
Shaping the future with: Sumit Gulwani

In our series "Shaping the future with" we introduce you to interesting personalities who are
working on future technologies. This time with Sumit Gulwani from Microsoft Research. He
explains why the computers of the future will understand us humans better.

Sumit Gulwani founded and currently leads the PROSE research and development team at Microsoft
Research, which develops techniques for program synthesis and incorporates them into various
mass-market products. He has made his mark on his field of research with his work. Program
synthesis is the ability to automatically generate intended computer programs from natural forms of
intent specification such as input-output
examples, natural language, or sometimes
even predictively from the static or temporal
coding context. Among other things, he is the
inventor of the popular Flash Fill feature in
Microsoft Excel, which automatically inserts
data into an Excel column as soon as it
recognizes a pattern as to how it relates to
other columns.

We spoke with Sumit about his
groundbreaking work, which was recently
awarded the Max Planck-Humboldt Medal
2021. We also talked about how program
synthesis makes life easier for all of us and the impact it can have on education.

You were recently awarded the Max Planck Humboldt Medal 2021 for your achievements
in the field of program synthesis. How would you explain your field of research to a child?

Sumit: "The techniques of program synthesis allow users to express a process in the most natural
way, for instance, through examples or through a description in natural language, without having to
program with a strict and sometimes difficult to understand syntax.

The other day I was explaining
the two techniques to my son
Sumay, who needs his own
passwords for many digital
applications at his primary
school. The teacher
communicated these
passwords by emailing an
example of how to derive
them from a student name
and ID, “if your name is: Alex
Zorn and ID is 12345678, then
your password is a-
ZORN#1234.”

I showed Sumay that the
Flash Fill function in Excel,
which I developed in 2010, is smart enough to solve such analogy tasks. And it does so by generating
a program from very few representative input-output examples, which is then run with new inputs to
get the desired outputs. This is called program synthesis using examples. This video shows how it
works in Excel:

https://www.instagram.com/reel/CLaPESvFnhd/?utm_source=ig_web_copy_link

While examples can sometimes be an easy way to communicate the intent of a computation, other
tasks are best described in natural language. This can be well explained with a problem from Sumay's
math curriculum:

Sumay has a large list with the number of stars that students from various classes have received.
Now he has to determine "which class received the most stars". Natural-language program synthesis
techniques can translate such literal descriptions into executable programs over tables (such as SQL
queries or spreadsheet formulas). This allows Sumay to quickly determine the result without a
manual calculation.

These techniques have shaped automatic programming. They have shown that programs can be
efficiently generated from imprecise specifications and that program synthesis can not only help
computer professionals with complicated algorithms but also computer users with relatively simple
programs or program snippets. Recently, I learned that Flash Fill is part of several middle school
computing textbooks in India."

To what extent do you think improvements in program synthesis can empower individuals and
organizations to shape our future?

Sumit: "Computer technology has permeated all
aspects of our lives. However, 99 percent of computer
users cannot program and therefore struggle with
tedious, repetitive tasks. Programming as it exists
today is an artificial barrier to effective and creative
use of computers.

For example, Sumay's teacher could have sent each
student their own password if she could have created
a program to do so. The techniques of program
synthesis by demonstration can watch Sumay's

teacher send a couple of these personalized emails and then offer to send them to the rest of the
children in the class.

Program synthesis can also support computer professionals
such as data scientists or developers.

Data scientists spend a lot of time manipulating data, cleaning
it, transforming it, and analyzing it. This data manipulation can
be accelerated by program synthesis. For instance, the data
connectors in Microsoft’s PowerQuery engine synthesize
parsing scripts from examples to extract tabular data from
semi-structured documents like custom text files or webpages.
Recently, we were pleased to see them used to create
dashboards for various Covid 19 datasets.

Developers spend most of their time writing templatized code
or in code maintenance tasks such as refactoring code, merge
conflict resolution, and doing repetitive edits to fix bugs.
Program synthesis can help with these tasks, acting as an AI-
powered pair programmer to make suggestions as you work.
Our IntelliCode Suggestions feature in Visual Studio is one such
form factor for this use case.

The latest addition to the bunch, GitHub's CoPilot, which is
based on the pre-trained model Codex developed by OpenAI,
has captured the imagination of the world. It predicts code
fragments - using natural language comments and previous
code context. We are on the cusp of a disruption that AI-

powered pair programming will bring. "

Lately, you've been using program synthesis tools for education. How can program synthesis
support programming education, learning feedback, grades, and more? Where do you see possible
future applications in education?

Sumit: "A single teacher attends to many students in a classroom, so individuals cannot receive
personalized feedback. Online courses with many participants exacerbate this problem.

An example: If one learns programming today, the error messages of the compilers (programs that
generate machine-readable code) are often confusing. Moreover, it is not enough to present the
students with any sample solution when they fail to solve a problem. Because what they really need
to know is how their solution can be converted into a correct solution. Program synthesis techniques
can be used to convert students' solution into a nearest correct solution (or the next logical step).
This can form the basis not only for fairer grading, but also for personalised feedback and guidance to
students, providing them with a better learning experience.

I would like to take on a grand challenge: to develop an AI bot that is almost indistinguishable from a
human teacher in terms of feedback and cues for learners. By collecting learning journeys of a large
number of learners from around the world, we could develop appropriate ML models. These when
combined with appropriate program analysis and synthesis techniques can lead to an AI bot that can
provide instant personalized feedback to learners. Such technology can even facilitate peer-to-peer
learning by connecting learners and enabling pedagogical experiments. This gives instructors more
time to interact with learners."

You once said: "Programming is the science of talking to computers". How do you get people
excited about learning this language?

Sumit: "The deepest level of learning takes place when you create something that is meaningful to
you. With this understanding, I found the right moment last year to introduce programming to my
son Sumay.

He was solving a 2nd grade
math problem: find all tuples
(a,b,c,d) where a*b=c*d and
a,b,c,d are distinct digits. After
he had painstakingly listed the
40 solutions, I joked with him:
'Do you know that a computer
could do this for you? All you
have to do is tell it what to do.
' His eyes lit up, and he
enthusiastically tried out his
first computer program.

In addition to a motivating
curriculum, we also need to
make computers smarter so
that we humans can talk to them more easily.

When Sumay was excited to write his first computer program to solve his math problem, I pulled up
an online Python editor. Then we started writing the program for the problem. And Sumay held his
breath as he waited on the screen for the solution. Mind you, I had never written a Python program
before. But with my 20 years of programming experience, I was confident that I could figure it out
using error messages. But no, I failed. I tried many different syntaxes, but the error messages were
unhelpful and confusing. Sumay got frustrated and asked, 'Dad, are you sure you know how to

program? ' Eventually, I had to look up the documentation to get it to work. You know, most people
would have been able to read my intent from the inaccurately written program. And if computers
can understand such sloppy programs or pseudocodes, it may not only change programming
education, but it will also seed the next programming revolution that will democratize programming
for all and take programming closer to human conversation.”

