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ABSTRACT
Knowledge graphs (KGs) have been widely used to improve rec-

ommendation accuracy. The multi-hop paths on KGs also enable

recommendation reasoning, which is considered a crystal type of

explainability. In this paper, we propose a reinforcement learn-

ing framework for multi-level recommendation reasoning over

KGs, which leverages both ontology-view and instance-view KGs

to model multi-level user interests. This framework ensures con-

vergence to a more satisfying solution by effectively transferring

high-level knowledge to lower levels. Based on the framework, we

propose amulti-level reasoning path extractionmethod, which auto-

matically selects between high-level concepts and low-level ones to

form reasoning paths that better reveal user interests. Experiments

on three datasets demonstrate the effectiveness of our method.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Reinforcement learning.
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1 INTRODUCTION
Personalized recommendation has become one of the key mecha-

nisms for handling the explosive growth of online content. Recently,
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Figure 1: Multi-level reasoning over two-view KGs.

increasing attention has been paid to equipping recommender sys-

tems with the ability to leverage knowledge graphs (KGs). A core

benefit of KGs is that they enable the modeling of explicit multi-hop

relations between users and items. For example, KGs may reveal

that user Alice and item Mania Fragrance has a multi-hop rela-

tion Alice
Purchase−−−−−−−→ Luminous Silk Foundation

Produced_by
−−−−−−−−−−→ Armani

Produce−−−−−−→ Mania Fragrance. Such multi-hop relational paths provide

auxiliary information about user-item relations and help improve

recommendation accuracy. Moreover, they also enable a crystal

type of explainability that is known as reasoning [13]. Compared

with traditional recommendation models, recommendation reason-

ing methods not only output recommended items, but also provide

multi-hop paths that connect users with their recommended items

to help understand the model and increase user trust [27, 30].

Existingworks on recommendation reasoning focus on instance-
view KGs [11, 13, 27, 30, 36]. As shown in Fig. 1, an instance-view

KG includes relations between specific entities, e.g., Armani, Produce,
Mania Fragrance. It lacks information about high-level connections

between entities, e.g., both Armani and Prada are Italian Luxury
Fashion Brands. Based on instance-view KGs, existing methods can

perform detailed analysis about user-item relations and identify

bottom-level reasoning paths. However, bottom-level reasoning

is fragmented in the sense that it cannot directly relate different

user behaviors. An example is given in Fig. 1. If we relate different

behaviors of Alice by considering the high-level connections be-

tween entities (G1
and G2

), we can see that Alice tends to purchase
Cosmetics produced by Italian Luxury Fashion Brands. However,

https://doi.org/10.1145/3485447.3512083
https://doi.org/10.1145/3485447.3512083
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it is difficult for existing methods to identify this overall pattern,

since they only model bottom-level relations (G0
). This leads to

two issues. First, the recommendation accuracy may be hampered.

Without a correct overall understanding of the user behaviors, the

fragmented bottom-level reasoning process has a larger probability

to converge to a local optimum, e.g., recommending an item that

belongs to the category Sports to Alice (Fig. 1, red curve). Second,

the explainability of existing methods is limited, as a bottom-level

reasoning path may fail to reveal the true interest of a user (e.g.,

Italian Luxury Fashion Brand) because they can only focus on a few

specific, bottom-level entities (e.g., Armani).
To address the issues, we take a more complete view of KGs. In

addition to instance-view KGs, the other major type is ontology-
view KGs [8], which stores relations that reveal whether an entity

or high-level concept is a child of another concept (e.g., Prada, Is A,
Italian Luxury Fashion Brand in Fig. 1). Combining ontology-view

KGs with instance-view KGs allow us to achievemulti-level rea-
soning over KGs.We refer to a recommendationmodel as achieving

multi-level reasoning if it outputs the recommended items and their

reasoning paths by considering multi-level knowledge about enti-

ties. According to psychopathology, human reasoning is by nature

a multi-level information processing procedure [9]. We wish to

operationalize this insight into machine learning by identifying the

desirable properties (P1 and P2) for a multi-level reasoning model

through reflecting on the human reasoning process.

In particular, humans usually perform reasoning by obtaining

an overview first and then drilling into the details on demand [20].

For example, humans may first consider Alice’s interest with re-

spect to high-level categories, e.g., whether she likes more about

Cosmetics or Sports. After identifying that Alice likes more about

Cosmetics, humans may then consider her interest with respect

to detailed categories in Cosmetics. In recommendation reasoning,

adopting such a top-down strategy can help prune the large search

space, avoid local minimum, and converge to a more satisfying

solution by considering the overall user behaviors (P1). Moreover,

human reasoning and intention inherently have multiple levels

of granularities. Some people may like most Luxury Brands while
some may have a specific preference for Armani. Thus, extracting
multi-level reasoning paths that contain concepts from multiple

levels (Fig. 1, purple curve) provides the flexibility that is essential

for correctly representing user preference, which enhances both

recommendation accuracy and explainability (P2).

Designing a multi-level reasoning model with desirable prop-

erties P1 and P2 is challenging. It has been pointed out that the

traditional supervised learning schema is not suitable for finding

reasoning paths [30, 36]. This is because 1) there lack ground-truth

labels for reasoning paths; and 2) simply enumerating all possible

reasoning paths to find the best one is infeasible for large real-world

KGs. To address the problem, it is essential to incorporate reinforce-

ment learning (RL), which enables policy-guided path searching

in the large action space [30, 36]. For single-level reasoning, it is

clear now how we can define the Markov Decision Process (MDP)

in RL. However, for multi-level reasoning, how to formulate the

problem in the RL setting while simultaneously satisfying P1 and

P2 remains unclear. In this paper, we study this research problem

and make the following technical contributions.

• We propose a Reinforcement learning framework for Multi-level

recommendation Reasoning (ReMR). We show that multi-level

reasoning can be formulated based on the abstract MDP [12]. Al-

though we focus on recommendation reasoning, our framework

can generalize to many other reasoning tasks over graphs.

• We design a Cascading Actor-Critic, which adopts a top-down

strategy to prune the search space and ensures that knowledge

from the high-level KGs can help guide the low-level reasoning

policies to converge to a more satisfying solution (P1).

• We propose a multi-level reasoning path extraction algorithm

that automatically selects which level of concepts should be used

in each hop of the reasoning paths. This helps reveal the true level

of user interest and improves accuracy and explainability (P2).

2 PRELIMINARY
In this section, we clarify some important terminologies and present

our problem. A notation table is given in the supplement.

2.1 Multi-level Knowledge Graph
We are interested in leveraging both instance-view and ontology-

view KGs for recommendation reasoning. Combining these two

types of KGs naturally forms a multi-level KG G0∼𝐿 = {G0, ...G𝐿}
with 𝐿+1 levels, as shown in Fig. 1. More specifically:

G0
at the bottom is the instance-view KG, which contains spe-

cific entities and their in-between relations. We treat entities as

level 0 concepts, and denote the entity set as C0
. The relation set is

Υ. Each triplet in G0
is represented by 𝑐0

𝑖

𝑟 𝑗−−→ 𝑐0
𝑘
, where 𝑐0

𝑖
∈ C0

is

a head entity (e.g., Armani), 𝑟 𝑗 ∈ Υ is a relation (e.g., Produce), and
𝑐0
𝑘
∈ C0

is the tail entity (e.g.,Mania Fragrance). The items to be rec-

ommended are part of C0
. To facilitate extracting multi-hop reason-

ing paths between users and items, we follow existingworks [30, 36]

to add users and their interactions with the entities into G0
.

G𝑙 with 𝑙 > 0 is a part of the ontology-view KG. To build G𝑙 ,
we leverage the widely-used Microsoft Concept Graph

1
[28, 29],

which contains over 85 million Is A relations that illustrate whether

a low-level concept is a child of the high-level concept (e.g., Prada,
Is A, Italian Luxury Fashion Brand). We use 𝑟IsA ∈ Υ to denote the

Is A relation. Low-level concepts 𝐶𝑙−1 are searched in Microsoft

Concept Graph and their parents are extracted, which form triplets

in the form of 𝑐𝑙−1
𝑖

𝑟IsA−−−→ 𝑐𝑙
𝑗
. To better understand the items, the item

categories in the recommendation datasets are added as parents of

the items. For simplicity, we only consider the top-1 parent of each

concept in this paper. How to reason over ontology-view KGs with

multiple parents and other relations is discussed in the supplement.

2.2 Reinforcement Learning and MDP
While supervised learning requires ground-truth labels, reinforce-

ment learning (RL) provides an additional learning paradigm, in

which an intelligent agent optimizes its behaviors by interacting

with the environment. The interaction between the agent and the

environment is as follows: 1) the environment informs the agent

about the current state; 2) the agent takes an action based on the

state by using a function called the policy; 3) the environment

outputs a reward based on the action, together with the updated

1
https://concept.research.microsoft.com/
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state, which help the agent to optimize the policy. The goal of the

agent is to learn a policy that results in the maximum accumulated

reward. In deep RL, the policy is modeled by using a neural network.

The aforementioned process repeats until the policy converges or

a maximum number of iterations has been reached.

The environment in RL is typically formulated in the form of

Markov Decision Processes (MDPs). An MDP is defined by M =

{S,A,R,P}. Here, S and A are state space and action space. The

reward function R : S × A → R maps a state-action pair to a

scalar, and P : S × A × S → R is the probability to transit from a

state-action pair to the next state. GivenM, RL methods can be used

to find a balance between exploration of unknown search space and

exploitation of the current policy.

2.3 Single-level Reasoning with MDP
Our multi-level reasoning framework is designed by extending the

existing RL framework for single-level reasoning [30, 36], which

reasons over G0
by defining an MDP M0 = {S0,A,R0,P0}:

State 𝑠0𝑡 ∈ S0
reflects the status of the path reasoning process

at time 𝑡 . As all paths start from a given user, the initial state 𝑠0
0

is the user 𝑢. At time 𝑡 , the state is defined by the user as well as

the latest found entities and relations in the reasoning path: 𝑠0𝑡 =

(𝑢, 𝑐0
𝑡−𝐾 , 𝑟𝑡−𝐾+1 . . . , 𝑐

0

𝑡−1, 𝑟𝑡 , 𝑐
0

𝑡 ), where 𝐾 is a predefined number.

Action 𝑎𝑡 at time 𝑡 denotes the selected next hop in the reason-

ing path given the current state 𝑠0𝑡 . Formally, if in the selected next

hop, the outgoing relation is 𝑟𝑡+1 and the corresponding entity is

𝑐0
𝑡+1, then 𝑎𝑡 = (𝑟𝑡+1, 𝑐0𝑡+1). The action space A𝑡 only includes the

outgoing edges and entities that are connected to 𝑐0𝑡 in the KG. En-

tities that are already on the path are removed from A𝑡 , to prevent

the reasoning path from going backward. The policy is terminated

after it takes 𝑇 actions. By adding self-loop relation 𝑟
Self

that con-

nects each entity to itself and removing it from the final reasoning

paths, we can search all paths with ≤ 𝑇 hops by taking 𝑇 actions.

Reward function R0
measures whether the reasoning path ends

with an item that the user likes. A terminal reward is usually used,

which is only non-zero when the policy has terminated (i.e., 𝑡 = 𝑇 ).

Specifically, the terminal reward of a path is 1 if it ends with an

item that 𝑢 interacts with and is 0 otherwise.

Transition function P0
describes the probability of the next

state 𝑠0
𝑡+1based on 𝑠0𝑡 and 𝑎𝑡 . A deterministic MDP is usually used,

which means that P0 (𝑠0𝑡 , 𝑎𝑡 , 𝑠0𝑡+1) ≡ 1.

After defining the MDP, the expected reward can be maximized

by using RL methods like policy gradient [30] or actor-critic [36].

2.4 Multi-level Reasoning Problem Statement
Given a multi-level KG G0∼𝐿

and a user 𝑢, multi-level recommen-

dation reasoning outputs:

• A set of recommended items 𝑉𝑢 ⊂ 𝑉 , where 𝑉 is the item set.

• A multi-level reasoning path 𝜏0∼𝐿𝑢 for each recommended item

𝑣𝑢 ∈ 𝑉𝑢 . Here, 𝜏0∼𝐿𝑢 = (𝑢, 𝑟1, 𝑐0∼𝐿
1

· · · , 𝑟𝑇 , 𝑐0∼𝐿𝑇
= 𝑣𝑢 ), where each

𝑐0∼𝐿𝑡 ∈ ∪𝑙C𝑙 is a concept that may belong to any level of the KG.

3 METHODOLOGY
In this section, we propose our Reinforcement learning framework

forMulti-level recommendation Reasoning over KGs (ReMR), which

𝑐1
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Figure 2: Illustration of infeasible reasoning paths. A path is
infeasible if there exist no bottom-level paths to support it.

is formulated with abstract MDPs (Sec. 3.1). Based on the frame-

work, we design a Cascading Actor-Critic (Sec. 3.2), which em-

ploys a top-down strategy to prune the search space and ensures

that knowledge from the high levels can help guide the low-level

reasoning policy to converge to a more accurate solution (P1). Fi-

nally, we propose our multi-level reasoning path extraction
algorithm (Sec. 3.3), which outputs recommended items 𝑉𝑢 and

multi-level reasoning paths 𝜏0∼𝐿𝑢 by automatically selecting which

level of concepts should be used in each hop of reasoning in order

to better represent user interest (P2).

3.1 Formulation with Abstract MDPs
3.1.1 Issues of Straightforward Formulations. The most straightfor-

ward way to reason over a multi-level KG G0∼𝐿
is to collapse the

multi-level graph into a single-level one by treating the high-level

relation 𝑟IsA in the same way as other bottom-level relations. Then,

we can directly use existing single-level reasoning methods to solve

the problem. However, this method can no longer distinguish high-

level concepts from low-level ones, which makes it impossible to

satisfy P1 or P2. Moreover, the extracted paths may be difficult to

understand, as it can contain much redundant information, e.g.,

both the child, parent, and ancestors exist in the same path.

Another straightforward formulation is to define an MDP for

each level of the KG. Specifically, we can propagate the bottom-level

relations in G0
to higher level G𝑙 (𝑙 > 0) through 𝑟𝐼𝑠𝐴 as shown in

Fig. 2. In this way, we obtain
ˆG𝑙 , in which high-level concepts are

connected based on their bottom-level relations. We can then ex-

tract high-level reasoning paths (e.g., 𝜏1 = 𝑐1
1

𝑟1−−→ 𝑐1
2

𝑟2−−→ 𝑐1
3
) over

ˆG𝑙
by defining an MDP for level 𝑙 with single-level reasoning methods.

While this method can well distinguish KGs at different levels, it

is unclear how we can transfer knowledge between levels to fulfill

P1 and how to select the correct level in each reasoning hop to sat-

isfy P2. Moreover, this method may extract infeasible reasoning
paths. As shown in Fig. 2, we say that a high-level path is infeasible

if there does not exist a bottom-level path that can be mapped to the

high-level path through 𝑟IsA. Since there are no bottom-level paths

to support it, an infeasible path usually does not have a clear and

coherent meaning, and it may even mislead people into believing

something that is not true. For example, 𝜏1 in Fig. 2 could be Italian

Luxury Fashion Brand
Produce−−−−−−→ Face Makeup

Described_by
−−−−−−−−−−→ Destruc-

tive Substance. This path may make people think that an Italian

luxury brand produces some bad face makeup, but in fact, 𝜏1 may

be extracted only because Armani (𝑐0
1
) produces a face makeup (𝑐0

2
),

and another unrelated face makeup (𝑐0
3
) is described by Poison (𝑐0

4
).

3.1.2 Our Formulation. To avoid extracting infeasible paths, it is

essential that we reason over high-level KGs with the bottom-level

one in mind. Based on this observation, we propose to formulate
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the high-level reasoning processes with abstract MDPs [12], which

is defined based on a ground MDP (in our case the MDP of G0
).

Abstract MDPs also provide a theoretical foundation that enables

us to 1) prove no infeasible paths will be extracted; and 2) show

that the reasoning policies learned at higher levels can effectively

guide the policy at low levels (Sec. 3.1.3).

In our framework, we define the MDP of G0
as M0

by using the

method introduced in Sec. 2.3. We then formulate the reasoning

process at each higher level 𝑙 (𝑙 > 0) as an abstract MDP M𝑙 =

{S𝑙 ,A,R𝑙 ,P𝑙 } of the ground MDP M0 = {S0,A,R0,P0}. An
abstract MDP M𝑙 is an MDP created by aggregating multiple states

in M0
into one state. It is defined by the ground MDP M0

, the state

abstraction function 𝜙𝑙 , and the weighting function 𝜔𝑙 .

The state abstraction function 𝜙𝑙 : S0 → S𝑙 maps a ground

state in M0
to an abstract state in M𝑙

. In our scenario, a nature

choice of 𝜙𝑙 is the one that maps a bottom-level path represented

by 𝑠0𝑡 to its corresponding high-level path, as shown in Fig. 3. In

this way, selecting the most valuable abstract states is equivalent

to extracting high-level reasoning paths. Formally,

𝜙𝑙 (𝑠0𝑡 ) = (𝑢, 𝜑𝑙 (𝑐0𝑡−𝐾 ), 𝑟𝑡−𝐾+1 . . . , 𝜑
𝑙 (𝑐0𝑡−1), 𝑟𝑡 , 𝜑

𝑙 (𝑐0𝑡 )) (1)

where 𝜑𝑙 is a function that seeks the level 𝑙 ancestor of a concept by

jumping through 𝑟IsA 𝑙 times. If the concept does not have a parent

(e.g., 𝑐0𝑡 is a user), then 𝜑
𝑙
maps the concept to itself (𝜑𝑙 (𝑐0𝑡 ) = 𝑐0𝑡 ).

Different from the method in Fig. 2, which maps each hop (e.g.,

𝑐0
1

𝑟1−−→ 𝑐0
2
) to a higher level independently, 𝜙𝑙 maps a multi-hop

path (e.g., 𝑐0
0

𝑟1−−→ 𝑐0
1

𝑟2−−→ 𝑐0
2
) to a higher level. Defining 𝜙𝑙 in this

way ensures that the extracted high-level paths are all feasible

(Theorem 1). Another difference between the two methods is the

action space. Although the states ofM𝑙 are abstract, its action space

A is the same with M0
. This means that its policy 𝜋𝑙 : S𝑙 ↦→ A

can select entities instead of just concepts. This fine-grained action

space of 𝜋𝑙 allows it to build a clear connection with low-level

policies, which enables effective transfer of knowledge (Lemma 1).

The weighting function 𝜔𝑙 : 𝑆0 → [0, 1] decides the relative
weights of the ground states when they aggregate into one abstract

state inM𝑙 . Given 𝜔𝑙 , 𝜙𝑙 , andM0
, the abstract MDPM𝑙 can be fully

determined, and its reward and transition functions R𝑙 and P𝑙 are:

R𝑙 (𝑠𝑙𝑡 , 𝑎𝑡 ) =
∑︁

𝑠0𝑡 ∈𝜙−𝑙 (𝑠𝑙𝑡 )
𝜔𝑙 (𝑠0𝑡 ) R0 (𝑠0𝑡 , 𝑎𝑡 ), (2)

P𝑙 (𝑠𝑙𝑡 , 𝑎𝑡 , 𝑠𝑙𝑡+1) =
∑︁

𝑠0𝑡 ∈𝜙−𝑙 (𝑠𝑙𝑡 )

∑︁
𝑠0
𝑡+1∈𝜙−𝑙 (𝑠𝑙

𝑡+1)
𝜔𝑙 (𝑠0𝑡 ) P0 (𝑠0𝑡 , 𝑎𝑡 , 𝑠0𝑡+1)

(3)

where 𝜙−𝑙 (𝑠𝑙𝑡 ) denotes the set of ground states corresponding to 𝑠𝑙𝑡 .

In theory, we may use any fixed 𝜔𝑙 (Lemma 1). However, in

practice, we need to define 𝜔𝑙 so that we can easily obtain 𝑠𝑙
𝑡+1

according to P𝑙 in Eq. (3). P𝑙 is very difficult to explicitly compute

and store, due to the large state and action space caused by large

real-world KGs. Thus, we propose to sample 𝑠𝑙
𝑡+1 without explicitly

computing P𝑙 . This is achieved by defining 𝜔𝑙 based on a sampling

policy. Specifically, given any bottom-level policy 𝜋̃0 : S0 ↦→ A,

we sample states according to P0
and 𝜋̃0, and determine the weight

of each state 𝑠0𝑡 based on the frequency it appears. Mathematically,

𝜔𝑙 (𝑠0𝑡 ) = 𝐸P0,𝜋̃0 𝑁 (𝑠0𝑡 )/𝐸P0,𝜋̃0 𝑁 (𝜙𝑙 (𝑠0𝑡 )) (4)

where 𝐸P0,𝜋̃0 𝑁 (·) denotes the expected number of times some

state or abstract state appears when we sample states iteratively

according to 𝑠0
𝑡+1 ∼ P0 (𝑠0𝑡 , 𝑎𝑡 , 𝑠0𝑡+1) and 𝑎𝑡 ∼ 𝜋̃

0 (𝑎𝑡 |𝑠0𝑡 ). We say that

an abstract state appears if any of its bottom-level state appears.

Defining 𝜔𝑙 with Eq. (4) allows us to optimize the high-level

policy without having to explicitly calculate P𝑙 or R𝑙 . Specifically,
we can sample high-level states 𝑠𝑙

𝑡+1 with the following two steps,

and then the transition from 𝑠𝑙𝑡 to 𝑠
𝑙
𝑡+1 naturally satisfies Eq. (3): 1)

sampling 𝑠0
𝑡+1 according to P0

and 𝜋̃0; 2) mapping 𝑠0
𝑡+1 to 𝑠

𝑙
𝑡+1 with

𝜙𝑙 . Moreover, the expectation of R0 (𝑠0𝑡 , 𝑎𝑡 ) is equal to R𝑙 (𝑠𝑙𝑡 , 𝑎𝑡 )
in Eq. (2). This means that we can obtain sample (𝑠0𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟0𝑡 =

R0 (𝑠0𝑡 , 𝑎𝑡 )) at the bottom level and use (𝜙𝑙 (𝑠0𝑡 ), 𝑎𝑡 , 𝜙𝑙 (𝑠𝑡+1), 𝑟0𝑡 ) to
update the policy at level 𝑙 . Compared with explicitly computing

and storing P𝑙 and R𝑙 , which is infeasible for large real-world KGs,

this method is both feasible and easy to implement.

Eq. (2) shows that M𝑙
aggregates the rewards of bottom-level

paths into their high-level path. This enables explicitly relating

different bottom-level paths to achieve an overall understanding.

3.1.3 Theoretical Properties. Abstract MDPs enable transferring

knowledge between levels and the extraction of feasible paths.

Transferring knowledge.We can naturally translate a high-

level policy𝜋𝑙 into a ground policy𝜋0 with𝜋0 (𝑎𝑡 |𝑠0𝑡 ) = 𝜋𝑙 (𝑎𝑡 |𝜙𝑙 (𝑠𝑡0)),
and there is an inherent relation between the optimal policy 𝜋𝑙 in

M𝑙
and the optimal policy inM0

[12]:

Lemma 1. Given any fixed 𝜔𝑙 , the optimal abstract policy 𝜋𝑙 of

M𝑙 is optimal in the ground MDPM0
when 𝜙𝑙 is properly designed.

The lemma shows that the optimal policy derived by solving

a simpler abstract MDP with fewer number of states enables us

to learn about the optimal policy in the more complicated ground

MDP. This provides the basis for developing a top-down procedure

that effectively prunes the search space and transfers knowledge.

Feasibility of extracted paths. The following theorem illus-

trates that abstract MDP can naturally guarantee path feasibility

when 𝜙𝑙 and 𝜔𝑙 are defined according to Eqs. (1)(4).

Theorem 1. Suppose that 𝜏𝑙𝑢,𝑡 = (𝑢, 𝑟1, 𝑐𝑙
1
, · · · 𝑟𝑡 , 𝑐𝑙𝑡 ) is a reasoning

path and 𝑠𝑙𝑡 = (𝑢, 𝑐𝑙
𝑡−𝐾 , 𝑟𝑡−𝐾+1 . . . , 𝑐

𝑙
𝑡−1, 𝑟𝑡 , 𝑐

𝑙
𝑡 ) is its corresponding

state. If 𝑠𝑙𝑡 can be sampled from M𝑙
, i.e., there exist 𝑠𝑙

𝑡−1 and 𝑎𝑡−1
such that P𝑙 (𝑠𝑙

𝑡−1, 𝑎𝑡−1, 𝑠
𝑙
𝑡 ) > 0, then 𝜏𝑙𝑢,𝑡 must be feasible.

The proof for Theorem 1 is given in the supplementary material.



Multi-level Recommendation Reasoning over
Knowledge Graphs with Reinforcement Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Handling inaccurate high-level knowledge. Summarizing

that Alice likes Cosmetics based on several purchase behaviors may

not be accurate. This issue of inaccurate high-level knowledge can

be naturally solved by our method. Interested readers are referred

to the supplement for more details.

3.2 Cascading Actor-Critic
Wedesign a CascadingActor-Critic to learn the policies ofM𝐿,M𝐿−1

...,M0
. The basic idea is to first obtain a more global understanding

of the user by learning high-level policies, and then gradually fine-

tune the high-level policies at lower levels to consider more detailed

information. Accordingly, we adopt a top-down strategy as shown

in Fig. 4. In this design, we first learn the top-level policy 𝜋𝐿 by

solvingM𝐿
. The learned knowledge (e.g., 𝜋𝐿) is then passed to 𝐿−1,

so that we can effectively prune the search space when learning

𝜋𝐿−1 and ensure that it can converge to a more satisfying solution.

This process repeats and we obtain 𝜋𝐿−1, 𝜋𝐿−2 ..., 𝜋0 sequentially.

3.2.1 Actor-critic learning at the top level (𝑙 = 𝐿). Learning at the
top level is simpler than other levels as it does not require leverag-

ing the knowledge from the upper levels. The key question is: how

does one learn a policy for an abstract MDP? Recall that by defining

𝜔𝑙 with Eq. (4), we can directly obtain samples of an abstract MDP.

Thus, we can use traditional RL methods to solve abstract MDPs,

and the only difference is that, during optimization, we need to

obtain a high-level sample (𝑠𝑙𝑡 , 𝑎𝑡 , 𝑠
𝑙
𝑡+1, 𝑟

𝑙
𝑡+1) by first sampling at the

bottom level, and then mapping the bottom-level sample to level

𝑙 with 𝜙𝑙 . We utilize the RL method actor-critic [6] because it is ef-

fective in path reasoning [36] and facilitates transferring high-level

knowledge (Sec. 3.2.2). Next, we introduce the network structures

of the actor and the critic, as well as the optimization method.

Actor 𝜋𝐿 . The actor (or policy network) outputs the probability

of taking each action based on the state. Following [30], we design

the actor so that it contains three-layer feed-forward networks,

uses Exponential Linear Unit (ELU) as the activation function, and

leverages dropout to prevent overfitting. Specifically:

x = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝐸𝐿𝑈 (𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝐸𝐿𝑈 (s𝐿𝑡 W1))W2)) (5)

𝜋𝐿 (·|𝑠𝐿𝑡 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (A𝑡 ⊙ (xW𝑎)) (6)

where W1 ∈ R𝑑1×𝑑2 , W2 ∈ R𝑑2×𝑑3 , and W𝑎 ∈ R𝑑3×𝑑𝑎 are pa-

rameters to be be learned. s𝐿𝑡 is the embedding vector of 𝑠𝐿𝑡 and is

computed by concatenating the embeddings of all concepts, entities,

and relations in 𝑠𝐿𝑡 . The embeddings are learned by using JOIE [8],

which is a state-of-the-art KG embedding method that jointly en-

codes the ontology and instance views. ⊙ denotes element-wise

product, and A𝑡 is a binary vector leveraged to select only the ac-

tions in the action space A𝑡 . Specifically, the 𝑖-th entry in A𝑡 is 1 if
the 𝑖-th action is inA𝑡

and is 0 otherwise. We follow Xian et al. [30]

to prune the action space and keep at most 𝑁𝑚 candidate actions.

Critic 𝑉 𝐿 . The critic (or value network) outputs the expected
reward that 𝜋𝐿 will obtain given 𝑠𝐿𝑡 . The critic shares the first two

layers with the actor, and differs in the output layer:

𝑉 𝐿 (𝑠𝐿𝑡 ) = xW𝑐 (7)

whereW𝑐 ∈ R𝑑3×1 denotes parameters to be learned.

Optimization. At each iteration, we obtain sample (𝑠0𝑡 , 𝑎𝑡 , 𝑠0𝑡+1,
R0 (𝑠0𝑡 , 𝑎𝑡 )) from M0

according to P0
and 𝜋̃0, where 𝜋̃0 (𝑎𝑡 |𝑠0𝑡 ) =

𝜋𝐿 (𝑎𝑡 |𝜙𝐿 (𝑠0𝑡 )). By mapping the sample to level 𝐿, we get a high-

level sample (𝜙𝐿 (𝑠0𝑡 ), 𝑎𝑡 , 𝜙𝐿 (𝑠0𝑡+1),R
0 (𝑠0𝑡 , 𝑎𝑡 )), which is then used

to update the actor and critic. Specifically, we learn the actor and

critic by minimizing 𝐽𝜋𝐿 + 𝐽𝑉 𝐿 :

𝐽𝜋𝐿 = −𝑙𝑜𝑔𝜋𝐿 (𝑎𝑡 |𝜙𝐿 (𝑠0𝑡 )) 𝑉 𝐿 (𝜙𝐿 (𝑠0𝑡 )) (8)

𝐽𝑉 𝐿 = | |R0 (𝑠0𝑡 , 𝑎𝑡 ) +𝑉 𝐿 (𝜙𝐿 (𝑠0𝑡+1)) −𝑉
𝐿 (𝜙𝐿 (𝑠0𝑡 )) | |2 (9)

Interpretation. By minimizing 𝐽𝑉 𝐿 , the critic 𝑉 𝐿 learns to es-

timate the value (expected reward) of the high-level states. By

minimizing 𝐽𝜋𝐿 , the actor increases the probability of actions that

lead to more valuable states. We can see from Eq. (9) that the re-

ward of a bottom-level state will impact the value of its ancestors

at higher levels. For example, if we find that Alice likes a certain
makeup at the bottom level, the high-level states with Cosmetics
will be rewarded, and 𝜋𝐿 will explore more on other Cosmetics.

3.2.2 Actor-critic learning at lower levels (𝑙 < 𝐿). The actors and
critics at lower levels adopt the same network structures with that

of 𝜋𝐿 and 𝑉 𝐿 . The key question is how we can learn 𝜋𝑙 and 𝑉 𝑙 so

that the knowledge of level 𝑙+1 is effectively leveraged. Our solution

is to incorporate behavior cloning and reward shaping (Fig. 4).

Behavior cloning. According to Lemma 1, the optimal policy

in the abstract MDP is closely related to the optimal policy in the

ground MDP. Let us consider M𝑙
as the ground MDP, and M𝑙+1

as its abstract MDP with the abstraction state function 𝜙1. We

can then see that initializing the ground policy 𝜋𝑙 with 𝜋𝑙+1 is

beneficial according to Lemma 1. Thus, we initialize 𝜋𝑙 by cloning

the behavior [18] of 𝜋𝑙+1, i.e., we generate paths by using 𝜋𝑙+1, and
treat these paths as ground-truth labels for training the initial 𝜋𝑙 .

𝜋𝑙 is then refined based on the critic in the same way of 𝜋𝐿 (Eq. (8)).

Reward shaping. To better guide 𝑉 𝑙 , we use reward shap-

ing [15], which is robust and has good theoretical guarantees. Re-

ward shaping is the procedure in which we add additional rewards

to guide the learning process, beyond the sparse rewards supplied

by the original MDP. Specifically, to solve M𝑙 = {S𝑙 ,A,R𝑙 ,P𝑙 },
we create a shaped MDP M̂𝑙 = {S𝑙 ,A,R𝑙 + F 𝑙 ,P𝑙 }, in which the

shaping function F 𝑙 is defined based on 𝑉 𝑙+1:

F 𝑙 (𝑠𝑙𝑡 , 𝑠𝑙𝑡+1) = 𝑉
𝑙+1 (𝜙𝑙+1 (𝑠0𝑡+1)) −𝑉

𝑙+1 (𝜙𝑙+1 (𝑠0𝑡 )) (10)

where 𝑠𝑙𝑡 = 𝜙
𝑙 (𝑠0𝑡 ) and 𝑠𝑙𝑡+1 = 𝜙

𝑙 (𝑠0
𝑡+1). It has been proved that, such

value-function-based reward shaping enables faster convergence,

while a near optimal policy learned by solving M̂𝑙
is still near

optimal inM𝑙 [15]. Thus, we solve M̂𝑙
instead ofM𝑙 . This is achieved

Behavior  Cloning

Behavior  Cloning

Actor 𝜋𝐿(𝑎𝑡|𝑠𝑡
𝐿)

Actor 𝜋𝐿−1(𝑎𝑡|𝑠𝑡
𝐿−1)

Actor 𝜋0(𝑎𝑡|𝑠𝑡
0)

Critic 𝑉𝐿(𝑠𝑡
𝐿)

Critic 𝑉𝐿−1(𝑠𝑡
𝐿−1)

Critic 𝑉0(𝑠𝑡
0)

Reward  Shaping

Reward  Shaping

𝑴𝐿

𝑴𝐿−1

𝑴0

Figure 4: Architecture of the Cascading Actor-Critic.
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Alice likes Face Makeup 
more than Sports Shoes
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more than Acalme Sneaker
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𝑎0
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Figure 5: Illustration of how reward shaping (F 0) helps trans-
fer high-level knowledge (M1) to a lower level (M0).

by changing the loss in Eq. (9) to

𝐽𝑉 𝑙 = | |R0 (𝑠0𝑡 , 𝑎𝑡 )+F 𝑙 (𝑠𝑙𝑡 , 𝑠𝑙𝑡+1)+𝑉
𝑙 (𝜙𝑙 (𝑠0𝑡+1))−𝑉

𝑙 (𝜙𝑙 (𝑠0𝑡 )) | |2 (11)

Fig. 5 illustrates how reward shaping helps transfer the knowl-

edge from a higher level (M1
) to a lower level (M0

). After solving

M1
, 𝑉 1

learns that Alice likes Face Makeup more than Sports Shoes
(i.e., 𝑉 1 (𝑠1

1
) > 𝑉 1 (𝑠1

1

′)). This knowledge is transferred to level 0

by the shaping function F 0
, which immediately reveals that Alice

likes Luminous Silk Foundation more than Acalme Sneaker by as-

signing a higher reward to the former (i.e., R0 (𝑠0
0
, 𝑎0) +F 0 (𝑠0

0
, 𝑠0
1
) >

R0 (𝑠0
0
, 𝑎0

′)+F 0 (𝑠0
0
, 𝑠0
1

′)). Compared with the sparse rewardR0
that

is only non-zero at the terminal state (𝑡 = 𝑇 ), F 0
provides useful in-

formation for each 𝑡 ≤ 𝑇 , which prunes the search space and guides
the learning at level 0 to converge to a more satisfying solution.

3.3 Multi-level Reasoning Path Extraction
Based on the outputs of the Cascading Actor-Critic, we extract

multi-level reasoning paths. In a multi-level path, each concept

𝑐0∼𝐿𝑡 (𝑡 < 𝑇 ) may belong to any level in the KG. Compared with

single-level paths, multi-level paths provide the flexibility that is

essential for correctly presenting user interests. We extract the

multi-level path 𝜏0∼𝐿𝑢 with two steps: multi-level value function

learning and value-based path extraction.

3.3.1 Multi-level Value Function Learning. We learn a multi-level

value function 𝑉 0∼𝐿
to estimate the expected reward for a multi-

level state 𝑠0∼𝐿𝑡 = (𝑢, 𝑐0∼𝐿
𝑡−𝐾 , 𝑟𝑡−𝐾+1 . . . , 𝑐

0∼𝐿
𝑡−1 , 𝑟𝑡 , 𝑐

0∼𝐿
𝑡 ). This is achieved

by extending the value function learning method at a single level 𝑙 .

Specifically, in each iteration, we: 1) sample (𝑠0𝑡 , 𝑎𝑡 , 𝑠0𝑡+1,R
0 (𝑠0𝑡 , 𝑎𝑡 ))

from M0
according to P0

and 𝜋0; 2) generate multi-level sample

(𝑠0∼𝐿𝑡 , 𝑎𝑡 , 𝑠
0∼𝐿
𝑡+1 ,R

0 (𝑠0𝑡 , 𝑎𝑡 )) by randomly mapping concepts in 𝑠0
𝑡+1

to one of the 𝐿 levels; and 3) minimize 𝐽𝑉 0∼𝐿 + 𝐽 ′
𝑉 0∼𝐿 , where

𝐽𝑉 0∼𝐿 = | |R0 (𝑠0𝑡 , 𝑎𝑡 ) + F 0 (𝑠0𝑡 , 𝑠0𝑡+1) +𝑉
0∼𝐿 (𝑠0∼𝐿𝑡+1 ) −𝑉

0∼𝐿 (𝑠0∼𝐿𝑡 ) | |2

𝐽 ′
𝑉 0∼𝐿 = | |𝑉 0∼𝐿 (𝑠0∼𝐿𝑡+1 ) −𝑉

0 (𝑠0𝑡+1) | |
2

(12)

𝐽𝑉 0∼𝐿 and 𝐽 ′
𝑉 0∼𝐿 optimize the model parameters of 𝑉 0∼𝐿

by using

the reward R0
and the learned value function 𝑉 0

, respectively.

Interpretation. The state space S0∼𝐿
of 𝑉 0∼𝐿

is a super set of

S0
. For bottom-level states in S0

, 𝑉 0∼𝐿
is equal to 𝑉 0

, while at

higher levels, 𝑉 0∼𝐿
provides additional opportunities to ensemble

different outputs of 𝜋0, so that we may still achieve a good result

when 𝜋0 fails to capture the true user interest at the bottom level.

3.3.2 Value-based Path Extraction. Given state 𝑠0∼𝐿
𝑡−1 , we select the

next state 𝑠0∼𝐿𝑡 by maximizing the estimated reward from 𝑠0∼𝐿
𝑡−1 :

argmax𝑠0∼𝐿𝑡

ˆR(𝑠0∼𝐿𝑡−1 , 𝑠
0∼𝐿
𝑡 ) +𝑉 0∼𝐿 (𝑠0∼𝐿𝑡 ) (13)

Here,
ˆR(𝑠0∼𝐿

𝑡−1 , 𝑠
0∼𝐿
𝑡 ) is the predicted reward for selecting 𝑠0∼𝐿𝑡 at

state 𝑠0∼𝐿
𝑡−1 . The true reward is not used here because it is unavail-

able during testing. In path reasoning, there is only terminal re-

ward. Thus,
ˆR(𝑠0∼𝐿

𝑡−1 , 𝑠
0∼𝐿
𝑡 ) is 0 when 𝑡≠𝑇 . At the terminal state,

ˆR(𝑠0∼𝐿
𝑇−1, 𝑠

0∼𝐿
𝑇

) estimates howmuch the user likes the item 𝑣𝑢 = 𝑐0∼𝐿
𝑇

at the end of the path, which can be any recommendation model.

In this paper, we set
ˆR(𝑠0∼𝐿

𝑡−1 , 𝑠
0∼𝐿
𝑡 ) to the scoring function in [30].

By sequentially selecting state 𝑠0∼𝐿𝑡 , we obtain a reasoning path

𝜏0∼𝐿𝑢 , in which the 𝑡-th hop consists of (𝑟𝑡 , 𝑐0∼𝐿𝑡 ) in 𝑠0∼𝐿𝑡 . To avoid

local minimum, we keep the top 𝑁𝑡 states at time 𝑡 . This allows us

to obtain

∏𝑇
𝑡=1 𝑁𝑡 candidate paths. Among these candidates, the

top paths are selected according to Eq. (13). The set of items 𝑉𝑢 at

the end of the extracted paths will be recommended to user 𝑢.

4 EVALUATION
4.1 Experimental Setup
4.1.1 Datasets. Three recommendation datasets are leveraged in

the evaluation: Beauty, Clothing and Cell _Phones. They are

from three product categories (“Beauty”, “Clothing, Shoes, and

Jewelry”, and “Cell Phones and Accessories”) of Amazon 5-core
2
.

We randomly select 70% of the user purchase (interaction) history

as the training data and consider the remaining 30% as the test data.

Based on the product meta information and reviews in each dataset,

we build an instance-view KG by following Xian et al. [30]. Each

dataset contains 5 types of entities and 8 types of relations. The

ontology-view KG is constructed by using the Microsoft Concept

Graph as introduced in Sec. 2.1. In this paper, we build a three-

level KG (i.e., 𝐿=2), which we find to well balance efficiency and

recommendation accuracy empirically. The statistics of the datasets

are given in the supplement.

4.1.2 Baselines. We compare our methods with 7 recommendation

models. BPR [19] is learned by considering only user-item interac-

tions, while Ripple Net [22], DKN [23], RuleRec [14], CKE [34],

KGAT [25], and PGPR [30] recommend items by incorporating KG

information. Among them, PGPR conducts recommendation path

reasoning on the KG, and is the most similar with ours. To eliminate

the bias introduced by data, we test each KG-based baseline on three

different KGs and report the best result. The three KGs are instance-

view KG G0
, the multi-level KG G0∼𝐿

, and the multi-level KG with

multiple parents. Since the baselines lack amechanism tomodel par-

ent concepts, we apply them to multi-level KG by treating concepts

and 𝑟IsA in the same way as entities and bottom-level relations.

4.1.3 Evaluation Criteria. We adopt four widely-used evaluation

criteria: Precision (Precision), Recall (Recall), Normalized Dis-

counted Cumulative Gain (NDCG) and Hit Rate (HR) [22, 25, 30].

2
http://jmcauley.ucsd.edu/data/amazon
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Table 1: Comparison of recommendation accuracy. The best results are highlighted in bold. Results are reported in percentages.

Datasets & Beauty Clothing Cell_Phones

Metrics Precision Recall NDCG HR Precision Recall NDCG HR Precision Recall NDCG HR

BPR 1.173 5.032 2.805 8.933 0.323 1.219 0.665 1.932 0.623 3.534 1.995 5.424

Ripple Net 1.203 5.121 2.342 9.337 0.392 1.137 0.602 1.889 0.720 3.434 2.901 5.660

DKN 1.135 2.591 1.923 8.812 0.119 0.724 0.375 1.492 0.349 3.313 1.672 4.580

RuleRec 1.239 6.032 3.072 10.731 0.302 1.173 0.652 2.166 0.738 3.648 2.023 5.772

CKE 1.422 6.241 3.824 11.132 0.390 2.604 1.656 4.329 1.073 6.981 3.849 10.633

KGAT 1.535 7.794 5.020 12.496 0.603 4.674 2.824 6.993 1.134 7.982 4.803 11.241

PGPR 1.692 8.324 5.489 14.347 0.719 4.797 2.863 7.024 1.280 8.383 4.921 11.832

ReMR (Ours) 1.906 8.982 5.878 15.606 0.766 5.110 2.977 7.426 1.337 8.724 5.294 12.498
Improvement (%) +12.6 +7.9 +7.1 +8.8 +6.5 +4.7 +4.0 +5.7 +4.5 +4.1 +7.6 +5.6

Following Xian et al. [30], we compute the criteria based on the

top-10 recommended items for each user in the test set.

4.1.4 Implementation Details. We set most hyperparameters of

our method by following that of PGPR [30]. Please refer to the

supplement for more details about the implementation.

4.2 Overall Performance
4.2.1 Recommendation Accuracy. Table 1 shows that our method

consistently outperforms all baselines in terms of recommendation

accuracy. On average, our model improves Precision, Recall, NDCG,

and HR by 7.9%, 5.6%, 6.2%, and 6.7%. This demonstrates that multi-

level reasoning can help better infer user interests and improve

recommendation accuracy.

4.2.2 Convergence. We compare the convergence of our method

ReMR with the most competitive baseline (PGPR) on Beauty and

Clothing. The result shows that ReMR converges with much fewer

epochs. The detailed results and a further discussion about effi-

ciency are given in the supplement.

4.3 Influence of Components and Parameters
4.3.1 Effectiveness of Multi-level Path Extraction and Cascading
Actor-Critic. Table 2 shows that ReMR outperforms ReMR-M,which

is a variant of our method that eliminates multi-level path extrac-

tion and generates bottom-level paths by using 𝜋0 of the Cascading

Actor-Critic. The fact that ReMR outperforms ReMR-M reveals that

compared with bottom-level paths, multi-level paths are more ef-

fective for inferring user interest. Moreover, ReMR-M consistently

outperforms PGPR, although they both generate bottom-level paths.

This indicates that by effectively transferring knowledge from high-

level reasoning processes to low-level ones, our Cascading Actor-

Critic enables the convergence to a more accurate solution.

4.3.2 Effectiveness of Multi-level KG. To understand how different

parts of the multi-level KG influence performance, we implement

two variants of our method, ReMR-L1 and ReMR-L2. The two meth-

ods are learned without the first and second level of the ontology-

view KG, respectively. As shown in Table 2, ReMR outperforms

ReMR-L1 and ReMR-L2, which demonstrates that both levels of the

ontology-view KG provide valuable information for improving rec-

ommendation accuracy. Moreover, ReMR-L2 consistently achieves

better performance compared with ReMR-L1, which indicates that

level 2 is less useful. This is reasonable since higher levels are more

abstract and may contain more noises.

Table 2: Ablation study. ReMR-L1 (or ReMR-L2) is learned
without the 1st (or 2nd) level of the ontology-viewKG. ReMR-
M eliminates multi-level path extraction.

Beauty Clothing

Prec. Recall NDCG HR Prec. Recall NDCG HR

PGPR 1.692 8.324 5.489 14.327 0.719 4.797 2.863 7.024

ReMR-L1 1.703 8.575 5.527 14.823 0.729 4.882 2.901 7.254

ReMR-L2 1.724 8.625 5.617 15.038 0.743 5.019 2.916 7.303

ReMR-M 1.759 8.637 5.706 14.723 0.730 4.846 2.906 7.211

ReMR 1.906 8.982 5.878 15.606 0.766 5.110 2.977 7.426

Table 3: Influence of state history length 𝐾 on performance.

Beauty Clothing

Hist. Prec. Recall NDCG HR Prec. Recall NDCG HR

𝐾=0 1.139 5.594 3.692 10.846 0.511 3.598 2.150 5.151

𝐾=1 1.906 8.982 5.878 15.606 0.766 5.110 2.977 7.426

𝐾=2 2.005 9.122 5.903 16.214 0.782 5.176 3.079 7.638

Table 4: Influence of path search size 𝑁1 × 𝑁2 × 𝑁3.

Beauty Clothing

Size Prec. Recall NDCG HR Prec. Recall NDCG HR

30×5×1 1.885 8.723 5.625 15.132 0.765 5.078 2.826 7.114

25×6×1 1.926 9.043 5.893 15.531 0.770 5.115 2.985 7.477

15×10×1 1.967 9.257 5.963 15.971 0.782 5.123 3.105 7.587
15×5×2 1.864 8.562 5.162 14.935 0.766 4.830 2.743 6.824

10×5×3 1.522 7.489 4.565 14.661 0.693 4.526 2.582 6.599

4.3.3 Sensitivity of State History Length 𝐾 . Table 3 shows that

the accuracy increases with increasing 𝐾 , meaning that longer

state history enables more comprehensive representation of the

environment and leads to a better policy. We also observe that by

changing 𝐾 = 1 to 𝐾 = 2, the improvement in terms of accuracy is

not significant, while the convergence of the policy becomes much

slower (see the supplement). This indicates that setting 𝐾 to 1 well

balances accuracy and efficiency and is a good choice in practice.

4.3.4 Influence of Path Search Size𝑁1×𝑁2×𝑁3. 𝑁𝑡 is themaximum

number of states (actions) we select at time 𝑡 when searching the

reasoning paths. Table 4 shows how performance changes with

different values of 𝑁1 × 𝑁2 × 𝑁3. The model generally achieves

better performance when 𝑁3 is 1. This indicates that the actions in

earlier steps are more important, and improving the search sizes at

the beginning enables the model to better explore reasoning paths.
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Table 5: Impact of incorporating demonstration paths.

Beauty Clothing

Hist. Prec. Recall NDCG HR Prec. Recall NDCG HR

ADAC 1.991 9.424 6.080 16.036 0.763 5.027 3.048 7.502

ReMR+D 2.131 9.601 6.323 16.806 0.794 5.172 3.079 7.831
Imprv.(%) +7.0 +1.9 +4.0 +4.8 +4.1 +2.9 +1.0 +4.4

4.3.5 Integrating Additional Guidance. To understand the impact of

integrating additional guidance for convergence, e.g., expert demon-

strations [36], we implement ReMR+D, which integrates ADAC [36]

into our framework and leverages both demonstrations and the

multi-level KG for recommendation reasoning. As Table 5 shows,

ReMR+D consistently performs better than ADAC. This reveals

that the multi-level reasoning strategy is still effective even when

other information is provided for guiding the reasoning process.

4.4 Case Study
The case study shown in Fig. 6 illustrates how multi-level reasoning

helps better infer and represent user interests.

First, multi-level reasoning improves recommendation accuracy

by clarifying the meaning of an entity in the context of the overall

user behavior. For example, the word Tub in the figure can be in-

terpreted in multiple ways, e.g., as a Cosmetic Container or related
with the Rasdder Bath Brush (item ). ReMR correctly understands

that the user mentions Tub in the context of Cosmetic Container by
jointly considering the word Jar mentioned by the user. Accord-

ingly, our method recommends the correct items. In comparison,

PGPR incorrectly connects Tub with item and recommends a

wrong product Minera Bath Salt (item ).

Second, multi-level paths provide better explainability compared

with bottom-level paths. Bottom-level paths explain about the rec-

ommendation by referring to only one user behavior, which limits

their persuasiveness. For example, the upper red curve in Fig. 6 ex-

plains that an item is recommended because the user mentions Jar,
and that one item described by Jar is often bought together with the
recommended item. This path is not very persuasive: mentioning

Jar does not seem to be a user behavior that is important enough for

confidently recommending items, since a user can mention many

other words. In comparison, the multi-level paths explain about the

recommendation according to a lot more user behaviors (user men-

tions multiple words related to both Container and Lotion) and it

becomes much more understandable why the item is recommended

and what the true interest of the user is.

5 RELATEDWORK
Existing KG-based recommendation models can be classified into

two major categories based on whether they explicitly model the

sequential connectivity patterns (paths) between users and items.

KG embedding approaches learn entity and/or relation repre-

sentations from the KG and incorporate the learned representations

into the recommendation model to improve recommendation ac-

curacy [1, 2, 10, 16, 17, 21, 35]. For example, Zhang et al. propose a

unified framework that jointly models latent representations in col-

laborative filtering and item semantic representations learned from

knowledge bases [33]. Wang et al. develop a deep knowledge-aware

network for news recommendation [23]. Recently, researchers have

Also 
bought

Lotion

User

Jar

Tub

Cosmetic
Container

Bath Face

Container Oil Product Service

Paths Generated by ReMR
Paths Generated by PGPR

Instance-view Relation
Ontology-view Relation

Also 
viewed

𝓖𝟎

𝓖𝟏

𝓖𝟐

❶
❷

skin

Figure 6: Case study on Beauty. We show top-2 paths gener-
ated by using our method (ReMR) and PGPR. Correct and
wrong recommendations are marked with and .

drawn inspiration from developments in graph neural networks [7]

to better model the high-order relations in the KG [24, 25, 38]. These

methods enable flexible incorporation of KG into recommendation

and can successfully improve recommendation accuracy. However,

they do not directly model the connectivity patterns between users

and items. As a consequence, their accuracy and reasoning capa-

bilities are hampered. For example, these methods cannot provide

explanations by extracting multi-hop reasoning paths that connect

users with the recommended items.

Path reasoning approaches explicitly model the paths between

users and items over KGs for recommendation. It has been shown

that learning user interests by path-aware aggregation improves rec-

ommendation accuracy [4, 26, 31, 40]. Moreover, explicitlymodeling

the paths enables reasoning, which is a crystal type of explainability.

Pioneer works in reasoning enumerate all possible candidate paths

on the KG and score each candidate path with a deep model to select

the best one [5, 14, 27, 39]. Thesemethods improve recommendation

accuracy and explainability, but the exhaustive path search strategy

is not applicable to large-scale KGs [30]. To solve these issues, RL

has been utilized to learn a path search policy [3, 13, 30, 36, 37].

However, these methods either have difficulty converging to a good

solution due to the sparse reward signals [30], or rely on heuristics

and/or additional user inputs [11, 36]. Moreover, they focus only

on instance-view KG, which prevents them from better inferring

and representing user interests. We solve these issues by propos-

ing a multi-level reasoning framework that effectively integrates

ontology-view KG with instance-view KG. Our method enables bet-

ter modeling of user interests and improves the recommendation

accuracy without additional user inputs or biased heuristics.

6 CONCLUSION
We propose an RL framework for multi-level recommendation rea-

soning over KGs, which formulates the low-level and high-level

reasoning process as MDP and abstract MDPs. We then propose

a Cascading Actor-Critic to solve the multi-level MDP. Finally, a

multi-level reasoning path extraction method is introduced, which

selects between high-level and low-level concepts to better rep-

resent user interests. Experiments demonstrate that our method

improves recommendation accuracy and explainability.
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SUPPLEMENTARY MATERIAL
In this supplementarymaterial, we present the notation table (Sec. 1),

discuss more about the theoretical properties of our method (Sec. 1),

provide more details for the experiments (Sec. 3), and discuss the

efficiency of our method as well as how it can be extended to handle

other types of KGs (Sec. 4).

1 NOTATION TABLE
Table 1 summarizes the important notations used in this paper.

Table 1: Summary of important notations.

Notations Descriptions

G𝑙 The KG at level 𝑙

G0∼𝐿 = {G0, ...G𝐿} A multi-level KG with 𝐿+1 levels

𝑐𝑙
𝑖
and C𝑙 A concept and the concept set of G𝑙
𝑢 A user, which is in C0

𝑟𝑖 and Υ A relation and the relation set of G0∼𝐿

M𝑙
The (abstract) MDP at level 𝑙

𝑠𝑙𝑡 and S𝑙 A state and the state space ofM𝑙

𝑎𝑡 and A An action and the action space

R𝑙 The reward function ofM𝑙

P𝑙 The state transition function ofM𝑙

𝜙𝑙 The state abstraction function ofM𝑙

𝜔𝑙 The weighting function of M𝑙

𝜋𝑙 The actor or policy network at level 𝑙

𝑉 𝑙 The critic or value network at level 𝑙

𝑉 0∼𝐿
, 𝑠0∼𝐿𝑡 , 𝑐0∼𝐿

𝑖
A multi-level critic, state, and concept

2 THEORETICAL PROPERTIES
Theorem 1. Suppose that 𝜏𝑙𝑢,𝑡 = (𝑢, 𝑟1, 𝑐𝑙

1
, · · · 𝑟𝑡 , 𝑐𝑙𝑡 ) is a reasoning

path and 𝑠𝑙𝑡 = (𝑢, 𝑐𝑙
𝑡−𝐾 , 𝑟𝑡−𝐾+1 . . . , 𝑐

𝑙
𝑡−1, 𝑟𝑡 , 𝑐

𝑙
𝑡 ) is its corresponding

state. if 𝑠𝑙𝑡 can be sampled from M𝑙
, i.e., there exist 𝑠𝑙

𝑡−1 and 𝑎𝑡−1
such that P𝑙 (𝑠𝑙

𝑡−1, 𝑎𝑡−1, 𝑠
𝑙
𝑡 ) > 0, then 𝜏𝑙𝑢,𝑡 must be feasible.

Proof. Proving the feasibility of 𝜏𝑙𝑢,𝑡 is equivalent to proving

that there exist 𝜏0𝑢,𝑡 = (𝑢 = 𝑐0
0
, 𝑟1, 𝑐

0

1
· · · 𝑟𝑡 , 𝑐0𝑡 ) that satisfies 1) 𝜏0𝑢,𝑡 is

a path on G0
, i.e., for ∀𝑡 ′ ∈ [0, 𝑡 −1], we have (𝑐0

𝑡 ′, 𝑟𝑡
′+1, 𝑐0𝑡 ′+1) ∈ G0

;

and 2) the high-level path of 𝜏0𝑢,𝑡 is 𝜏
𝑙
𝑢,𝑡 , i.e., 𝜑

𝑙 (𝑐0
𝑡 ′) = 𝑐

𝑙
𝑡 ′ for ∀𝑡

′ ∈
[1, 𝑡]. We prove this by finding a 𝜏0𝑢,𝑡 that satisfies these conditions.

According to Eq. (3) and P𝑙 (𝑠𝑙
𝑡−1, 𝑎𝑡−1, 𝑠

𝑙
𝑡 ) > 0, we can prove that

there exist 𝑠0
𝑡−1, 𝑎𝑡−1 = (𝑟𝑡 , 𝑐0𝑡 ), and 𝑠0𝑡 such that: 𝜙𝑙 (𝑠0

𝑡−1) = 𝑠
𝑙
𝑡−1,

𝜙𝑙 (𝑠0𝑡 ) = 𝑠𝑙𝑡 , 𝜔
𝑙 (𝑠0

𝑡−1) > 0, and P(𝑠0
𝑡−1, 𝑎𝑡−1, 𝑠

0

𝑡 ) > 0. Otherwise,

P𝑙 (𝑠𝑙
𝑡−1, 𝑎𝑡−1, 𝑠

𝑙
𝑡 ) will be 0. By combining 𝜔𝑙 (𝑠0

𝑡−1) > 0 and Eq. (4),

we can derive 𝐸P0,𝜋̃0 𝑁 (𝑠0
𝑡−1) > 0, whichmeans that the probability

for sampling 𝑠0
𝑡−1 from M0

is larger than 0. Thus, there must exist

a reasoning path 𝜏0
𝑢,𝑡−1 on G0

whose state is 𝑠0
𝑡−1. We then obtain

path 𝜏0𝑢,𝑡 by taking the action 𝑎𝑡−1 after generating 𝜏0𝑢,𝑡−1. We will

prove that 𝜏0𝑢,𝑡 is the bottom-level path that supports 𝜏𝑙𝑢,𝑡 .

Let us denote 𝜏0
𝑢,𝑡−1 as (𝑢 = 𝑐0

0
, 𝑟1, 𝑐

0

1
· · · , 𝑟𝑡−1, 𝑐0𝑡−1). Because

𝜏0
𝑢,𝑡−1 is a path onG

0
, we have (𝑐0

𝑡 ′, 𝑟𝑡
′+1, 𝑐0𝑡 ′+1) ∈ G0 for∀𝑡 ′ ∈ [0, 𝑡−

2]. Since 𝜙𝑙 (𝑠0
𝑡−1) = 𝑠

𝑙
𝑡−1 and 𝜏

0

𝑢,𝑡−1 corresponds to 𝑠
0

𝑡−1, we have

𝜑𝑙 (𝑐0
𝑡 ′) = 𝑐

𝑙
𝑡 ′ for ∀𝑡

′ ∈ [1, 𝑡 − 1]. According to P(𝑠0
𝑡−1, 𝑎𝑡−1, 𝑠

0

𝑡 ) > 0,

𝑎𝑡−1 = (𝑟𝑡 , 𝑐0𝑡 ) is a feasible action for state 𝑠0
𝑡−1, i.e., (𝑐

0

𝑡−1, 𝑟𝑡 , 𝑐
0

𝑡 ) ∈
G0. Since 𝜙

𝑙 (𝑠0𝑡 ) = 𝑠𝑙𝑡 , we know that 𝜑𝑙 (𝑐0𝑡 ) = 𝑐𝑙𝑡 . Thus, 𝜏
0

𝑢,𝑡 gen-

erated by taking action 𝑎𝑡−1 after generating 𝜏0
𝑢,𝑡−1 satisfies 1)

(𝑐0
𝑡 ′, 𝑟𝑡

′+1, 𝑐0𝑡 ′+1) ∈ G0 for ∀𝑡 ′ ∈ [0, 𝑡 − 1] and 2) 𝜑𝑙 (𝑐0
𝑡 ′) = 𝑐𝑙

𝑡 ′ for

∀𝑡 ′ ∈ [1, 𝑡]. □

Handling inaccurate high-level knowledge. When utilizing

high-level knowledge, an key question is whether we can ensure

that the learned high-level knowledge is correct, especially when

the data is sparse. Take Fig. 1 as an example. Summarizing that Alice
likes Cosmetics based on two purchase behaviors of Alice may not

be accurate due to the sparse data (a limited number of observed

user behaviors). An advantage of our method is that it naturally

solve this issue. We will explain how we eliminate the negative

impact of inaccurate high-level knowledge when 1) learning, 2)

passing, and 3) selecting high-level knowledge.

1. Learning high-level knowledge. We learn the high-level knowl-

edge by computing a value function 𝑉 𝑙 , which automatically de-

cides the importance of high-level knowledge. The importance is

determined based on how helpful the high-level knowledge is in

improving recommendation accuracy. Take the top level in Fig. 1

as an example. The value (𝑉 𝑙 ) for choosing Cosmetics or Sports
is determined based on the expected recommendation accuracy

(reward) of their bottom-level paths (last paragraph of Secs. 3.1.2

and 3.2.1). If the number of examples is too small to clearly distin-

guish Cosmetics from Sports (no significant difference between their

recommendation accuracy), then the value for choosing Cosmetics
and Sports will be similar. In this case, low-level policies will treat

Cosmetics and Sports in a similar way (Eq. (10)), just like when

there is no high-level knowledge. In other words, the high-level

knowledge has a low importance (small impact on the result). Note

that the value function is learned by considering all users, thus it

can also use collective information from other samples to further

handle data sparsity like recommendation models (similar users

have similar results).

2. Passing high-level knowledge to lower levels. Even if part

of the value function (high-level knowledge) is not accurate, we

can eliminate bias with optimal policy consistency when passing

knowledge to lower levels. Optimal policy consistency means that

the optimal low-level policy remains the same after integrating

high-level knowledge (a formal discussion in the paragraph after

Eq. (10)). Thus, even if the high-level knowledge is incorrect (Alice
does not like Cosmetics), the low-level policy will not make a biased

decision (e.g., selecting paths related to Cosmetics even if they lead

to a low accuracy). Instead, the algorithm will only first explore

the more promising direction (Cosmetics) judging by the high-level

knowledge, which typically enables more effective exploration of

the action space and helps avoid local minimum. If the algorithm

finds that the accuracy for Cosmetics is not good, it will finally
choose other paths to optimize the reward (accuracy).

3. Selecting the correct level of knowledge. To further eliminate

the negative impact of inaccurate high-level knowledge, we have

a mechanism for choosing the best level of knowledge (Sec. 3.3).

Take Fig. 1 as an example. The high-level path (Alice purchases
Cosmetics produced by Italian Luxury Fashion Brands) will only be

chosenwhen it leads to better expected reward (accuracy) compared



Multi-level Recommendation Reasoning over
Knowledge Graphs with Reinforcement Learning WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 2: Statistics of datasets.

Beauty Clothing Cell_Phone

#Users 22,363 39,384 27,879

#Items 12,101 23,033 10,429

#Interactions 198,502 278,677 194,439

#Entities 224,074 425,528 163,249

#Triplets 7,832,720 10,671,090 6,299,494

#Concept in G1
11,077 16,236 9,396

#Concept in G2
6,705 9,441 5,024

with the bottom-level paths (Eq. (13)). This design ensures that the

expected accuracy of our multi-level method is better than that

of the bottom-level method (a more formal discussion in the last

paragraph of Sec. 3.3.1).

3 EXPERIMENTAL DETAILS
In this section, we provide more details about the experiments.

Dataset statistics are summarized in Table 2.

Implementation details. The hyperparameters for the base-

lines are initialized as in the corresponding papers, and tuned to

achieve optimal performance. When choosing baselines, we focus

on models for user-to-item recommendation. Methods for other

recommendation tasks or requires additional data are omitted.

We set most hyperparameters of our method by following that of

PGPR [30]. In particular, the history length 𝐾 is set to 1, and the em-

bedding sizes of the relations, entities, and concepts are set to 100.

Thus, the embedding of a state 𝑠𝑙𝑡 = (𝑢, 𝑐𝑙
𝑡−1, 𝑟𝑡 , 𝑐

𝑙
𝑡 ) has a dimension

of 1 × 400 (i.e., 𝑑1 = 400). Hidden sizes 𝑑2 and 𝑑3 are set to 512 and

256, the action space size 𝑁𝑚 is set to 250, the dropout rate is 0.5,

and the maximum length of reasoning path 𝑇 is 3. 𝑁1, 𝑁2, and 𝑁3

are set to 25, 5, 1, respectively. The neural networks are trained for

50 epochs by using Adam optimizer with a learning rate of 1𝑒−4.
Additional experimental results. We compare the conver-

gence of our method ReMR with the most competitive baseline

(PGPR) on Beauty and Clothing. We normalize the training losses

of the actors to [0,1] and study how normalized losses decrease with

training epochs. As shown in Fig. 1, PGPR converges in around

35 epochs, while ReMR converges in less than 25 epochs. This

indicates that transferring knowledge from the higher-level rea-

soning processes helps prune the search space and enables faster

convergence.

Fig. 2 shows that the convergence becomes much slower (Fig. 2)

when 𝐾 = 1 changes to 𝐾 = 2. We can also see from the main paper

that by changing 𝐾 = 1 to 𝐾 = 2, the improvement in terms of

accuracy is not significant. This indicates that setting 𝐾 to 1 well

balances accuracy and efficiency and is a good choice in practice.
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Figure 1: Comparison of convergence.

4 DISCUSSION
In this section, we discuss how our method can be extended to

ontology-view KGs with multiple parents and other types of rela-

tions, as well as the efficiency of our method.

Considering multiple parents on the ontology-view KG.
In this paper, we only consider the top-1 parent for each concept

on the ontology-view KG. Experiments show that introducing this

simple ontology-view KG already brings good improvement in rec-

ommendation performance. To further improve the performance,

it may be beneficial to consider multiple parents of a concept, and

allow the model to choose which parent is the best. This can be

achieved by slightly modifying the sampling method used in the

Cascading Actor-Critic, as what we have done in Sec. 3.3. Specifi-

cally, we can first sample (𝑠0𝑡 , 𝑎𝑡 , 𝑠0𝑡+1,R
0 (𝑠0𝑡 , 𝑎𝑡 )) fromM0

, and then

generate a high-level sample (𝑠𝑙𝑡 , 𝑎𝑡 , 𝑠𝑙𝑡+1,R
0 (𝑠0𝑡 , 𝑎𝑡 )) by randomly

mapping concepts to one of the parents, and finally minimize the

same loss function. This allows a high-level path to aggregate the

rewards of all its bottom-level paths. While the method is reason-

able in theory, it may take many steps to learn a good actor-critic,

especially when the number of parents is large. In this case, we

can first prune the candidate parents and keep only those that are

important in the specific dataset, e.g., by using the ant-colony-based

algorithm proposed in [32]. We would like to experiment with these

ideas in the future to see how they work for multiple parents.

Extending to ontology-view KGs with other types of rela-
tions. Some ontology-view KGs may contain other types of rela-

tions, in addition the parent-child relation like 𝑟IsA. For example,

in G1
of Fig. 6, there may exist a relation Placed_In between con-

cepts Lotion and Cosmetic Container. If these high-level relations
do not exist at the bottom level, it is currently difficult to extract a

high-level path with such relations. However, our method provides

a starting point for thinking about incorporating such informa-

tion. For example, we may consider a mixture of MDPs at level 𝑙 .

Specifically, level 𝑙 contains both the abstract MDP we currently

considered, and another MDP that considers additional new rela-

tions provided by level 𝑙 . When sampling the level-𝑙 states, we may

use a mixture probability distribution to determine which MDP we

will sample the states from.

Efficiency. Although the proposed method ReMR enables faster

convergence at the bottom level (Fig. 1), overall ReMR may take

more time as it requires additional higher level reasoning. Empiri-

cally, each epoch at a higher level takes approximately the same

time as a training epoch at a lower level, since they both require

samping from the bottom level. However, the number of epochs

required at each level is significantly smaller than that without

high-level knowledge. To further improve efficiency, we may in-

tegrate additional guidance (Sec. 4.3.5) or resort to more efficient

methods for sampling bottom-level paths.
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Figure 2: Influence of state history length 𝐾 on convergence.
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