
Maximizing Page-Level Cache Hit Ratios in Large Web Services
Justin Wang, Benjamin Berg, Daniel S. Berger

Carnegie Mellon University
Siddhartha Sen
Microsoft Research

Abstract
Large web services typically serve pages consisting of many

individual objects. To improve the response times of page-requests,
these services store a small set of popular objects in a fast caching
layer. A page-request is not considered complete until all of its
objects have either been found in the cache or retrieved from a
backend system. Hence, caching only speeds up a page request if
all of its objects are found in the cache. We seek caching policies
that maximize the page-level hit ratio—the fraction of requests that
find all of their objects in the cache.

This work analyzes page requests served by a Microsoft produc-
tion system.We find that in practice there is potential for improving
the page-level hit ratio over existing caching strategies, but that
analytically maximizing the page-level hit ratio is NP-hard.

ACM Reference Format:
Justin Wang, Benjamin Berg, Daniel S. Berger and Siddhartha Sen. 2018.
Maximizing Page-Level Cache Hit Ratios in Large Web Services. In Pro-
ceedings of ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS). ACM, NY, USA, 3 pages.

1 Introduction
Providers of large user-facing web services have long faced the

challenge of achieving low response times [4, 9]. These web ser-
vices often employ fast caching systems to improve response times.
Because response times for cache hits are generally orders of mag-
nitude faster than for cache misses, even small increases in cache
hit ratios can significantly improve mean response time [2].

However, as web services increasingly personalize content for
each user, achieving high cache hit ratios becomes increasingly
difficult. For example, on xbox.com, users are shown different lists
of games to purchase depending on their prior purchase history.
Hence, two users who make the same request may receive dif-
ferent page1, results. A naive caching approach, called full-page
caching, stores each personalized page separately. However, each ad-
ditional personalizable component on a page increases the number
of possible pages exponentially, making full-page caching impracti-
cal. Moreover, full-page caching is often inefficient as the content
served for two users may only differ slightly (e.g., the responses
could share ten game offers and differ on just one offer).

As a result, many web architectures have moved from full-page
caching to object-level caches, where we think of a single page as
being composed of several objects. Figure 1 depicts this architecture.
An application server first tries to retrieve a page-request’s objects

1Note that unlike [1], we use “page” to refer to web pages, which are composed of
several “objects” such as ads, news, products, images, and so on.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS, June, 2018, Irvine, California, USA
© 2018 Copyright held by the owner/author(s).

page request=(a,b,c) 

Product Catalogue
Backend

Recommender
Backend

User
Entitlements

Backend

B
a
cke

n
d

S
y
ste

m
s

Caching Layer

ob
je
ct

 a

object c

ob
ject b

A
p
p
lica

tio
n

 S
e
rv

e
r

Figure 1: In large webservices, application servers assemble
pages by aggregating objects from various backend systems.

from the cache and then retrieves cache misses from backend sys-
tems [12]. Once the server retrieved all necessary objects, they are
assembled into a page, and the page-request is considered complete.

The challenge in object-level caching is that page-request re-
sponse time will not be significantly reduced unless all the re-
quested objects are found in the cache. If even a single object is
not in the cache, the request must wait while a backend system is
queried, which is typically much slower than a cache lookup [2].
Thus, although it may seem natural to try and maximize the object-
level hit ratio—i.e., the fraction of object requests that are served
from the cache—a high object-level hit ratio may not reduce page-
request response times. Instead, we aim to maximize the page-level
hit ratio, the fraction of pages which find all of their objects in the
cache. For example, if every page-request consists of 100 objects
and finds 99 of them in the cache, the object-level hit ratio would be
99%, but the page-level hit ratio would be 0%. If we could alternately
cache all 100 objects for half of the page-requests and none of the
objects for the other half, our object-level hit ratio would decrease
to 50%, but the page-level hit ratio would increase from 0% to 50%!

Most existing work on building caching systems [2, 6, 7] and
on analyzing caching systems [3, 5, 10, 11] focuses solely on the
object-level hit ratio. Although [8] considers objects of different
sizes and costs, the cost of a cache miss for objects in our setting
is hard to describe, since it depends on the state of the cache and
thus varies over time. Furthermore, while [1] considers caching to
maximize page-level hit ratio, this work does not consider pages
which can share common objects. The goal of our work is to explore
caching policies that maximize the page-level hit ratio for pages
composed of shared objects. Specifically, we study the example of
the OneRF page rendering framework at Microsoft, which serves
several major websites (including microsoft.com and xbox.com)
and currently relies on an object-level caching architecture.

2 Evaluation of Object-Level Caching
We first evaluate the performance of object-level caching on

a OneRF production trace and examine the extent to which page-
requests share objects in common.We show that maximizing object-
level hit ratio for this trace is not a good proxy for maximizing
page-level hit ratio. This analysis uses a OneRF production trace
from a full day in July 2017 which contains several hundred million
object-queries and corresponding page-request-identifiers.

To evaluate object-level caching, we simulate an object-level
LRU cache and a full-page LRU cache processing requests from the
production trace. The results of this simulation are shown in Figure
2a. We find that the object-level cache significantly outperforms the

1



SIGMETRICS, June, 2018, Irvine, California, USA Justin Wang, Benjamin Berg, Daniel S. Berger and Siddhartha Sen

0.5Gb 1Gb 32Gb 1Tb
Cache Capacity

0.4

0.5

0.6

0.7

0.8

Pa
ge

-L
ev

el
 H

it 
Ra

tio

full page
lru
Max full page

(a) Simulation results

100 101 102 103 104 105 106

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

(b) Object degree

100 101 102 103 104 105 1060.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Minimum
Maximum

(c) Sharing degree (d) Contribution graph

Figure 2: Analysis of a Microsoft production trace. In (a), our simulations show that object-level caches lead to significantly
higher page-level hit ratios than full-page caching. In (b), we analyze the degree of objects and find that more than 50% of
objects are shared between more than 103 page-requests. In (c), we calculate the minimum and maximum object degree for
a given page-request and find that about 80% of requests share at least on object with over 103 distinct requests. In (d), we
calculate the contribution to the page-level hit ratio for the 105 most popular objects. We rank the objects by popularity. For
ranks above 103, the contribution varies wildly.

full-page cache with respect to page-level hit ratio. One might guess
that this is due to space savings since, unlike the full-page cache,
the object-level cache will not cache the same object multiple times.
However, even as the cache size grows, the page-level hit rates
do not converge. This is due to another advantage of the object-
level cache: it reduces compulsory misses by allowing previously
unseen pages to find all of their component objects in the cache
due to previous, similar page-requests. Hence, the degree to which
page-requests share objects in common will determine the ability of
object-level caching to reduce both capacity misses and compulsory
misses at the page level.

To understand how objects are shared between requests, we
introduce the notion of object degree, which counts how many
distinct requests a particular object belongs to. The cumulative
distribution function in Figure 2b grows logarithmically with the
object degree, showing that there is an even mixture of highly
shared and mostly unique objects.

We can also compute sharing statistics at a request level. For
each request, we compute the minimum and maximum object de-
grees over the objects in the request. We call these the minimum
and maximum sharing degrees of a request. Figure 2c shows the
cumulative distribution functions for these two metrics. We see
that about 80% of requests share at least one object with over 103
distinct requests and roughly 50% of requests share each of their
objects with over 103 other requests. Thus, nearly all requests are
composed of very commonly used objects.

Finally, we show that maximizing object-level hit ratio is not
sufficient to provide a high page-level hit ratio. We begin by con-
sidering an infinite-size cache that contains every object. For each
object o, we calculate by how much the page-level hit ratio de-
creases when o is removed from this infinite cache. We call this
difference o’s contribution to the page-level hit ratio.

Figure 2d is a scatter plot of popularity rank vs contribution. The
red line in this figure indicates the number of objects required to
achieve a .5 object-level hit ratio. For objects with a rank higher than
this threshold, making caching decisions is hard because objects
with similar rank have wildly different contributions.

3 Maximing Page-Level Hits is Hard
We now consider the following simplified, offline version of our

caching problem: Given fixed page request probabilities and a fixed

cache size, find the subset of objects that maximizes the expected
long-term page-level hit ratio and fits into the cache.

We show that this optimization problem is NP-Hard by using
a reduction from the densest k-subgraph problem. We further ob-
serve this optimization problem is closely related to constrained
minimization of a submodular function for which there is no known
constant factor approximation polynomial time algorithm [13].

4 Conclusion
Large web services depend on effective object-level caching lay-

ers to reduce the mean response time of page-requests. However,
maximizing the page-level hit ratio is challenging.

In future work, we seek to develop caching policies that incor-
porate how different objects contribute to the page-level hit ratio
when making cache replacement decisions. We also seek to quan-
tify more rigorously when request-aware caching is necessary by
analyzing a more diverse set of traces including other web services.

References
[1] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker,

and I. Stoica. Pacman: Coordinated memory caching for parallel jobs. In USENIX
NSDI, pages 20–20, 2012.

[2] N. Beckmann, H. Chen, and A. Cidon. LHD: Improving cache hit rate by maxi-
mizing hit density. In USENIX NSDI, pages 389–403, 2018.

[3] D. S. Berger, N. Beckmann, and M. Harchol-Balter. Practical bounds on optimal
caching with variable object sizes. POMACS, 2(2):32, 2018.

[4] D. S. Berger, B. Berg, T. Zhu, M. Harchol-Balter, and S. Sen. RobinHood: Tail
latency-aware caching - dynamically reallocating from cache-rich to cache-poor.
In USENIX OSDI, 2018.

[5] D. S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact analysis of TTL cache
networks. Perform. Eval., 79:2 – 23, 2014. Special Issue: Performance 2014.

[6] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. AdaptSize: Orchestrating
the hot object memory cache in a content delivery network. In USENIX NSDI,
pages 483–498, Berkeley, CA, USA, 2017. USENIX Association.

[7] A. Blankstein, S. Sen, and M. J. Freedman. Hyperbolic caching: Flexible caching
for web applications. In USENIX ATC, pages 499–511, 2017.

[8] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In USENIX
SITS, pages 193–206, 1997.

[9] J. Dean and L. A. Barroso. The tail at scale. CACM, 56(2):74–80, 2013.
[10] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approximation for

LRU cache performance. In ITC, page 8, 2012.
[11] N. Gast and B. Van Houdt. Transient and steady-state regime of a family of

list-based cache algorithms. In ACM SIGMETRICS, pages 123–136, 2015.
[12] C. Li, D. G. Andersen, Q. Fu, S. Elnikety, and Y. He. Better caching in search

advertising systems with rapid refresh predictions. In WWW, 2018.
[13] K. Nagano, Y. Kawahara, and K. Aihara. Size-constrained submodular minimiza-

tion through minimum norm base. In ICML, pages 977–984, 2011.

2


	Abstract
	1 Introduction
	2 Evaluation of Object-Level Caching
	3 Maximing Page-Level Hits is Hard
	4 Conclusion
	References

