
6

Data-Driven Network Path Simulation with iBox

SACHIN ASHOK∗ , University of Illinois at Urbana-Champaign, USA
SHUBHAM TIWARI,Microsoft Research India, India
NAGARAJAN NATARAJAN,Microsoft Research India, India
VENKATA N. PADMANABHAN,Microsoft Research India, India
SUNDARARAJAN SELLAMANICKAM,Microsoft Research India, India

While network simulation is widely used for evaluating network protocols and applications, ensuring realism
remains a key challenge. There has been much work on simulating network mechanisms faithfully (e.g., links,
buffers, etc.), but less attention on the critical task of configuring the simulator to reflect reality.

We present iBox ("Internet in a Box"), which enables data-driven network path simulation, using input/output
packet traces gathered at the sender/receiver in the target network to create amodel of the end-to-end behaviour
of a network path. Our work builds on recent work in this direction [7, 40] and makes three contributions:
(1) estimation of a lightweight non-reactive cross-traffic model, (2) estimation of a more powerful reactive
cross-traffic model based on Bayesian optimization, and (3) evaluation of iBox in the context of congestion
control variants in an Internet research testbed and also controlled experiments with known ground truth.

CCS Concepts: • Networks → Network simulations; Network measurement; Network performance
modeling; Network experimentation; Network performance analysis.

Additional Key Words and Phrases: data-driven simulation; cross-traffic estimation; bayesian optimization

ACM Reference Format:
Sachin Ashok, Shubham Tiwari, Nagarajan Natarajan, Venkata N. Padmanabhan, and Sundararajan Sella-
manickam. 2022. Data-Driven Network Path Simulation with iBox. Proc. ACM Meas. Anal. Comput. Syst. 6, 1,
Article 6 (March 2022), 26 pages. https://doi.org/10.1145/3508026

1 INTRODUCTION
Network simulation (or emulation 1) is widely used for evaluating network protocols and applica-
tions. Typically, a test network is rigged up by configuring a simulator by hand, including setting the
type of network link (e.g., wired or wireless), link bandwidth, propagation delay, depth of network
buffers, and the cross-traffic. While such an approach provides the developer with full control, it
suffers from a lack of realism since the handpicked settings might not match the conditions of
the target network, e.g., the Internet. Indeed, not only is it difficult to accurately recreate absolute
performance matching real networks using such handpicked settings, even relative ordering in
∗The work was done while the author was a Research Fellow at Microsoft Research India.
1We will not make a distinction between the two except where necessary.

Authors’ addresses: Sachin Ashok, sachina3@illinois.edu, University of Illinois at Urbana-Champaign, Champaign, USA;
Shubham Tiwari, t-shutiwari@microsoft.com, Microsoft Research India, Bengaluru, India; Nagarajan Natarajan, nagarajan.
natarajan@microsoft.com, Microsoft Research India, Bengaluru, India; Venkata N. Padmanabhan, padmanab@microsoft.com,
Microsoft Research India, Bengaluru, India; Sundararajan Sellamanickam, ssrajan@microsoft.com, Microsoft Research India,
Bengaluru, India.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2022/3-ART6 $15.00
https://doi.org/10.1145/3508026

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

https://doi.org/10.1145/3508026
https://doi.org/10.1145/3508026

6:2 Sachin Ashok et al.

performance between protocols could be difficult to recreate. For instance, the relative ordering
between TCP Cubic and TCP BBR in terms of metrics such as throughput depends on the network
conditions (e.g., the buffer depth) [12], which can vary and hence is difficult to set appropriately by
hand. Therefore, we believe that a data-driven alternative that can recreate the relative ordering
between protocols as well as achieve an absolute match with respect to real world performance is
quite desirable.

There has been recent work on configuring network simulators based on empirical measurements
of end-to-end network paths between pairs of senders and receivers [40], including a short workshop
paper by us [7]. Our present work, iBox– short for Internet in a Box – builds on this prior work,
focusing on simulating the end-to-end behaviour of a network path (e.g., the delay and loss suffered
by packets). iBox is not directly concerned with the internals of the target network; the details
(such as topology) only matter to the extent it has a bearing on the end-to-end behaviour, which in
turn could impact an application/protocol under test.
iBox makes three significant contributions over prior work, which are outlined below and

expanded on in Section 3. Central to these contributions is the modelling of cross-traffic (i.e., other
traffic that interferes with the application/protocol under test), which, as we show, has a strong
bearing on faithfulness of the network path simulation.

First, we present a lightweight estimation of cross-traffic as a non-reactive rate time series based
on a simple network path model (NRCT, Section 4). “Non-reactive” means that the estimated
cross-traffic, which is replayed during simulation, does not react to the protocol under test. While
such non-reactiveness is a simplification, this approach nevertheless ensures that the dynamics of
the protocol under test are played out appropriately, which is an advantage over past work that
had simply replayed a recorded delay trace from training [39]. We detail the estimation method for
NRCT, including careful modeling of the queue dynamics to determine when a valid estimate can
be obtained.
Second, going beyond just estimating the cross-traffic rate as a time series, we also develop

a reactive cross-traffic (RCT, Section 5) model to help ensure realism. Such cross-traffic reacts
appropriately to the actions of the sender under test, just as it would in an actual network. For
instance, an aggressive sender (e.g., TCP Cubic bulk transfer that always looks to send more) might
cause the cross-traffic to back off, while a timid one (e.g., real-time streaming that is codec-limited)
might lead to cross-traffic filling up the slack in the pipe and network buffers. Clearly, either not
modeling cross-traffic (e.g., as in [40]) or replaying a cross-traffic trace in a non-reactive manner
(e.g., as in [7]) would not yield a realistic recreation. Building a reactive model of cross-traffic,
however, is quite challenging since we do not have any direct measurements of or information on
the nature of the cross-traffic in a real network setting. Nevertheless, we show promising results
with a Bayesian optimization based approach to learning a reactive cross-traffic model, seeded
suitably based on hints from the simpler non-reactive cross-traffic inference.
Finally, we evaluate iBox (Section 6) in the context of congestion control variants using the

Pantheon research testbed [31] data. Our evaluation goes beyond prior work [40] in that we train
iBox with just data from one flavour of TCP (e.g., Cubic) but then are able to faithfully recreate
network behaviour for a different, previously unseen protocol (e.g., Vegas, BBR). In effect, we
are able to use iBox to accurately simulate a new protocol without requiring access to any data
whatsoever for this new protocol, which we believe provides a powerful tool to network developers
and researchers. Furthermore, in terms of cross-traffic modeling, our results indicate a trade-off:
NRCT is much more efficient to estimate but RCT yields more accurate results. While the ready
availability of data makes Pantheon convenient for our evaluation, iBox could be trained with
similar packet traces from other desired target network settings too. iBox models (derived from
Pantheon data currently) have been made available for public download [2].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:3

iBox Model Repository

packet time series at R
(o1,o2,o3,…)

packet time series at S
(i1 = (t1, s1), i2, i3, …) Network

Model
TrainingS

R

Learning from real world Internet in a Box

Build model for S à R

iBox Network Path
Simulator/Emulator

iBox Network
Models

RS

Configure
iBox

Test a sender/protocol on path S à R

Draw Sample

Sampled iBox
Network Model

1

2 3

4

5

(a)

(b)
S

C (cross traffic)
B (buffer size)

b (bottleneck bandwidth)

d (propagation delay)

R

Observed flow

Cross Traffic

Queue Draining at
Peak Bandwidth

(c)

S R

Fig. 1. (a) Framework for iBox training (left) and its use in simulation (right), (b) Simplified network path
model in iBox, and (c) Modeling the bottleneck queue for estimating non-reactive cross-traffic (Section 4).

2 PROBLEM CONTEXT
Our focus is on a network path simulator that takes an input stream of packets at a sender host 𝑆
and produces an output stream at the receiver host 𝑅. The goal is to mimic the behaviour of the
target network, with each packet being delayed or dropped just as it would be in the target network.
We are only concerned with the end-to-end behaviour of the network path, so the internals of
the network are not of direct interest and only matter to the extent such details are necessary to
recreate the end-to-end behaviour.
The training data comprises input/output packet traces gathered at senders and receivers of

unicast network flows in the target network. For each packet, the trace contains the timestamp
(recorded locally but assumed to be synchronized via a protocol such as NTP) and the size. Note
that we consider each pair of sender host 𝑆 and receiver host 𝑅 separately. If there are multiple
concurrent unicast flows between 𝑆 and 𝑅, we consider these, and refer to these, collectively as
a “single” flow between 𝑆 and 𝑅 for the purposes of modeling the queue dynamics (Section 4).
The “target network” would, in general, comprise a heterogeneous mix of paths. For instance,
if the target network were the Internet, it could include paths spanning different geographies,
ISPs, network types (e.g., Ethernet, WiFi, cellular), etc. Clearly, it is neither feasible nor desirable
to build a single omnibus simulation model for all such paths. Instead, we focus on building a
model corresponding to each flow (with the collection of concurrent flows between a sender and
receiver treated as a “single” flow, as noted above), tagged with corresponding metadata such as the
geographic location, connectivity type, etc., and then letting the user sample from a repository of
such models, as desired, when running simulations. For example, if the developer is only interested
in simulating the network paths to WiFi nodes in North America, they could sample from just that
subset.
Figure 1(a) summarizes the iBox framework as described here. Network models for a target

network path between S and R are learnt by the iBox framework (step 1) and are added to a model
repository (step 2). Users then sample network models from this repository (step 3), configure the
simulator/emulator using this sampled network model (step 4), and test their sender/protocol in
simulation/emulation (step 5).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:4 Sachin Ashok et al.

Typical Use Case: A typical use case for an end-to-end network path simulator such as iBox is
the evaluation of new network protocols or applications. The typical approach for such evaluation
is A/B testing through “flighting”, which refers to the treatment (B) being rolled out to a fraction of
users and the results then compared with that for the control (A). iBox holds the promise of replacing
flighting with realistic simulation, with both A and B being evaluated in the same simulation setup
— with significant speed-up and without the risk of a regression negatively impacting users.

Certain characteristics of such A/B testing make iBox suitable. First, the evaluation of end-to-
end protocols and applications in the predominant unicast setting (e.g., congestion control in
transport protocols) is only concerned with end-to-end behaviour of a network path, not that of
the network as a whole. Second, in many cases, the control and treatment operate in the backdrop
of an unmodified network (e.g., a new video codec (B), which is possibly quite different from the
existing codec (A), being evaluated on Internet paths where the nature of competing traffic remains
unchanged), and so iBox is suitable for such a setting. However, in case the developer wishes to
evaluate the test protocol in a setting where the nature of the network traffic has changed entirely
from what it was when training data was gathered (e.g., training data was gathered when Cubic was
the dominant network protocol while the developer is interested in a world where BBR dominates),
the cross-traffic model learnt by iBox from the training setting would no longer be valid. For such a
scenario, a pre-trained iBox model would not be a suitable choice and it would have to be re-learnt
using updated data from the real-world.

3 OVERVIEW
iBox builds on recent work [7, 40] on configuring network simulators based on measurement data,
with cross-traffic modeling as a novel contribution and differences in methodology (see Section 8).
The idea is to start with a simplified and parameterized model of the network path and then find
the parameter settings that best explain or fit the end-to-end measurements.

We use a simple, single-bottleneck-link, FIFO, drop-tail model (Figure 1(b)), which is characterized
by the bottleneck bandwidth (𝑏), buffer size (𝐵), and the end-to-end propagation delay (𝑑). In
addition, cross-traffic is a key parameter, as is borne out by our results (Section 6). While our model
is simple, our experimental results show that it nevertheless enables accurate recreation of end-to-
end performance even in complex settings such as cellular networks (though we should point out
that the Pantheon cellular data is only for static nodes and therefore may not exhibit the dynamic
channel characteristics of a mobile node). More careful modeling of network characteristics such as
variable link bandwidth is an important direction for our future work, which we touch on briefly
in Section 9.
To train iBox we focus on just TCP Cubic data, which we believe is appropriate given the

dominance of this protocol in the Internet and the consequent ease of obtaining training data. The
iBox parameters 𝑏, 𝐵, and 𝑑 are estimated directly using network domain knowledge, which is
much more computationally efficient than obtaining these through a search/optimization procedure.
However, we employ Bayesian optimization for inferring the reactive cross-traffic model, as noted
below; but here again working with a popular protocol, such as TCP Cubic, enables fast training
by leveraging the implementation of the protocol in the ns simulator to speed up the Bayesian
optimization search.
The combination of the basic parameters (𝑏, 𝐵, 𝑑) and cross-traffic obtained for each training

flow is added to the iBox repository. At simulation time, we draw from this repository of realistic
combinations to configure iBox accordingly. Unlike in typical network simulators, the parameters
of iBox are not intended to be configured by hand.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:5

3.1 Estimation of Basic Parameters and Cross-traffic in iBox
The first step is estimating the basic parameters of the iBox network model. The bottleneck
bandwidth 𝑏 is estimated based on the peak receive rate, propagation delay 𝑑 based on checks for
an empty bottleneck buffer, and the buffer size 𝐵 based on checks for a full buffer. In Appendix A,
we discuss our estimation of these basic parameters and also compare our approach with simpler
alternatives (e.g., estimating the buffer size based on the maximum and minimum delays observed,
without any checks for a full or empty buffer).

In Section 4, we detail an approach to estimating cross-traffic as a non-reactive time series. We
formulate the conditions under which a valid estimate can be obtained, and perform interpolation
otherwise. Here, “non-reactive” means that the cross-traffic does not react to the offered load, i.e.,
the estimated cross-traffic rate is just replayed during simulation.

In Section 5, we learn a novel reactive cross-traffic model, using Bayesian optimization, which re-
acts to the offered load, just as cross-traffic typically would in a network and unlike the non-reactive
replay noted above. The reactive model is expressed as a mix of “basis” flows. We demonstrate the
importance of learning such a reactive model of cross-traffic to accurately recreate the network path
conditions, especially when the training data was obtained from say a protocol that is relatively
aggressive (e.g., Cubic [18]) while the protocol being evaluated in simulation is much less so (e.g.,
LEDBAT [35], a background transfer protocol, or Vegas [11], a delay-sensitive protocol), with the
result that the cross-traffic would behave rather differently in the two cases.

3.2 Using iBox for Simulation
The procedures noted above yield a set of parameters corresponding to each flow in the training
dataset comprising (i) the 𝑏, 𝐵, and 𝑑 parameters; and (ii) the cross-traffic estimate, whether as
a non-reactive model (a 𝐶 time series) or a reactive one (in terms of a set of basis flows). The
combination of (i) and (ii) corresponding to each training flow is stored. At simulation time, we
simply pick out one of these combinations to configure iBox.

3.3 Evaluation Methodology
Dataset: Much of our evaluation is based on data from the Pantheon testbed at Stanford [31]. This
comprises data for 15+ flavours of congestion control protocols run between 12 client sites across
the globe during a 3-year period from 2017 to 2020 (not all sites have data corresponding to the
entire period). Each connection was of 30-second duration. The data used for our evaluation is
summarized in Table 1. For the sake of consistency and easy visual comparison, the majority of the
plots in the paper are for the Colombia Ethernet and the China Cellular datasets. Nevertheless, to
showcase the diversity of the data analyzed, we also summarize results from the other datasets in
Table 5 and, in select cases, we also present graphs.

In general, the only measurements available to us for the purpose of training iBox as well as
testing it are from a “foreground” flow. These are the flows for which packet traces are available in
the Pantheon dataset. The cross-traffic flows in the background are not directly observable by us,
except in the controlled emulation experiments.
Foreground protocols used for evaluation: In our evaluation, we focus on foreground traces for
TCP Cubic (for training) and foreground traces for TCP BBR, LEDBAT, and TCP Vegas (for testing).
The former (Cubic) is the control (A), while the latter (Vegas, BBR or LEDBAT) is the treatment
(B), which is previously unseen. TCP Cubic is a widely used transport protocol and is the default
flavour of TCP on Linux, MacOS and Microsoft Windows [4]. Hence, it is relatively easy to obtain
TCP Cubic packet traces, making it a good choice for the training protocol. The test protocols
were chosen to exercise particular characteristics of their protocol design; TCP BBR is an up and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:6 Sachin Ashok et al.

Type Location Period # Cubic traces # Vegas traces # BBR traces
Ethernet China 2 years 50 50 50
Ethernet Colombia 2 years 50 50 50
Ethernet Mexico 2 years 50 50 50
Ethernet Nepal 1 week 10 10 NA
Cellular China 2 years 51 49 50
Cellular India 2 years 137 138 137
Cellular US 1 year 81 80 80
WiFi Nepal 2 years 43 43 NA

Table 1. Pantheon data sets used for evaluation.

coming protocol designed to combat buffer bloat [3], LEDBAT is a scavenger protocol intended for
background applications (such as BitTorrent [5] and software updates [1]), while TCP Vegas is a
delay-based protocol in contrast to a loss-based protocol like TCP Cubic. So, the Cubic traces are
used to learn iBox models. The results for Vegas, BBR and LEDBAT obtained by running with these
iBox models are compared with the ground truth in the data set to check for a statistical match.
This evaluation methodology reflects how iBox will be used in practice; testing on a different and
previously unseen (treatment) protocol is more challenging than testing on the control protocol
itself (which is used for training iBox), e.g., as in [40].
Controlled experiments with known ground-truth: In addition, to evaluate the accuracy of
cross-traffic estimation, we conduct controlled experiments using the NetEm [25] emulator, which
enables us to control the amount of cross-traffic and facilitates a direct comparison of our estimate
with the ground truth. We use a single-bottleneck topology, with the bottleneck bandwidth set in
the 100 Kbps to 5 Mbps range, buffer size in the 10 to 150 MTU sized packets range, and propagation
delay in the 30 to 150 ms range (network parameters estimated from the India Cellular traces). For
the senders, we use Cubic, BBR, and Vegas implementations available in the Linux kernel.

4 NON-REACTIVE CROSS-TRAFFIC
Our non-reactive model of the cross-traffic is a time series,𝐶 , of the estimated rate of cross-traffic. A
trace of per-packet delay for a flow from a sender to a receiver is used to estimate𝐶 . The estimation
procedure is based on the simplified network model depicted in Figure 1(b), with a single bottleneck
link fed by a FIFO, drop-tail queue.

Figure 1(c) depicts the queue in the assumed network model. Consider the change in the state of
the queue over the course of an 𝑛-packet window 1 in the observed flow for which we have traces –
from packet 𝑘 to packet 𝑘 + 𝑛. Let 𝑠𝑖 be the size of the 𝑖𝑡ℎ packet in the measurement flow and 𝜏𝑖
the inter-packet spacing between the 𝑖𝑡ℎ and the 𝑖 + 1𝑡ℎ packets, so the 𝑛-packet window spans a
duration of 𝑡𝑤 =

∑𝑘+𝑛
𝑘

𝜏𝑖 . The corresponding change in the queue length, from 𝑄 (𝑘) to 𝑄 (𝑘 + 𝑛), is
impacted by 3 phenomena:
(1) The inflow of packets into the queue from the observed flow, totalling

∑𝑘+𝑛
𝑘

𝑠𝑖 . We subtract
out the contribution of dropped packets, if any, under the assumption that such packets were
dropped at (or before) the bottleneck link and so did not enter the bottleneck buffer.

(2) The inflow of cross-traffic, which would be 𝐶 ([𝑘, 𝑘 + 𝑛]) ∗ 𝑡𝑤 , where 𝐶 ([𝑘, 𝑘 + 𝑛]) is the
average rate of the cross-traffic in the [𝑘, 𝑘 + 𝑛] packet window.

(3) The outflow of packets due to the draining of the queue, which would be 𝑏 ∗ 𝑡𝑑 , where 𝑏 is
the bottleneck link bandwidth and 𝑡𝑑 is the drain time (i.e., when the queue is non-empty
and hence draining).

1𝑛 = 100 packets in our experiments

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:7

Therefore:

𝑄 (𝑘 + 𝑛) −𝑄 (𝑘) =
𝑘+𝑛∑︁
𝑘

𝑠𝑖 +𝐶 ([𝑘, 𝑘 + 𝑛]) ∗ 𝑡𝑤 − 𝑏 ∗ 𝑡𝑑 ⇒

𝐶 ([𝑘, 𝑘 + 𝑛]) =
𝑄 (𝑘 + 𝑛) −𝑄 (𝑘) −∑𝑘+𝑛

𝑘
𝑠𝑖 + 𝑏 ∗ 𝑡𝑑

𝑡𝑤
⇒

𝐶 ([𝑘, 𝑘 + 𝑛]) =
𝑄 (𝑘 + 𝑛) −𝑄 (𝑘) −∑𝑘+𝑛

𝑘
𝑠𝑖 + 𝑏 ∗ 𝑡𝑑∑𝑘+𝑛

𝑘
𝜏𝑖

(1)

Q(k) can be estimated as the peak bandwidth times the measured queuing delay, akin to how the
full buffer size is estimated in Section A.3.

Estimating the drain time, 𝑡𝑑 , is key. We can be sure that the queue is non-empty and therefore
draining in the intervening period between two packets, 𝑝 and 𝑞 of the observed flow (where
packet 𝑝 precedes packet 𝑞, or 𝑝 < 𝑞), if we can determine that both packets were co-resident in
the queue. The packets would be co-resident in the queue when the sender-side spacing between
the packets, 𝜏𝑝𝑞 =

∑𝑞
𝑝 𝜏𝑖 , is less than the queuing delay experience by the leading packet, 𝑑𝑝 − 𝑑

(the one-way delay experienced by packet 𝑝 minus the estimated one-way propagation delay), i.e.,
when

∑𝑞
𝑝 𝜏𝑖 < 𝑑𝑝 − 𝑑 .

We find intervals when the non-empty queue condition is satisfied and estimate the cross-traffic
during those periods using Equation (1) above. For other intervals, where we are unable to establish
that the queue remained non-empty, we estimate the cross-traffic by interpolating the cross-traffic
estimates from the neighbouring intervals for which we do have the estimates based on Equation (1).

Finally, while performing simulation with iBox, the estimated cross-traffic time series, 𝐶 , is to be
injected directly into the bottleneck buffer, as depicted in Figure 1 (c), avoiding any uncertainty in
whether the cross-traffic packets actually make it to the bottleneck buffer. However, for the sake of
simplicity of implementation, we connect a variable-bit traffic generator directly to the bottleneck
buffer to send the estimated cross-traffic, which makes it likely that most or all of these packets
end up in the bottleneck buffer.

4.1 Evaluation of Non-reactive CT Model
We evaluate the non-reactive cross-traffic (NRCT) model, both in a controlled setting (emulation),
which provides knowledge of the ground truth on cross-traffic, and using the Pantheon dataset [31],
which provides measurements from a real-world setting.

4.1.1 Evaluation in controlled setting. For the evaluation in the controlled setting, we use a topology
that includes a single bottleneck link, with the various network parameters (bandwidth, propagation
delay, etc.) being drawn from the India cellular profiles seen in the Pantheon dataset. Each simulation
run lasts 60 seconds and includes up to 5 cross-traffic flows, a mix of TCP Cubic and TCP Vegas
connections (e.g., the 5 randomly selected cross-traffic flows may consist of 3 TCP Cubic flows and
2 TCP Vegas flows) that start and end at randomly chosen times.
Figure 2(a) shows the CDF (over 200 runs) of the normalized error, which is the ratio of the

root mean square error (over 1 second windows) between the ground truth and the estimated
cross-traffic and the bottleneck bandwidth. We see that the median error is under 0.04 (4% of the
bottleneck bandwidth) and the 90th percentile is under 0.11 (11%), which points to the accuracy
of iBox’s non-reactive cross-traffic model. Figure 2(b) depicts an example (corresponding to the
median in the CDF) of the ground truth of cross-traffic and the non-reactive cross-traffic model
inferred by iBox. We see a close match between the two.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:8 Sachin Ashok et al.

(a) (b)

Fig. 2. Controlled setting: (a) Match between the non-reactive CT estimated in iBox and the ground truth
(GT) cross-traffic; (b) Illustrative plot shows the estimated cross-traffic closely matches GT. Normalized error
is the ratio of the RMSE between GT and the estimated cross-traffic and the bottleneck bandwidth.

4.1.2 Evaluation in real-world setting. To evaluate the non-reactive cross-traffic model in a real
setting, the challenge is that the ground truth is not known. While not knowing the ground truth
is often a practical constraint in real-world settings, it is still worth examining traces from such
settings.

It turns out that the Pantheon dataset includes traces of multiple concurrent connections between
a source-destination pair, so we can treat one as the measurement flow and the others as known
cross-traffic flows. It is important to note, however, that these known flows only constitute a subset
of, and hence a lower bound on, the cross-traffic; there could have been additional cross-traffic
over and beyond this known subset. If iBox’s estimate of cross-traffic is lower than the lower
bound defined by the known cross-traffic, then clearly there has been an error in estimation
(“underestimation error”). On the other hand, if iBox’s estimate is greater than the lower bound
(“additional CT estimated”), we cannot conclude on correctness or otherwise; in other words,
“additional” does not mean “wrong”. That said, we would not want the additional CT estimated to
be unreasonably high. After all, a gross overestimate of cross-traffic would be quite useless, even if
it has zero underestimation error. On the other hand, if both the underestimation error and the
additional CT estimated are low, that would strongly point to an accurate estimate.
Figure 3(a) shows the CDF of the underestimation error and the additional CT estimated. To

quantify the underestimation error, we consider the area between the estimated and lower bound
cross-traffic curves when the former dips below the latter and normalize it by dividing by the area
under the known subset of cross-traffic curve (both areas are computed for the entire experiment).
We quantify the additional CT estimated similarly but by considering the area between the curves
when the reverse happens, i.e., our estimate exceeds the known subset of cross-traffic.

We see from Figure 3(a) that the underestimation error is quite small, e.g., under 0.02 (2%) in over
90% of cases. Furthermore, this low level of known error is achieved while keeping the additional
CT estimated within reasonable limits. For instance, additional CT is under 1 (100%) about half
the time, i.e., the estimated cross-traffic includes the known cross-traffic plus an equal amount of
additional cross-traffic. The additional CT is under 2.5 (250%) in 90% of the cases. These results
are encouraging. Together with the high accuracy established in the controlled setting (where the
ground truth on the entire CT is known), this supports the validity of the non-reactive CT (NRCT)
model in iBox.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:9

(a) (b)

Fig. 3. Real-world setting: (a) CDF of “underestimation error” (top x-axis) and the “additional CT estimated”
(bottom x-axis) in the Pantheon India Cellular data; (b) Illustrative plot shows how the estimated cross traffic
tracks the known amount of cross traffic across time in the real-world setting.

Figure 3(b) illustrates an example, where the estimated cross-traffic is at least as high as the lower
bound defined by the known subset of cross-traffic at almost all times, just as we desire. The only
exception is the small region marked in red, where estimate dips below the known cross-traffic, i.e.,
there is an underestimation error.

5 REACTIVE CROSS-TRAFFIC
Even an accurate non-reactive model of cross-traffic does not ensure fidelity in simulation because
the impact of the sender under test on the cross-traffic is not considered. To illustrate this, we
consider a scenario where a sender application sends (foreground) traffic to a single-bottleneck
topology, with the bottleneck set to 2Mbps, buffer size set to 100MTU sized packets, the propagation
delay set to 50 ms, and is made to compete with TCP Cubic (background) cross-traffic which starts
at t = 40s and ends at t = 300s. We consider two cases, A and B, where the sender application
uses Cubic and LEDBAT as the congestion control algorithm, respectively. Figure 4 shows that
the non-reactive cross-traffic estimated in the presence of a TCP Cubic foreground flow (Case
A) is very accurate (i.e., it is a close match to the ground truth, so much so that the purple and
green curves in the figure coincide) but is much less than the cross-traffic seen in the presence of a
LEDBAT foreground flow at test time (Case B). This is not surprising since LEDBAT, being a timid
background transfer protocol, cedes much more ground to cross-traffic than does Cubic at training
time. So, a non-reactive model learnt with a Cubic measurement flow cannot simply be replayed in
the presence of a very different protocol such as LEDBAT. To address this challenge, we present a
novel approach to learning a reactive cross-traffic model, while using the non-reactive model as
the starting point.
Estimating a model of cross-traffic is challenging because we do not get to make any direct

observations of the cross-traffic. Furthermore, even if we are able to estimate the aggregate volume
of cross-traffic over time (as in the non-reactive cross-traffic model in Section 4.1), we would still
not know critical details such as the number, nature, and duration of the cross-traffic flows.

5.1 Outline
Our approach in iBox is to learn to express cross-traffic in terms of flows of “basis” protocols. The
high-level idea is as follows. As in the previous sections, we model the target network path via a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:10 Sachin Ashok et al.

Fig. 4. Well-matched ground truth and estimated CT in the presence of a TCP Cubic flow (Case A) but poorly
matched with the ground truth CT in the presence of a LEDBAT flow (Case B).

single-bottleneck bandwidth network model, with the parameters bandwidth, propagation delay
and buffer size estimated from the data. In lieu of using a non-reactive estimated cross-traffic rate
time series as in Section 4.1, we use a configuration of concurrent flows — the protocol (drawn from
a set of basis protocols such as TCP Cubic), and the start and end times for each flow — to best
re-create the given data by subjecting the sender protocol to reactive competing basis flows (which
serve as a proxy for the unobserved cross-traffic) in the simulation environment.
The key challenges are in defining what “best” re-creation means, and how to achieve it. In

Section 5.2, we describe a principled, efficient, optimization methodology that searches for the
configuration of concurrent competing flows in order that the resulting simulation accurately
matches, according to an appropriately defined metric, the recorded delay and packet loss traces
for a given sender flow. In the subsequent subsections, we study the effectiveness of the proposed
reactive cross-traffic flow estimation on Pantheon data. Figure 5 illustrates the iBox pipeline
detailing all the stages from the parsing of raw network traces to finding cross-traffic parameters
via the RCT model.

5.2 Bayesian Optimization based Search
The search for the set of basis flows to approximate the effect of the actual cross-traffic is rather
expensive. After all, we need to infer the number of cross-traffic flows (up to an upper bound of
𝑘 flows) and their start (𝜏𝑠) and end (𝜏𝑒) times, each of which dimensions spans a large space of
choices. Furthermore, in general, the choice of each cross-traffic flow type𝐶type (for example Cubic
or Vegas) is drawn from a set P of basis protocols.

Fitness function 𝑓 : Let 𝑓 denote a fitness function that captures how accurately the simulated
trace (flow) matches a given ground-truth trace. There are several ways of defining 𝑓 . A natural
choice for 𝑓 is the mean squared error between the delay time series of the ground-truth trace
T and that obtained from simulation (in the presence of reactive cross-traffic model with given
parameters) T ′. We consider the following, more robust, definition of 𝑓 . We first compute 1-second
average delay values in the trace, and represent a 𝑇 -seconds long delay trace in T by 𝑇 numbers,
𝑑1, 𝑑2, . . . , 𝑑𝑇 (i.e., averaged delays). We then define 𝑓 as the root mean squared error (RMSE) in
this representation, i.e.

𝑓 (T ,T ′) :=

√√√
1
𝑇

𝑇∑︁
𝑗=1

(
𝑑 𝑗 − 𝑑 ′𝑗

)2
. (2)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:11

ns-2/3 or NetEm
simulation

Loss
function

Cross-traffic
parameter selection

via Algorithm 1

Configure simulator with basic
network parameters and selected

cross-traffic parameters

Evaluate traces obtained
from simulation

If loss is high, iterate
If loss is low, output

RCT parameters

Estimate cross-traffic
through NRCT model

Estimate seed values
for RCT model

Estimate basic
network parameters

1

2

3
4

5

6

7
8

Parse raw trace file

RCT process

Fig. 5. iBox pipeline: Raw network traces are parsed from which basic network parameters (e.g., peak
bandwidth) are estimated (steps 1 & 2). Next, cross-traffic is estimated using the NRCT model (step 3). Further,
for more accurate cross-traffic estimation, the RCT model is used. The NRCT model’s estimates help seed the
RCT model’s search process (step 4). The simulator is configured using the basic network parameters as well
as the cross-traffic parameters as chosen by Algorithm 1. A sender application (same as which generated the
raw network trace) sends traffic and is subjected to network conditions including cross-traffic competition
(step 5). The resulting trace is compared against the ground-truth trace (step 6). If the two traces are not
similar as per the loss function, the search continues (step 7) and new cross-traffic parameters are explored.
Else, the RCT model has found the right cross-traffic parameters (step 8). The yellow region highlights the
RCT process (steps 5→ 8).

Search objective: Given a ground-truth trace T of length 𝑇 time units (i.e., the trace of a flow
for which we have actual measurements), the reactive cross-traffic model estimation problem is as
follows. For a given setting of RCT model parameters, let T ′(.) denote the trace resulting from
simulating a test flow in the presence of the competing cross-traffic generated by the parameter
setting. The objective then is to find optimal RCT model parameters such that the trace T ′(.) (in
simulation) matches the ground-truth T (as measured) as closely as possible per the chosen fitness
function 𝑓 . Formally, given basis protocols P and trace T , we seek:

min
𝐶type,𝑟 ,𝜏𝑠

𝑓

(
T ,T ′

(
𝜏𝑠 , 𝜏𝑒 ,𝐶type

))
(3)

𝑠 .𝑡 . 0 ≤ 𝜏
(𝑖)
𝑠 ≤ 𝑇, 0 ≤ 𝑟 (𝑖) ≤ 1 1 ≤ 𝑖 ≤ 𝑘,

𝜏
(𝑖)
𝑒 = 𝜏

(𝑖)
𝑠 + (𝑇 − 𝜏 (𝑖)𝑠) ∗ 𝑟 (𝑖) , 1 ≤ 𝑖 ≤ 𝑘,

𝐶
(𝑖)
type ∈ P, 1 ≤ 𝑖 ≤ 𝑘.

This is a challenging black-box optimization problem for two reasons: (i) note that even though
we know 𝑓 , we cannot directly optimize it because the objective (in (3)) is to find the optimal
cross-traffic parameters, i.e., 𝐶type, 𝜏𝑠 , 𝜏𝑒 for the simulation; to even compute 𝑓 , as defined in (2), we
need to perform a simulation and obtain the time series T ′, which is an expensive operation, and
(ii) the search space is combinatorial with both categorical and real-valued parameters.

Global black-box optimization has received a lot of attention from machine learning and op-
timization communities; Bayesian Optimization (BO) is a widely-used family of techniques for
global optimization of arbitrary functions. We leverage a recently-developed sequential-model

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:12 Sachin Ashok et al.

based optimization (SMBO) technique for hyperparameter optimization [10] that operates within
the BO framework; this technique is particularly suitable for our setting where evaluating the
objective is expensive and the search space consists of both categorical and real-valued parameters.

The high-level procedure for solving the search problem (3) using SMBO is given in Algorithm 1.
The objective in (3) is a complex black-box function of 𝐶type, 𝑟 , 𝜏𝑠 that is expensive to compute
since it requires running a simulation; so, the optimization algorithm approximates the objective
with a surrogate model which is easier to evaluate. Algorithm 1 optimizes this surrogate model
over iterations 1, where it picks a point that optimizes the surrogate (or some transformation),
which in turn becomes the candidate for where the objective (3) should be evaluated next. Bayesian
optimization algorithms differ in (a) the criterion they optimize to obtain the next candidate, and
(b) how they model the objective function given the history of observations, denoted byH in the
Algorithm. In our implementation, we use the Tree-structured Parzen Estimator approach (referred
to as TPE in the Algorithm) from [19] as the surrogate model (details are outside the scope of this
work, see [9, 10]).

Algorithm 1: Reactive cross traffic estimation
Result: Solution to Problem (3)
Input: 𝑘 , 𝑓 , T , P, MaxIter, x0 :=

{
𝐶
(𝑖)
type, 𝜏

(𝑖)
𝑠 , 𝜏

(𝑖)
𝑒

}𝑘
𝑖=1;

T ′← Run ns with initial cross-traffic parameters x0;
InitializeH ←

(
x0, 𝑓 (T ,T ′)

)
;

while 1 ≤ 𝑗 ≤ MaxIter do
x𝑗 :=

{
𝐶
(𝑖)
type, 𝜏

(𝑖)
𝑠 , 𝜏

(𝑖)
𝑒

}𝑘
𝑖=1 ← 𝑇𝑃𝐸 (H);

T ′← Run ns with cross-traffic parameters x𝑗 ;
Compute 𝑓𝑗 ← 𝑓 (T ,T ′);
H ← H ∪

(
x𝑗 , 𝑓𝑗

)
;

end
return x𝑗∗ ∈ H where 𝑗∗ = arg min𝑗 ∈H 𝑓𝑗 ;

Choice of 𝑘: Note that the problem formulation allows up to 𝑘 cross-traffic flows, including 0,
because 𝜏 (𝑖)𝑠 = 𝜏

(𝑖)
𝑒 is admissible, which amounts to one less flow. So, it suffices to set a maximum

value for 𝑘 in the optimization; we use 𝑘 = 3 by default but explore other settings of 𝑘 in Section 6.3.
Basis protocol for cross-traffic model: While our framework is general, in this paper, by

default we pick TCP Cubic alone as the default basis protocol, i.e., we seek to model the cross-traffic
as a set of zero or more Cubic flows, starting and ending at various times. Cubic is the most widely
used transport protocol in the Internet, and the default flavour of TCP on both Linux and Microsoft
Windows. Therefore, we expect that expressing the cross-traffic in terms of a set of Cubic flows
would result in a good fit, while limiting the search space. However, in Sections 6.4 and 6.5, we
evaluate RCT with additional basis protocols (BBR and LEDBAT), besides Cubic.
Seeding the Bayesian Optimization: To aid the optimization efficiency, we utilize the non-

reactive cross-traffic model (which, as discussed in Section 4.1, can be computed quite efficiently),
to seed the search procedure (this initial setting is denoted by x0 in Algorithm 1). Specifically:
(1) We first estimate the volume of the non-reactive cross-traffic given a trace T using the ideas
described in Section 4.1. (2) We then employ a simple change point detection technique on the
1MaxIter (maximum number of iterations) = 100 in our experiments.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:13

estimated cross-traffic volume series to find the times when there is a sudden increase or decrease
in cross-traffic volume (by at least a threshold 𝛿), signaling the start (or end) of new (or ongoing)
cross-traffic flows. We start with a conservative 𝛿 (i.e., indicating a change point) and get the initial
values 𝜏 (1)𝑠 , 𝜏

(1)
𝑒 for the first (presumed) cross-traffic flow; then we progressively use smaller values

of 𝛿 to get estimates of further presumed cross-traffic flows 𝜏 (𝑖)𝑠 , 𝜏
(𝑖)
𝑒 , until either 𝛿 is too small or

𝑖 = 𝑘 , i.e., we have exhausted the budget of cross-traffic flows.

5.3 Impact of Bayesian Optimization

Fig. 6. Convergence of Algorithm 1, with(out) seeding where MaxIter = 100.

We evaluate the effectiveness of the Bayesian optimization procedure described in Algorithm 1.
Figure 6 shows drop in the mean discrepancy in throughput (i.e., the difference between the ground
truth throughput and the throughput measured with the presumed reactive cross-traffic model)
as the Bayesian Optimization proceeds. The mean discrepancy is computed over 43 Cubic traces
(Nepal WiFi) and 50 Cubic traces (Mexico Ethernet). For instance, in the Nepal WiFi case, while
the throughput discrepancy starts out at more than 100 Kbps in the “random seed” case (relative
to an average throughput of 570 Kbps for these connections), it drops sharply to 20 Kbps after
about 40 iterations. When the optimization is seeded with estimates obtained from the NRCT
model as described above, there is a significant reduction in the throughput discrepancy even as
the optimization begins, and it drops to about 10 Kbps in 40 iterations (i.e., a discrepancy of 10/570
= 1.76% relative to the mean), as compared to 20 Kbps in the “random seed” case. The importance
of seed selection in enabling a convergence to a better local optimum is well established. We see
similar trends play out in the Mexico Ethernet case too (where the mean throughput was 67 Mbps,
to put the throughput discrepancy (5.97%) in context). These results underscore the promise of
the Bayesian Optimization approach together with our seeding technique for learning a reactive
cross-traffic model.

5.4 Comparison with Cross-Traffic Ground Truth
We compare the inferred reactive cross-traffic model with the ground truth in a controlled setting
where cross-traffic is known and therefore we are able to perform a microscopic comparison.
Figure 7 shows two examples where the ground truth comprised 3 TCP Cubic cross-traffic flows,
starting and ending at various times. In Figure 7(left), the reactive cross-traffic model inferred is
quite accurate, both in terms of the number of cross-traffic flows inferred (3) and their start and end

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:14 Sachin Ashok et al.

Fig. 7. Illustrative examples showing the result of Bayesian optimization (Algorithm 1) after 100 iterations,
with TCP Cubic alone as a basis protocol. Vertical lines indicate the start and end times of the inferred Cubic
cross-traffic flows, which closely matches the ground truth on the left. However, on the right, the algorithm
decides to use only 1 long running Cubic flow to model an ensemble of 3 actual cross-traffic flows.

times. However, in Figure 7(right), the seeding procedure discussed early in the section identifies
2 cross traffic flows with (start,end) times as (0,53) and (32,40). Bayesian optimization, however,
collapses these into a single flow in (0,51). The overlapping nature of the cross-traffic flows in the
ground truth and the fact that one of them (flow 3) ends when another (flow 1) picks up suggests
that it is hard to tease apart the individual flows. Arguably such teasing apart is less important so
long as the overall impact of cross-traffic is captured adequately.

6 EXPERIMENTAL EVALUATION
We compare our reactive cross-traffic estimation technique against the non-reactive model discussed
in Section 4 and a baseline where no cross traffic is used. For this study, we use Pantheon China
Cellular and Colombia Ethernet data. In the former case (China), we build iBox models based on 51
TCP Cubic foreground traces from July 2017 to June 2018, while in the latter case (Colombia), we
build models based on 50 TCP Cubic foreground traces from June 2017 to Feb 2020. That is, we
use the measurements derived from these Cubic traces to drive Bayesian optimization and learn a
cross-traffic model in terms of the basis flows.
Thereafter, we test using two different foreground protocols — TCP BBR (for China) and TCP

Vegas (for Colombia) — using iBox-based simulation under 3 conditions: “No CT” (only basic
network parameters but no modeling of cross-traffic), “NRCT” (cross-traffic model in the form of a
UDP stream replayed per the non-reactive model from Section 4), and “RCT” (the reactive model
where we learn the start and stop times for up to 𝑘 = 3 presumed TCP Cubic cross-traffic flows; we
explore other values of 𝑘 in Section 6.3 and additional basis protocols in Sections 6.4 and 6.5).
We compare these iBox-based results with the “ground truth” obtained from actually running

the test protocol on real network paths (i.e., BBR in China and Vegas in Colombia), which is also
available from the Pantheon data set. Note that, in general, the cross-traffic encountered during
the “ground truth” runs of the test protocols would be different from that during the runs of Cubic,
which we use to derive our cross-traffic model. Nevertheless, if the latter model implanted in iBox
can help obtain results matching the “ground truth”, that would underscore the value of the iBox
cross-traffic model.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:15

Fig. 8. Distribution of P95 delay and throughput for TCP BBR and Vegas simulations of iBox models trained
with China Cellular (top) and Colombia Ethernet (bottom) data, respectively, with (a) no cross-traffic (No CT),
(b) non-reactive cross-traffic (NRCT), and (c) reactive cross-traffic (RCT). Each dot represents an individual
connection, with circles corresponding to the ground truth and stars to the iBox simulation. (Figure format
patterned after [40].) 2D-Wasserstein distance (W), a measure of distance of the 2D (delay, throughput)
distribution vis-a-vis the ground truth, is also shown.

p95 Delay GT No CT NRCT RCT
mean 425.03 236.51 (44%) 367.60 (14%) 450.46 (6%)
p75 482.03 468.45 (3%) 470.06 (2.5%) 478.46 (0.7%)
p50 379.37 147.72 (61%) 353.11 (7%) 390.31 (2.9%)
p25 368.24 126.11 (66%) 279.11 (24%) 373.29 (1.4%)

Table 2. Results for TCP BBR (all numbers are in ms) on Pantheon (China Cellular) traces.

Throughput GT No CT NRCT RCT
mean 1.78 2.42 (36%) 2.17 (22%) 1.62 (9%)
p75 2.32 3.15 (36%) 2.87 (24%) 2.14 (7.8%)
p50 1.63 1.60 (1.8%) 1.36 (17%) 1.21 (26%)
p25 0.90 1.35 (50%) 1.26 (40%) 0.98 (8.9%)

Table 3. Results for TCP BBR (all numbers are in Mbps) on Pantheon (China Cellular) traces.

6.1 China Cellular Data
For the China data, Tables 2 and 3 show that not modeling any cross-traffic produces a poor
match with respect to the ground truth, with a significant underestimate of p95 delay and a slight

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:16 Sachin Ashok et al.

overestimate of throughput, which is not unexpected given the absence of competition from cross-
traffic. Introducing NRCT yields some improvement on account of increased competition offered to
the BBR test flow.
With RCT, there is an excellent match in p95 delay with respect to the ground truth over the

entire distribution. Note that unlike NRCT, RCT would tend to push and fill the buffer (because it
comprises TCP Cubic flows), thereby offering greater competition to the BBR test flow. It is also
noteworthy that the TCP Cubic based RCT model works well though the nature of the actual cross-
traffic is unknown. It also suggests that iBox with such RCT can accurately recreate performance
even in absolute terms.

We see a similar benefit of RCT if we consider throughput even though less pronounced as shown
in Table 3. Figure 8 (top) shows the combination of p95 delay and throughput for these 3 settings
of cross traffic. There is progressive improvement in the match, both visually and in terms of 2D
Wasserstein distance, a widely used measure of distance between two probability distributions —
in this case, between the 2D (delay, throughput) distribution corresponding to the iBox recreation
of the BBR flows and the ground truth, as we go from No CT to NRCT and on to RCT. This metric
(normalized to the range [0,1]) measures the minimum cost incurred in morphing one distribution
to the other [34].

6.2 Colombia Ethernet Data
We observe a similar trend in the case of the Colombia (Ethernet) data from Figure 8 (bottom).
First, we observe that in the No CT case there is a gross overestimation of throughput (e.g., >30%
flows attain more than 80 Mbps throughput in the No CT simulation whereas almost all ground
truth flows are under 60 Mbps); in fact, the overestimation is much more severe than in the China
case. The reason again is the lack of any competition from cross traffic, especially with plentiful
bandwidth on offer for the sender in this Ethernet setting. As competition is offered through NRCT
and RCT (middle and right plots, respectively), the match improves as expected and in particular,
we observe that the RCT case achieves the best match both in terms of throughput as well as the
delay distribution. Note that a non-trivial fraction of simulated calls in the RCT case achieve a p95
delay of >120 ms which is characteristic of the ground truth (red circles) presumably because cross
traffic flows fill the buffers and increase the queuing delay.

6.3 Impact of 𝑘 (upper bound on the number of reactive flows considered)
Thus far, the maximum number, 𝑘 , of reactive cross-traffic flows in the RCT model was fixed at 3. In
Figure 9, we sweep through 𝑘 = 1 to 5 in the [China, Cellular, BBR] case from Figure 8 (top). While
there is an improved match (both visually and in terms of the Wasserstein distance) between the
results obtained from iBox and the ground truth as 𝑘 goes up to 3, there is no benefit from larger
values of 𝑘 . We see a similar trend in the [Colombia, Ethernet, Vegas] case too (not shown). This
supports our choice of 𝑘 = 3 by default, as larger 𝑘 would only increase the complexity of Bayesian
optimization (Section 5.2) without any benefit.

6.4 Impact of multiple basis protocols in Pantheon setting
Next, we consider expanding the set of basis protocols for RCT from just Cubic alone to also include
BBR and LEDBAT. Therefore, in addition to searching through the space of cross-traffic flow count
and start/end times, the Bayesian optimization also searches over the multiple protocols in the
basis set — {Cubic, BBR, LEDBAT} — and combinations of these.

However, as we see in the throughput versus 95th percentile delay plots in Figure 10, expanding
the basis set does not yield a visible improvement in the match with respect to the ground truth
compared to when the basis set was {Cubic} alone. Indeed, even the 2DWasserstein distance between

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:17

Fig. 9. Exploration of the impact of 𝑘 (the maximum number of RCT flows assumed) corresponding to the
[China, Cellular, TCP BBR] case (Figure 8(top), where the RCT model had used 𝑘 = 3).

the ground truth and the simulation shows little improvement: 0.084 with {Cubic}, 0.076 with {Cubic,
BBR}, and 0.083 with {Cubic, BBR, LEDBAT}. We believe the reason is that the dominance of Cubic
on the Internet (at least, as it was when the Pantheon data set was collected) means that Cubic
alone is adequate for modeling the cross-traffic.

6.5 Impact of multiple basis protocols in a controlled setting
While the above results shows that Cubic, with its dominance on the Internet, alone suffices as the
cross-traffic basis in the context of the Pantheon data set, it is nevertheless useful to evaluate the
ability of iBox’s RCT model to accommodate multiple basis protocols. To this end, we generated 150
simulated traces in ns-3 corresponding to each of Cubic and LEDBAT as the foreground protocols
and ground truth cross-traffic comprising either only Cubic, only LEDBAT, or a combination of
the two, 50 traces each. We then evaluate how well iBox with RCT using a basis set of {Cubic},
{LEDBAT}, or {Cubic, LEDBAT} helps recreate the results in terms of throughput, delay, and packet
loss metrics.
Figure 11 shows the results, where, as before, each circle and star corresponds to an individual

connection for ground truth and iBoxwith RCT, respectively (the mean is shownwith a dark border).
We see that with {LEDBAT} as the basis set, iBox successfully matches those connections where
LEDBAT was the only cross-traffic (purple cluster) but is unable to match those connections where

Fig. 10. Exploration of the impact of multiple basis protocols (Cubic, BBR, LEDBAT) on the distribution of
p95 delay and throughput for iBox models corresponding to China Cellular data set with 𝑘 = 3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:18 Sachin Ashok et al.

Zoomed In

Fig. 11. Top row depicts experiments on synthetic data where the foreground protocol was LEDBAT, the
underlying cross-traffic comprised a mix of Cubic and LEDBAT flows and the basis sets were constructed with
different combinations (columns 1-3) of basis protocols (Cubic, LEDBAT). The purple cluster corresponds to
ground truth flows where cross-traffic comprised only LEDBAT, whereas the red and blue clusters correspond
to ground truth flows which also had Cubic as part of the cross-traffic set (for clarity, we only mark these
clusters in one plot each though these are present in all six plots). The bottom row is a zoomed-in version in
the 0-250 ms delay range.

1D Wasserstein Distance
Protocol Basis set Throughput p95 delay Packet Loss

LEDBAT
LEDBAT 0.095 0.085 0.015
Cubic 0.109 0.056 0.015
Cubic, LEDBAT 0.051 0.027 0.003

Cubic
LEDBAT 0.055 0.001 0.036
Cubic 0.080 0.001 0.030
Cubic, LEDBAT 0.034 0.001 0.019

Table 4. Evaluation of iBox, using reactive cross-traffic estimates, on synthetic data with multiple basis
protocols. The numbers are the 1D Wasserstein distance (normalized between 0 and 1) between the ground-
truth and the simulated distributions of the metric values. The best match for each metric is in boldface.

Cubic was also part of the cross-traffic (red and blue clusters) and especially those connections
where Cubic cross-traffic produced large delays (blue cluster). On the other hand, while {Cubic}
does better, it is not able to match the cross-traffic behaviour well in the cases where the actual

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:19

Network type Location Protocol
1D Wasserstein Distance

Throughput p95 Delay Packet Loss
Cubic 0.164 0.065 0.072

Ethernet China Vegas 0.162 0.064 0.104
BBR 0.237 0.089 0.149
Cubic 0.349 0.115 0.209

Ethernet Colombia Vegas 0.192 0.105 0.105
BBR 0.233 0.109 0.122
Cubic 0.084 0.116 0.153

Cellular China Vegas 0.049 0.173 0.165
BBR 0.053 0.050 0.217
Cubic 0.024 0.073 0.037

Cellular India Vegas 0.157 0.114 0.022
BBR 0.066 0.058 0.072
Cubic 0.031 0.083 0.083

Cellular US Vegas 0.065 0.183 0.061
BBR 0.108 0.224 0.121
Cubic 0.041 0.107 0.079

WiFi Nepal Vegas 0.106 0.036 0.183
Table 5. Evaluation of iBox (using reactive cross-traffic estimates) on Pantheon data.

cross-traffic comprised LEDBAT alone. The match is best when the basis set is {Cubic, LEDBAT},
providing the Bayesian optimization procedure the opportunity to pick an appropriate mix of
the basis protocols. The zoomed-in view on the bottom row in Figure 11 highlights how when a
combination of both protocols is used in the basis set {Cubic, LEDBAT}, both red and purple clusters
are matched quite well.

Table 4 quantifies the comparison in terms of the 1DWasserstein distance for the various metrics,
again underscoring the ability of our Bayesian optimization procedure to pick out the best match
with a mix of basis protocols.

6.6 Overall Results
We evaluate iBox with reactive cross-traffic estimates on a suite of datasets comprising various
protocols, countries, and network types (listed in Table 1) obtained from the Pantheon testbed.
For each network type and location, we train the iBox model using (only) TCP Cubic traces, but
evaluate on TCP Vegas and BBR, in addition to Cubic itself. We consider the distributions (over
traces in a given dataset) of throughput, P95 delay, and packet loss rates; and compute the 1D
Wasserstein distance — in this case, between the ground-truth and the simulation separately for
the throughput, P95 delay, and loss rate metrics.

The results are presented in Table 5. First, we observe that most values are close to 0, indicating
a good match between the distributions. Second, within each dataset, we find that the (normalized)
distance obtained on the test protocols (Vegas, BBR) closely matches that obtained on the training
(i.e., TCP Cubic) protocol, across metrics. These observations indicate that iBox faithfully replicates
results across a range of countries, network types and test protocols. The encouraging results with
iBox arise because iBox models infer the underlying network configurations rather than seeking to
learn the input-to-output mapping. While the latter would tend to be protocol specific, the former
is inherent to the target network conditions which allows for generalization to new test protocols.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:20 Sachin Ashok et al.

Metric GT Pantheon iBox
Throughput (Mbps) 3.93 3.15 (19.0%) 3.88 (1.0%)
Packet Loss (%) 3.48 6.34 (82.0%) 3.61 (3.7%)
P95 Delay (ms) 261.20 291.50 (11.6%) 240.00 (8.1%)

Table 6. Comparison with the Pantheon calibrated emulator on the Nepal Ethernet traces.

6.7 Comparison with Pantheon Emulator
The Pantheon calibrated emulator [40] was trained on some of the same data we use and more.
Therefore, a head-to-head comparison would be interesting. One challenge, however, is that the
code used to calibrate the Pantheon emulator is not available [20]. Consequently, our analysis
focuses on a set of Ethernet traces from the Pantheon node in Nepal (Table 1) for which the authors
of [40] have made available the calibrated emulator parameters derived by them.

The iBoxmodel is trained using data from TCP Cubic. On the other hand, the Pantheon calibrated
emulator is trained using data from a basket of protocols, as explained in Section 3. We compare the
throughput, loss rate, and delay for a test protocol, TCP Vegas, using both models. From Table 6,
we see that iBox yields a much closer match to the ground truth than the Pantheon calibrated
emulator (percentage error shown in parentheses). This underscores the benefit of careful domain
knowledge-based parameter estimation as compared to Pantheon, which uses a stochastic packet
loss mechanism with a single parameter to indirectly capture some of the effects of cross traffic.

7 IMPLEMENTATION
We integrate iBox functionality into ns-2 [28], ns-3 [29], and NetEm [25], enabling iBox to automati-
cally set the network topology via the parameters learnt from network traces. To enable cross-traffic
recreation, in the NRCT case, a variable bit-rate traffic generator is used to send packets into the
bottleneck as per the estimated trace (the pacing timer is triggered once every 1000 microseconds
to ensure that the bitrate is maintained in a smooth manner) while in the RCT case, TCP senders
are configured to start-up and stop according to the parameters learnt using Algorithm 1. It is
straightforward to integrate iBox with other simulation/emulation frameworks.
For NRCT, the execution time depends upon the number of packets in the ground truth trace;

but the computation is straightforward and is extremely fast (under 150 milliseconds for a trace
with 200,000 packets) as it needs only a single pass through the time-series.

On the other hand, for RCT, the Bayesian optimization search is run for each trace to find the right
cross traffic configuration. Each iteration involves picking a new set of parameters and running an
ns simulation corresponding to the chosen setting. We ran our Bayesian optimization on a 16-core
Intel(R) Xeon(R) CPU E5-2673 instance. For a trace comprising around 200,000 packets, an iteration
(primarily bottlenecked on the ns simulation) usually takes under 10 seconds. Therefore, running
the 100 iterations typically needed for convergence requires up to 1000 seconds per trace. Of course,
for a dataset comprising multiple traces, the RCT model parameters corresponding to each trace
can be learnt in parallel. For a typical 50-trace dataset in Table 1, we can learn the RCT model
parameters for all the traces in under an hour.
In scenarios where compute is limited or it is known that the foreground protocol during the

train and test setting is the same or of a similar kind, we can use the cheaper NRCT model to
obtain cross-traffic estimates (as we can expect the background cross-traffic present during the
train setting not to react any differently to the foreground traffic in the test setting). Conversely,
if computation time is not a concern or the cross-traffic is required to react to differences in the
behaviour of the foreground protocol in the test setting (e.g., a newer variant of the foreground

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:21

protocol with a slight modification or a completely different foreground protocol), then cross-traffic
estimates from the more expensive RCT model should be used.

8 RELATEDWORK
Traditional network simulation [28–30, 33] has focused on recreating the mechanisms of network
elements such as links, queues, wireless contention, etc. While great attention is paid to the detailed
workings of network elements, the task of configuring these and the workload is typically left to the
user. Our work is complementary; it focuses on end-to-end behaviour rather than on the innards
of the network and uses data to configure the simulator to recreate the appropriate end-to-end
behaviour. Hence, we focus on prior work aimed at recreating end-to-end behaviour.

Trace-driven Network Simulation: This uses data to build a simple model of the network.
Early work in the mobile network setting [27] used ping traces to infer the network bandwidth,

delay, and loss rate over a sliding window. At inference time, these are then replayed. While being
simple, this approach does not model the impact of self-congestion (e.g., a buffer filling up and
dropping packets because of an aggressive sender) or the impact of cross-traffic.
Mahimahi [24, 26] emulates the network by gleaning the link transmission opportunities from

a packet trace, in addition to emulating a user-configurable propagation delay and a stochastic
packet loss model. However, the transmission opportunities are inherently tied to the nature of flow
that the trace was derived from; note that although certain settings such as cellular links provide
isolation across nodes through proportional fair scheduling, interference by and on cross-traffic at
the node of interest itself cannot be avoided. As such, the transmission opportunities seen in the
training trace might not carry over to emulating very different flows (e.g., a sender that is much
less or more aggressive).

Cellsim [39] operates similarly, using a stream of UDP packets to saturate the link. Doing so runs
the risk of beating down or even entirely squelching cross-traffic to the same node in a cellular
setting and even to other nodes in settings such as WiFi where there is no inter-node isolation.
iBox avoids this limitation by taking a fundamentally different approach: explicitly inferring

a reactive cross-traffic model. That said, we view our approach as complementary to that of
Mahimahi and Cellsim. In other words, it might be useful to combine iBox’s cross-traffic model
with Mahimahi’s and Cellsim’s model of variable bandwidth.

iBox’s approach is similar to the Pantheon calibrated emulator [40], which also learns a simple
network model, parameterized by the bottleneck bandwidth, buffer size, propagation delay, etc.,
that fits the observed traces. However, there are notable differences. First, [40] uses packet traces
from a basket of TCP protocol variants for training to learn a best-fit network model, which is then
tested with the same basket of protocol variants. In contrast, iBox uses TCP Cubic traces alone
for training (which is appropriate given its dominance and hence the relative ease of obtaining
Cubic traces) but then is able to effectively simulate the network path even for the testing of
new, previously unseen protocols. Second, while [40] uses Bayesian optimization for learning all
model parameters, iBox employs this relatively expensive procedure only for learning the reactive
cross-traffic model. And even the learning of iBox’s reactive cross-traffic model through Bayesian
optimization is made significantly more efficient by working with a popular protocol, such as TCP
Cubic, which allows leveraging the ns implementation of the protocol for rapid iterations, avoiding
much slower emulation as might be needed with a basket of unsupported protocols as in [40]. Third,
in contrast to iBox, [40] does not model cross-traffic, which is quite key, as shown by our results.
Time Series Modelling and Forecasting: Time series techniques have been employed in

many domains for data-driven modelling and forecasting: finance [8, 13], weather [17, 21, 38],
retail [6], and more. These techniques span a wide range: auto-regressive (AR), moving average
(MA), combinations of AR and MA (Chapter 2, [32]), recurrent neural networks (RNN) [16], and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:22 Sachin Ashok et al.

generative adversarial networks (GAN) [15]. Such models enable both prediction and long-range
forecasting.
There has been work on applying such time series techniques to network data. Harpoon [36]

focuses on macroscopic flow-level metrics while fs [37] considers packet-level metrics. [22] uses
LSTMs for link-level traffic volume prediction. DoppelGANger [23] uses GANs to capture both
correlations in various networked time series and correlations between the time series and metadata
(e.g., the ISP where the trace was collected).

From the perspective of this paper, such application of time series techniques to networking
suffers from two limitations. First, these do not consider the sending behaviour, which is typically
driven by a control loop with exogenous input (e.g., receiver feedback). Such control loop dynamics
have a direct bearing on the evolution of a flow in terms of packet delay, packet loss, etc. Second,
the more sophisticated deep learning based techniques tend to be computationally expensive and
so are not suitable for fast simulation or real-time emulation.

9 DISCUSSION
We discuss some opportunities for extending iBox.

First, despite the promising results even in such networks as cellular, the iBox model comprising
a single-bottleneck, FIFO queue, and fixed bandwidth would have to be augmented to accommodate
more complex and dynamic environments (e.g., highmobility scenarios). For instance, the bottleneck
bandwidth could be estimated as a time series instead of as a fixed value. Furthermore, we could
employ ML-based black-box optimization techniques (such as Bayesian optimization) to jointly
learn even the basic parameters such as bottleneck bandwidth and buffer size, which would be more
robust, and likely more accurate, than estimating these individually based on domain knowledge.
Second, we only rely on passive estimation of the iBox model parameters based on existing

traces, which help avoid any imposition or overhead on the network and existing applications.
However, in general, we could augment such data with selective active probing (e.g., packet-pair
probing, to address the limitations pointed out in Section A.1). Such active probing could also be
targeted at “novel” paths, i.e., ones with characteristics quite different from the profiles already
included in iBox.

10 CONCLUSION
We have presented iBox, a data-driven network path simulator that seeks to recreate the end-to-
end behaviour of network paths. iBox reduces the network path into a simple single-bottleneck
model and estimates its parameters based on end-to-end packet traces. A key part of iBox is the
cross-traffic model, for which we present both a non-reactive model and a reactive model. Our
evaluation using data from the Pantheon testbed and also controlled experiments is promising.

ACKNOWLEDGEMENTS
We thank our shepherd, Derek Eager, and the anonymous reviewers for their insightful feedback.
We also thank Vasiliy Novikov for helping us integrate iBox functionality into NetEm. Finally, we
are grateful to P. Brighten Godfrey, Saikat Guha, Radhika Mittal, Akshay Nambi, and Ramachandran
Ramjee for their valuable feedback on earlier drafts of the paper.

REFERENCES
[1] LEDBAT. https://en.wikipedia.org/wiki/LEDBAT.
[2] iBox project website. https://aka.ms/ibox.
[3] TCP BBR congestion control comes to GCP – your Internet just got faster. https://cloud.google.com/blog/products/

networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster.
[4] TCP CUBIC. https://en.wikipedia.org/wiki/CUBIC_TCP.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

https://en.wikipedia.org/wiki/LEDBAT
https://aka.ms/ibox
https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster
https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster
https://en.wikipedia.org/wiki/CUBIC_TCP

Data-Driven Network Path Simulation with iBox 6:23

[5] uTorrent Transport Protocol. https://www.bittorrent.org/beps/bep_0029.html.
[6] I. Alon, M. Qi, and R. J. Sadowski. Forecasting aggregate retail sales:: a comparison of artificial neural networks and

traditional methods. Journal of retailing and consumer services, 8(3):147–156, 2001.
[7] S. Ashok, S. S. Duvvuri, N. Natarajan, V. N. Padmanabhan, S. Sellamanickam, and J. Gehrke. iBox: Internet in a Box. In

Proceedings of the 19th ACM Workshop on Hot Topics in Networks, HotNets ’20, page 23–29, New York, NY, USA, 2020.
Association for Computing Machinery.

[8] W. Bao, J. Yue, and Y. Rao. A deep learning framework for financial time series using stacked autoencoders and
long-short term memory. PloS one, 12(7):e0180944, 2017.

[9] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for Hyper-Parameter Optimization. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011.

[10] J. Bergstra, D. Yamins, and D. D. Cox. Making a Science of Model Search: Hyperparameter Optimization in Hundreds
of Dimensions for Vision Architectures. ICML’13, page I–115–I–123. JMLR.org, 2013.

[11] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New Techniques for Congestion Detection and Avoidance.
In Proceedings of the Conference on Communications Architectures, Protocols and Applications, SIGCOMM ’94, page
24–35, New York, NY, USA, 1994. Association for Computing Machinery.

[12] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi. When to use and when not to use bbr: An empirical
analysis and evaluation study. In Proceedings of the Internet Measurement Conference, IMC ’19, page 130–136, New
York, NY, USA, 2019. Association for Computing Machinery.

[13] M. P. Clements, P. H. Franses, and N. R. Swanson. Forecasting economic and financial time-series with non-linear
models. International Journal of Forecasting, 20(2):169–183, 2004.

[14] C. Dovrolis, P. Ramanathan, and D. Moore. Packet-dispersion techniques and a capacity-estimation methodology.
IEEE/ACM Transactions On Networking, 12(6):963–977, 2004.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume
2, NIPS’14, page 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

[16] S. Grossberg. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural networks, 1(1):17–61, 1988.
[17] A. Grover, A. Kapoor, and E. Horvitz. A Deep Hybrid Model for Weather Forecasting. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, page 379–386, New York, NY,
USA, 2015. Association for Computing Machinery.

[18] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variant. SIGOPS Oper. Syst. Rev., 42(5):64–74,
jul 2008.

[19] Hyperopt. http://hyperopt.github.io/hyperopt.
[20] About the calibrated emulators. https://groups.google.com/g/pantheon-stanford/c/sbiP6OAN1NY/m/MmPL9l6mAQAJ.
[21] R. J. Kuligowski and A. P. Barros. Localized Precipitation Forecasts from a Numerical Weather Prediction Model Using

Artificial Neural Networks. Weather and forecasting, 13(4):1194–1204, 1998.
[22] A. Lazaris and V. K. Prasanna. Deep Learning Models For Aggregated Network Traffic Prediction. In 15th International

Conference on Network and Service Management (CNSM), 2019.
[23] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar. Using GANs for Sharing Networked Time Series Data: Challenges,

Initial Promise, and Open Questions. In Proceedings of the ACM Internet Measurement Conference, IMC ’20, page
464–483, New York, NY, USA, 2020. Association for Computing Machinery.

[24] Mahimahi. http://mahimahi.mit.edu/.
[25] Network Emulator. https://man7.org/linux/man-pages/man8/tc-netem.8.html.
[26] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and H. Balakrishnan. Mahimahi: Accurate

Record-and-Replay for HTTP. In 2015 USENIX Annual Technical Conference (USENIX ATC 15), pages 417–429, Santa
Clara, CA, 2015.

[27] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz. Trace-Based Mobile Network Emulation. In Proceed-
ings of the ACM SIGCOMM ’97 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’97, page 51–61, New York, NY, USA, 1997. Association for Computing Machinery.

[28] ns-2 Network Simulator. https://www.isi.edu/nsnam/ns.
[29] ns-3 Network Simulator. https://www.nsnam.org/.
[30] OPNET Technologies. https://www.riverbed.com/in/products/steelcentral/opnet.html.
[31] Pantheon: The Training Ground for Internet Congestion Control Research. https://pantheon.stanford.edu/.
[32] R. Prado and M. West. Time series: modeling, computation, and inference. CRC Press, 2010.
[33] QualNet: Network Simulation. https://www.scalable-networks.com/qualnet-network-simulation.
[34] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mover’s Distance as a Metric for Image Retrieval. International

Journal of Computer Vision, 40(2):99–121, Nov 2000.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

https://www.bittorrent.org/beps/bep_0029.html
http://hyperopt.github.io/hyperopt
https://groups.google.com/g/pantheon-stanford/c/sbiP6OAN1NY/m/MmPL9l6mAQAJ
http://mahimahi.mit.edu/
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.isi.edu/nsnam/ns
https://www.nsnam.org/
https://www.riverbed.com/in/products/steelcentral/opnet.html
https://pantheon.stanford.edu/
https://www.scalable-networks.com/qualnet-network-simulation

6:24 Sachin Ashok et al.

[35] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay Background Transport (LEDBAT). RFC 6817,
IETF, Dec. 2012.

[36] J. Sommers and P. Barford. Self-Configuring Network Traffic Generation. In Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement, IMC ’04, page 68–81, New York, NY, USA, 2004. Association for Computing
Machinery.

[37] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and N. Duffield. Efficient network-wide flow record
generation. In 2011 Proceedings IEEE INFOCOM, pages 2363–2371, 2011.

[38] C. Voyant, M. Muselli, C. Paoli, and M.-L. Nivet. Numerical weather prediction (NWP) and hybrid ARMA/ANN model
to predict global radiation. Energy, 39(1):341–355, 2012.

[39] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic Forecasts Achieve High Throughput and Low Delay over
Cellular Networks. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pages
459–471, Lombard, IL, Apr. 2013. USENIX Association.

[40] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and K. Winstein. Pantheon: the training ground for
internet congestion-control research. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743,
2018.

APPENDIX
A ESTIMATING BASIC NETWORK PARAMETERS
We begin by discussing the estimation of basic network parameters in the iBoxmodel: the bottleneck
bandwidth, the buffer size, and the propagation delay. We also discuss techniques to filter the raw
measurements to home in on the subset that is more reliable. In the specific context of RCT, the
estimates obtained through these heuristics, even if an approximation, can be used to effectively
seed the Bayesian optimisation based search.

A.1 Bottleneck Bandwidth (𝑏)
Packet pair based estimation [14] is the traditional method for estimating the bottleneck bandwidth.
However, this is challenging to employ in various network settings such as non-FIFO queuing
and variable bandwidth, as in a cellular setting. Furthermore, the absence of “naturally occuring”
packet pairs in a trace (e.g., TCP transfer) would be a limiting factor. Indeed, Figure 12 shows
that the packet-pair estimate of peak bandwidth is almost always under 1 Mbps whereas even the
connection-level throughput stretches to nearly 5 Mbps.

Since the iBox model approximates such links with a simple FIFO model and a fixed bandwidth,
it is important that the estimation of the bottleneck bandwidth is done in a manner that is robust to
departures from this simplified model in the short run. We compute the receive rate over windows
of 100 ms and pick the 95th percentile as our estimate of the bottleneck bandwidth, 𝑏. So long as the
sender fills the pipe at least 5% of the time, we would be able to estimate the bottleneck bandwidth
accurately. A protocol such as TCP Cubic, the most widely used transport protocol in the Internet,
tends to fill the pipe and therefore facilitates estimation of the bottleneck bandwidth. Figure 12
shows that the iBox estimate of peak bandwidth (corresponding to the fastest 100 ms window) is,
as expected, somewhat higher than the connection-level throughput (over the entire connection
duration, 30s in our setting).

A.2 Propagation Delay (𝑑)
To estimate the propagation delay, we would ideally like end-to-end delay measurements where the
other components of delay — the transmission delay and the queuing delay — are minimized. The
transmission delay tends to be small relative to the propagation delay (since it is the transmission
time of a single packet) and moreover can be estimated based on 𝑏 and factored out. So minimizing
the queuing delay is our focus.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

Data-Driven Network Path Simulation with iBox 6:25

Fig. 12. Estimated peak bandwidth obtained using packet-pair and iBox techniques, compared with the
connection-level throughput distribution

In general, considering the minimum over the delay samples from a stream of packets (e.g., those
in a TCP connection) would help minimize the queuing delay. However, in a congested setting,
it is possible that even picking the minimum delay might not help ensure that the measurement
corresponds to an empty or near empty queue, resulting in an overestimation of the propagation
delay. Furthermore, some packets taking an alternate, shorter path could result in a spurious
estimation of the minimum delay.
Therefore, our approach is to focus on and test for the consequences of an empty queue: (1)

the receiving rate would be lower than the bottleneck bandwidth estimated above. Indeed, if the
queue remains empty for a long enough period, the receiving rate would likely drop to zero for a
buffer-filling protocol such as Cubic; and (2) the receiving rate (measured at the receiver) would be
roughly the same as the sending rate (observed at the sender).

Note that conditions (1) and (2) individually do not imply that the queue is empty. For instance,
a queue could be non-empty and still condition (1) could be satisfied, say because (unobserved)
cross-traffic consumes a fraction of the bottleneck bandwidth. Likewise, condition (2) could be
satisfied when the queue is non-empty but in a balanced state, i.e., the inflow (corresponding to the
sending rate) is equal to the outflow (corresponding to the receiving rate). However, conditions (1)
and (2) being satisfied together very likely implies an empty queue.
Therefore, we filter out windows that do not satisfy (1) or (2). From the packets that remain,

we pick out mode of the delay distribution as our estimate of the propagation delay, 𝑑 . We find
that this filtering technique produces a steady estimate of the propagation delay that is consistent
across multiple connections between the same end-points (not shown).

A.3 Buffer Size (𝐵)
The buffer size can be estimated as the bottleneck bandwidth (the 𝑏 estimated above) times the
difference between the end-to-end delay with a full buffer and that with an empty buffer. The latter
delay corresponds to the propagation delay (𝑑) estimated above. The former (full buffer delay) is
what we need to estimate.

Just as picking theminimum delay does not necessarily correspond to an empty buffer, picking the
maximum delay does not correspond to a full buffer. Therefore, we again consider the consequence
of a full buffer, which is the likelihood of consequent packet drop. Accordingly, we consider the
packets right before and right after the one that was dropped. We check to see if the sender-side

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

6:26 Sachin Ashok et al.

Fig. 13. Estimated full-queue delay (in ms) obtained using the naive and the iBox filtered techniques.

spacing between these packets and the dropped packet is under a threshold (5th percentile of
all inter-packet spacings). Among all the packets in this filtered set, we pick the mode of the
distribution as our estimate of the delay corresponding to a full buffer.

Figure 13 compares the estimate of the full-queue delay obtained with the iBox filtering outlined
above and the raw maximum delay. We see that the former yields a consistent estimate (of about
375 ms) for the most part, whereas the latter spikes up to as high as 1800 ms, underscoring the
benefit of iBox filtering.

Received October 2021; revised December 2021; accepted January 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 1, Article 6. Publication date: March 2022.

	Abstract
	1 Introduction
	2 Problem Context
	3 Overview
	3.1 Estimation of Basic Parameters and Cross-traffic in iBox
	3.2 Using iBox for Simulation
	3.3 Evaluation Methodology

	4 Non-reactive Cross-Traffic
	4.1 Evaluation of Non-reactive CT Model

	5 Reactive Cross-Traffic
	5.1 Outline
	5.2 Bayesian Optimization based Search
	5.3 Impact of Bayesian Optimization
	5.4 Comparison with Cross-Traffic Ground Truth

	6 Experimental Evaluation
	6.1 China Cellular Data
	6.2 Colombia Ethernet Data
	6.3 Impact of k (upper bound on the number of reactive flows considered)
	6.4 Impact of multiple basis protocols in Pantheon setting
	6.5 Impact of multiple basis protocols in a controlled setting
	6.6 Overall Results
	6.7 Comparison with Pantheon Emulator

	7 Implementation
	8 Related Work
	9 Discussion
	10 Conclusion
	References
	A Estimating Basic Network Parameters
	A.1 Bottleneck Bandwidth (b)
	A.2 Propagation Delay (d)
	A.3 Buffer Size (B)

