow
cache and hill climbing algorithms [13,19,28,34,50,52,56,65,
81,82, 88]. Shadow caches are simulations that evaluate the
miss ratio of a few parameter choices in parallel. Hill climbing
repeatedly reconfigures the system to use the best parameter
seen in these simulations, and restarts the simulations in the
neighborhood of the new parameter.

Several caching systems rely on mathematical prediction
models [9,45,64,83,85]. All heuristics-based algorithms and
workload adaptation methods share the same fundamental

limitation: they work well with certain workloads and poorly
with others.

8 Conclusions

In this paper, we have presented the design, implementation,
and evaluation of LRB and have shown that it is possible to
design a practical ML-based CDN cache that approximates
Belady’s MIN algorithm and outperforms state-of-the-art ap-
proaches over 6 production CDN traces.

The key advantage of using ML to approximate Belady’s
MIN algorithm over access-pattern specific or heuristics-
based approaches is that it can intelligently make cache evic-
tion decisions based on any access pattern.

More importantly, we have introduced the relaxed Belady
algorithm, Belady boundary, and good decision ratio as an
eviction quality metric, which has enabled us to take a funda-
mentally new approach to caching that approximates Belady’s
MIN algorithm. We expect that these concepts can benefit
others in the future.

We have shown that LRB’s implementation is practical
and deployable by replacing the caching component of a
production CDN caching system with LRB. Our experiments
show that its throughput and latency are on par with the native
implementation. LRB requires neither GPUs nor accelerators
and, in fact, its additional CPU and memory overheads are
moderate and within the constraints of today’s CDN server
hardware. This deployable design is enabled by key design
decisions including our feature selection, sliding memory
window, training data selection, and choice of a lightweight
machine learning model.

We have also shown that there is a sizable gap between
LRB and the relaxed Belady offline algorithm. A promising
direction of future work is to further improve the prediction
accuracy of ML in LRB.

While we show tuning LRB’s hyperparameters can be done
on a small validation trace, we plan to further simplify deploy-
ment by automating the tuning of the sliding memory window
parameter. These improvements will be available from LRB’s
repository at https://github.com/sunnyszy/1lrb.

Acknowledgements

This research is partly funded by a Comcast Innovation grant,
a Princeton University fellowship, and a Facebook research
grant. We are grateful to our anonymous reviewers, our shep-
herd Rebecca Isaacs, Amit Levy, and David Liu whose ex-
tensive comments substantially improved this work. We also
thank Fei Gao, Qizhe Cai, Rong Huang, Jeffrey Helt, and Jen-
nifer Lam who contributed to the project at different stages.

https://github.com/sunnyszy/lrb

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Companies using apache traffic server.
//trafficserver.apache.org/users.html.
cessed: 2019-04-22.

https:
Ac-

Netlify. https://www.netlify.com/open-source/.
Accessed: 2019-04-22.

A paging experiment with the multics system. MIT Press,
1969.

Marc Abrams, C. R. Standridge, Ghaleb Abdulla,
S. Williams, and Edward A. Fox. Caching proxies:
Limitations and potentials. Technical report, Virginia
Polytechnic Institute & State University Blacksburgh,
VA, 1995.

Marc Abrams, Charles R Standridge, Ghaleb Abdulla,
Edward A Fox, and Stephen Williams. Removal policies
in network caches for World-Wide Web documents. In
ACM SIGCOMM, pages 293-305, 1996.

Micah Adler, Ramesh K Sitaraman, and Harish
Venkataramani. Algorithms for optimizing the band-
width cost of content delivery. Computer Networks,
55(18):4007-4020, 2011.

Charu Aggarwal, Joel L Wolf, and Philip S Yu. Caching
on the world wide web. IEEE Transactions on Knowl-
edge and Data Engineering, 11(1):94-107, 1999.

Zahaib Akhtar, Yaguang Li, Ramesh Govindan, Emir
Halepovic, Shuai Hao, Yan Liu, and Subhabrata Sen.
Avic: a cache for adaptive bitrate video. In Proceedings
of the 15th International Conference on Emerging Net-
working Experiments And Technologies, pages 305-317,
2019.

George Almasi, Calin Cascaval, and David A Padua.
Calculating stack distances efficiently. In MSP/ISMM,
pages 37-43, 2002.

Apache. Traffic Server, 2019. Available at https://
trafficserver.apache.org/, accessed 09/18/19.

Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin. Evaluating content management
techniques for web proxy caches. Performance Evalua-
tion Review, 27(4):3—-11, 2000.

Hyokyung Bahn, Kern Koh, Sam H Noh, and SM Lyul.
Efficient replacement of nonuniform objects in web
caches. IEEE Computer, 35(6):65-73, 2002.

Sorav Bansal and Dharmendra S Modha. CAR: Clock
with adaptive replacement. In USENIX FAST, volume 4,
pages 187-200, 2004.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Novella Bartolini, Emiliano Casalicchio, and Salvatore
Tucci. A walk through content delivery networks. In
IEEE MASCOTS, pages 1-25, 2003.

Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving cache hit rate by maximizing hit den-
sity. In USENIX NSDI, pages 389—-403, 2018.

Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems journal,
5(2):78-101, 1966.

Daniel S Berger. Towards lightweight and robust ma-
chine learning for cdn caching. In ACM HotNets, pages
134-140, 2018.

Daniel S Berger, Sebastian Henningsen, Florin Ciucu,
and Jens B Schmitt. Maximizing cache hit ratios by
variance reduction. ACM SIGMETRICS Performance
Evaluation Review, 43(2):57-59, 2015.

Daniel S. Berger, Ramesh Sitaraman, and Mor Harchol-
Balter. Adaptsize: Orchestrating the hot object memory
cache in a content delivery network. In USENIX NSDI,
pages 483498, 2017.

Adit Bhardwaj and Vaishnav Janardhan. PeCC:
Prediction-error Correcting Cache. In Workshop on
ML for Systems at NeurIPS, December 2018.

Aaron Blankstein, Siddhartha Sen, and Michael J Freed-
man. Hyperbolic caching: Flexible caching for web
applications. In USENIX ATC, pages 499-511, 2017.

Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422-426, 1970.

Christopher J.C. Burges. From RankNet to Lamb-
daRank to LambdaMART: An Overview. Technical
report, Microsoft Research Technical Report MSR-TR-
2010-82, 2010.

Pei Cao and Sandy Irani. Cost-aware WWW proxy
caching algorithms. In USENIX symposium on Internet
technologies and systems, volume 12, pages 193-206,
1997.

Fangfei Chen, Ramesh K Sitaraman, and Marcelo Tor-
res. End-user mapping: Next generation request routing
for content delivery. ACM SIGCOMM, 45(4):167-181,
2015.

Ludmila Cherkasova and Gianfranco Ciardo. Role of
aging, frequency, and size in web cache replacement
policies. In High-Performance Computing and Network-
ing, pages 114-123, 2001.

https://trafficserver.apache.org/users.html
https://trafficserver.apache.org/users.html
https://www.netlify.com/open-source/
https://trafficserver.apache.org/
https://trafficserver.apache.org/

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Dynacache: dynamic cloud caching. In
USENIX HotCloud, 2015.

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In USENIX NSDI, pages 379-392,
2016.

CISCO. Cisco visual networking index: Fore-
cast and trends 2022, February 2019. Avail-
able at https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/
visual-networking-index-vni/
white-paper-cl1-741490.pdf, accessed 09/18/19.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In ACM SOSP, pages 153-167, 2017.

Renato Costa and Jose Pazos. Mlcache: A multi-armed
bandit policy for an operating system page cache. Tech-
nical report, University of British Columbia, 2017.

Jeff Dean. Is google using reinforcement learning to
improve caching? Personal communication on 2018-09-
27, September 2018.

John Dilley, Bruce M. Maggs, Jay Parikh, Harald
Prokop, Ramesh K. Sitaraman, and William E. Weihl.
Globally distributed content delivery. IEEE Internet
Computing, 6(5):50-58, 2002.

Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In ACM
Middleware, pages 94—106, 2018.

Gil Einziger and Roy Friedman. Tinylfu: A highly effi-
cient cache admission policy. In IEEE Euromicro PDP,
pages 146-153, 2014.

Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In USENIX NSDI,
pages 65-78, 2019.

Bin Fan, David G Andersen, and Michael Kaminsky.
MemC3: Compact and concurrent memcache with
dumber caching and smarter hashing. In USENIX NSDI,
pages 371-384, 2013.

Bin Fan, Hyeontaeck Lim, David G Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In ACM SoCC, page 23, 2011.

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189-1232, 2001.

Nicolas Gast and Benny Van Houdt. Transient and
steady-state regime of a family of list-based cache re-
placement algorithms. In ACM SIGMETRICS, pages
123-136, 2015.

Syed Hasan, Sergey Gorinsky, Constantine Dovrolis,
and Ramesh K Sitaraman. Trade-offs in optimizing the
cache deployments of cdns. In IEEE INFOCOM, pages
460468, 2014.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu,
Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich,
Stuart Bowers, et al. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth
International Workshop on Data Mining for Online Ad-
vertising, pages 1-9, 2014.

Leif Hedstrom. Deploying apache traffic server, 2011.
Oscon.

Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Ying-
wei Luo, Chen Ding, Song Jiang, and Zhenlin Wang.
LAMA: Optimized locality-aware memory allocation
for key-value cache. In USENIX ATC, pages 57-69,
2015.

Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,
Zhenlin Wang, Chen Ding, and Chencheng Ye. Fast miss
ratio curve modeling for storage cache. ACM Transac-
tions on Storage (TOS), 14(2):12, 2018.

Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of
Facebook photo caching. In ACM SOSP, pages 167-181,
2013.

Akanksha Jain and Calvin Lin. Back to the future: lever-
aging belady’s algorithm for improved cache replace-
ment. In ACM/IEEE ISCA, pages 78-89, 2016.

Akanksha Jain and Calvin Lin. Rethinking belady’s
algorithm to accommodate prefetching. In 45th
ACM/IEEE Annual International Symposium on Com-
puter Architecture, ISCA 2018, Los Angeles, CA, USA,
June 1-6, 2018, pages 110-123, 2018.

Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-
Pro: An effective improvement of the clock replacement.
In USENIX ATC, pages 323-336, 2005.

Song Jiang and Xiaodong Zhang. LIRS: an efficient
low inter-reference recency set replacement policy to
improve buffer cache performance. ACM SIGMETRICS,
30(1):31-42, 2002.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Shudong Jin and Azer Bestavros. GreedyDual* web
caching algorithm: exploiting the two sources of tempo-
ral locality in web request streams. Computer Commu-
nications, 24:174-183, 2001.

Theodore Johnson and Dennis Shasha. 2Q: A low over-
head high performance buffer management replacement
algorithm. In VLDB, pages 439-450, 1994.

George Karakostas and Dimitrios N Serpanos. Exploita-
tion of different types of locality for web caches. In
IEEE ISCC, pages 207-212, 2002.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision
tree. In Advances in Neural Information Processing
Systems, pages 3146-3154, 2017.

Mathias Lecuyer, Joshua Lockerman, Lamont Nelson,
Siddhartha Sen, Amit Sharma, and Aleksandrs Slivkins.
Harvesting randomness to optimize distributed systems.
In ACM HotNets, pages 178-184, 2017.

Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H
Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim.
On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used
(LFU) policies. In ACM SIGMETRICS, volume 27,
pages 134-143, 1999.

Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H
Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim.
LRFU: A spectrum of policies that subsumes the least
recently used and least frequently used policies. IEEE
transactions on Computers, (12):1352—-1361, 2001.

Cheng Li, Philip Shilane, Fred Douglis, and Grant Wal-
lace. Pannier: Design and analysis of a container-based
flash cache for compound objects. ACM Transactions
on Storage (TOS), 13(3):24, 2017.

Cong Li. Dlirs: Improving low inter-reference recency
set cache replacement policy with dynamics. In ACM
MSST, pages 59-64, 2018.

Conglong Li and Alan L Cox. Gd-wheel: a cost-aware
replacement policy for key-value stores. In EUROSYS,
pages 1-15, 2015.

Ping Li. Robust logitboost and adaptive base class (abc)
logitboost. arXiv preprint arXiv:1203.3491, 2012.

Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou,
Cui Li, and Feng Sun. Model ensemble for click pre-
diction in bing search ads. In Proceedings of the 26th
International Conference on World Wide Web Compan-
ion, pages 689-698, 2017.

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

Bruce M Maggs and Ramesh K Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM CCR,
45:52-66, 2015.

Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and
Irving L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems journal, 9(2):78-117, 1970.

Nimrod Megiddo and Dharmendra S Modha. ARC:
A self-tuning, low overhead replacement cache. In
USENIX FAST, volume 3, pages 115-130, 2003.

Kianoosh Mokhtarian and Hans-Arno Jacobsen.
Caching in video cdns: Building strong lines of defense.
In ACM EuroSys, page 13, 2014.

Devon H. O’Dell. Personal communication at Fastly.

Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard
Weikum. The LRU-K page replacement algorithm for
database disk buffering. ACM SIGMOD, 22(2):297-306,
1993.

Sejin Park and Chanik Park. Frd: A filtering based buffer
cache algorithm that considers both frequency and reuse
distance. In ACM MSST, pages 59-64, 2017.

Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-
soo Kim, and Joonwon Lee. CFLRU: a replacement
algorithm for flash memory. In ACM/IEEE CASES,
pages 234-241, 2006.

Kaushik Rajan and Govindarajan Ramaswamy. Emu-
lating optimal replacement with a shepherd cache. In
IEEE/ACM MICRO, pages 445-454, 2007.

Matthew Richardson, Ewa Dominowska, and Robert
Ragno. Predicting clicks: estimating the click-through
rate for new ads. In Proceedings of the 16th interna-
tional conference on World Wide Web, pages 521-530,
2007.

Luigi Rizzo and Lorenzo Vicisano. Replacement poli-
cies for a proxy cache. IEEE/ACM TON, 8:158-170,
2000.

Emanuele Rocca. Running Wikipedia.org, June
2016. Available at https://www.mediawiki.org/
wiki/File:WMF_Traffic_Varnishcon_2016.pdf,
accessed 09/18/19.

Ketan Shah, Anirban Mitra, and Dhruv Matani. An O(1)
algorithm for implementing the LFU cache eviction
scheme. Technical report, Stony Brook University, 2010.

David Starobinski and David Tse. Probabilistic methods
for web caching. Performance evaluation, 46:125-137,
2001.

https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf
https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf

[77]

[78]

[79]

[80]

[81]

[82]

Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh K Sitaraman. Footprint descriptors:
Theory and practice of cache provisioning in a global
cdn. In ACM CoNEXT, pages 55-67, 2017.

Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: advanced photo caching on flash for
facebook. In USENIX FAST, pages 373-386, 2015.

Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vig-
fusson, Wyatt Lloyd, and Kai Li. Popularity prediction
of facebook videos for higher quality streaming. In
USENIX ATC, pages 111-123, 2017.

Ilya Trofimov, Anna Kornetova, and Valery Topinskiy.
Using boosted trees for click-through rate prediction for
sponsored search. In Proceedings of the Sixth Interna-
tional Workshop on Data Mining for Online Advertising
and Internet Economy, pages 1-6, 2012.

Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez,
Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao,
and Giri Narasimhan. Driving cache replacement with
ML-based LeCaR. In USENIX HotStorage, 2018.

Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization

[83]

[84]

[85]

[86]

[87]

[88]

using miniature simulations. In USENIX ATC, pages
487498, 2017.

Carl A Waldspurger, Nohhyun Park, Alexander Garth-
waite, and Irfan Ahmad. Efficient MRC construction
with SHARDS. In USENIX FAST, pages 95-110, 2015.

Maurice V Wilkes. Slave memories and dynamic stor-
age allocation. IEEE Transactions Electronic Comput-
ers, 14(2):270-271, 1965.

Jake Wires, Stephen Ingram, Zachary Drudi,
Nicholas JA Harvey, and Andrew Warfield. Characteriz-
ing storage workloads with counter stacks. In USENIX
OSDI, pages 335-349, 2014.

Roland P Wooster and Marc Abrams. Proxy caching
that estimates page load delays. Computer Networks
and ISDN Systems, 29(8):977-986, 1997.

Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. A
deep reinforcement learning-based framework for con-
tent caching. In IEEE CISS, pages 1-6, 2018.

Yuanyuan Zhou, James Philbin, and Kai Li. The multi-
queue replacement algorithm for second level buffer
caches. In USENIX ATC, pages 91-104, 2001.

	Introduction
	Background and Motivation
	The Challenge of Reducing WAN Traffic
	Opportunity and Requirements

	Approximating Belady's MIN Algorithm
	Relaxed Belady Algorithm
	Belady Boundary
	Good Decision Ratio

	Design of Learning Relaxed Belady Cache
	Past information
	Training Data
	ML Architecture
	Features: Deltas, EDCs, and Static
	Model: Gradient Boosting Machines
	Prediction Target: log (time-to-next-request)
	Loss Function: L2
	Training dataset Size: 128K

	Eviction Candidate Selection.
	Putting All Together

	Implementation
	Prototype
	Simulator
	Optimizations

	Evaluation
	Experimental Methodology
	WAN Traffic Reduction of LRB Prototype
	Implementation Overhead
	LRB vs. State-of-the-art Algorithms
	Comparison to Belady
	Sliding Memory Window Size Selection

	Related Work
	Conclusions

