
Towards Lightweight and Robust Machine Learning
for CDN Caching

Daniel S. Berger
Carnegie Mellon University

ABSTRACT
Recent advances in the field of reinforcement learning promise
a general approach to optimize networking systems. This pa-
per argues against the recent trend for generalization by intro-
ducing a case study where domain-specific modeling enables
the application of lightweight and robust learning techniques.

We study CDN caching systems, which make a good case
for optimization as their performance directly affects opera-
tional costs, while currently relying on many hand-tuned pa-
rameters. In caching, reinforcement learning has been shown
to perform suboptimally when compared to simple heuristics.
A key challenge is that rewards (cache hits) manifest with
large delays, which prevents timely feedback to the learning
algorithm and introduces significant complexity.

This paper shows how to significantly simplify this prob-
lem by explicitly modeling optimal caching decisions (OPT).
While prior work considered deriving OPT impractical, re-
cent theoretical modeling advances change this assumption.
Modeling OPT enables even lightweight decision trees to
outperform state-of-the-art CDN caching heuristics.

1 INTRODUCTION
The majority of the Internet’s content is delivered by global
caching networks, also known as Content Delivery Networks
(CDNs). CDNs enhance performance by caching content in
servers located in user proximity. This proximity enables fast
content delivery, but requires CDNs to operate servers in
hundreds of networks around the world [58, 69].

A major operational cost factor is the bandwidth cost be-
tween CDN caching servers and data centers storing the orig-
inal copies of web content. Hence, CDNs aim to maximize
the fraction of bytes served locally from the cache [28, 51],
which is also known as the byte hit ratio (BHR).

Growing content diversity introduces operational chal-
lenges. CDN traffic is rapidly growing and is estimated to
soon account for two thirds of the Internet’s traffic [19]. As
their user base grows, CDNs serve an increasingly diverse set

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVII, November 15–16, 2018, Redmond, WA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6120-0/18/11. . . $15.00
https://doi.org/10.1145/3286062.3286082

of content, e.g., web, social, and ecommerce sites, software
downloads, and video streaming. Each type of content has
unique demands on the CDN’s caching systems, e.g., iOS
software downloads are large in size with popularity spikes
on iOS update days, whereas Facebook photos are small with
a long tail of infrequently requested photos.

The growing diversity in CDN content complicates main-
taining the high BHR of caching servers. To adapt a cache
to the content mix it serves, CDNs have introduced various
configuration parameters [12, 51]. For example, these param-
eters control which objects are placed into the RAM, SSD,
and HDD caches on each CDN server.

The case for automatically tuning operational parame-
ters. Tuning the many parameters in the CDN architecture
is challenging. First, there are tens of thousands of caching
servers, each with many parameters. Second, each content
mix requires a different parameter choice [12, 51] and the
content mix changes over time. In fact, content mix changes
can happen within minutes, e.g., due to changes in how users
are directed to caching servers to balance load [12, 51, 72].
Moreover, content providers increasingly rely on multi-CDN
deployments and frequently shift traffic between CDNs [55].

In conclusion, the scale and requirements like fast reaction
times are at odds with manually tuning parameters in CDNs.

The promise of general learning techniques. To improve
efficiency, CDNs seek to remove their dependence on manual
parameter tuning1. Fortunately, recent advances in reinforce-
ment learning (RL) [31, 32, 54, 68] promise a general ap-
proach to systems that “manage resources on their own” [52].
So, one might consider RL a straightforward choice for au-
tomating CDN parameters. In fact, several groups propose to
apply RL to caching, e.g., Google [22, 23], Microsoft [48],
Facebook [16], and several academic papers [20, 29, 66, 78].

0.0

0.2

0.4

0.6

R
N

D

L
R

U

R
L
C

G
D

S
F

O
b

je
c
t

H
it

R
a

tio

Figure 1: RL-
based caching.

Despite these efforts, RL caching sys-
tems are not yet competitive with ex-
isting heuristics. For example, Figure 1
shows results from last year’s Hot-
Nets workshop [48], where RL-based
caching (RLC) performs similar to ran-
dom (RND) and least-recently-used
(LRU). All three are outperformed by
a simple heuristic (GDSF [17]).

The cost of general learning techniques. Existing pro-
posals for caching [20, 22, 23, 29, 48, 66, 78] rely on “model-
free” RL [75] where the system starts without any knowledge
(or bias) about the task at hand. Such systems learn to make
1Over the course of the last year, this topic was raised in conversions with
leading figures at Akamai, Facebook, Verizon, and Wikipedia.org.

https://doi.org/10.1145/3286062.3286082

decisions from experience interacting with its environment,
where good behavior is reinforced via a reward function.

While model-free RL is very popular, recent discussions
in the RL community highlight three key challenges [30–
32, 34, 36–38]. First, millions of learning samples are typi-
cally required, which leads to slow reaction times in dynamic
environments [30, 32]. Second, overfitting to past samples
happens frequently, which complicates dealing with unex-
pected situations and can lead to unintended behaviors [36].
Third, debugging and maintenance is complicated due to high
sensitivity to hyperparameters and random seeds [31, 37, 38].

For Internet facing systems these challenges are a signifi-
cant roadblock. For example, CDN servers face quickly chang-
ing conditions that include unexpected (or even adversarial)
traffic patterns [12, 51, 72]. CDN server also need to be easily
maintainable while serving requests at 40+ Gbit/s.

While more sophisticated learning techniques, such as
model-based RL [75] promise faster and more robust learning
rates, they typically lead to significantly higher complexity
and computational overhead (as discussed in Section 4).

A path towards lightweight and robust machine learn-
ing for CDNs. Our key insight is that the key challenge in
caching lies in the fact that potential rewards (cache hits)
manifest much later than the decisions that lead to this re-
ward. These delays prevent timely feedback to RL algorithms
and are the root cause of the high complexity of existing
approaches. Instead of increasingly sophisticated learning
techniques, we propose to explicitly address the root cause
by calculating the sequence of optimal caching decisions
(OPT) for the recent past. Until recently, calculating OPT
was impractical [8, 18]. However, recent work in the theory
community [8] has changed this assumption.

We develop a simulator prototype called Learning From
OPT (LFO), which learns whether an object should be cached
(Section 2). Knowing OPT enables LFO to use robust super-
vised learning techniques. Surprisingly, LFO achieves over
93% accuracy (Section 3) using lightweight boosted decision
trees based on the LightGBM library [42]. On a CDN produc-
tion trace, LFO outperforms state-of-the-art caching policies
with regard to the BHR. and that LFO Furthermore, we find
that LFO is robust to hyperparameters like random seeds and
adapts to new request traffic with speeds comparable to state-
of-the-art research systems [7, 12]. Finally, we verify LFO’s
scalability and find that it can fully utilize a 40 Gbit/s link.

From a machine learning perspective, LFO is essentially
using imitation learning [34, 65] where the OPT algorithm [8]
replaces the human expert. However, unlike in classical super-
vised imitation learning approaches (a.k.a behavior cloning) [63,
64], LFO’s future observations do not depend on previous
predictions. Thus, learning optimal cache admission policies
becomes quite simple. Nevertheless, we find that building
CDN servers that effectively exploit these admission policies
remains challenging. We conclude this paper by discussing
related work and prior cache learning approaches (Section 4),
and these new challenges and open questions (Section 5).

Calculate OPT

TimeWindow of Requests: W[t]

Online Features
LFO [t]
Training

LFO [t-1] policy LFO [t] policy

Calculate OPT

Window of Requests: W[t+1]

Online Features
LFO [t+1]
Training

..

Figure 2: LFO learns from a window of past requests, t .
After learning to map online features to OPT’s decisions,
we use the learned policy for the next time interval, t + 1.

Object a b c b d a c d a b b a
Size 3 1 1 1 2 3 1 2 3 1 1 3
Cost Ca Cb Cc Cb Cd Ca Cc Cd Ca Cb Cb Ca

Figure 3: Example trace of requests to four objects.

2 LEARNING FROM OPT FOR CDNS
Figure 2 shows the high-level idea of LFO. As OPT is an
offline algorithm, LFO records a sliding window of consecu-
tive requests (W [t]). For the requests inW [t], LFO calculates
OPT’s decisions and derives a vector of online features. LFO
then trains a caching policy that maps the online features to
OPT’s decisions. The trained policy is then used over the next
window, t + 1, during which LFO again records the requests.

In this section, we discuss how to calculate OPT, LFO’s
online features, and LFO’s learning lightweight algorithm.

2.1 Calculating OPT’s Decisions
Given a request sequenceW [t], we calculate OPT’s decisions
using a variant of the approximation algorithms in [8].

Throughout this section, we will use the running example
of a trace (Figure 3) that contains four objects, a, b, c, and
d, with sizes 3, 1, 1, and 2, respectively. We assign a cost to
each object: Ca , Cb , Cc , and Cd , respectively.

To optimize the BHR [33], we would set an object’s costs
equal to its size. To optimize the object hit ratio (OHR), we
would set all costs to 1. We can also instantiate the costs from
an object’s average retrieval latency [17, 49].
OPT minimizes the total cost of cache misses (

∑
i not cachedCi),

subject to not exceeding the available cache space at any time.
As calculating OPT directly is unfeasible, we approximate
OPT using a min-cost flow model as proposed in [8].

The min-cost flow problem [2] consists of a graph with
edges that are annotated with a capacity and a cost (cap, cost).
Some graph nodes have an excess of “flow” (sources) and
others have a demand for “flow” (sinks). We seek to route
all units of flow from sources to sinks using the minimum
cost edges. The power of this representation stems from the
fact that there are fast algorithms that find this route, while
maintaining edge capacities and minimizing the cost.

Figure 4 shows how we translate OPT for the trace in
Figure 3 into a min-cost flow graph. The key idea is to use
flow to represent the number of bytes of an object that have
to be stored either in the cache, or have to be retrieved from
another server. We add a node for each request, and label it
with the object id (a, b, c, or d). There is excess flow, equal to
the size in bytes of that object, at the node of the first request
of an object, and equal demand for flow at the last request.

a

+3

b
+1

c

+1

b d

+2

a c
−1

d
−2

a b b
−1

a

−3

(3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)

(3,Ca/3) (3,Ca/3) (3,Ca/3)

(1,Cb)

(1,Cb)

(1,Cb)

(1,Cc)

(2,Cd)

Figure 4: Min-cost flow representation of OPT for the short trace in Figure 3. Nodes represent requests, and are con-
nected by central edges with capacity equal to the cache capacity and zero cost. Additional edges connect each pair of
requests to the same object (e.g., a to a) and have cost equal to the retrieval cost (e.g,. Ca) scaled by the object size.

The flow can use a central path of horizontal edges, which
connect all node pairs. Each byte of flow routed along this
path translates into a byte stored in the cache. Thus, these
edges have a capacity equal to the cache size and zero cost.
The flow can also bypass the central path using edges that
connect each pair of consecutive requests to the same object
(e.g, a to a). Each byte of flow routed along these bypass edges
translates into a byte of cache misses. Thus, these edges have
a capacity equal to the object size in bytes, and they cost the
per-byte retrieval cost (e.g., Ca/3).

By running a min-cost flow algorithm, we will get a so-
lution that minimizes the cost, i.e., OPT. To derive whether
OPT caches a request (e.g., the first a), we verify that all
the request’s bytes (starting at its node) are routed along the
central path. If not, OPT does not cache this object2.

While state-of-the-art min-cost flow algorithms are fast,
solving graphs with millions of nodes can take hours [46, 61].
The authors in [8] suggest approximations that split the trace
along its time axis and works on them sequentially3. As this
technique is still slow, we propose to instead split the set of
requests along a ranking axis, where higher ranked objects
matter more for CDN performance. Specifically, we rank
objects with the functionCi/(Si ×Li), where Si denotes object
size and Li is the distance to the object’s next request. This
ranking enables us to save 90% of the calculation time by
running the algorithm only for popular requests.

In summary, we are able to quickly and accurately derive
whether or not OPT caches the requests inW [t].

2.2 LFO’s Online Features
Our goal is to learn OPT’s offline decisions from online
features. Before we discuss LFO’s training procedure (Sec-
tion 2.3), we discuss LFO’s four types of online features.

• Object size;
• Most recent retrieval cost;
• Currently free (available) bytes in the cache;
• Time gap between consecutive requests to this object.

The free-bytes feature is useful because evictions can tem-
porarily free up lots of space (e.g., evicting a GB-large ob-
ject [12]). If this happens, OPT and LFO are more likely to
admit a new object. Finally, LFO uses the time gap between
the last 50 requests to every object. The time “gap” is shift
2This is a slight approximation because theoretically an object could be split
into some bytes along the central path and the rest along the bypass. However,
this happen rarely in practice and it is theoretically proved in [8] that min
cost flow solutions route either all of an object’s bytes along the central pass
or all along the bypass, assuming that the cache holds many objects.
3This improves the calculation time because the algorithm does not have to
check dependencies between distant requests of the trace.

invariant (except for the most recent request), which is im-
portant for robustness [53]. LFO’s gap approach is different
from classical approaches which measure the time since each
of the 50 past requests, like in LRU-K [60].

The overhead of a naive implementation that tracks all
these features is 208 bytes per object. This is significantly
more expensive than LRU, but only twice as much as recent
caching systems [7, 12]. One might think that the overhead of
storing all these feature is prohibitive. However, in practice,
the feature space is very sparse (a large fraction of CDN
objects receives fewer than 5 requests [51]). In addition, we
can likely decrease the feature accuracy without affecting the
learning results. In fact, it has been shown that adding small
amounts of noise can actually be helpful in learning more
robust models [27, 56, 76].

Our LFO prototype uses a sparse feature representation,
but does not yet exploit lowering the accuracy.

2.3 Training LFO
The goal of LFO is to map its features to a likelihood that OPT
would cache an object. We use a binary classifier and output
its confidence for caching an object. Section 2.4 designs a
caching policy based on this output.

The current prototype of LFO uses a gradient boosting
decision tree learning algorithm, which achieves state-of-the-
art performance in classification and ranking competitions on
tabular features [15, 42]. We choose decision trees because
of their computational efficiency and because they require
few samples to learn non-linear relationships. They are also
robust to outliers and skewed distributions (which are both
common in caching) and interpretable.

LFO currently uses LightGBM [42]. Throughout our evalu-
ation, we use LightGBM’s default parameters with one excep-
tion: we have decreased the number of iterations (the number
of decision trees that are constructed) from 100 to 30 to fur-
ther speed up our prototyping.

2.4 The LFO caching policy
We propose a simple caching policy. For every request, we
call the LFO predictor to estimate how likely OPT is going to
cache the object. If the confidence is ≥ .5, we admit the object
into the cache. Furthermore, we rank objects in the cache by
their predicted likelihood. If we need to evict an object, we
evict the one with the smallest predicted likelihood. Finally,
we re-evaluate the likelihood of an object, when it is requested
again. So, it may happen (unlike in existing systems), that a
cache hit leads to the eviction of the hit object (which matches
OPT frequently doing the same).

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00

Likelihood Cutoff

P
re

d
ic

ti
o

n
 E

rr
o

r
[%

]

False Positive
(Accidentially Admitted)
False Negative
(Accidentially Not Admitted)

(a) False Positives/Negatives

5.0

5.5

6.0

6.5

7.0

10K 30K 100K 300K 1M 3M

Training Samples (W)

P
re

di
ct

io
n

E
rr

or
 [%

]

(b) Impact of Training Set Size

5.0

5.5

6.0

6.5

7.0

0 25 50 75 100

Random Seed

P
re

di
ct

io
n

E
rr

or
 [%

]

Best

Worst

Trace
Subset

(c) Impact of Random Seeds

Figure 5: Preliminary results on the accuracy of our proposal, LFO, measured in terms of prediction error (requests
where OPT and LFO’s prediction disagree). (a) The false positive rate and false negative rate depend on the cutoff
parameter, but are roughly stable between .25 and .75. (b) The prediction error quickly decays with increasing training
set size and stabilizes after around 60K samples. (c) Random seeds, trace subsets, and hyperparameters have only a
small impact on LFO’s accuracy.

3 PRELIMINARY RESULTS
Our evaluation is based on an early prototype of LFO. Our
implementation contains three parts: approximately 400 lines
of C++ code to compute OPT (Section 2.1) using the Lemon
numerical library [59], approximately 700 lines of C++ code
to track object features (Section 2.2) and train the decision
trees (Section 2.3) using the LightGBM learning library [42],
and approximately 1500 lines of C++ code for replaying
traces and simulating various CDN caching policies (only 50
lines of simulator code are dedicated to LFO).

We use a 2016 request trace from the CDN of an anony-
mous top-ten US website4. Recorded on a San Francisco CDN
server, the trace spans about a week (500 million requests).
Requests are anonymized to a sequence number, an object
identifier, and the object size in bytes. We split the CDN trace
chronologically into parts with one million requests each.
LFO is trained on one part (e.g., requests 0-1 million), and
evaluated on the ensuing part (e.g., requests 1-2 million). We
repeat this for all parts of the trace.

We use our prototype5 to evaluate five key properties of
our proposal: the accuracy, learning speed, robustness, byte
hit ratio improvements, and throughput of LFO.

What is LFO’s prediction accuracy? LFO matches OPT’s
prediction for over 93% of the requests.

To more accurately quantify the errors made by LFO, we
measure the false positive rate (LFO admits when OPT does
not) and the false negative rate (LFO does not admit when
OPT does). Figure 5a shows both error rates as a function of
LFO’s cutoff point. Recall that LFO predict OPT’s likelihood
to cache a given request. LFO places an object into the cache
if this likelihood is greater than .5 (Section 2.4).

Figure 5a shows that false positive and false negative rates
plateau between cutoff values .25 and .75. Below a .25 cutoff
the false negative rate increases quickly. Above a .75 cutoff
4Our request trace is publicly available as a link from our code repository at
https://github.com/dasebe/optimalwebcaching.
5Our evaluation uses a 2017 Super Micro Server with two Intel Xeon E5-
2699 v4 at 2.20GHz CPUs. This gives us a total of 44 cores/ 88 threads and
512GB of memory. The size of the cache managed by LFO has size 256GB.

the false positive rate increases quickly. The plateau between
.25 and .75 shows that LFO achieves a good separation be-
tween objects that should and should not be admitted.

We also observe that LFO is conservative in that it is bi-
ased towards admitting objects (false positives). We could
make LFO more aggressive by raising the cutoff to about .65,
equalizing false negative and false positive rate.

In summary, even our naive implementation of LFO is
surprisingly accurate in prediction OPT’s decisions, and there
remains potential for further improving the accuracy.

How quickly does LFO learn OPT? We find that LFO
converges within a few tens of thousands of requests. Thus,
LFO can be frequently updated to match OPT.

To quantify LFO’s learning speed, we measure the fraction
of prediction errors as a function of the number of training
samples. We repeat this comparison for ten random subsets
of the trace. Figure 5b shows the samples including a local
regression curve fit. The error is below 6.5% even for a few
thousand training samples (10K), and decreases slightly un-
til 100K. As we further increase the training set, prediction
accuracy becomes more predictable.

In summary, LFO requires as few samples as recent caching
systems that also take request history into account [7, 12].

How sensitive is LFO to random seeds and hyperpa-
rameters? We find that LFO is not sensitive to either.

Figure 5c shows how LFO’s error varies across 100 seeds
on 100 different trace subsets. LFO’s accuracy remains within
a range of .5% and is thus not sensitive to random seeds.

So far, our evaluation uses LightGBM’s default parameters
(Section 2.3). Through additional experiments (not shown),
we verify the impact of other parameter choices. For larger
iteration counts and lower learning rates, LFO’s accuracy
improves somewhat (to 95%). For larger tree sizes, LFO is
prone to overfitting, which decreases the accuracy (to 88%).

In summary, LFO is not highly sensitive to either random
seeds or hyperparameters. We plan to further explore the
parameter space in the future.

https://github.com/dasebe/optimalwebcaching

How does LFO compare to existing caching systems?
We find that LFO achieves higher BHRs than state-of-the-art
caching systems and about 80% of OPT’s BHR.

We compare LFO to our own implementations of LRU,
LRU-K [60], LFUDA [4, 24, 67], S4LRU [33], GD-Wheel [49],
AdaptSize [12], Hyperbolic [13], LHD [7], and OPT.

Figure 6 shows that LFO improves the BHR by 6% over the

OPT

LFO

LHD

Hyperbolic

AdaptSize

GD−Wheel

S4LRU

LFUDA

LRU−K

LRU

0.0 0.1 0.2 0.3 0.4 0.5

Byte Hit Ratio

Figure 6: Comparison of
LFO to state-of-the-art
caching systems.

next best system, S4LRU.
We have also evaluated the
OHR of these caching poli-
cies as AdaptSize, Hyper-
bolic, and LHD all focus
on the OHR, which leads
to very low BHRs. Surpris-
ingly, LFO achieves almost
the same OHR as LHD,
which is the next best sys-
tem. This indicates that sac-
rificing BHR to gain OHR
is not necessary.

Compared to OPT, LFO
achieves only about 80% of

either BHR or OHR, which is significantly lower than LFO’s
accuracy. We defer a discussion of this fact to Section 5.

In summary, LFO performs surprisingly well by beating
much more complex recent caching systems.

Can LFO predict fast enough for production use? We
find that LFO’s choice of lightweight decision trees is highly
scalable and adds negligible delay associated with evaluating
its prediction trees.

0

3

6

9

12

1 8 16 24 32 40

Predictor Threads

T
hr

ou
gh

pu
t [

m
ill

io
n

re
qs

/s
ec

]

Figure 7: LFO’s prediction
throughput scales well.

Figure 7 shows the
throughput in million re-
quests per second achieved
by our naive LFO predic-
tor. A single thread can
serve predictions for just
below 300K requests per
second. For 12 threads
(44 threads), prediction
speed scales almost lin-
early reaching more than 3
million (11 million) requests per second. To utilize a 40 GBit/s
network, LFO needs only two threads, assuming an average
object size of 32KB [12, 33, 51]. To serve tiny 500B objects,
LFO would need to use all 44 threads. We remark that we
have not included the training overhead and that a production
implementation would need to carefully optimize priorities
such that training tasks do not interfere with the request traffic.

In summary, LFO does not come for free, but it is highly
scalable and meets the fundamental performance require-
ments of production CDN servers.

Which features matter most for LFO’s predictions? We
find that LFO most relies on object size (similar to other recent
systems) [7, 12], free cache space, and the first few gaps.

LFO’s learned models are composed of a large set of “if-
then-else” tree branches. Each split depends on a single fea-
ture. To determine the role of LFO’s features, we count how
often each feature occurs in a split.

Gap 50

Gap 45

Gap 40

Gap 35

Gap 30

Gap 25

Gap 20

Gap 15

Gap 10

Gap 5

Gap 1
Free
Size

0 5 10 15

Occurance in Tree Branches [%]

Figure 8: Relative impor-
tance of LFO’s features.

Figure 8 shows the
percentage of branches
that each feature oc-
curs in. We observe
that LFO heavily re-
lies on the object size
(28% of branches, bar
extends outside of axis
limits). This is consis-
tent with recent caching
systems that also put
the object size into fo-
cus. LFO does not use
the cost feature. This
makes sense, as it is
redundant with the ob-
ject size when optimiz-
ing BHRs (Section 2.1).
LFO uses the free cache
space feature in almost
10% of branches. This is surprising and likely due to the
highly variable object sizes in our trace (Section 2.2). LFO
makes most use of time gaps 1 to 4. However, up to time
gap 16, LFO still makes significant use of these features. In
addition, several higher time gaps also see significant use
(e.g., 20, 24, 32, 36, 48).

Our observations about the time gap feature suggests two
possible improvements. First, we can speed up the model by
artificially thinning out the time gap feature space (e.g., only
using time gaps 1, 2, 4, 8, 16, etc.). Second, as high time gaps
are still being used, keeping track of an even larger history
might allow us to further improve LFO’s accuracy.

In summary, LFO behaves consistent with other caching
systems and includes potential for further improvements.

4 RELATED WORK
While the literature on CDNs and web caching is extensive,
we are not aware of prior work that either proposes or evalu-
ates learning from the optimal caching policy6.

The likely reason why few have considered this direction is
that calculating OPT is strongly NP complete [18] for Internet
traces (which have variable object sizes) and that approxima-
tion algorithms [3, 5, 35] were impractical until recently. As
discussed in Section 2.1, LFO is enabled by recent theoretical
work [8], which derives OPT for the OHR metric. This work
differs from works on approximation algorithms [3, 5, 8, 35]
by focusing on learning OPT’s decisions from online features.

6In computer architecture, where computing OPT is simple, a recent
work [39] exploits the fact that a side-channel (the program counter) predict
OPT’s behavior. That work is not applicable to CDNs and does not evaluate
learning OPT’s behavior from information that is available to a CDN server.

The most common research direction in caching involves
clever heuristics [9, 13, 17, 33, 49, 60] and Markovian mod-
eling of future hits [7, 11, 12, 24]. None of these works learn
from OPT. Our unique approach enables LFO to outperform
all of these systems in our preliminary experiments.

Several recent works apply model-free RL techniques to
caching [16, 20, 22, 23, 29, 48, 66, 78]. Currently, these
model-free RL caching systems are not competitive to ex-
isting caching systems, whereas LFO outperforms existing
systems. Additionally, systems based on model-free RL are
prone to slow convergence speeds [30, 32], overfitting [36]
and sensitivity to hyperparameters [31, 37, 38].

There are more sophisticated learning techniques, e.g.,
“model-based” RL techniques such as Dyna [73, 74], E3 [43,
44], and R-max [14]. However, these techniques typically
focus on small and stationary state spaces, whereas CDN
servers face a highly dynamic environment. Unfortunately,
even simple caching policies create an intractable state space
explosion [10, 11, 21, 25, 26, 40, 45]. More sophisticated ap-
proximative learning techniques [75] can solve this problem
— at the cost of significantly higher complexity and compu-
tational overhead. We remark that current advanced learning
systems for caches [66, 78] are already limited to tiny caches
due to their computational complexity. Our key contribution
is to reduce the learning problem for caching to a simple
supervised learning problem. This enables the use of robust
and lightweight boosted decision trees [42]. In the future, our
reduction may also enable the design of better RL caching
systems using techniques from inverse reinforcement learning
that learn optimal rewards from OPT [1, 57, 62].

Finally, there is an emerging literature on successful ma-
chine learning applications in networking research such as
traffic classification [77], video rate adaptation [41, 71], re-
quest routing [50], resource allocation [52], and congestion
control [70]. Our work pursues similar goals, but for a differ-
ent set of problems and with unique insights.

5 DISCUSSION AND OPEN QUESTIONS
While there are several avenues for future work, we seek to
highlight and discuss three key questions.

What is the real reason for the gap to optimality, and
how to bridge it? We started this project with the assump-
tion that OPT’s advantage is its wealth of information that
cannot be matched by any online policy. However, our prelim-
inary results show that LFO correctly predicts 93% of OPT’s
decisions using a limited set of online features.

Somewhat surprisingly, we also find that this near-optimal
prediction performance does not translate into near-optimal
caching performance. In fact, the gap between LFO and OPT
is 20% — much larger than 7%. Consequently, it must be
that incorrect admission choices (e.g., false positives) have a
knock-on effect: objects that should receive hits end up being
evicted before they do receive a hit.

One angle to partially address this could be to adjust LFO’s
cutoff value (we do see some improvement), or to work on

better prediction performance (using advanced “deep learning”
approaches [47] is likely fruitful).

However, we argue that to bridge the gap to OPT we should
focus our efforts on how to translate a ranking of objects into
a caching policy, an algorithmic problem which we call policy
design — a field which has not seen much innovation in many
years. Given the potential cost and energy savings that are
enabled by better caching policies, we hope to renew interest
in this fundamental research question.

Is model-based learning extensible? How would we ap-
ply it to a whole CDN? The main message of this paper is
that we can build robust machine learning systems using a
model that predicts the actual intended behavior (e.g., optimal
caching decisions). While we have only studied the example
of a single cache, we believe that the resulting robustness rep-
resents a significant advantage over model-free reinforcement
learning approaches.

The obvious challenge in generalizing our approach is
that modeling requires significant time and effort. However,
modeling requires us to learn about our system (instead of
tuning a black box) and this knowledge can directly benefit
operators of Internet-scale systems. From this perspective, we
argue that time invested in modeling is time well spent.

We also argue that CDN-scale modeling does not need to
be a daunting task. A key idea to simplify this problem is to
use hierarchical models. For example, we could apply our
“single cache” model to the aggregate cache space of a CDN
server (RAM, SSD, HDD) or to a whole rack of servers. We
first learn whether to cache an object at all. A second level
of the model then learns rules on where to place the object,
e.g., based on storage characteristics such as write endurance,
read delay/throughput, or utilization. Finally, recent work on
modeling CDN cache provisioning [72] gives us hope that
we can identify and learn the optimal behavior across many
servers and CDN points-of-presence.

What is the impact of user feedback loops on LFO’s
trace-driven approach? LFO may be subject to fundamen-
tal biases of trace-driven techniques [6]. For example, it is
conceivable that LFO’s improvement of CDN server perfor-
mance increases the number of user requests per hour. A
larger number of user requests may increase the bandwidth
usage of the CDN server — despite an increased BHR — de-
feating the purpose of the CDN to deploy LFO in the first case.
The impact of such feedback loops is very hard to predict or
measure through experiments. We thus leave approaches to
quantify this effect as an open question for future work.

ACKNOWLEDGEMENTS
We thank Nathan Beckmann, Anwar Hithnawi, our shepherd
Mohammad Alizadeh, and our anonymous reviewers for their
helpful comments. Daniel is supported by a CMU-CS Mark
Stehlik Postdoctoral Teaching Fellowship. This paper was
partially supported by NSF-CSR-180341 and wikipedia.org.

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via

inverse reinforcement learning. In ACM ICML.
[2] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. 1993.

Network flows: theory, algorithms, and applications. Prentice hall.
[3] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. 1999. Page

replacement for general caching problems. In SODA. 31–40.
[4] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, and Tai

Jin. 2000. Evaluating content management techniques for web proxy
caches. Performance Evaluation Review 27, 4 (2000), 3–11.

[5] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and
Baruch Schieber. 2001. A unified approach to approximating resource
allocation and scheduling. J. ACM 48, 5 (2001), 1069–1090.

[6] Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakrishnan, Vyas
Sekar, and Bruno Sinopoli. 2017. Biases in Data-Driven Networking,
and What to Do About Them. In ACM HotNets. 192–198.

[7] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Im-
proving Hit Rate by Maximizing Hit Density. In USENIX NSDI. 1–14.

[8] Daniel S. Berger, Nathan Beckmann, and Mor Harchol-Balter. 2018.
Practical Bounds on Optimal Caching with Variable Object Sizes. Proc.
ACM Meas. Anal. Comput. Syst. 2, 2, Article 32 (June 2018), 38 pages.

[9] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Mor Harchol-Balter,
and Siddhartha Sen. 2018. RobinHood: Tail Latency-Aware Caching -
Dynamically Reallocating from Cache-Rich to Cache-Poor.. In USENIX
OSDI.

[10] Daniel S. Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014.
Exact analysis of TTL cache networks. Perform. Eval. 79 (2014), 2 –
23. Special Issue: Performance 2014.

[11] Daniel S Berger, Sebastian Henningsen, Florin Ciucu, and Jens B
Schmitt. 2015. Maximizing cache hit ratios by variance reduction.
ACM SIGMETRICS Performance Evaluation Review 43, 2 (2015), 57–
59.

[12] Daniel S. Berger, Ramesh Sitaraman, and Mor Harchol-Balter. 2017.
AdaptSize: Orchestrating the Hot Object Memory Cache in a CDN. In
USENIX NSDI. 483–498.

[13] Aaron Blankstein, Siddhartha Sen, and Michael J Freedman. 2017. Hy-
perbolic Caching: Flexible Caching for Web Applications. In USENIX
ATC. 499–511.

[14] Ronen I Brafman and Moshe Tennenholtz. 2002. R-max-a general
polynomial time algorithm for near-optimal reinforcement learning.
Journal of Machine Learning Research 3, Oct (2002), 213–231.

[15] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to
LambdaMART: An Overview. Technical Report. Microsoft Research
Technical Report MSR-TR-2010-82.

[16] Vladimir Bychkovsky, Jim Cipar, Alvin Wen, Lili Hu, and Saurav
Mohapatra. 2018. Spiral: Self-tuning services via real-time ma-
chine learning. Available at https://code.fb.com/data-infrastructure/
spiral-self-tuning-services-via-real-time-machine-learning/, accessed
07/10/18.

[17] Ludmila Cherkasova. 1998. Improving WWW proxies performance
with greedy-dual-size-frequency caching policy. Technical Report.
Hewlett-Packard Laboratories.

[18] Marek Chrobak, Gerhard J Woeginger, Kazuhisa Makino, and Haifeng
Xu. 2012. Caching is hard—even in the fault model. Algorithmica 63
(2012), 781–794.

[19] CISCO. 2017. VNI Global IP Traffic Forecast: The
Zettabyte Era—Trends and Analysis. Available at
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.pdf, accessed
24/09/17.

[20] Renato Costa and Jose Pazos. 2017. MLCache: A Multi-Armed Ban-
dit Policy for an Operating System Page Cache. Technical Report.
University of British Columbia.

[21] Asit Dan and Don Towsley. 1990. An Approximate Analysis of the
LRU and FIFO Buffer Replacement Schemes. In ACM SIGMETRICS.
143–152.

[22] Jeff Dean. 2017. Machine Learning for Systems and Systems for
Machine Learning. Presentation at NIPS Systems for ML Workshop.
Available at http://goo.gl/wxuvVk, accessed 10/10/18.

[23] Jeff Dean. 2018. Is Google Using Reinforcement Learning to Improve
Caching? Personal communication on 2018-09-27.

[24] Gil Einziger and Roy Friedman. 2014. Tinylfu: A highly efficient cache
admission policy. In IEEE Euromicro PDP. 146–153.

[25] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier. 1992. Birthday
paradox, coupon collectors, caching algorithms and self-organizing
search. Discrete Applied Mathematics 39 (1992), 207–229.

[26] Erol Gelenbe. 1973. A unified approach to the evaluation of a class of
replacement algorithms. IEEE Trans. Comput. 100 (1973), 611–618.

[27] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-
plaining and harnessing adversarial examples (2014). In ICLR.

[28] Syed Hasan, Sergey Gorinsky, Constantine Dovrolis, and Ramesh K
Sitaraman. 2014. Trade-offs in optimizing the cache deployments of
CDNs. In IEEE INFOCOM. 460–468.

[29] Ying He, F Richard Yu, Nan Zhao, Victor CM Leung, and Hongxi
Yin. 2017. Software-defined networks with mobile edge computing
and caching for smart cities: A big data deep reinforcement learning
approach. IEEE Communications Magazine 55, 12 (2017), 31–37.

[30] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh
Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali
Eslami, Martin A. Riedmiller, and David Silver. 2017. Emergence of
Locomotion Behaviours in Rich Environments. CoRR abs/1707.02286
(2017).

[31] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. 2018. Deep Reinforcement Learning that
Matters. In AAAI (Conference on Artificial Intelligence).

[32] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. 2018. Rainbow: Combining Improvements in Deep Rein-
forcement Learning. In AAAI (Conference on Artificial Intelligence).

[33] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev
Kumar, and Harry C Li. 2013. An analysis of Facebook photo caching.
In ACM SOSP. 167–181.

[34] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina
Jayne. 2017. Imitation learning: A survey of learning methods. ACM
Computing Surveys (CSUR) 50, 2 (2017), 21.

[35] Sandy Irani. 1997. Page replacement with multi-size pages and appli-
cations to web caching. In ACM STOC. 701–710.

[36] Alex Irpan. 2016. Faulty Reward Functions in the Wild. OpenAI Blog
https://blog.openai.com/faulty-reward-functions/.

[37] Alex Irpan. 2018. Deep Reinforcement Learning Doesn’t Work Yet.
https://www.alexirpan.com/2018/02/14/rl-hard.html.

[38] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup.
2017. Reproducibility of benchmarked deep reinforcement learning
tasks for continuous control. In ACM ICML Reproducibility in Machine
Learning Workshop.

[39] Akanksha Jain and Calvin Lin. 2016. Back to the future: leveraging
Belady’s algorithm for improved cache replacement. In ACM/IEEE
ISCA. 78–89.

[40] Predrag R Jelenković. 1999. Asymptotic approximation of the move-
to-front search cost distribution and least-recently used caching fault
probabilities. The Annals of Applied Probability 9 (1999), 430–464.

[41] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica,
and Hui Zhang. 2016. CFA: a practical prediction system for video
QoE optimization. In USENIX NSDI. 137–150.

[42] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly
efficient gradient boosting decision tree. In Advances in Neural Infor-
mation Processing Systems. 3146–3154.

[43] Michael Kearns and Daphne Koller. 1999. Efficient reinforcement
learning in factored MDPs. In IJCAI, Vol. 16. 740–747.

https://code.fb.com/data-infrastructure/spiral-self-tuning-services-via-real-time-machine-learning/
https://code.fb.com/data-infrastructure/spiral-self-tuning-services-via-real-time-machine-learning/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
http://goo.gl/wxuvVk
https://blog.openai.com/faulty-reward-functions/
https://www.alexirpan.com/2018/02/14/rl-hard.html

[44] Michael Kearns and Satinder Singh. 2002. Near-optimal reinforcement
learning in polynomial time. Machine learning 49, 2-3 (2002), 209–
232.

[45] W. Frank King. 1971. Analysis of Demand Paging Algorithms. In IFIP
Congress (1). 485–490.

[46] Péter Kovács. 2015. Minimum-cost flow algorithms: an experimental
evaluation. Optimization Methods and Software 30, 1 (2015), 94–127.

[47] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learn-
ing. Nature 521, 7553 (2015), 436.

[48] Mathias Lecuyer, Joshua Lockerman, Lamont Nelson, Siddhartha Sen,
Amit Sharma, and Aleksandrs Slivkins. 2017. Harvesting Randomness
to Optimize Distributed Systems. In ACM HotNets. 178–184.

[49] Conglong Li and Alan L Cox. 2015. GD-Wheel: a cost-aware replace-
ment policy for key-value stores. In EUROSYS. 1–15.

[50] Hongqiang Harry Liu and Raajay Viswanathan. 2016. Efficiently De-
livering Online Services over Integrated Infrastructure.. In USENIX
NSDI.

[51] Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets
in content delivery. ACM SIGCOMM CCR 45 (2015), 52–66.

[52] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kan-
dula. 2016. Resource management with deep reinforcement learning.
In ACM HotNets. 50–56.

[53] Sanjit K Mitra and James F Kaiser. 1993. Handbook for digital signal
processing. John Wiley & Sons, Inc.

[54] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control
through deep reinforcement learning. Nature 518, 7540 (2015), 529.

[55] Matthew K Mukerjee, Ilker Nadi Bozkurt, Bruce Maggs, Srinivasan
Seshan, and Hui Zhang. 2016. The impact of brokers on the future of
content delivery. In ACM HotNets. 127–133.

[56] A Neelakantan, L Vilnis, QV Le, I Sutskever, L Kaiser, K Kurach, and
J Martens. 2016. Adding Gradient Noise Improves Learning for Very
Deep Networks. In ICLR Workshop.

[57] Andrew Y Ng, Stuart J Russell, et al. 2000. Algorithms for inverse
reinforcement learning.. In ACM ICML. 663–670.

[58] E. Nygren, Ramesh K. Sitaraman, and J. Sun. 2010. The Akamai
Network: A platform for high-performance Internet applications. ACM
SIGOPS Operating Systems Review 44, 3 (2010), 2–19.

[59] Egerváry Research Group on Combinatorial Optimization. 2015. COIN-
OR::LEMON Library. Available at http://lemon.cs.elte.hu/trac/lemon,
accessed 5/5/18.

[60] Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard Weikum. 1993. The
LRU-K page replacement algorithm for database disk buffering. ACM
SIGMOD 22, 2 (1993), 297–306.

[61] James B Orlin. 1997. A polynomial time primal network simplex
algorithm for minimum cost flows. Mathematical Programming 78, 2
(1997), 109–129.

[62] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. 2006.
Maximum margin planning. In ACM ICML. 729–736.

[63] Stéphane Ross and Drew Bagnell. 2010. Efficient reductions for imita-
tion learning. In AISTATS. 661–668.

[64] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduc-
tion of imitation learning and structured prediction to no-regret online
learning. In AISTATS. 627–635.

[65] Stefan Schaal. 1999. Is imitation learning the route to humanoid robots?
Trends in cognitive sciences 3, 6 (1999), 233–242.

[66] Avik Sengupta, SaiDhiraj Amuru, Ravi Tandon, R Michael Buehrer,
and T Charles Clancy. 2014. Learning distributed caching strategies in
small cell networks. In IEEE ISWCS. 917–921.

[67] Ketan Shah, Anirban Mitra, and Dhruv Matani. 2010. An O(1) algo-
rithm for implementing the LFU cache eviction scheme. Technical
Report. Stony Brook University.

[68] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, et al. 2017. Mastering the game of Go

without human knowledge. Nature 550, 7676 (2017), 354.
[69] Ramesh K. Sitaraman, Mangesh Kasbekar, Woody Lichtenstein, and

Manish Jain. 2014. Overlay networks: An Akamai perspective. In
Advanced Content Delivery, Streaming, and Cloud Services. John Wiley
& Sons.

[70] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakr-
ishnan. 2014. An experimental study of the learnability of congestion
control. In ACM SIGCOMM, Vol. 44. 479–490.

[71] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu
Wang, Tao Liu, and Bruno Sinopoli. 2016. CS2P: Improving video
bitrate selection and adaptation with data-driven throughput prediction.
In ACM SIGCOMM. 272–285.

[72] Aditya Sundarrajan, Mingdong Feng, Mangesh Kasbekar, and
Ramesh K Sitaraman. 2017. Footprint Descriptors: Theory and Practice
of Cache Provisioning in a Global CDN. In ACM CoNEXT. 55–67.

[73] Richard S Sutton. 1990. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic programming. In
Machine Learning Proceedings. 216–224.

[74] Richard S Sutton. 1991. Planning by incremental dynamic program-
ming. In Machine Learning Proceedings. 353–357.

[75] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement learning:
An introduction (2 ed.). MIT press.

[76] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing
properties of neural networks. In ICLR.

[77] Jun Zhang, Xiao Chen, Yang Xiang, Wanlei Zhou, and Jie Wu. 2015.
Robust network traffic classification. IEEE/ACM TON 23, 4 (2015),
1257–1270.

[78] Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. 2018. A deep
reinforcement learning-based framework for content caching. In IEEE
CISS (Annual Conference on Information Sciences and Systems). 1–6.

http://lemon.cs.elte.hu/trac/lemon

	Abstract
	1 Introduction
	2 Learning from OPT for CDNs
	2.1 Calculating OPT's Decisions
	2.2 LFO's Online Features
	2.3 Training LFO
	2.4 The LFO caching policy

	3 Preliminary Results
	4 Related Work
	5 Discussion and Open Questions
	References

