
On the Relevance of Adversarial Queueing Theory
in Practice

Daniel S. Berger
Distributed Computer Systems

(DISCO) Lab
University of Kaiserslautern

Germany
berger@cs.uni-kl.de

Martin Karsten
David R. Cheriton School of

Computer Science
University of Waterloo

Canada
mkarsten@uwaterloo.ca

Jens Schmitt
Distributed Computer Systems

(DISCO) Lab
University of Kaiserslautern

Germany
jschmitt@cs.uni-kl.de

ABSTRACT
Adversarial Queueing Theory (AQT) has shown that seem-
ingly innocent traffic injection rates might lead to unbounded
queues in packet-switched networks - depending on schedul-
ing strategies as well as topological characteristics. Little
attention has been given to quantifying these effects in real-
istic network configurations. In particular, the existing AQT
literature makes two unrealistic assumptions: infinite buffers
and perfect synchrony. Because finite buffers inherently limit
queue sizes, adversarial effects ultimately lead to packet loss
which we address in this work. In addition, we study the
effect of imperfect network synchronization under the packet
loss metric. Our results, using analysis and simulation, in-
dicate that classical AQT examples appear harmless under
realistic assumptions but for a novel class of adversaries con-
siderably higher loss can be observed. We introduce this
class by giving examples of two new AQT concepts to con-
struct loss-efficient network adversaries. Our analysis proves
the robustness of these new adversaries against randomized
de-synchronization effects in terms of variable link delays
and nodal processing.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
topology; C.4 [Performance of Systems]: Modeling tech-
niques

Keywords
Adversarial Queueing Theory; network stability; finite buffers

1. INTRODUCTION
Adversarial Queueing Theory (AQT) [7] has been intro-

duced to analyze the inherent stability characteristics of
network topologies assuming certain scheduling policies. In
particular, it has been shown for FIFO scheduling that seem-
ingly innocent continuous packet injection strategies, where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.
Copyright 2014 ACM 978-1-4503-2789-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591971.2592006.

the aggregated arrival rate of requests for each link does not
exceed the link capacity, can lead to unbounded queue lengths
and thus, unbounded delay. Such a network configuration is
termed unstable.

In reality, such patterns can be caused by misconfiguration,
or unfortunate circumstances and have also been considered
as a possible security threat [13]. In fact, descriptions of
network adversaries read like a cookbook for stealthy low-
rate denial-of-service (DoS) attacks inducing arbitrary long
queues in a target network, which in turn cause high delays
and loss.

After a period of very high activity in AQT research in the
late 1990s and early 2000s, recently, there has been only little
work on analytical aspects of adversarial queueing theory.
This might be due to the fact that fundamental results about
the stability of network systems have been obtained. Un-
fortunately, these fundamental results are mainly concerned
with the notion of universal stability1, which has only been
shown for networks that are restricted in topology or employ
unrealistic scheduling policies (see Section 2 for details). In
contrast, the actual threat potential of adversarial queueing
effects in systems that are not universally stable has not
been systematically studied. This paper is a first attempt to
complement existing AQT research by studying adversarial
effects for more realistic network configurations.

Although topological considerations suggest that adversar-
ial instability may be possible in realistic network topolo-
gies [20], it is not immediately obvious whether instability
effects really pose a practical threat. The most striking the-
oretical and ”analytically convenient” assumptions of AQT
are infinite buffers and a synchronized network model. The
central question of AQT about the existence of upper bounds
on queue lengths (→ stability) only poses itself under the
assumption of unbounded queues. However, device buffers
are always finite in length and thus not subject to infinite
growth. This paper approaches AQT from a completely
different angle than existing literature and investigates the
quantitative effects of adversarial queueing in finite buffer
networks (→ loss) with some asynchrony due to random ef-
fects in nodal processing and link delays. We consider timing
variations for adversarial injections and various degrees of
randomization for the network model.

This leads to two interesting questions. The first is whether
classical AQT examples result in excessive packet loss. We
show that this is not the case, but instead, finite buffers

1 Universal stability refers to stable behavior of a scheduling
policy, or a topology – under any adversary (cf. [3, 7])

stabilize the system enough to limit the overall loss rate
effectively. This could lead to the conjecture that AQT is a
somewhat theoretical artifact with little practical relevance.
Thus, the second question is about the existence of more
efficient adversaries. This is positively confirmed by pre-
senting new adversarial configurations that do suffer from
considerably higher loss rates than previous scenarios and
prove robust against randomization effects. In particular,
these adversarial scenarios introduce two novel approaches:
interlocking of adversaries and reactive adversaries. These
approaches are used to construct loss-efficient adversaries.
Here, efficiency is seen from the perspective of the network
adversary and denotes its ability to effectuate a high loss rate
at a low injection rate of adversarial traffic. We quantify the
loss behavior of both, the classical and the newly constructed
adversaries, using analytical methods and simulation. The
new adversarial constructions are more complex than existing
AQT scenarios and are not amenable to a straightforward
analytical evaluation of their worst-case loss. Therefore, de-
terministic simulation is used to observe their behavior. In
addition, simulation is also used to assess the impact of re-
duced event synchronization by randomizing certain parts of
the network model. To this end, we have extended an open-
source simulation framework with a (randomized) network
model and corresponding adversary implementations which
we release as an open-source contribution2.

Following our goal of assessing AQT in a practical con-
text, this work is focused on FIFO scheduling. While other
scheduling schemes have been found to be universally stable
in the AQT literature [3], FIFO is essentially the only rele-
vant scheduling discipline in practice among those typically
studied.

The rest of the paper is organized as follows. Section 2
surveys the existing literature. Section 3 briefly recapitulates
AQT essentials, while Section 4 gives a modified model of
adversarial effects in finite buffer settings. Section 5 presents
the loss rate analysis for classical AQT scenarios and Section 6
introduces the novel scenarios. In Section 7 we present
simulation results on the robustness against randomization
and the paper is wrapped up with a brief conclusion in
Section 8.

2. RELATED WORK
Previous work investigating the adversarial queueing model

is focused on the conditions for network stability. A network
is called stable if there exists an upper bound on the number
of packets in this network for any arbitrary long time inter-
val [3]. The time evolution is studied as a distributed game
between the network system (topology and scheduling) and
a hypothetical adversary. The network system is shown to
be either stable or unstable, i.e., possessing an upper bound
on packet delay or not.

Previous results have explored the boundaries of stabil-
ity conditions, in particular with respect to the scheduling
policy [3], the longest path in the network [17], graph mi-
nors [2, 3, 12, 20], and injection rate [3, 5, 10, 14, 17]. Most
notably, Bhattacharjee and Goel [5] prove that networks
with FIFO scheduling can be unstable at arbitrary small
injection rates. Furthermore, the family of stable topologies
with FIFO scheduling is restricted to a super-class of directed

2All source code is available on our project page
http://disco.cs.uni-kl.de/content/Aqtmodel

acyclic graphs, the so-called decorated cycles as shown by
Weinard [20]. Yet, the class of decorated cycles does not
encompass many realistic network topologies, thus indicating
a potential threat for the stability of real-world networks.

Simulation has been employed to study adversarial scenar-
ios before, most notably in [9], [11], and recently in [4], which
all study unbounded queues. In contrast, our work is focused
on quantifying loss in a finite buffer setting. Chroni et al. [9]
use a simulation model to determine the stability of com-
positions of different schedulers in a network. They do not
assess FIFO and do not report quantitative results, but use
simulation to determine whether a network appears to be
stable or not. Cespedes et al. [11] do not focus on particular
adversarial scenarios, but instead choose packet destinations
distributed uniformly over the network and investigate the
effects of clock asynchrony on timing-based scheduling algo-
rithms.

A related issue to the randomized AQT model are ran-
domized scheduling decisions and their effects on network
stability as considered by Lorion and Weinard [16]. Similarly,
the asynchronous timers of Cespedes et al. [11] only affect
algorithms which base scheduling decisions on timers. This is
different from the randomization assessed in our work as we
focus on deterministic FIFO scheduling and randomness in
the timing of packet injections and variability in link delays.

A finite buffer AQT model is also studied by Aiello et
al. [1] using a competitive analysis, but they do not consider
a network system’s total number of dropped packets as a
performance metric, but instead use throughput as a metric
since no scheduling policy admits a competitive ratio for the
number of dropped packets. In the present paper, we propose
to use network loss (i.e. the ratio of dropped to successfully
delivered packets) as a performance metric and show that
previously proposed adversaries appear harmless under this
metric.

To the best of our knowledge, no previous work has re-
ported results on network loss in a finite-buffer AQT setting
and no results are known under the condition of a network
model that is not assumed to proceed in synchronous uniform
steps. We appear to be the first to quantify these effects
and to propose dedicated network adversaries tailored to this
setting.

We remark that a possible perspective on adversarial queue-
ing effects is their interpretation as low-rate DoS attacks [13].
These attacks often rely on synchronizing flows so that pack-
ets arrive as correlated bursts as first reported by Kuzmanovic
and Knightly [15]. In fact, the temporal evolution of these
burst arrivals (shown in Figure 1) appears similar to what
can be observed in AQT simulations (shown in Figure 2):
an attacker induces periodic waves of packet arrivals which
quickly fill up queues. Although the effect is related, our
work is concerned with more fundamental aspects of this
problem and the analysis is carried out starting from the
original theoretical AQT settings where, e.g., no congestion
control algorithms exist.

3. BACKGROUND
The network in an adversarial scenario is represented as

a directed graph G = (V,E) with network nodes as vertices
V and links as edges E. Time is divided into discrete time
steps and each node processes one unit packet per one unit
time step. Each edge in the graph is associated with a queue
where packets wait if they arrive at an already busy edge

http://disco.cs.uni-kl.de/content/Aqtmodel

Figure 1: Example of a low-rate DoS (due to Kuz-
manovic et al. [15], Copyright 2003 ACM).

Figure 2: Periodic Bursts in AQT Simulation Trace.

(output queue buffering). If more than one packet is available
to be processed at some edge, then the next packet is chosen
according to FIFO scheduling. Each time step consists of
the following sub-steps: 1) injection of new requests by the
adversary, 2) edge traversals of packets already in the system,
3) absorption of packets, if they reach their destination.

The adversary can inject packets with chosen loop-free
paths into the network, i.e., each path contains each edge
at most once. In order to not trivially overload the system,
the adversary’s requests are subject to a local load condition.
Previous work has introduced different models to express this
condition – see [8] for a comparison. We adopt an adversary
definition that is less bursty than the original definition [7]
but still sufficient to fulfill the requirements of the first result
about FIFO instability [3] and all subsequently published
instability examples. The injection rate 0 < r < 1 is bounded
for every path at any time: for any time interval [s, t), the
adversary’s injections requiring any particular edge in the
graph must not exceed r(t− s) packets. Additionally to this,
adversaries are allowed to require an initial configuration of
packets in queues in the network. This is allowed only once
at the start of time and can be considered as a warm-start
assumption. The number of packets required for a warm
start is considered to be very small in particular when be-
ing compared to the lengths of queues over time. Previous
work has introduced transformations of adversaries, so that
this requirement can always be satisfied [3,6]. Additionally,
simulation results on the minimal size of initial configura-
tions required for classical adversaries support the claim that
already a small number of packets suffices [4].

An adversarial scenario is defined as a specific combination
of a topology G and an adversarial strategy A that describes
a traffic flow pattern. AQT studies the time evolution of the
tuple (G,A) as specific worst-case flow patterns A repeatedly
emerge in G. As such, AQT studies pessimistic effects over

f ′0

f1

f ′1

e1

f0

e0

time (t0, t1]

f0
f1

f ′1

e1

f ′0

e0

time (t1, t2]

f0
f1

f ′1f ′0

e0

e1

time (t2, t3]

Figure 3: A network called the Baseball graph with
the corresponding adversarial strategy indicated by
dashed edges and in tabular form below.

Adversary 1. Baseball Adversary (A1)

time interval set at with path size

at t0 Sn e0 (e0) sn

(t0, t1 = t0 + sn] Xn e0 (e0, f0, e1) r sn

(t1, t2 = t1 + rsn] Yn e0 (e0, f
′
0, e1) r2 sn

(t1, t1 + snr
1+r

] Cn f0 (f0) snr
2

1+r

(t2, t3 = t2 + r2sn] Zn e1 (e1) r3 sn

The induction hypothesis (at t0) indicates an initial set.

long time scales. The evolution of the scenario is given in
the form of an induction over time intervals n ∈ N which
are called phases. The induction hypothesis is based on the
state of the network at the beginning of a phase n when
some queues already hold packets. These queues are called
initial sets and for the induction base they are satisfied by
the initial configuration. In the induction step, traffic flows
are generated by injections of the adversary such that for
the next phase n+ 1 the hypothesis of initial sets is satisfied
again and thus the same injection pattern can be performed
again.

3.1 Example
An important example is the Baseball topology which is

due to [3] and called Baseball graph (BB). The topology and
the adversary are illustrated in Figure 3 and Adversary 1,
respectively. As induction hypothesis in phase n, assume
that sn packets are queued in e0 at time t0; this set of packets
forms the initial set in this example. One phase corresponds
to injections in intervals (t0, t3] where we omit the reference
to n, the current phase, in order not to clutter notation.
At the end of phase n (at time t3) and for r ≥ 0.85, sn+1

packets with sn+1 > sn are queued in e1 which can be used
to execute the same pattern in the symmetric part of the
network in phase n+ 1.

The adversary’s goal is for the two sets Xn and Yn to
arrive simultaneously at e1. This is achieved by Xn’s advance
being blocked first by Sn and then by Cn packets while Yn
is injected. For this reason, the size of consecutive injections
depends on the size of Sn. Because Xn, Yn, and Zn form the
eventual queue in e1 these are called bottleneck packets and we
call Cn confinement packets, as packets of this type confine
other approaching packet flows. Over time, the repeated
adversarial traffic pattern causes packets to aggregate in the
network and the bottleneck buffers e0 and e1 face periodic,
increasing bursts.

4. FINITE BUFFERS
We now depart from existing adversarial queueing models

by assuming that queues are of finite length; for the ease of
presentation, we assume a uniform buffer size of b packets
throughout the network.

4.1 The Notion of Steady State
For infinite buffers, unstable systems experience ever grow-

ing delays; yet, in a model with finite buffers (and thus
for any real-world network) this clearly does not hold. At
some point, the packet burst sm+1 of some phase m does
not fit into the queue buffer b any more, and the excess of
sm+1−b leaves the system as loss. If the traffic flows continue
unchanged, the system enters a steady state where any set
sn, n > m is always bounded by the finite buffer size b.

An intuitive example for steady-state behavior can be
observed in Figure 2. By means of a queue length plot of
a bottleneck queue, the figure shows the transition of the
Baseball scenario from a transient state of growing periodic
bursts to a steady state of fixed-sized periodic bursts. We
capture this intuition by the following definition.

Definition 1 (Steady State). A network system rep-
resenting an adversarial scenario (G,A) with uniform buffer
size b is in steady state when all initial sets are of size b from
some phase onward.

For the network adversaries defined in [3, 5, 10, 14, 20]
being unstable under the infinite buffer assumption implies
to reach such a steady-state in a finite queue setting. For the
given examples, instability arises for configurations with r
greater than some lower bound r0 (see, e.g., Section 3.1). In
turn, the corresponding finite-queue system with the same
configuration reaches steady state.

The fundamental adversarial mechanism underlying the
known adversarial queueing scenarios is an incremental build-
up of packet bursts relying on the congestion caused by the
initial sets in each phase. Because of this incremental build-
up, the worst-case behavior of such scenarios can be obtained
by setting the cardinality of all initial sets to their maximal
value, i.e., to b. For the scenarios analyzed in Sections 5
and 6, the long-term behavior of the system converges asymp-
totically to this worst case.

4.2 Loss as the New Threat Measure
To assess the severity of adversarial effects quantitatively,

we propose to measure loss, which is a common indicator
of congestion in a network. Instead of computing the loss
for individual network segments though, the number of lost
packets is compared to the total number of packets injected
by the adversary:

(network) loss =
packets lost

packets injected

On a network-system level this ratio can be considered as the
loss rate over time or as the probability to lose any injected
packet independent from its path. Other threat measures
could easily exaggerate the severity of adversarial effects. For
example the maximum burst size or the length of a single
congestion event can grow arbitrarily large, if no topological
parameters are considered. However, in such cases the total
relative loss usually remains small, because the adversary
has to inject a large number of packets in order to create

these bursts; while, many of these packets are unaffected by
congestion (see Section 5.2).

Besides indicating inherent global risk, the total relative
loss also helps to quantitatively estimate the feasibility of
adversarial network attacks. Attackers may inject packets
into the network to artificially create adversarial effects,
which would cause denial of service in the target network.
It is desirable to obtain a lower bound on the effort needed
to launch attacks of this type, assuming that an attacker
attempts to use available resources as efficiently and stealthily
as possible.

For the loss analysis, assume a system (G,A) that is unsta-
ble for r ≥ r0 (assuming an infinite amount of buffer). The
analysis is limited to injection rates greater than r0, since
the system will endure loss only in this parameter range.
As the adversarial queueing scenarios analyzed in the next
section reach their respective steady states for r ≥ r0 (proofs
omitted), their analysis proceeds by setting the cardinality
of all initial sets to b.

5. LOSS IN CLASSICAL AQT EXAMPLES
This section presents an analytical study of the loss for

two well-known examples of adversarial scenarios given in [3]
and [5]. To estimate network loss for a system (G,A) the
number of packets lost and the number of packets injected
need to be determined. Loss depends on the injection scheme
of the adversary A, the cardinality of initial sets, and on
G. The total number of injections can be derived from the
description of A.

5.1 Loss in the Baseball Graph
The first example is the system (GBB ,A1) shown in Fig-

ure 3. We assume the system to be in some phase n and
that the initial set has the cardinality sn (= b). A1 induces a
queue of sn+1 = r3sn+r2sn/(r+1) packets in the bottleneck
at the end of the phase, as stated in [3]. To get the total
number of injections, it is necessary to find the exact cardi-
nality of the confinement set Cn (see Section 3.1), because
this cardinality is not stated in the original description of
A1 [3]. For efficiency reasons, the cardinality of Cn must
be such that throughout (t1, t2] packets compete with X to
traverse f0, but after t2 no packets of Cn may remain in the

queue of f0. In other words, |Cn| = snr
2

1+r
. As all cardinalities

stated here ignore static offsets, this leads to an upper bound
as follows:

loss ≤ sn+1 − sn
|Xn ∪ Yn ∪ Zn ∪ Cn|

=
sn(r3 + r2

1+r
− 1)

sn(r + r2 + r3 + r2

1+r
)

=
r4 + r3 + r2 − r − 1

r4 + 2r3 + 3r2 + r

It is interesting to note that the loss scales independently
of the buffer size b. This is due to the length of individual
phases being directly dependent on the initial set’s cardinality
sn and our worst-case assumption of steady-state loss, i.e.,
that sn = b. For r < 0.85 the system (GBB,A1) does not
necessarily reach a steady state and insignificant loss occurs
(see also simulation results in Section 6.4). With growing
injection rate r, the loss increases approximately linear to
1
7
≈ 14.23% for r = 1.0.

Figure 4: FIFO-unstable topology at arbitrary small
injection rates.

Another observation that can be drawn from this example
is that the small in-degree of e0 and e1 inherently limits the
arrival rate and thus the numerator of the loss equations.
If there were another incoming edge, the numerator could

comprise additional terms (besides r3 and r2

1+r
). However,

greater in-degrees amplify the role of another factor that can
limit packet loss as shown in the next example.

5.2 Loss at Extremely Small Injection Rates
Following the initial baseball graph instability example,

further work on FIFO instability has sought to decrease the
bound at which instability occurs (see also the comprehensive
survey in [8]). The ultimate goal has been reached in [5]
where Bhattacharjee and Goel present a system which is
unstable at arbitrary small injection rates, i.e., r = 0 + ε for
infinitesimal ε > 0. The corresponding graph is constructed
in a parameterized way from basic building blocks and can
therefore compensate low injection rates by increasing graph
size.

We use the following notation, which is slightly adapted
from the original one used by Bhattacharjee and Goel. The
network consists of two columns of α concatenated gadgets
of width k (Figure 4); label the gadgets i ∈ 1, . . . , α. Addi-
tionally each gadget i in column one is connected to the first
gadget of column two by an additional chain of gadgets, a
so-called connector; the same holds vice versa. The parame-
ters α and k are actually functions of r, for details we refer
to [5].

In each phase n an initial set Sn travels through one column.
Every time it traverses a gadget i, its advance is blocked
by k single-edge injections. The resulting queue Sin at each
gadget i is then used to inject bottleneck packets into the
connectors towards the symmetric column’s first gadget.

As a rough bound on the number of lost packets we assume
that all injected packets arrive at the bottleneck at the
same time (which is not the case and largely overrates the
adversary’s efficiency). Furthermore, we rely on the bound
on sin = |Sin| from Lemma 5.1 in [5]: sn/2 < sin < sn,
where sn = |Sn|. In each sub-phase i a set Xi

n of cardinality
xin ≤ sin r/k packets is injected into each path towards the
bottleneck. As each gadget has k paths, and there are α
such sub-phases, it holds that:

sn+1 ≤
∑

k xin ≤
α∑
n=1

sin r < α sn r. (1)

For a rough upper bound on the loss, it is sufficient to
bound additional injections used to hold back each Xi

n’s

packets until all of them are injected. This is achieved by
k additional single-edge injections into each gadget chain
of each Xi

n; after it is is injected, it needs to be held back
for another α− i sub-phases. Now, each Xi

n needs at least
sin >

sn
2

time steps for injection, and hence one sub-phase

produces at least (rsin) r k confinement packets. Thus, the
total number of packets injected is at least:

α∑
i=1

(rsin) r k (α− i) >
α−1∑
i=1

r2
sn
2
k i = α sn r

(
1

4
rk(α− 1)

)
Finally, we use the upper bound from (1) αsnr on the number
of bottleneck packets and obtain loss < 1

1
4
rk(α−1)

.

For the limit r → 1 and the best choice of parameters, the
loss of this system stays below 0.3%. The reason why this
rough estimation gives such an expressive bound is that the
number of confinement packets – injected by the adversary
to delay packet flows in order for them to arrive at the
bottleneck link at the same time – is excessively large. We
conclude that loss can be safely ignored for this system.

5.3 Conclusion for Loss in Classical Examples
We have studied several additional adversarial scenarios

from the literature and found that the baseball graph actually
has the worst loss characteristics, despite its simplicity. Ac-
cordingly, we argue that classical AQT examples do not show
excessive loss. However, these examples were not targeted at
a finite buffer model and cannot necessarily be expected to
deliver worst-case results for loss. Therefore, we reformulate
the goal of the adversary to maximize loss, that is, be as
effective (induce instability) and efficient (use the least num-
ber of packets) in terms of injections as possible. We propose
two appropriate adversarial scenarios that are described in
the next section.

6. NEW ADVERSARIAL SCENARIOS
The analysis presented in the previous section shows that

for small topologies like the baseball graph, small in-degrees
limit the arrival rate at bottleneck buffers and as such the
loss. For larger graphs, on the other hand, the number of
confinement packets (defined in Section 3.1) required by
classic adversaries is so high that it always keeps the global
loss rate low.

We propose a new adversarial concept called interlocking
which alleviates the need for large numbers of confinement
packets: several adversarial components are interweaved,
such that the bottleneck packets of one component act as
confinement packets for the others and vice versa. This idea
turns previously unused confinement packets into bottleneck
packets enabling highly loss-efficient adversaries. For read-
ability we introduce the concept via two examples (as is
typical for AQT results, e.g., [3, 5, 10,14,17]) but point out
that many adversarial components can be reused within this
concept.

6.1 Interlocked Baseballs
As the first example, the interlocking concept is applied to

two baseball networks denoted as Outer Adversary and Inner
Adversary (see Figure 5). These adversaries are synchronized,
so that the injections of the Outer Adversary are held back
by packets of the Inner Adversary, and vice versa. In such a
scenario, significantly fewer dedicated confinement packets
are needed, which results in higher network loss. To see the

l0

f0

g0

l1

f1

g1

m0

m1

e0

e1

First Interval: (t0, t1]

l0

f0

l1

f1

g0

g1

m0

e0

m1

e1

Second Interval: (t1, t2]

l0

g0

l1

f1
f0

g1

m0

e0

m1

e1

Third Interval: (t2, t3]

l0

f0

g0

l1

g1

f1

e1

e0

m0

m1

Fourth Interval: (t3, t4]

Figure 5: The Interlocked Baseballs (IB) scenario
comprises two baseball graphs. Corresponding in-
jection patterns are shifted by one interval and are
indicated by dashed and dotted edges. The phase
overlap due to each sub-adversary being completed
in three intervals can be observed in (t0, t1] and in
(t3, t4]. Only the subset of edges needed for unique-
ness of path description is labeled.

analogy of the Outer Adversary with the original Baseball
graph, compare m0, e0, f0, m1, e1, and f1 in Figure 5 with
e0, f0, f ′0, e1, f ′1, and f1 in Figure 3. A respective analogy
exists between the Inner Adversary and the original Baseball
graph. This mapping is illustrated in Figure 6.

Both Baseball-type components in this adversarial scenario
execute in lockstep during alternating phases. Therefore, the
adversary is described with two induction hypotheses: an
initial set On in m0 for the Outer Adversary and In in l0
for the Inner Adversary. In terms of the overall scenario,
numbered phases are divided into even and odd phases; each
phase n is subdivided into intervals of length on, where on =
|On|. We describe roughly what happens to the injections,
which are detailed in Adversary 2. As before, we omit the
description for the symmetric part of the network because
the adversary uses the same strategy for odd phases n+1, n+
3, n+ 5,

In the first interval, the initial set On starts traversing m0

at t0 + 1 and by doing so, it blocks the path of O1
n until

t1 + 1. Next, O1
n competes with Xn to traverse the edge

f0. This competition is the basic mechanism connecting the
two interlocked adversaries with each other. At the same
time, O2

n is injected and its packets are queued up behind O1
n.

After r on + 1 time steps, O1
n will have left the queue of m0

and O2
n starts traversing m0. Simultaneously, I1n is injected

into l0. Its long path (and the path of I2n) is necessary
to form Xn+1 for the next phase. The packets in I1n are
buffered behind the initial set In at l0 and start traversing l0
at time step t1 + in. In the third interval, O1

n and O2
n arrive

Adversary 2. Interlocked Baseballs Adversary

time interval set at with path size

at t0 (ind. hypothesis) On m0 (m0) on

(t0, t1 = t0 + on] O1
n m0 (m0, f0,m1) on r

at t1 (ind. hypothesis) In l0 (l0) in

at t1 (ind. hypothesis) Xn l0 (l0, f0) xn

(t1, t2 = t1 + on] O2
n m0 (m0, e0,m1) r on

(t1, t2) I1n l0 (l0, f0, l1, f1) r on

(t2, t3 = t2 + on] O3
n m1 (m1) r on

(t2, t3) I2n m0 (l0, g0, l1, f1) r on

(t3, t4 = t3 + on] I3n (l1) (l1) r on

The induction hypothesis (ind. hypothesis) indicates an
initial set. Note that Xn is a subset of In – both are initial
sets that reside in the same queue, but differ in that the
packets in In require to traverse the path (l0, f0).

l0

f0

g0

l1

f1

g1

e0

m0

m1

e1 f0
f1

m0

m1

e0

e1

l1

l0
g1

g0

Figure 6: Mapping the Interlocked Baseballs (IB)
scenario to its two baseball graphs. Left: the Outer
Adversary, right: the Inner Adversary.

at m1, while O3
n gets directly injected into the same edge.

These arrivals fill the queue of m1 rapidly and form On+1,
which becomes the initial set of the next phase. Still in the
same time interval, another set I2n is injected by the inner
adversary while I1n is still queued behind O1

n. Finally, in the
fourth time interval, I1n and I2n arrive at l1 together with an
additional injection I3n. Note that the phases n and n + 1
overlap. While the arrivals at l0 form In+1 in (t3, t4), the
next phase of the outer adversary has already started. In
other words, (t0, t1] of phase n+ 1 is already active.

6.2 Loss in the Interlocked Baseballs Scenario
In the analysis, we ignore constant offsets towards lower

bounds. For example, Set O1
n competes to traverse f0 at

t1 + 3 with Set Xn but we count as if it arrived at t1. Also,
some expressions of set cardinalities may become negative,
but we omit the [. . .]+ operator, because set sizes cannot
become negative.

Lemma 1.

on+1 =
(4 on r − 2 on) xn + 3 on in r − 2 on in

xn + in
(2)

in+1 = on(4 r − 3) + xn (3)

xn+1 ≥ on (4 r − 3) + xn −
2 on r

r + 2
(4)

Proof. In (t1, t2], Xn competes with O1
n to traverse f0.

Xn arrives on average at rate xn/in and O1
n-packets arrive

at rate 1. Thus, Xn traverses f0 at rate xn/in
xn/in+1

, and O1
n at

rate 1
xn/in+1

. Overall, on (xn/in)
xn/in+1

Xn-packets, and on
xn/in+1

O1
n-packets traverse f0 as this interval is on time steps long.
At t2, r on + xn − on packets from O1

n and Xn are left in
queue f0 to block the advancing packets of I1n. Thus, until t3,
another on − (r on + xn − on) = 2on − r on − xn packets will
traverse f0 and therefore, I1n will decrease by that number
of packets.

While O2
n gets injected into m0 in (t1, t2], the queue of m0

holds only r on packets of O1
n. Therefore, on(1− r) packets

from O2
n traverse m0 before the set is fully injected. These

packets arrive at m1 with rate 1. Concurrently, packets from
O1
n arrive at m1 with rate 1

xn/in+1
, while traversals at m1

occur at rate 1, so that in (t2 + ron, t3], these arrivals will
form an additional set En at m1. This set grows at rate

1
xn/in+1

.

Similarly to O2
n, I2n diminishes by in(1− r) packets at l0 in

(t2, t3]. Also, by the same mechanism as En, a set Fn builds
up in (t3 + ron, t4] in the queue of l1, as early traversals of
the sets I1n and I2n arrive at edge l1 with an arrival rate of 2
while traversals occur at rate 1.

At t4 the queue of m1 consists of the remaining packets of
new injections (denoted by rem), the additional set En and
traversals in t4 − t3 = on:

on+1 =rem(O1
n) + rem(O2

n) +O3
n + En − on

=r on −
on

xn/in + 1
+ r on − (1− r)on + r on

+ (1− r)on

(
1

xn
in

+ 1

)
− on

=
(4 on r − 2 on) xn + 3 on in r − 2 on in

xn + in

Analogously, the queue length of l1 at time t5 can be derived
from the remaining arrivals and traversals:

in+1 =rem(I1n) + rem(I2n) + I3n + Fn − on
=r on − (2on − r on − xn) + r on − (1− r)on

+ r on + (1− r)on − on
=xn + 4 on r − 3 on

Finally, we estimate a lower bound on Xn+1 – the initial
packets at l0 which include f0 (resp. at l1 and f1). This set
is only composed of packets from I1n and I2n. Both sets’ path
includes f1 whereas I3n’s path does not. Because of this, only a
fraction of the traversals at l1 diminishes Xn+1. This fraction
can be upper-bounded by considering the corresponding rates
of arrivals.

In [t4, t5], I1n and I2n each arrive at rate 1 at l0 while I3n is
injected at rate r. Packets from the former two sets traverse
at most with rate 2

2+r
. The set Fn only decreases the number

of traversals but does not directly count towards Xn+1:

xn+1 ≥rem(I1n) + rem(I2n)−
(

2

2 + r

)
(on − Fn)

=on (4 r − 3) + xn −
2 on r

r + 2

because Fn-packets appear first in the queue l1.

The ratio xn/in plays a central role to assess instability
and loss, but its recursive nature prevents a straightforward

evaluation. The following lemma addresses this issue via an
auxiliary function, which captures the variety of dependencies
from Eqs. 2-4 with a single fixed-point iterator.

We restrict the analysis to r ≥ 0.9 for ease of presentation.

Lemma 2. Assume r ∈ [0.9, 1], i0 ≥ o0, and x0 ≥ i0/3.
Then in ≥ on and xn ≥ in/3. Furthermore, it holds that
limn→∞ xn/in = (1191/500) r − (361/200).

Proof. The proof is by induction on n. From Lemma 1,
in/on is monotonic in r. Assume in−1 ≥ on−1 and xn−1 ≥
in−1/3. Then, for r = 0.9 the ratio in/on evaluates to a
value greater than 1.009. For r = 1.0 the ratio is greater
than 16/15. This shows the first claim in ≥ on for step n.

It remains to be shown that xn ≥ in/3 is satisfied. This is
done by showing that for the fixed-point of xn/in the ratio
is always greater than 1/3 for r ∈ [0.9, 1]. In particular, the
fixed-point equation is monotonic and the claim follows by
induction.

Even if xn−1 and in−1 are known from previous computa-
tion steps, computing the ratio of xn/in is not trivial and
approximations are used. Assume R(k − 1) is the ratio pro-
duced by the fixed-point iterator in iteration k−1 and k ≤ n.
Then, for the k-th step, we estimate R(k) = xk/ik by using
xk−1

′ = R(k − 1) ok−1. Observe that xk−1
′ ≤ xk−1 because

k ≤ n, R(k − 1) ik−1 = xk−1, and because we can prove that
in ≥ on for the current induction step n (first paragraph
in this proof). This approximation leads to the following
algebraic simplification:

R(n) ≥ (r + 2)R(n− 1) + 4 r2 + 3 r − 6

(r + 2)R(n− 1) + 4 r2 + 5 r − 6

Using R(n − 1) ≥ 1
3

and then evaluating for r ∈ [0.9, 1]
shows that xk ≥ ik/3, which completes the induction proof.

The injection rate r remains as a parameter of R(n). It can
be used to obtain a better lower bound on R(n) by expressing
it as a linear lower bound below the fixed-point iteration
curve for r ∈ [0.9, 1.0]. This is possible by interpolating
at the limit values, 0.9 and 1, due to the fixed-point curve
being monotonically increasing in r. The result from this
interpolation is the limit given in the second part of the
lemma.

The base case, i0 ≥ o0 can be assumed without loss of
generality, because it is a constant offset and i0 and o0 are
small compared to in and on. The same holds for x0 ≥ i0/3.

Proposition 1. Under infinite buffers, the Interlocked
Baseballs scenario is unstable for r > 0.916.

Proof. From Lemma 1 we know an equation for on+1.
We use in ≥ on and the bound on xn to simplify this equation
as follows:

on+1 =
(4 on r − 2 on) xn + 3 on in r − 2 on in

xn + in

≥9528 r2 − 8984 r + 1610

(2382 r − 805)
on

This proves that on grows without bound for r ≥ 0.916.
Because in ≥ on from Lemma 2 this also applies to in+1, so
that the number of packets in the Inner Adversary’s grows
without bound, too.

The Interlocked Baseball adversary’s initial sets will thus
reach the buffer size b. We additionally claim that the Inter-
locked Baseballs scenario reaches steady state. This can be

Figure 7: Analytical loss bounds of two classical sce-
narios in comparison to the Interlocked Baseballs
scenario show that there exist new scenarios that
can exceed the loss of classical scenarios. Note that
the actual difference is more pronounced as we here
compare upper to lower bounds (cf. Figure 11).

seen by reconsidering the proof of Lemma 1 under the condi-
tion that initial sets of phase n are of cardinality b. Observe
that all flows retain their timing (and cardinality) because
intermediate buffers (e.g., f0) do not overrun. Therefore, the
expressions from the Lemma hold also in the finite buffer
system and can be used in the following proposition.

Proposition 2. For r > 0.916, the lower bound on the
loss for the Interlocked Baseballs scenario is

8243308 r2 − 10110340 r + 2362675

4764000 r2 − 1610000 r
(5)

Proof. From the description of Adversary 2 we obtain
that overall 6 on r packets are injected in one phase. The loss
for one phase can be derived from Lemma 1 and 2 similarly
to the proof of Proposition 1:

loss =
[õn+1 − b]+ + [̃in+1 − b]+

6 on r

Here, õn+1, ĩn+1 denote the cardinality of the initial sets
in the (hypothetical) infinite buffer system. These can be
expanded using Lemma 1 and using Lemma 2’s fixed point
estimate for xn. Under the assumption of steady state,
where on = b and in = b, the closed form of the loss can be
derived.

This analytical result shows that the classical examples
can be ”outperformed” in terms of loss. As an illustration,
Figure 7 shows that the loss bound of the classical Baseball
adversary (BB) is eventually surpassed by the lower bound of
the Interlock Baseballs adversary (IB). While the difference in
this case remains small, note that we are comparing upper to
lower bounds where both are not tight (cf. Figures 9 and 10).
A more powerful reactive adversary is introduced in the next
section and evaluated using simulation in Section 6.4.

6.3 The Reactive Adversary
A refinement of the interlocking concept is possible with

three BB-adversaries. Conceptually, interlocking greater
numbers of adversaries is a straightforward task. However,
to preserve the precise timing of packet flows the construc-
tion requires caution, because the different adversaries find
different network conditions at the start of each phase.

u0

g0

u1

g1

v0

v1

f0

f1

w0

e0

w1

e1

h0

i0

p0

j0

k0

l0 m0
h1

i1

p1

j1

k1

l1

m1c

Figure 8: An extension to the Interlocked Baseballs
topology with maximum in-degree three which al-
lows for more than three sets to be injected per ad-
versary. The edges m0, p0, m1, p1, and c are exploited
by the Reactive Adversary to create additional con-
finement by the sets I1n and Zn.

Previously published adversaries fix an injection pattern
which remains the same for each phase; the number of in-
jected packets depends linearly on the cardinality of an initial
set. We introduce the notion of a reactive adversary which is
allowed to adjust more parameters of its strategy based on
the network state at the start of a phase. This creates more
powerful adversaries, but nevertheless still complies with all
previous restrictions on the adversary’s power.

We present a simple reactive adversary based on the topol-
ogy in Figure 8. The adversarial strategy in Adversary 3
utilizes edge c to synchronize packet flows across phases. In
particular, if the set Zn is injected, it affects phase n + 1
where it creates additional confinement in the path of M1

n+1

and M2
n+1. The essential idea is to conditionally inject Zn,

only if needed, in order to hold the denominator in its loss
equation small (cf. the insight from Section 5.2). An efficient
condition is to check whether the RA is not in steady state,
i.e., the threshold in the definition of Adversary 3 is set to
T := b− 1.

To exploit the graph’s maximum in-degree of three, the
adversary interlocks three sub-adversaries denoted by Inner,
Middle, and Outer Adversary and each adversary injects four
(instead of three for the IB) sets (e.g., O1

n −O4
n). The first

three sets travel along the three paths that connect each two
bottleneck links (w0/w1, v0/v1, u0/u1), and the fourth set is
a direct injection into the bottleneck link. This extends the
duration of each phase n from 4 on (for the IB) to 6 on time
steps (for the RA).

The mutual interdependence of various packet flows makes
analytical treatment of this case hard. However, we argue
that this construction is very interesting; firstly to study
a generalization to the class of interlocked scenarios, and
secondly because the network loss of this scenario exceeds
all others, as shown by simulations in the next section.

Adversary 3. Reactive Adversary (RA)

time interval set at with path size

at t0 (ih) On w0 w0 on

(t0, t1 = t0 + on] O1
n w0 w0, j0, k0, l0, w1 on r

at t1 (ih) Mn v0 v0 mn

at t1 (ih) Xn v0 v0, j0 xn

(t1, t2 = t1 + on] O2
n w0 w0, h0, i0, w1 r on

(t1, t2] M1
n v0 v0, j0, k0, l0, v1, j1 r on

at t2 (ih) In u0 u0 in

at t2 (ih) Yn u0 u0, h0, p0, k0 yn

(t2, t3 = t2 + on] O3
n w0 w0, e0, w1 r on

(t2, t3] M2
n v0 v0, h0, i0, v1 r on

(t2, t3] I1n u0 u0, j0, k0, l0, u1, h1, p1, k1 r on

(t3, t4 = t3 + on] O4
n w1 w1 r on

(t3, t4] M3
n v0 v0, f0, v1 r on

(t3, t4] I2n u0 u0, h0, i0, u1 r on

(t4, t5 = t4 + on] M4
n v1 v1 r on

(t4, t5] I3n u0 u0, g0, u1 r on

(t4, t5] (cond.) Zn j0 j0, k0, c, l1,m1, i1 r on

(t5, t6 = t5 + on] I4n u1 u1 r on

The abbreviation (denoted as ‘ih’) indicates the inductive
assumption of an initial set. The injection denoted by (cond.)
takes place as long as on = |On| is less than some threshold
T depending on the buffer size b.
Note that Xn is a subset of Mn – both are initial sets that
reside in the same queue, but differ in that the packets in Mn

require to traverse the path (v0, j0). Analogously, Yn ⊂ In
has a remaining path (u0, h0, p0, k0).

6.4 Simulation Results
We implemented the deterministic simulation framework

for AQT in OMNeT++ [19]. While previous work in adver-
sarial queueing models relies on pencil and paper evaluation,
our new tool allows efficient exploration of the parameter
space of various graphs and adversaries. In particular, the
simulations are used to obtain quantitative results on the
loss in the reactive adversary scenario. Besides analyzing the
reactive adversary, the analytical results and the correctness
of the simulations are mutually validated by comparing the
results in Figures 9 and 10.

For the Baseball scenario, it can be observed that the
upper bound is correct (with some overestimation) and the
simulation is reasonably close to the upper bound. For the
Interlocked Baseball scenario, the lower bound also appears
to be correct. In fact, loss has been underestimated by 2-3%
using the bound from Proposition 2.

In Figure 11, the loss of several scenarios is compared
against each other. In particular, the results for the novel
proposals (Interlocked Baseball (IB) and Reactive Adversary
(RA)) are shown, but also for the Baseball (BB) from [3] and
another scenario termed Gadget Chain [17] (see Figure 12),
which also exhibits an interesting behavior. It introduces a
very distinct idea from other previous work and utilized the
first example of a parametric topology. However, the Gad-

0

5

10

15

20

0.85 0.90 0.95 1.00
Injection Rate r

Analytic
Upper
Bound

SimulationL
o

ss
 [

%
]

BB

Figure 9: Simulation of Baseball scenario (BB)

0

5

10

15

20

0.85 0.90 0.95 1.00
Injection Rate r

Analytic
Lower
Bound

Simulation

L
o

ss
 [

%
]

IB

Figure 10: Simulation of Interlocked Baseballs sce-
nario (IB)

get Chain scenario oscillates under finite queue conditions,
because the timing of adversarial packet flows is interrupted
due to lost packets. With a minimal change, however, this
adversary can cause some loss, as shown in Figure 11.

The results demonstrate that the new scenarios incur sig-
nificantly higher loss than the classical AQT scenarios. In
particular, the Reactive Adversary rises relatively steep up
to 27% loss in the deterministic simulations starting from
r = 0.85. Also the difference between the Interlocked Base-
balls and the Baseball scenarios becomes more pronounced.
Further, the behavior of the Gadget Chain scenario [17] is
quite different from the others: while loss occurs at low injec-
tion rates, the loss curve flattens out and never exceeds 6%.
Nevertheless, this gives rise to speculation about the feasibil-
ity of loss-maximizing adversaries to threaten a network at
low injection rates.

7. EVENT RANDOMIZATION
Adversarial effects reported in the literature are closely

coupled to the tight synchronization of packet-level events.
As such, considering them as blueprints for problematic con-
figurations or malicious attacks appears somewhat paranoid.
Therefore, the impact of randomization effects on loss is

Figure 11: Loss results from deterministic simula-
tion for different scenarios. The new adversarial sce-
narios yield significantly higher loss than classical
adversaries. Note also the low-rate behavior of the
Gadget Chain (due to [17]): although flat in shape,
the scenario results in about four to six percent loss
even for low injection rates.

a

f1

e1

f2 fn−1

e2 en−1

fn

en

a′

f ′1

e′1

f ′2 f ′n−1

e′2 e′n−1

f ′n

e′n

a′′

Figure 12: Topology of another adversarial scenario:
the Gadget Chain from [17] is constructed by con-
necting gadgets one after another (top). Each “gad-
get” F (i) (bottom) composes two lines which join at
either end into a common input and output edge.

studied here to better assess the real-world implications of
AQT from that perspective as well.

7.1 Imperfect Adversary Synchronization
We model differences in clock time or processing variability

that affect the timing of adversarial injections. The time
at which the adversary schedules any specific injection is
now a random variable. In the classical model, the injection
time is deterministic and controlled by the adversary. In
the randomized model, realistic differences in clock time or
processing variability are expressed as a variance affecting
the time at which each injected packet arrives at its target
edge. We have chosen a normal distribution because of
the distribution’s simplicity and symmetry properties. The
random variable is truncated at time zero and the impact of
varying standard deviations is studied. The empirical CDFs
for such randomized injections are shown in Figure 13.

Figure 14 shows that for an example of the classical ad-
versarial scenarios (the Baseball scenario [3]) large values
of standard deviation indeed break the inner synchroniza-
tion of the adversary resulting in smaller network loss. We
have found similar behavior for other classical scenarios, but
omit the detailed results for brevity. On the other hand, the
newly proposed adversaries prove more robust as the effect

Delta Injection Time [time steps]

0.00

0.25

0.50

0.75

1.00

1

25%
50%

75%

Figure 13: Empirical CDF of the inter-injection
time. The inter-injection time follows a truncated
normal distribution.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●● ● ●●● ●●● ●●●● ●●●

●

●●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

0.80 0.85 0.90 0.95 1.00
Injection Rate r

L
o

ss
 [

%
]

0%

25%
50%

75%

BB

Figure 14: Randomized Injections (BB)

of this form of desynchronization remains small. In fact,
the measured loss remains almost unchanged, as depicted in
Figures 15 and 16.

7.2 Randomized Network Model
Instead of assuming a deterministic network model with

uniform and synchronized network links, each channel’s de-
lay (the corresponding server delay for processing a single
packet) is now modeled as a Weibull distributed random
variable with mean one. Again, the effect of different stan-
dard deviations is investigated; we chose up to 300% of the
mean as the largest deviation. For comparison, 200% roughly
corresponds to the real-world measurements reported in [18].
This delay variability may be due to various effects such as
processing variability or volatile cross-flows. Clearly, this
only approximates reality since the impact of volatile cross-
flows is only represented implicitly because actual cross-flows
do not exist in our model. A Weibull model has been shown
to be realistic [18] and allows using the standard deviation
as parameter in this case (compared to a truncated normal
distribution). The empirical CDF for a randomized channel
delay is shown in Figure 17.

The results are shown in Figures 18-20. The Baseball
scenario (Figure 18) is a typical representative of classical
adversaries and its loss diminishes to irrelevant values unless
the network utilization closely approaches 1. The Interlocked
Baseballs scenario (Figure 19) is similarly affected but ap-
pears slightly more robust. Finally, the Reactive Adversary
scenario (Figure 20) can yield loss rates of about 10% even
for large values of the standard deviation. This adversary’s

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●● ●●● ● ●●● ●●● ●●●● ●●● ●●●

●●

●

●

●

●
●

●
●

●

●●
●

●●

●

●

●●

●

●
●

●

●●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

0.80 0.85 0.90 0.95 1.00
Injection Rate r

L
o

ss
 [

%
]

0%
25%

50%

75%

IB

Figure 15: Randomized Injections (IB)

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●● ●●● ● ●●●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●●

●

●●

●

●●

● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

0

10

20

0.80 0.85 0.90 0.95 1.00
Injection Rate r

L
o

ss
 [

%
]

0%
25%

50%
75%

RA

Figure 16: Randomized Injections (RA)

self-stabilizing property seems to retain its general behavior
and thus also the loss curve’s shape.

We conjecture that for both the Baseball and the Inter-
locked Baseballs scenario the adversarial effect does not play
a major role any more under channel delay randomization
exhibiting no significant deviation, but the losses are rather
due to the typical hyperbolic growth known from classical
queueing theory when the average arrival rate approaches
the server capacity.

7.3 Discussion of Results
It is interesting to see that all three scenarios appear more

robust against changes in the timing of injections than to
variability in link delay. We have observed that this is due
to packet flows being repeatedly aggregated in queues so
that the exact timing of their arrivals in the network has
only limited impact. For example, all bottleneck packets
are first stored in a queue before they start traversing their
first edge. Then, the variability of injection timings are
averaged to close to the mean (smoothing effect). Their
subsequent travels through the network then depends mostly
on the server delay experienced at each edge. This is also
why changes in the channel delay have a more pronounced
effect on the loss behavior (e.g., compare the results for 50%
deviation of Figure 15 to the results in Figure 19).

Both novel scenarios, the Interlocked Baseballs and the
Reactive Adversary, prove to be more efficient and more sta-
ble than previous examples. Analyzing packet trajectories by
simulation shows that indeed the two concepts, interlocking
and reaction, are instrumental to achieve this robustness.
Firstly, the Interlocked Baseballs adversary is the first sce-
nario not requiring active confinement, i.e., packets which are
only injected to slow down another packet flow. Instead, all

0.00

0.25

0.50

0.75

1.00

1 Channel Delay [time steps]

50%

100%
200%

300%

Figure 17: Empirical CDF of the channel delay. The
channel delay follows a Weibull distribution.

● ●● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●● ● ● ● ● ●

●

●

●

●

●

●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●●

●

● ● ● ● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

0.80 0.85 0.90 0.95 1.00
Injection Rate r

L
o

ss
 [

%
] 0%

50%

BB

300%

200%
100%

Figure 18: Channel Delay Variation (BB)

packet injections are targeted at some bottleneck queue. This
strategy improves robustness against randomization due to
the queue-aggregation effect described above. Secondly, the
new concept of reactive injections, which is used for the set
Zn in the Reactive Adversary, protects the adversary’s injec-
tions against randomization effects. For previously published
adversaries, we have observed that under randomization the
initial queue lengths often drop below a certain threshold not
allowing further adversarial activity. The Zn injections pre-
vent these situations by “boosting” the cardinality of initial
sets in such situations.

8. CONCLUSION
Adversarial queueing theory has introduced the notion of

network instability. However, it is also important to under-
stand and quantify the robustness of adversarial scenarios
when assessing them from a practical network engineering
perspective. In this paper, we report an investigation of
the threat potential of adversarial effects under the realis-
tic assumptions of finite buffers and imperfect synchrony.
The hypothesis that classical instability scenarios do not
translate into excessive loss under these assumptions is cor-
roborated. However, a novel class of adversarial scenarios is
introduced; these exhibit considerably more loss and prove
to be more robust under realistic conditions. The results are
derived analytically and, untypical for AQT work, through
simulations.

Further work is needed to conclusively determine whether
there are conditions under which adversarial queueing effects
constitute a real-world threat. For example, we conjecture
that more efficient loss-maximizing adversarial scenarios can

● ●● ●
● ●

●

● ●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ●●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●● ● ● ● ● ● ● ● ●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

0.80 0.85 0.90 0.95 1.00
Injection Rate r

L
o

ss
 [

%
]

0%

100%
200%
300%

50%

IB

Figure 19: Channel Delay Variation (IB)

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

0

10

20

0.80 0.85 0.90 0.95 1.00
Injection Rate r

L
o

ss
 [

%
] 0%

100%

200%
300%

50%

RA

Figure 20: Channel Delay Variation (RA)

be conceived, possibly at lower injection rates. On the other
hand, the complexity of such adversarial scenarios probably
makes them an unlikely blueprint for actual attacks. As well,
the chance of such patterns occurring naturally as a result of
misconfiguration or unfortunate circumstances is probably
small. This paper is the first to systematically address these
fundamental questions and presents first steps towards their
answering.

9. ACKNOWLEDGEMENTS
This research was supported by the German Research

Foundation (DFG) and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

10. REFERENCES
[1] W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén.

Dynamic routing on networks with fixed-size buffers. In
Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 771–780.
Society for Industrial and Applied Mathematics, 2003.

[2] C. Alvarez, M. Blesa, and M. Serna. A characterization
of universal stability in the adversarial queuing model.
SIAM Journal on Computing, 34(1):41, 2004.

[3] M. Andrews, B. Awerbuch, A. Fernández, T. Leighton,
Z. Liu, and J. Kleinberg. Universal-stability results and
performance bounds for greedy contention-resolution
protocols. Journal of the ACM, 48(1):39–69, Jan. 2001.

[4] D. Berger, M. Karsten, and J. Schmitt. Simulation of
adversarial scenarios in OMNeT++: Putting
adversarial queueing theory from its head to feet. In
Proceedings of the 6th ICST Conference on Simulation
Tools and Techniques, pages 291–298, 2013.

[5] R. Bhattacharjee and A. Goel. Instability of FIFO at
Arbitrarily Low Rates in the Adversarial Queueing
Model. SIAM Journal on Computing, 34(2):318, 2005.

[6] M. J. Blesa. Stability in communication networks under
adversarial models. PhD thesis, Universitat Politècnica
de Catalunya, 2005.

[7] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and
D. P. Williamson. Adversarial queuing theory. Journal
of the ACM, 48(1):13–38, Jan. 2001.

[8] V. Cholvi and J. Echague. Stability of FIFO networks
under adversarial models: State of the art. Computer
Networks, 51(15):4460–4474, Oct. 2007.

[9] M. Chroni, D. Koukopoulos, and S. D. Nikolopoulos.
An experimental study of stability in heterogeneous
networks. In Experimental Algorithms, volume 4525 of
Lecture Notes in Computer Science, pages 189–202.
Springer-Verlag, 2007.

[10] J. Diaz, D. Koukopoulos, S. Nikoletseas, M. Serna,
P. Spirakis, and D. M. Thilikos. Stability and
non-stability of the FIFO protocol. In Proceedings of
the Thirteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 48–52, 2001.

[11] A. Fernandez Anta, J. L. Lopez-Presa, M. A. Lorenzo,
P. Manzano, J. Martinez-Romo, A. Mozo, and
C. Thraves. Performance of scheduling policies in
adversarial networks with non synchronized clocks.
Theory of Computing Systems, 48(1):1–22, Jan. 2011.

[12] A. Goel. Stability of networks and protocols in the
adversarial queueing model for packet routing.
Networks, 37(4):219–224, July 2001.

[13] D. Koukopoulos. The impact of dynamic adversarial
attacks on the stability of heterogeneous multimedia
networks. Computer Communications,
33(14):1695–1706, Sept. 2010.

[14] D. Koukopoulos, M. Mavronicolas, S. E. Nikoletseas,
and P. G. Spirakis. On the stability of compositions of
universally stable, greedy contention-resolution
protocols. In Proceedings of the 16th International
Conference on Distributed Computing, pages 88–102,
2002.

[15] A. Kuzmanovic and E. W. Knightly. Low-rate
TCP-targeted denial of service attacks: the shrew vs.
the mice and elephants. In Proceedings of ACM
SIGCOMM, pages 75–86, 2003.

[16] Y. Lorion and M. Weinard. The effects of local
randomness in the adversarial queueing model. In
Algorithms - ESA 2008, volume 5193 of Lecture Notes
in Computer Science, pages 672 – 683. Springer-Verlag,
2008.

[17] Z. Lotker, B. Patt-Shamir, and A. Rosen. New stability
results for adversarial queuing. SIAM Journal on
Computing, 33(2):286, 2004.

[18] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and
C. Diot. Measurement and analysis of single-hop delay
on an IP backbone network. IEEE Journal on Selected
Areas in Communications, 21(6):908–921, Aug. 2003.

[19] A. Varga. The OMNeT++ discrete event simulation
system. In Proceedings of the 15th European Simulation
Multiconference, 2001.

[20] M. Weinard. Deciding the FIFO stability of networks in
polynomial time. Algorithms and Complexity, (3):81–92,
2006.

	Introduction
	Related Work
	Background
	Example

	Finite Buffers
	The Notion of Steady State
	Loss as the New Threat Measure

	Loss in Classical AQT Examples
	Loss in the Baseball Graph
	Loss at Extremely Small Injection Rates
	Conclusion for Loss in Classical Examples

	New Adversarial Scenarios
	Interlocked Baseballs
	Loss in the Interlocked Baseballs Scenario
	The Reactive Adversary
	Simulation Results

	Event Randomization
	Imperfect Adversary Synchronization
	Randomized Network Model
	Discussion of Results

	Conclusion
	Acknowledgements
	References

