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ABSTRACT
TTL cache models provide an attractive unified approxi-
mation framework for caching policies like LRU and FIFO,
whose exact analysis is notoriously hard. In this paper, we
advance the understanding of TTL models by explicitly con-
sidering stochastic capacity constraints. We find in particular
that reducing the variance of the cache occupancy is instru-
mental to optimize the cache hit ratio in an online setting.
To enforce such a desired low variance, we propose a novel ex-
tension of the TTL model by rewarding popular objects with
longer TTLs. An attractive feature of the proposed model is
that it remains closed under an exact network analysis.

1. INTRODUCTION
The performance analysis of classical cache models such

as Least-Recently-Used (LRU) or FIFO is known to be a
hard problem [9]. Recent progress on timer-driven eviction
models (aka TTL caches) has revealed a class of fast approxi-
mation schemes which unify the analysis of LRU [3, 5], FIFO,
Random Eviction (and further ones) [9], and mixed caching
policies [1] (even in the network case [1, 4, 9]).

In a TTL cache each object simply joins the cache and its
eviction is determined by an associated timer (i.e., the Time-
to-Live). Different resetting behavior of the timer enables
the versatility of TTL models [1, 9]; e.g., the move-to-front
behavior of LRU is modeled by resetting the timer of an ob-
ject with each corresponding request. To account for caches
of finite capacity, an approximate TTL model abstracts from
the capacity-interactions of objects using a single timer value
– known as the characteristic time [3, 5, 9, 1, 4]. Formally,
let the number of objects in the cache at time t (the cache
occupancy) be defined as the sum of the individual objects’
indicator functions C(t) :=

∑
o 1o∈Cache(t). The characteris-

tic time T is derived as the solution of

C ≈ E[C(t)] =
∑
o

E[1o∈Cache(t)] . (1)

The indicator functions depend on T , e.g., E[1o∈Cache(t)] =
e−λo T for Poisson arrivals of rate λo to each object o and.
Moreover, a unique solution to (1) is guaranteed by continuity
and monotonicity of E[1o∈Cache(t)] in T .

The approximation in (1) was shown to be relatively accu-
rate in simulations [5, 9], due to a smoothing out behavior in
the long run. Nevertheless, the underlying TTL cache model
frequently underruns or overruns the capacity constraint.
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The goal of this paper is to much more rigorously analyze
caches of finite capacity by using a stochastic capacity con-
straint in distribution, rather than in the first moment only,
as in (1). Concretely, we consider the problem of optimizing
the cache hit ratio in a setting with N objects, each with an
arrival rate λo (e.g., according to a Zipf popularity law), and
a finite cache capacity of C:

maximize H =

N∑
o=1

λo
λ
po

subject to P[C(t) ≥ C] ≤ ε . (2)

H is the overall cache hit ratio (for λ =
∑N
o=1 λo), po are

the individual objects’ hit ratios, whereas ε is the violation
probability of the enforced stochastic capacity constraint.

A first observation is that the offline version of problem
(2) can be easily solved by assigning timer values propor-
tional to each object’s arrival rate λo. The online version is
particularly hard because the caching policy is unaware of λo.

A second observation is that C(t) should have a low vari-
ance to facilitate a small violation probability ε. This can
be formalized by making the stochastic constraint from (2)
explicit. We do so by invoking Bernstein’s inequality [2], i.e.,

P[C(t) > C] ≤ exp
{

− (C − E[C(t)])2

Var[C(t)] + (C − E[C(t)]) /3

}
.

Note that this concentration inequality (unlike others, e.g.,
Hoeffding’s inequality) captures the desired property that
the violation probability of the stochastic capacity constraint
decays with smaller V ar[C(t)].

As an illustration, consider C(t) under the classical Inde-
pendent Reference Model (IRM) [3, 5, 9]), i.e., the objects
are requested according to independent Poisson processes.
Then, E[1o∈Cache(t)] equals the stationary hit ratio po due
to PASTA, and the variance of C(t) simplifies to

Var[C(t)] =

N∑
o=1

Var[1o∈Cache(t)] =

N∑
o=1

po (1− po) .

The variance would be minimized for po ∈ {0, 1}. Practical
cache policies, however, have a high variance because the
cache hit ratios po slowly decay with the object popularity.
For example, Figure 1 shows this behavior for simulations
of LRU and the TTL R model [1], whereby timers are re-
set at every request arrival (and which has been used to
approximate LRU1). Note, however, that following the sec-

1The original approximation uses deterministic T , we use expo-
nentially distributed T for modeling purposes. This is why the
difference between R and the LRU simulations seems rather large.



Figure 1: The analytical hit ratio po for the classical
R1 model and the new R2 and R4 policies (objects
ordered by popularity for a subset out of 106 objects),
and empirical hit ratios from LRU simulations.

ond observation alone is not sufficient to guarantee large hit
ratios, because the cache may be dominated by unpopular
objects. To actually enforce that large hit ratios correspond
to the most popular objects, we next propose and analyze a
novel class of TTL caching policies which are able to adapt
to the objects’ popularities.

2. A TTL POLICY WITH LOW VARIANCE
To enforce a much sharper decay of hit ratios, and thus

decrease the cache (occupancy) variance, we propose a stage-
based version of the R policy. Instead of equally treating
objects, our key idea is to “reward” popular objects with
longer timers. Because a cache has no knowledge of the
actual popularities (and these might change over time), we
split the cache into several stages and move objects with each
hit “forward” into a stage with a longer timer. Conversely,
each time the timer expires the object is moved “backwards”,
until it reaches the first stage. When the timer in the first
stage expires, the object is evicted from the cache. Newly
admitted objects start in the first stage.

If there are k stages, we call this the Rk TTL cache policy.
The special case R1 recovers the R model. The larger k,
the more we factor in the long-term popularity of objects.
Interestingly, however, even small numbers of stages turn
out to be quite effective. Subsequently, we compare R1 to
R2 and R4 configurations.

For Poisson arrivals, the new cache policy can be analyzed
for a tagged object o with a simple Markov chain that repre-
sents whether o is OUT of the cache or IN the cache, and in
which stage it is. For simplicity, we represent the timers as
exponential random variables with rate µ = 1/T – although
quasi-deterministic timers are possible using Proposition 3.
Note that the timers are independent of the object index o
(as in [3, 5, 9]), but depend on k (i.e., we write µk if there
are k stages). Figure 2 illustrates the Markov chain model
for the case when each stage’s timer is ten times the previous
stage’s timer in the mean.

We obtain the steady-state hit ratio for o as the sum of
the limiting probabilities of a model’s IN -states, e.g.,

pR1
o =

λ

λ+ µ1
and pR2

o =
µ2λ+ 10λ2

µ2
2 + µ2λ+ 10λ2

.

As an example, consider an object universe of N = 16

objects under a Zipf popularity law. To numerically illustrate
the reduction in variance, we compare the policies for the
same expected cache size, i.e., E[C(t)] = 2e4. Figure 1 shows
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Figure 2: The cache state of a tagged object o for a
classical LRU model (R1) and the new Rk policies.
Note that µk are uniform over all objects but specific
for the policy’s number of stages k.

the resulting hit ratios. As expected, popular objects stay
longer in R2 and R4 than in the R1 cache. Additionally,
the hit ratio decays much faster for unpopular objects (in
particular for R4). These two effects result in a variance
that is ≈ 18% smaller for R2 and ≈ 65% smaller for R4.

This reduction in variance can be generalized to the Rk
case by bounding each po away from 1/2 with increasing k.
We summarize this result in the following Proposition.

Proposition 1. Under the IRM and a Zipf popularity
model, Var[CRk(t)] decreases with k when E[C(t)] is held
constant.

We conclude this section by demonstrating that the lower
variance actually translates into higher overall cache hit
ratios H. In order to do this, we calculate the maximal
hit ratio for each policy under the violation probability ε
using the Bernstein inequality. Figure 3 shows a plot of the
resulting hit ratios over ε for C = 2e4. The new caching
policies outperform the classical R1 model by ≈ 8% for R2

and ≈ 15% for R4 (for any ε). This concludes the description
of the Rk model.

3. ANALYSIS OF CACHING NETWORKS
This section addresses the practical case of caching net-

works [4, 9, 1]. The technical challenge in the analysis of
caching networks is that the output of a cache (the miss
process) is very different from a Poisson process [4, 1]. The
request streams’ stochastic properties are further complicated
by network operations like merging and splitting. Neverthe-
less, we find that networks of Rk caching policies can be
exactly analyzed. We achieve this by showing that the class
of Markov arrival processes (MAPs) is closed under the Rk
caching operation. Because MAPs are closed under merging
and splitting, we can analyze caching networks similar to the
recent exact analysis of classical TTL policies [1].

We start by using a phase-type (PH) distribution distribu-
tion to describe the cache eviction behavior.

Definition 2. We call P an eviction distribution, if P is
a (k × l)-phase PH distribution that is organized in k stages
of each l states and is absorbed in state 0. P is further
characterized by the probability vectors ~ai = ai,1, . . . , ai,l
which give the probability of starting in each state of stage i.

As this is a generalization of the k exponential stage model
from Figure 2(c), we next show how to formulate the Fig-



Figure 3: Plotting the analytical hit ratio over the
maximal violation probability ε (on log scale) shows
significant gains of the new TTL caching policies.
Note that these bounds are only slightly pessimistic:
the approximation (1) gives 0.64, 0.72, and 0.77, as the
hit ratios for R1, R2, and R4, respectively.

ure 2(c) model using an eviction distribution:

P =


0 0 0 . . . 0
µ −µ 0 . . . 0
0 µ/10 −µ/10 0 0
...

. . .
. . .

. . .
...

0 0 0 µ/10k −µ/10k

 and ~ai = 1.

Note that the eviction distribution model is quite general,
e.g., it can also capture stage holding distributions with low
coefficient of variance to further reduce the overall random-
ness. We next state the main result that characterizes the
output process for these generalized Rk caches.

Proposition 3. Consider an Rk-policy characterized by
the eviction distribution P and arriving requests represented
by the m-state MAP M = (D0, D1). Further assume that
P and M are independent. Then, the output process M ′ =
(D′0, D

′
1) is a MAP and defined by

D′0 =(P⊕D0)+

0 0 0 0 . . . 0 0
0 0 0 ~a2 ⊗D1 0 . . . 0
0 0 0 0 ~a3 ⊗D1 0.. 0
... . . .

...
...

. . .
. . .

...
0 0 0 0 . . . 0 ~ak−1 ⊗D1

0 0 0 0 . . . 0 ~ak ⊗D1



D′1 =


0 ~a1 ⊗D1 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


where 0 are 0-matrices of size m×ml, and ⊕ and ⊗ denote

the Kronecker Plus and Kronecker Product, respectively.

This result enables the exact analysis of Rk cache networks,
even for the heterogeneous case with the caching policies
analyzed in [1]. Note, however, that due to the fast growing
number of states (the number of states is m×k× l) this exact
analysis is only practical for medium-sized cache networks.

4. DISCUSSION AND CONCLUSIONS
In this paper we have proposed a new class of stage-based

TTL cache models with low variance, and have shown how
to analyze them under a stochastic capacity constraint.

Our analysis differs from the characteristic time approxi-
mation [3, 5, 9, 1, 4]: in the approximation the cache size C(t)
equals the capacity constraint C only in the mean, whereas
in our analysis C is exceeded with low probability ε. We
point out that the hit ratio under the approximation is only
between 6% (for R1) and 3% (for R4) higher than for small
violation probabilities ε = 10−9 in our analysis. In partic-
ular, for larger N (a practical assumption) this difference
will further decrease. This small difference thus validates
the idea of using stochastic capacity bounds instead of an
approximation.

Generally, our model suggests choosing large k. This
stands in constrast to a recent work [6], which analyzed a
similar class of caching policies and reports that a higher
number of stages (called lists) is not always better than
smaller numbers. This can be explained by the stricter
assumption of a Zipf popularity distribution in Proposition 1.

Finding the optimal k remains an open problem as large k
are impractical when popularities change over time (it would
take too long to “unlearn” popularities). This consideration
may be added as an additional constraint to the optimization
problem. One way to do this could be the so-called shot-noise
model, which models popularity changes over time and has
recently been shown to be compatible with TTL caching
analysis [8].

Our numerical evaluations have focused on small values of
k, which were sufficient to reduce the variance of C(t), and
boost the hit ratio under a stochastic capacity constraint.
Interestingly, our result on the efficiency of R4 parallels the
findings of a recent measurement paper [7]. The authors
report that replacing LRU with S4LRU – roughly similar to
R4 – leads to a considerable improvement of the hit ratio.
In this regard, our Rk model may be considered as the first
analytical approximation for the class of “SkLRU” caching
policies.
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