
Unlocking the Power of Inline Floating-Point
Operations on Programmable Switches

Yifan Yuan
UIUC

Omar Alama
KAUST

Jiawei Fei
KAUST & NUDT

Jacob Nelson
Microsoft Research

Dan R. K. Ports
Microsoft Research

Amedeo Sapio
Intel

Marco Canini
KAUST

Nam Sung Kim
UIUC

Abstract
The advent of switches with programmable dataplanes has

enabled the rapid development of new network functionality, as
well as providing a platform for acceleration of a broad range
of application-level functionality. However, existing switch
hardware was not designed with application acceleration in
mind, and thus applications requiring operations or datatypes
not used in traditional network protocols must resort to
expensive workarounds. Applications involving floating point
data, including distributed training for machine learning and
distributed query processing, are key examples.

In this paper, we propose FPISA, a floating point repre-
sentation designed to work efficiently in programmable
switches. We first implement FPISA on an Intel Tofino switch,
but find that it has limitations that impact throughput and
accuracy. We then propose hardware changes to address
these limitations based on the open-source Banzai switch
architecture, and synthesize them in a 15-nm standard-cell
library to demonstrate their feasibility. Finally, we use FPISA
to implement accelerators for training for machine learning
as an example application, and evaluate its performance on
a switch implementing our changes using emulation. We find
that FPISA allows distributed training to use one to three fewer
CPU cores and provide up to 85.9% better throughput than
SwitchML in a CPU-constrained environment.

1 Introduction
The rise of programmable network devices has transformed
distributed systems design. Instead of simply moving data
between servers using standard routing protocols, network
devices can be programmed using domain-specific languages
like P4 [8] and NPL [10] to support new network functionality,
such as congestion control [100], load balancing [55, 78],
and packet scheduling [103]. Commodity Ethernet switch
ASICs with programmable data planes [11, 42, 92] enable the
execution of these programs at many terabits per second.

While these capabilities were originally targeted at increas-
ing network functionality, much recent work has explored
their utility in accelerating application-level functionality
as well. Consensus protocols [17, 65, 93], concurrency
control [45, 64], vector addition [75, 97, 98], query processing
operators [34, 63], and key-value stores [49, 66, 112] have all

been shown to benefit from this in-network computation [94].
However, an important class of applications has struggled

to take advantage of in-network computation: those using
floating point (FP) values. These occur in two broadly-
deployed datacenter applications: distributed training for
machine learning, and distributed data processing systems.
Since programmable switches were originally optimized for
networking applications, their design includes basic support
only for integer operations. Applications wanting to take
advantage of in-network computation with floating point
values have so far worked around this in one of three ways.

The first approach is to approximate floating point opera-
tions in software running on end-hosts. This is the approach
taken by SwitchML [98] as it sums gradient vectors as part
of training deep neural networks. For each chunk of gradient
vector elements, SwitchML executes a protocol that requires
running code to convert between floating point and integer
values on end hosts, as well as performing two rounds of com-
munication. This protocol overhead is costly (see Sec. 5.3.3).

The second approach is to build a switch ASIC that
includes floating point hardware. This is the approach taken
by the Mellanox Quantum switch [32, 76]. Dedicating chip
resources for this purpose is expensive: we show (Sec. 4.2)
that adding dedicated FPU hardware takes more than 5×
the die area and power of integer ALUs. As a result, this is
not a general-purpose approach; it has only been taken for
InfiniBand switches, which have simpler routing designs
and buffer requirements than Ethernet switches, and hence
have spare die area. It also lacks flexibility: it is tied to
specific operations on specific floating-point formats. New
ML-specific numeric representations (e.g., FP16 [79, 106],
bfloat16 [21, 30, 53], TF32 [86], and MSFP [18]) represent
an area of ongoing innovation, and adding support for a new
format requires developing and manufacturing a new ASIC
– an expensive and time-consuming endeavor. For example,
it took four years for Mellanox to release its second version
of switches with floating point support [31, 32].

A related approach is to use FPGAs or other non-switch pro-
grammable devices to implement switch-like specialized accel-
erators [5, 20, 27, 70]. While this yields a functional solution,
the fine-grained programmability of a FPGA comes at the cost
of power [111] and area: for example, Xilinx’s flagship FPGA

supports∼8 Tbps [114] of Ethernet I/O, while the Intel Tofino
2, a regular programmable switch, supports 12.8 Tbps [43].

In this paper, we argue for a different approach. We propose
FPISA, which implements floating point computation as a P4
program running directly on a programmable switch. This is
not straightforward: the multi-cycle nature of floating-point
operations is at odds with the streaming-pipeline architecture
common to P4-programmable switches today. To make it work,
FPISA breaks apart each floating point value into exponent and
signed mantissa and stores them separately in different pipeline
stages, decomposing the corresponding sub-operations appro-
priately to ensure correct execution. Rather than requiring spe-
cialized floating-point hardware, FPISA repurposes network-
oriented hardware elements in the switch pipeline to implement
the sub-operations not supported by the switch’s integer ALUs.

FPISA is a generic approach. We evaluate its feasibility on
the Intel Tofino [42], a commercially-available PISA switch.
We observe that constraints of the existing Tofino architecture
present obstacles to a full FPISA implementation. We address
this in two ways. First, we introduce an approximate FPISA
design (FPISA-A) that is implementable on existing hardware,
albeit with some precision and throughput limitations. Second,
we propose some simple and cheap hardware modifications,
based on the open-source Banzai [102] switch architecture,
to enable high throughput and accuracy with FPISA. We show
that such enhancements are feasible in a 15-nm standard-cell
library with minimal power, area, and timing cost relative to
a baseline switch chip.

Through an emulation-based study, we assess the perfor-
mance benefits of our approach by implementing accelerators
for the use case of distributed training for machine learning,
based on the recent SwitchML [98] framework. Enhancing
SwitchML with FPISA (based on both regular FP32 and
ML-specific FP16) allows it to use 1-3 fewer CPU cores,
giving up to an 85.9% improvement in training throughput
on CPU-limited configurations, while still achieving the same
training accuracy and convergence.

2 Background and Challenges
Conventional network switches are fixed-function, requiring
redesign to add new features or support new protocols.
However, in today’s era of software-defined networking [58],
rapidly evolving networking techniques and applications re-
quire new packet processing support. Programmable switches,
which allow the data plane behavior to be reconfigured,
provide the necessary flexibility. The RMT-based Protocol-
Independent Switch Architecture (PISA) [9] has emerged as
the de facto standard for programmable switch architecture.

2.1 PISA

We depict the basic protocol-independent switch architecture
design in Fig. 1. The parser is a programmable state machine
responsible for extracting user-specified fields of the inbound

Parser

ALU

ALU

Memory

Memory…

Memory

ALU

ALU

ALU

Memory

Memory…

Memory

ALU

Ingress Pipeline Traffic Manager

…

MAU MAU
Egress Pipeline

or Recirculation

Packet

Metadata

Remaining

Packet

Figure 1: Basic PISA design.

packet to per-packet metadata.1 The ingress pipeline consists
of multiple cascaded match-action units (MAUs). Each
MAU has some memory (SRAM and TCAM) and ALUs. It
matches fields from the packet metadata against the memory
to determine the corresponding action to be taken by the
ALUs. The ALUs support basic integer arithmetic and logic
operations, and can be used to modify fields in the packet
metadata. They can also manipulate registers, which hold state
that persists across different packets.

After going through the ingress pipeline, the packet is
routed to an egress port and queued by the traffic manager.
Before being output, it passes through an egress pipeline that
has the same structure as the ingress pipeline, and the packet
header and body are reassembled by the deparser.

Programmable switches following this architecture have
become commercially available on commodity switches,
thanks to reconfigurable switch silicon like the Intel (Barefoot)
Tofino [42] and Marvell XPliant [88]. A long line of research
has showed how to use PISA switches to implement new net-
working protocols, offload network functions, and accelerate
application-level logic [36, 94].

2.2 Floating Point Overview

We describe the flow of the most common floating point oper-
ation in applications discussed in this paper – addition – here.
Note that subtraction is performed using the same process,
and comparisons are typically implemented using subtraction.
Regardless of specific widths, floating point values are repre-
sented with three parts: 1-bit sign, n-bit exponent, and m-bit
mantissa. Typically, a floating point number is represented in
normalized form: the mantissa value is in the range of [1,2), i.e.,
it begins with a leading “1” bit (which can be omitted, i.e., “im-
plied 1”). A floating point addition C=A+B is performed us-
ing a five-step process: (We assume here that abs(A)≤abs(B).)

Extract. The three parts of A and B are extracted from the
packed data. The implied “1” in the packed mantissa is
expressed explicitly.

Align. The two mantissas are aligned to represent values at
the same magnitude. Specifically, mantissaA (the smaller one)
is right-shifted by exponentA−exponentB bits.

Add/subtract. Now that the two mantissas are aligned,
they are added or subtracted, depending on sign:
mantissaC =mantissaB±mantissaA.

1The remainder of the packet is passed through the pipeline, but cannot
be matched or manipulated.

ALU

ALU

8-bit
Exponent

Array

…

Memory

ALU

MAU2

ALU

ALU

32-bit
Signed

Mantissa
Array…

Memory

ALU

MAU4

Extract

ALU

ALU

…

ALU

MAU1

Align Add/sub Renormalize & Assemble

ALU

ALU

Exact
Match
Table

…

Memory

ALU

MAU3MAU0

ALU

ALU

…
ALU

MAU7

ALU

ALU

…

ALU

MAU5

ALU

ALU

TCAM
LPM
Table

…

Memory

ALU

MAU6 MAU8

Split bits
Add

implied “1”

Get exponent difference /

overwirte

Shift in-metadata

mantissa

Signed add/sub/

overwrite mantissa

Convert to

unsigned

Count leading “0”s,

shift mantissa

Adjust

exponent
Merge bits

Figure 2: FPISA dataflow. Only hardware components relevant to FPISA are shown.

Renormalize. The result is scaled so that the mantissa is in
the range of [1,2). This is achieved by counting the leading
“0” bits and left or right shifting mantissaC accordingly, then
adjusting exponentC by the corresponding value.
Round and Assemble. Finally, the three parts of C are packed
into a single value. The implied leading “1” of mantissaC
is stripped. If more mantissa bits are available than can be
represented in the packed format, the mantissa is rounded.

2.3 Challenges

Current PISA architectures do not natively support any
floating point operations. This is no surprise, considering that
they were designed for packet processing, and floating point
support is expensive. FPUs have much larger power and area
costs than integer ALUs [62, 68, 74], and the complex floating
point addition procedure (Sec. 2.2) takes multiple cycles and
thus introduces timing constraints.

This paper asks if we can build floating point addition
operations on a commodity PISA architecture. Intuitively,
it should be possible to decompose the canonical addition
procedure and span it across multiple pipeline stages. However,
we observe that this leads to two challenges.

First, registers are associated with specific pipeline stages,
and can only be accessed from that stage. That is, each register
can only be accessed once per packet, and data dependencies
cannot “go backwards” to an earlier stage.2 This poses a
problem for applications, like in-network aggregation, that
wish to maintain and update floating point state: it is not
possible, for example, to perform the add-mantissa and
renormalize steps in different pipeline stages.

Second, the available ALU operations may not be sufficient
to implement all the operations necessary to implement float-
ing point addition. For instance, on a CPU, the renormalization
step might use a count-leading-zeros instruction (e.g., lzcnt on
x86), but we know of no PISA switch with such an instruction.

Hence, we must develop a PISA-friendly, decentralized
(multi-stage) approach for floating point addition.

3 FPISA Design
How can we implement floating point operations on PISA
architectures, given the challenges described above? We
propose a design, FPISA, based on a new floating point

2Recirculating an entire packet is an exception. However, it is costly and
bandwidth constrained.

representation and a mapping of its operations to PISA
pipelines, as shown in Fig. 2. In this section, we describe
the basic FPISA approach in the context of an abstract PISA
pipeline; Sec. 4 discusses additional challenges that occur
when implementing it on existing PISA architectures.

FPISA has three key ideas:

Decoupled exponent and mantissa operations. FPISA
processes operations on the exponent and (signed) mantissa
components of floating point values separately, and internally
stores them in separate registers. This decoupling allows them
to be processed by different pipeline stages.

Delayed renormalization. Second, FPISA does not require
intermediate values to be renormalized on every operation.
That is, in a SwitchML-like [98] aggregation workflow, values
from each client are added to an accumulator whose value is
not renormalized until the final result is output. This is based
on two observations about floating point renormalization. First,
renormalization does not affect the correctness of floating point
operations. Scaling the mantissa to place the leading “1” in its
correct location is needed to produce an output value in canon-
ical format, but a denormalized form can equally represent
the same arithmetic value. Second, renormalization introduces
data dependencies between the mantissa and exponent compo-
nents, which makes it challenging to fit into a PISA pipeline. In
particular, renormalization requires the exponent to be adjusted
based on the computed mantissa, whose computation itself de-
pends on the exponent – a circular data dependency that cannot
be represented in a single pipeline traversal. To avoid this,when
we read from the accumulator, we read the denormalized value,
and normalize it just before sending out the final result. We do
not store the normalized value back into the accumulator.

Extra bits in mantissa register. PISA architectures com-
monly have registers with limited bit widths: 8-, 16-, or 32-bit
registers are common; on the other hand, floating point values
commonly have mantissas with smaller bitwdith. We take
advantage of this difference in two ways. First, we can use bits
to the right of the mantissa as guard bits to aid in rounding,
as is common in standard FPUs. Second, we can use bits to the
left of the mantissa to avoid overflow when summing multiple
values with similar exponents. When we add two values with
mantissas that are all ones, the addition simply carries into the
bits to the left of the mantissa.

In this section, we use IEEE 754 FP32 – which has a 1-bit

MAU

…

23-bit Mantissa8-bit ExponentSign

8-bit Exponent

Array

MAU
32-bit Signed

Mantissa Array

……

Figure 3: FPISA’s representation of FP32 in the switch.

mantissa exponent

000000001.10…
+ 000000001.00…

1
0

000000001.10…
+ 000000000.10…

1
1

000000010.00… 1

000000010.00… 1

matches 000000010.00…
mask 111111110.00…

→ right shift 1

000000001.00… 2

(1) extract

(2) shift

(3) add

(4) result

(denormalized)

(5) renormalize

(LPM match + shift)

(6) result

(normalized)

Figure 4: Example of FPISA addition: computing the sum of
3.0 (0b1.1×21) and 1.0 (0b1×20). Computation is done using
a 32-bit mantissa; 21 trailing zero bits are elided.

sign, 23-bit mantissa, and 8-bit exponent – as an example to
demonstrate FPISA design. Other FP formats with different
widths can also be supported. Fig. 2 shows FPISA’s dataflow.

3.1 Representing FP in PISA

To meet the constraints of PISA, FPISA splits the storage of
floating point values using the representation shown in Fig. 3.
The exponent field is stored in an 8-bit-wide register array.
The 23-bit mantissa is stored, right-aligned, in a 32-bit register.
To unify signs and addition/subtraction operations, we store
the mantissa in two’s-complement signed representation.

FPISA needs more memory space to store a floating point
number (e.g., 8+32=40 bits for a FP32 number). However,
we argue that this will not significantly reduce the efficiency
of FPISA since exponent and mantissa have to be stored in
different MAUs anyway. Hence, the per-MAU parallelism of
floating point operations will not be affected.

3.2 Performing FP operations in PISA

By delaying renormalization until the output phase and storing
exponents and mantissas separately, FPISA makes it possible
to adapt the standard extract-align-add-renormalize-assemble
floating point addition flow to a PISA pipeline. Fig. 2 shows
the mapping of functionality to MAUs. We use a running
example (Fig. 4) where an input of 1.0 is added to a register
containing the value 3.0.

Extract. The first stages extract the exponent and mantissa

Match (Manmetadata)

64.0.0.0/2

…

1.0.0.0/8

0.64.0.0/10

…

0.0.0.1/32

Action (Manmetadata)

Right-shift 7 bits

…

Right-shift 1 bit

Left-shift 1 bit

…

Left-shift 23 bits

Default Do nothing

0.128.0.0/9 Do nothing

Figure 5: LPM match-action table (MAU6) in FPISA design.

from a FP32 value in the input packet into separate metadata
registers (MAU0), then add the implied “1” to the extracted
mantissa field (MAU1). The decoded values are shown in
Fig. 4 step (1).

Align. FPISA then compares the provided exponent value with
the one stored in memory in MAU2. This updates the exponent
and determines which of the two operands’s mantissa must
be right-shifted and by how much. The right shift itself is per-
formed for the metadata value by MAU3, and for the memory
value by MAU4 (where the mantissa register is located). In
Fig. 4 step (2), 1.0 is shifted right to be expressed as 0.1×21

Add. In addition to shifting the mantissa of the in-memory
value, MAU4 performs the mantissa addition itself. Depending
on the sign bit, it either adds or subtracts the shifted mantissa
value generated in the previous stage from the stored mantissa
value (step (3) in Fig. 4). The resulting mantissa value replaces
the previous stored mantissa.

Note that MAU4 is used both to perform the right shift of the
stored mantissa and its addition. This is a necessity because the
PISA architecture can only update a given register from one
stage. Existing implementations may not be able to perform
both operations with a single stateful ALU; we discuss how
to extend them or how to work around this limitation in Sec. 4.

At the end of this process, the exponent and mantissa
registers contain the result of the addition, but may not be in
normalized form. For example, in step (4) of Fig. 4, the registers
store the value 0b10.0×21. This is indeed a valid representa-
tion of the result 4.0, but is not in normalized form because the
mantissa has more than one digit to the left of the binary point.

Renormalize and Assemble. FPISA delays renormalization:
it does not renormalize the intermediate value stored in
registers, but only when the result is to be output. Thus,
multiple additions can be performed before renormalization.
This offers two benefits. As mentioned before, it eliminates the
need to adjust the exponent stored in memory after calculating
the mantissa, avoiding a data dependency. Second, since the
renormalization and assembly steps are stateless, we can place
them in the (normally underutilized) egress pipeline, making
more efficient use of resources.

The renormalization process itself is performed in four
steps. The aggregated mantissa is first converted from its two’s
complement signed representation to unsigned value and sign
(MAU5). FPISA then counts the number of leading zeros and

shifts the mantissa value accordingly, in order to place the
leading “1” bit in the right location (MAU6).

Because no PISA switches support a count-leading-zeros
operation, FPISA exploits a TCAM-based longest prefix match
(LPM) table – commonly used in IP routing – to implement
this function. Specifically, we construct a LPM table where
each entry has an IP address with only the ith bit set, and a
netmask that matches the first i bits. A match indicates that the
mantissa has i−1 leading zeros. This is used to select the right
shift action that places the leading 1 in its canonical location
(bit 24 for FP32). In the example, the leading “1” is located
using a match, whose bitwise representation is shown in step
(5), which corresponds to the CIDR address 0.128.0.0/9; the
lookup table (Fig. 5) indicates that the mantissa should be
shifted right by 1. The exponent is adjusted also according to
the leading zeros’ count (in MAU7) – here, incremented by 1.
This gives a normalized result; all that remains is to merge the
sign, exponent, and lower 23 bit of the 32-bit mantissa fields
(in MAU8) to put it in FP32 format.

3.3 Additional Floating Point Features and Operations

Overflow. The denormalized representation has the potential
to overflow if similar values are added many times. With a
signed register size of 32 bits and a mantissa size of 24 bits,
there are 7 bits to the left of the mantissa available for holding
overflows. This is sufficient to represent 128 additions of
values with the maximum mantissa with the same exponent
– an extreme case – into a single register without overflow.
However, for the use cases described later in the paper, the
number of operations per register is equivalent to the number
of nodes in the distributed system. If overflow occurs, it can
be detected and signaled to the user, who can handle it in an
application-specific way.

Other FP formats. FPISA can be trivially modified to support
floating point formats with different exponent and mantissa
width (e.g. FP16, which we evaluate in Sec. 5). Likewise, block
floating point formats, where multiple values share one expo-
nent [18], can be supported by replicating the exponent register.

Rounding. For simplicity, we have described FPISA without
guard digits. The combination of no guard digits and
two’s-complement representation provide round-toward-
negative-infinity semantics. An implementation with n guard
digits would simply store the mantissa shifted left n bits from
what is show in Fig. 3, and would use those to perform other
types of rounding after renormalization.

Reproducibility. FPISA provides reproducibility in that the
same sequence of operations and values will always produce
the same result. However, since FPISA performs operations in
a different order than that specified in the IEEE 754 standard,
the same sequence of operations and values performed on an
IEEE-754-compliant CPU may yield a different result than
FPISA. For the use cases we describe in this paper, IEEE 754
compliance is not a requirement.

In this paper, we have covered the two commonly-used
floating point operations – addition and comparison. They
are sufficient for many distributed applications. However,
other more complex and costly floating point operations may
be needed in the future with emerging applications (e.g.,
congestion control [26, 54] and network security [34]). To
pave the way for future PISA implementations, we briefly
discuss the possibility of supporting them.

Multiplication and division. The flow of floating point
multiplication is similar to that of addition in Sec. 2.2. The two
major differences are (1) the two exponents are added, and
(2) the two mantissas are multiplied, all as integers. For small
floating point types, the mantissa multiplication can be imple-
mented as a table lookup, without hardware modifications. For
larger floating point types, integer multiplers could be added
to the hardware. We implement one based on Banzai and find
its overhead is acceptable: approximately the same as an adder
and a boolean module w.r.t. power and area.

Floating point division has a different flow and takes more
clock cycles than other basic operations [104], which means
it is unsuitable to have a direct hardware implementation in
programmable switches. For some use cases, division can be
implemented by converting the dividend to its reciprocal at
the end-host and then multiplying in the switch.

Logarithms. The core operation of a floating point log-
arithm is the integer logarithm of the mantissa. As prior
research [3, 99, 109] shows, this can be done by a lookup table
of fewer than 2000 entries with low error (<1%).

Square roots. Square roots are even more expensive and
time-consuming (e.g., more than 20 clock cycles) than
division [69, 87, 104]. As with logarithms, we suggest a
lookup-table-based approximation for this algorithm.

4 Realizing FPISA on PISA Architectures
The previous section shows how FPISA can map floating point
operations to an abstract PISA architecture. Actual PISA imple-
mentations may have restrictions on MAU operations. We have
implemented FPISA in P4 for the Tofino architecture. In doing
so, we encountered several architectural limitations (Sec. 4.1).
We show that simple architectural extensions, which can be
implemented with minimal power and chip area cost, can re-
solve these limitations and enable a full FPISA implementation
(Sec. 4.2). Alternatively, we describe an approximate approach,
FPISA-A, which works around these limitations to implement
a variant of FPISA for the existing Tofino architecture, albeit
with tradeoffs in accuracy and resource utilization (Sec. 4.3).

4.1 Challenges

We implement FPISA addition in the P4 language [8] (∼580
LoC) in a modularized manner (i.e., one floating point addition
per module) and compile it to the Tofino ASIC [42]. Tab. 1
shows the resource utilization of the FPISA module out of
a single Tofino pipeline. Most of these resources cannot be

Table 1: FPISA resource utilization. Nine pipeline stages (out
of 12 in total) are used.

Resource Total usage Max usage in a MAU

SRAM 1.15% 5.00%
TCAM 0.03% 4.17%
Stateful ALU 8.33% 50.00%
VLIW instruction slots 19.01% 96.88%
Input crossbar 0.09% 4.38%
Result bus 2.34% 12.50%
Hash bit 1.06% 7.93%

shared across multiple FPISA instances.
Using this implementation, we identify three limitations of

the the current Tofino hardware that impact the functionality
and efficiency of our FP operations.

Resource utilization of shift operations. In general, multiple
FPISA modules can be deployed in parallel, sharing the
same pipeline stages and overlapping with each other. For
many applications, performing as many operations per packet
as possible is essential to achieve high performance [98].
Unfortunately, the current Tofino architecture can only
accommodate one FPISA module in its ingress pipeline, i.e.,
only one floating point addition can be performed per packet.

After analyzing the resource utilization, we observe that
the main source of overhead is performing shift operations.
Specifically, FPISA needs to shift fields by a variable number of
bits, in order to implement the alignment and renormalization
stages. However, the Tofino ALUs can only perform shift op-
erations with a fixed shift distance, specified as an immediate.
While it is possible to emulate a variable-length shift operation
with the current functionality, doing so is resource intensive.
In particular, per-stage VLIW instruction utilization prevents
multiple FPISA instances from sharing pipeline stages.

Lack of atomic shift-and-add. One of the pipeline stages
in the abstract design (MAU4 in Fig. 2) must perform two
operations: right-shifting the stored mantissa to align it with
the value being added, and performing the mantissa addition.
Both are stateful operations on the mantissa register, so
they must be performed by the same stage’s ALU. However,
the Tofino’s ALUs cannot perform both a shift and an add
operation. In Sec. 4.3, we show how to work around this
limitation by left-shifting the other mantissa value (from the
packet metadata) instead; this allows the FPISA design to be
implemented on the existing Tofino architecture, but can lead
to numerical error for some workloads.

Endianness conversion. While hardly unique to FPISA, endi-
anness conversion is a non-trivial source of overhead for FPISA
applications. Network devices interpret values in network byte
order (big-endian), whereas most general-purpose CPUs are
little-endian. To identify and process the data correctly in the
switch, endianness conversion is necessary. Traditional net-
working applications only need to convert byte order for head-
ers, which are relatively small. For data-intensive in-switch ap-
plications, byte order conversion for the full payload can have
high overhead. While the Tofino has functional units that can

FP16 FP32 FP64
0

2

4

6

C
on

ve
rs

io
n

R
at

e
(x
10

9 /s
ec

)

Single-core DPDK-based rate
Desired rate to achieve 100Gbps line-rate

Figure 6: Endianness conversion rate that a core can achieve
and that is desired to achieve 100 Gbps line-rate.

Table 2: Stateless ALU and stateful RAW/RSAW unit areas
and minimum critical-path delays in FreePDK15 library. Each
of the compiler targets contains 300 instances of one of the
ALUs. Power and area are evaluated at 1 GHz frequency target.

Default
ALU

FPISA
ALU

Default
RAW

FPISA
RSAW

ALU+
FPU

Dynamic power (µW) 594.2 669.4 637.6 721.1 3590.6
Leakage power (µW) 18.6 22.8 16.8 22.1 109.8
Area (µm2) 505.4 618.6 468.8 633.0 3837.7
Min Delay (ps) 133 135 133 151 136

do this conversion, they are not plentiful enough to convert full
payloads, and thus the conversion must be done on end hosts.

To quantify the overhead, we test how rapidly a single x86
core (running at 2.3 GHz) can perform endianness conver-
sion for different floating point formats, using DPDK’s highly-
optimized APIs with “O3” optimization. Fig. 6 compares the
measured results with the rate needed to achieve line-rate con-
version at 100 Gbps. The gap is large, particularly for lower-
precision values. In particular, to reach 100 Gbps for FP16, one
will need at least 11 (i.e.,ddesired rate/single-core ratee) cores.
Hence, the high overhead of endianness conversion will lead to
either low network throughput or extra CPU or GPU utilization.
In many applications, these resources are not free; for instance,
in DNN training, CPUs are often busy with data preprocessing.

4.2 PISA Architectural Extensions

To avoid these problems, we propose to extend the PISA
architecture with some additional support. We show that the
cost of these additions is low by extending the Banzai switch
architecture model [102] and demonstrating that the increase
in chip area, power, and timing budget is not significant.

2-operand shift instruction. We propose to enhance the
existing shifter by allowing the shift distance operand to
come from metadata instead of an immediate. The proposed
instruction format is shl/shr reg.distance, reg.value.
This little-effort enhancement will significantly improve the
resource efficiency of FPISA, since the shifter can directly take
the table match result as operand, and two instructions (left-
and right-shift) can handle all the cases.

Combined shift+add operation in one stage. If the switch
can support an atomic “shift+add” operation on a register in

a single stage, we will be able to swap the mantissa, with no
compromise of potential error.

In-parser hardware-based endianness conversion. Endian-
ness conversion in the hardware is straightforward and cheap
– pure combinational logic shuffling the wires. We propose
a simple enhancement to the switch’s parser and deparser to
implement this. Specifically, we propose a P4 type annotation
@convert_endianness, applied to entire headers, that indicates
to the compiler that the parser and deparser should convert the
header fields’ endianness as they enter and leave the pipeline.
The parser will store the corresponding result to the metadata
along with a implicit tag bit adjacent to the header’s valid bit.
When the packet is re-assembled, the deparser will check this
tag bit to determine the byte order to be emitted.

To evaluate the cost of the first two changes (the last change
has near-zero cost), we modify the open-source Banzai [102]
switch architecture, a PISA-like design. We modify the Verilog
code for Banzai’s ALU to support our proposed shift instruc-
tion and synthesize it using Synopsys Design Compiler [107]
with the FreePDK 15nm FinFET standard-cell library [73],
a technology node similar to that used by the Tofino. We first
check whether the design can operate at 1 GHz, evaluate its
power and area, and then search the minimum critical-path
delay of each design to find the impact of our modifcation
on timing. As the results in Tab. 2 show, an enhanced ALU
may use 13.0% more power and 22.4% more area than the
original ALU, while slightly increasing the minimum delay.
The overhead mainly comes from connecting and storing
the second operand in the shifter. We implement a stateful
read-shift-add-write (RSAW) unit based on Banzai’s atomic
predicated read-add-write (RAW) unit. The synthesis results in
Tab. 2 demonstrate that the RSAW unit uses 13.6% more power
and 35.0% more area than the regular RAW unit. In terms of
minimum delay, RASW is 13.5% longer than RAW, but still
far from the 1ns bound at 1 GHz. Banzai provides implementa-
tions only for the functional units, not for the entire switch chip,
so we are unable to directly evaluate the impact of our modifica-
tions on the full chip design. However, prior work suggests that
ALUs take up only a small portion (i.e.,∼ 10%) of the pow-
er/area budget for the entire chip [9]; from this we infer that our
modifications would have negligible impact. In other words,
this hardware enhancement is feasible today, and is unlikely
to become a bottleneck in future hardware generations.

Finally, to compare our approach with one that includes
specialized floating-point units (like the Mellanox Quantum
switch [32, 76]), we synthesize an ALU that includes a hard
floating point unit. The ALU+FPU column in Tab. 2 shows the
result: the hard FPU is more than five times larger and more
power hungry than either the default ALU or the FPISA ALU.
Its high area and leakage power are costs that must be paid even
when the FPU is not in use, making it challenging for a switch
chip including these features to be competitive with ordinary
switches in terms of efficiency, and forcing vendors to maintain
separate specialized switch designs for different applications.

Conversely, the FPISA approach allows the same ALUs to
support both floating-point and non-floating-point compu-
tations, enabling a single switch chip design to support both
floating-point and non-floating-point workloads efficiently.

4.3 FPISA-A: FPISA on Existing Architectures

The architectural changes described above allow us to
implement the full FPISA approach. We additionally want
a solution that allows FPISA to run on existing Tofino
switches. Achieving this requires addressing the shift-and-add
limitation. (The other two, while important, impact only
resource utilization.) We provide a way to approximate
FPISA on existing switches by avoiding the problematic shift.
This approximation, which we call FPISA-A, can lead to
inaccuracies for certain patterns of inputs, though we show
later that it is not a problem for some applications, including
in-network aggregation for ML training workloads (Sec. 5).

Recall that the problem arises because the alignment phase
may require shifting the in-memory mantissa value to align
it with the value to be added, which conflicts with the need
to perform addition on the same value. Note that this is not a
problem when the in-memory value has a larger exponent than
the in-metadata value, as only the smaller of the two is right
shifted. Taking advantage of FPISA’s tolerance for denormal-
ized representations, FPISA-A always shifts the in-metadata
mantissa rather than the in-memory value. That is, if the in-
metadata value is larger than the in-memory value, we keep the
exponent unchanged and left-shift the in-metadata mantissa.

This approach works, within a certain range, because FPISA
internally uses wider registers for the mantissa than the basic
floating point representation. For FP32, IEEE 754 uses a
23-bit mantissa, while FPISA stores it in a 32-bit register. This
gives 7 bits of headroom, after accounting for the implicit
1-bit and the sign bit. If the value being added is much larger
than the in-memory value, i.e., its magnitude is greater by a
ratio of more than 27=128, the headroom would be exceeded.
Instead, we detect this case during the exponent comparison
(MAU2 in Fig. 2) and replace the in-memory value entirely
with the in-metadata one. Doing so introduces numeric error
in the low-order bits.

The FPISA-A variant is supported by the current commodity
Tofino switch. As described above, it can introduce numeric
error (which we call “overwrite” error). However, the error
only occurs when input values vary widely in magnitude, and
is bounded by the difference between headroom and mantissa
width. For some applications, this approximation poses little
difficulty: as we demonstrate in Sec. 5, ML model training
gradients generally have a relatively narrow exponent range,
and the workload is in any event resilient to small inaccuracies.
For others, it may be more problematic; in those cases, the
architectural modifications of Sec. 4.2 will be needed.

5 Case Study: Distributed ML Training
As the model and dataset sizes have increased for ML training
jobs, large-scale distributed training has become increasingly
important [1, 12, 13, 21, 33, 38, 40, 41, 47, 67, 81, 91, 113].
In this paper, we focus specifically on data-parallel training,
a common approach to distributed training.3 In data-parallel
training, the dataset is partitioned to multiple worker machines,
each with a replica of the model. In a training iteration, each
machine performs learning on its local dataset and model,
generating gradient vectors. These gradient vectors are then
used to update the weights that make up the model. Modern
supervised ML typically employs stochastic gradient descent
(SGD) [82, 83, 95] or its variants as the optimizer for iterative
training. In general, the core operation of SGD is as follows:

weight(next)=weight(current)−learning_rate·gradient(current),

where gradient(current) is the element-wise mean of all the
local gradient vectors produced by each worker. Computing
this mean requires summing (or aggregating) gradient vectors
from all workers.

Prior work has observed that, as the number of workers
and the size of the model grows, communication costs –
specifically, the gradient aggregation procedure – increasingly
become a bottleneck in distributed training [70, 71, 98, 118].
Gradient aggregation can be viewed as an “all-reduce” col-
lective operation, a familiar concept from the HPC world – the
gradient vectors are gathered from all worker machines, re-
duced to one vector, and sent back to all worker machines. It is
traditionally implemented either using a parameter server [67]
or a distributed reduction protocol like ring all-reduce [6, 90].

In-network aggregation has been proposed as a promising
way to accelerate this collective operation, and thus distributed
training [2, 27, 31, 32, 57, 61, 70, 98]. In-network aggregation
performs the “reduce” (i.e., sum) step of all-reduce in a
network switch on the fly. This offers higher throughput and
lower latency than a parameter server approach, where both the
network link and host-side network stack can become bottle-
necks. Compared to ring-based and other distributed all-reduce
algorithms, in-network aggregation requires exchanging fewer
messages, again reducing latency and network usage.

PISA switches are well suited for, and have been used for, im-
plementing in-network aggregation without specialized hard-
ware. A major challenge, however, is the lack of floating point
support. The recent state-of-the-art in-network aggregation
work, SwitchML [98], works around this by quantizing floating
point values at end hosts so that the PISA switch only operates
on fixed-point values. While this quantization approach has
been shown not to impact accuracy [98], we show that it harms
performance. In particular, quantization and format conversion
requires significant CPU overhead on the worker hosts. Com-
puting the scaling factor to use for each block also requires

3Other parallel modes, like model-parallel, may also benefit from what
is discussed in this work, but we do not explore them here.

an additional network round trip. Both costs could be avoided
if the switch could operate on floating point values directly.

5.1 Setup

Environments. Given the hardware constraints of the current
Tofino ASIC described in Sec. 4.1, we are not able to evaluate
FPISA’s applicability/benefit on the distributed ML training
scenario entirely on a real system. Hence, we employ different
evaluation approaches for different aspects of the process.

Specifically, to measure training accuracy and the impact of
error, we write a C library that simulates gradient aggregation
using a faithful implementation of the FPISA-A addition algo-
rithm and integrate this C library into PyTorch [89] to train the
models. We use the apex [85] PyTorch extension to evaluate
both FP32 and FP16 floating point formats. Experiments and
plots with this approach are labeled with “[SIMULATION]”.

To analyze the numerical characteristics of the trained
models’ gradients and measure training throughput, we use
an 8-machine cluster where each node is equipped with
one NVIDIA P100 16 GB GPU, two 10-core Intel Xeon
E5-2630v4 2.2 GHz CPUs, and 128 GB of DRAM with data
served from local SSD storage. The cluster is networked at
100 Gbps and includes one Tofino-based Wedge100BF-65X
programmable switch. This cluster deploys in-network
aggregation through SwitchML [98].

For gradient numerical analysis, we directly dump the
gradient vectors during the training processes. In these
experiments, the workers compute gradients in the FP32
floating point format. Experiments and plots with this
approach are labeled with “[TRACE]”.

For performance (speedup) evaluation, we seek to measure
the performance that FPISA-A can achieve with our variable-
length shift extension, which allows multiple parallel FPISA-A
instances per pipeline. Because current switch hardware does
not support this, we emulate FPISA-A-enabled performance
by removing the end-host format conversion/quantization at
the workers and performing integer computations in place
of floating point computations on the switch. While this
emulation setup gives nonsensical output, it provides a realistic
expectation of FPISA-A performance because: (1) under
Tofino, data plane programs experience a switch processing
latency that depends only on the number of stages and not
on the computation intensity of their specific operations,
without any effect on throughput (data plane programs operate
at line rate) as confirmed experimentally in previous work
(e.g., [17]); (2) SwitchML uses the full set of stages on
the ingress pipelines of Tofino and any potential increase
of in-switch latency can be mitigated by increasing the
number of aggregation slots. Note that we use this approach
only for performance evaluation, and it runs on the testbed
configuration described above. Experiments and plots with
this approach are labeled with “[EMULATION]”.

Benchmarks. We select seven popular state-of-the-art ML
models. These models are MobileNetV2 [96], VGG19 [101],

20 24 28 212 216 220

Max/Min Ratio
0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

(a) VGG
(CIFAR-10).

20 24 28 212 216 220

Max/Min Ratio
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

(b) DeepLight
(Criteo 1TB).

20 24 28 212 216 220

Max/Min Ratio
0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

(c) LSTM
(GBW).

Figure 7: [TRACE] Element-wise max/min ratio distribution
of different models (datasets).

ResNet-50 [37], GoogleNet [108], LSTM [52], Deep-
Light [22], and BERT [24]. We use all of these to evaluate
training throughput, but evaluate accuracy only for the first
four, since emulating FPISA-A in software is costly and
those four CNNs train much faster than the other models.
For CNN models, we use the CIFAR-10 dataset [59] with
a learning rate of 0.1, momentum of 0.9, and weight decay
of 0.0005. For other models, we use the same setting as in
the SwitchML evaluation [98]. Regarding the batch size, for
the accuracy experiments, we use a batch size of 16 because
small batches represent a worst-case configuration from an
accuracy standpoint; for the performance experiments, we use
the standard batch sizes of each model listed in the MLPerf
benchmark [80] and the SwitchML work [98] (i.e., 213 for
DeepLight, 4 for BERT and 64 for others).

5.2 Characteristics of Training Gradients

The gradient aggregation workload has some common nu-
merical characteristics that make it well suited for in-network
aggregation with FPISA. In particular, FPISA can be used with
existing Tofino switches using the FPISA-A approximation
(Sec. 4.3); the resulting numerical error is rare and (as we
demonstrate) has no impact on training accuracy.

High aggregation parallelism. In general, for each training
iteration, the entire gradient vector corresponding to the
training model needs to be aggregated from all worker
machines. These vectors can range from several MBs to
GBs. Aggregation is just vector addition; this element-wise
summation provides ample parallelism.

Vector-wise distribution. As studied in INCEPTIONN [71],
gradient values in each vector largely fall in the narrow range
of [−1,1], and most are close to “0”.

Element-wise distribution. We find that for the same element
from different workers’ gradient vectors at the same iteration,
the relative range is also narrow. To demonstrate this, we
analyze the distribution of element-wise max/min ratio among
eight workers’ gradient vectors of the training of three models
and datasets (see Sec. 5.3 for detailed setup and configuration),
and plot the results at the early training phase (i.e., the first
epoch) in Fig. 7 (we have observed similar distributions

10 20 10 15 10 10 10 5 100

Error Values
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(a) Epoch #1.

10 20 10 15 10 10 10 5 100

Error Values
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(b) Epoch #20.

10 20 10 15 10 10 10 5 100

Error Values
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

(c) Epoch #40.

Figure 8: [SIMULATION] FPISA-A’s error distribution
of VGG19 gradient aggregation at early, middle, and final
training stages.

through the mid/final phases of the training). We find that,
regardless of the model and dataset, most (∼83%) elements’
max/min ratio is smaller than 27.

Precision loss/error tolerance. It is well known that small
floating point error does not dramatically affect the con-
vergence and final accuracy of ML models [15, 19, 23, 71].
This observation has motivated extensive prior research
about training with low or mixed-precision floating point
operations [19, 25, 46, 50, 79, 115] and compression or
quantization [35, 39, 44, 71].

Thanks to these numerical characteristics, FPISA-A addition
can be directly applied to the in-network aggregation scenario
on current Tofino switches. As discussed in Sec. 4.3, the
lack of a shift-and-add operation introduces error only when
adding values that differ by more than a 27 ratio – which
Fig. 7 shows is rare – and the workload can tolerate such
error. We show later that it has no impact on model accuracy
or convergence. However, as discussed in Sec. 4.1, the
cost of shift operations does mean the current Tofino only
accommodates one FPISA-A module per pipeline. Hence,
in-network aggregation performance will benefit from the
variable-length shift enhancement we propose.

5.3 Evaluation

We take a two-step approach to our evaluation. (1) We first
show that FPISA-A addition will not affect the training
convergence (i.e., FPISA-A will not incur more training
iterations), and do not consider time-wise performance. (2) We
demonstrate that FPISA-A can reduce the time of each training
iteration and do not consider the convergence (because it is
agnostic to per-iteration time). Taken together, we conclude
that FPISA-A reduces end-to-end training time.

5.3.1 FPISA-A Error Analysis

To investigate the errors to which FPISA-A addition may lead,
we record the gradient vectors from eight workers during a
training job. We use the C library to compare the results of
FPISA-A vs. standard floating point addition for aggregating
the same gradient vectors. Fig. 8 shows the (absolute) error
distribution of VGG19 during different training phases.

Similar to the gradient distribution [71], the error distribu-

tion remains similar among early, middle, and final phases
of training, showing FPISA-A’s wide applicability. Most
errors (>95%) are in the range of [10−10,10−8], enough to be
tolerated by ML training, which we demonstrate in the next
section. We further investigate the sources of the errors and
find that most errors come from rounding, while the errors
caused by the overwrite and left-shift mechanisms happen
rarely (less than 0.9% and 0.1%, respectively, among all the
addition operations in the aggregation procedure). These errors
arise because, in some cases, a gradient vector’s element-wise
distribution is larger than FPISA-A’s left-shift headroom. As
a result, the smaller values may be ignored in the aggregation
procedure, leading to small errors (i.e., smaller than 10−8).

Note that a switch implementing the full FPISA proposal,
rather than just FPISA-A, would not experience these overwrite
errors. Note also that no overflow occurs in this experiment,
since the number of workers, and thus the number of operations
per vector element, is less than the headroom available in the
mantissa register.

5.3.2 FPISA-A’s Impact on Training Convergence

We investigate whether FPISA-A will lead to training accuracy
loss, due to the errors it imposes. We train four ML models
for 40 epochs with both default and FPISA-A addition in
gradient aggregation. To show FPISA-A’s adaptability on
different floating point formats, we train using both standard
single-precision FP32 and half-precision FP16 for each model.

We plot the accuracy value during the training procedures
of each model in Fig. 9 to observe FPISA-A’s impact on
convergence. Note that the jitters in the curves are due to the
small batch size we are choosing; these are normal and do not
affect the training procedure. First, we find that floating point
precision does affect the training convergence. That is, in all
four models, we observe slower convergence of FP16-based
training compared to regular FP32-based training, as well as
the final accuracy. However, FPISA-A’s addition errors will
not amplify such gaps. In most cases, the curve of FPISA-A
addition is closely aligned with the curve of default addition.
After 40 epochs, the accuracy differs by less than 0.1%. The
results also demonstrate that regardless of the floating point
format, FPISA-A addition will not degrade each model’s
accuracy. Hence, we argue that FPISA-A will not prolong the
training by adding necessary epochs to converge.

5.3.3 Training Speedup with FPISA-A

In the next experiments, we evaluate the potential speedup
of FPISA-A in an end-to-end training setting as well as the
resulting reduction of host-based quantization overheads.
SwitchML uses CPU cores at workers to scale and transform
the numeric representation of gradient vectors, including both
floating-point/integer conversion and byte order conversion.
In contrast, FPISA-A does not have these overheads as it sends
gradient vectors as floating point values directly. As described
in Sec. 5.1, from an end-to-end perspective, this is the sole

source of expected performance variation between SwitchML
and FPISA-A. Thus, we vary the number of CPU cores and
measure the throughput differences between these approaches
through a microbenchmark.

In this microbenchmark, two workers reduce a 1 GB
gradient vector;4 we measure the time to complete the
operation across the workers. We use 256 element packets
which is the largest that SwitchML supports. After 50 warm-up
invocations, we perform 250 reductions and report median
and 10th-90th percentiles as the error bars.
SwitchML baselines. We use SwitchML’s RDMA transport
since it is more efficient that the DPDK one, and we run two
versions to explore the performance implications of scaling
and transforming gradient vectors on either the CPU or the
GPU (where gradients are initially computed and stored).
The base SwitchML version – denoted SwitchML/CPU –
uses CPU cores. This benchmark assumes that the gradient
vectors are already in host memory. Further, we create a new
version of SwitchML – denoted SwitchML/GPU – that uses
the GPU to scale and transform gradient vectors to the integer
representation before copying them to pinned host memory.

Recall that SwitchML scales the gradient vectors in chunks,
using a scaling factor adapted to each chunk based on a
maximum exponent calculation that involves a round trip over
the network. SwitchML saves the maximum exponent calcula-
tion’s network overhead by overlapping the aggregation of the
current chunk with the exponent calculation of the next chunk.

For SwitchML/CPU, we keep the original SwitchML logic
where one chunk is equivalent to the RDMA message size. For
SwitchML/GPU, we use a separate CUDA stream for each
CPU core to allow parallel kernel execution. We also introduce
a performance optimization where we asynchronously de-
quantize aggregated messages from integer into floating point
values on a separate CUDA stream thus having two CUDA
streams for each CPU core. Despite these optimizations,
there is an inherent overhead with launching one GPU kernel
for each chunk. One potential way to avoid this could be to
execute the per-chunk maximum exponent calculation as a
pre-processing operation before the in-network aggregation
phase; we leave this to future work.
FPISA-A approaches. We run our FPISA-A emulation in
three settings. (1) FPISA-A/CPU directly adopts the RDMA
implementation of SwitchML and disables host-based type
conversions. SwitchML’s RDMA implementation, however,
involves a CPU memory copy operation into a staging area.
This memory copy is not necessary in the case of FPISA-A
since it can operate entirely on memory-resident native FP
vectors without quantization; thus, we include a further
optimization – (2) FPISA-A/CPU(Opt) – that omits this extra
memory copy. Lastly, (3) FPISA-A/GPU (for comparison

4We use two workers to exclude the synchronization variability among
a larger number of workers. This is to better quantify the performance
differences due to the scaling and transformation overheads. We also tried
100 MB with similar results.

(a) GoogleNet. (b) ResNet-50. (c) VGG19. (d) MobileNetV2.

Figure 9: [SIMULATION] Accuracy curves of different ML models with default addition and FPISA-A addition.

2 4 6 8 10
Number of Cores

0

25

50

75

100

Go
od

pu
t (

Gb
ps

)

Cores vs Goodput (CPU) (16KB Msgs)

4.0KB
8.0KB

16.0KB
32.0KB

64.0KB
128.0KB

256.0KB
512.0KB

1.0MB
2.0MB

Message Size (Bytes)

0

25

50

75

100

Message Size vs Goodput (CPU) (4 Cores)

4.0KB
8.0KB

16.0KB
32.0KB

64.0KB
128.0KB

256.0KB
512.0KB

1.0MB
2.0MB

Message Size (Bytes)

0

25

50

75

100

Message Size vs Goodput (GPU) (4 Cores)

SwitchML/CPU FPISA-A/CPU FPISA-A/CPU(Opt) SwitchML/GPU FPISA-A/GPU

Figure 10: [EMULATION] Goodput of different floating point approaches on microbenchmark. The maximum theoretical
goodput with framing overhead is 92 Gbps.

Dee
pL

igh
t

LS
TM

BERT

VGG19

Goo
gle

Net

Res
Net-

50

Mob
ile

NetV
2

0

25

50

75

100

E
nd

-to
-e

nd
 T

ra
in

in
g

S
pe

ed
up

 (%
)

2-core case
8-core case

85.9%

56.3%

35.4%
20.3%

0.9% 0.6% 0.8%

31.6%
16.7%

9.9%
0.2% 0.3% 3.6% 0.6%

Figure 11: [EMULATION] End-to-end training time speedup
of FPISA-A compared to the default SwitchML.

against SwitchML/GPU) includes a copy from GPU memory
to pinned host memory and back.5

Because FPISA-A operates directly on FP vectors, we intro-
duce two performance optimizations for FPISA-A/GPU that are
not applicable to SwitchML/GPU (due to the need for chunk-
based quantization). First, we use batching to amortize the cost
of launching one copy operation for each chunk. Second, we
asynchronously copy from GPU to host memory as a pipeline
of one batch ahead of what needs to be consumed. Further,
similar to the SwitchML/GPU case, we asynchronously copy
back from host to GPU memory on a separate CUDA stream.

In-network aggregation goodput. Fig. 10 (left) shows that
FPISA-A/CPU requires three CPU cores to achieve the 92
Gbps maximum goodput, as opposed to SwitchML/CPU,
which needs four cores.6 FPISA-A/CPU(Opt) achieves the
maximum goodput with just a single core. This leaves more
CPU cycles for data I/O, potentially avoiding training job
stalls while waiting for input data to be preprocessed.

5Our testbed does not support GPU Direct, which would enable FPISA-A
to use RDMA transfers out of and into GPU memory.

6SwitchML/CPU with 5 cores has a small performance dip due to work
imbalance across cores in this particular configuration.

4.0KB
8.0KB

16.0KB
32.0KB

64.0KB
128.0KB

256.0KB
512.0KB

1.0MB
2.0MB

Message Size (Bytes)

101

102

103

104
La

te
nc

y
(m

s)
Kernel
Copy

2 3 6 12 24 47 70 74 77 74
Goodput(Gbps)

Figure 12: [EMULATION] SwitchML/GPU overheads
at each iteration of the microbenchmark. To achieve high
goodput, a message size of 256 KB or beyond is necessary.
At smaller message sizes, the kernel and copy launches (solid
lines) introduce a substantial latency compared to the actual
kernel execution or copy latency (dashed lines).

The message size for this benchmark is 16 KB, which allows
SwitchML/CPU to reach peak performance, according to the
SwitchML paper [98]. Fig. 10 (middle) illustrates that FPISA-A
achieves maximum goodput for a wide range of message sizes.

For the GPU variants, we find that the message/chunk
size is the most important factor. Fig. 10 (right) shows that
SwitchML/GPU is inefficient with message sizes below 256
KB. This is due to overheads of GPU kernel launches and
copies at small message sizes (cf. Fig. 12). Increasing the
number of cores does not help because CUDA implicitly
synchronizes all kernel launch calls (kernel execution can
be parallelized whereas kernel launches cannot). In contrast,
using just a single CPU core, FPISA-A/GPU achieves the
best possible performance – limited to 80 Gbps only by the
bidirectional copy bandwidth of the GPU copy engines – since
it can copy chunks in larger batches.7 We expect that without

7We copy memory using 1 MB chunks as it gives the best results
irrespective of the RDMA message size.

this bidirectional copy bandwidth limit (a constraint of our
environment), FPISA-A/GPU would match the performance of
FPISA-A/CPU(Opt) since it completely overlaps the memory
copying with CPU and network operations.

SwitchML/GPU with a chunk size of 1 MB reaches a
performance comparable (but still below) to FPISA-A/GPU.
However, this requires an equally large RDMA message
size whereas FPISA-A/GPU performs well even with 4 KB
messages. Using large message sizes has several negative
implications. First, it can introduce larger errors in SwitchML’s
quantization scheme since it chooses the scaling factor from a
larger chunk. Second, it hurts the performance of loss recovery
because the loss of a single packet entails resending the
entire 1 MB message (1024 packets). Third, the performance
degrades past a certain message size. This is due to limited
network capacity and the reduction of pipelining, which in turn
reduces the performance benefits of SwitchML’s streaming
aggregation. Thus, we conclude that, although performing
quantization on the GPU might still be an interesting
possibility for SwitchML, more work is necessary to devise
an efficient implementation without increasing quantization
errors and without affecting the GPU’s availability for training.

Training throughput. We now confirm that FPISA-A’s bene-
fits translate into higher end-to-end training throughput. Fig. 11
reports the training throughput for seven real-world DNN
benchmarks. For these experiments, we restrict the comparison
to the DPDK implementation because SwitchML/RDMA is
not currently integrated into the ML frameworks [98]. We
focus on two scenarios – using either two or eight cores –
and we measure the speedup in terms of training throughput
(samples/s). We observe that FPISA-A speeds up training by up
to 85.9% and 31.6% for the 2-core case and the 8-core case, re-
spectively. Importantly, the higher speedup factors are obtained
when using just two cores for communication, which frees up
six cores for data I/O in this setting. The speedup is particularly
significant in communication-bottlenecked models (e.g.,
DeepLight, LSTM, BERT, VGG19), where FPISA-A is up to
85.9% faster compared to SwitchML when using the same
number of cores. On the other hand, we do not see significant
benefits of FPISA-A on models like GoogleNet, MobileNetV2,
and ResNet-50, which are compute-bottlenecked.

By combining the accuracy results and the per-iteration end-
to-end results, we can conclude that FPISA-A is able to reduce
the end-to-end training time of a wide range of ML models.

6 Related Work

Accelerating distributed/networking applications with
programmable switches. Recently, programmable switches
have been used to accelerate a broad range of applications, in-
cluding distributed key-value stores [49, 66, 112], distributed
transactions [48, 64, 117], distributed storage [72, 120], packet
queuing/scheduling [100, 103], network functions [56, 78],
and network telemetry [7, 34, 105, 119]. While most of them

deal with packet header processing with few arithmetic op-
erations, some perform computation on the packet’s payload.
SwitchML [98] and ATP [61] leverage switches for gradient ag-
gregation but are constrained to fixed-point aggregation, which
may lead to costly format conversion on the end-host and ad-
ditional network round trips for exponent communication.

FPISA’s approach is also applicable to other applications
involving floating point operations and in-switch computing.
For example, NETACCEL [63] and Cheetah [110] propose
to use programmable switches to accelerate database queries
by data pruning or query offloading. With the proposed
architecture enhancements, FPISA can accelerate such queries
with floating point as datatype. Also, other more complex
floating point operations may be needed for future applications
(e.g., congestion control [26, 54] and network security [34]).
Sec. 3.3 briefly discusses the possibility of supporting them.
Resource allocation. Much research has studied how to
use in-network rate computations to support congestion
control (e.g., XCP [54] and RCP [26]), queue management
(e.g., CoDel [84] and AIFO [116]), or load balancing (e.g.,
CONGA [4]). P4QCN [29], P4-CoDel [60], and P4-ABC [77]
are P4 implementations of specific protocols that require
floating point support – currently unavailable in switch
hardware. Sharma et al. proposed a library that applies
approximation to work around this limitation [99]. InREC [51]
and NetFC [16] proposed to use table-lookup for floating point
operation emulation in programmable switches. However, they
are constrained to stateless operations and need extra RAM
space to store the tables. Also, few floating point operations
can be done per packet, limiting parallelism. FPISA may
enable new design options for in-switch resource allocation.
Extending switches’ processing capability. Proposed
enhancements to the RMT architecture [9] include transac-
tions [102], disaggregated memory [14], and better stateful
data plane support [28]. While many focus on improving
stateful computations, none address floating point operations.

7 Conclusion
In this work, we propose FPISA, a floating point representation
designed to work efficiently in programmable switches. We
first implement FPISA on a commodity Intel Tofino switch,
but its design limits throughput and accuracy. We then propose
hardware changes based on the Banzai programmable switch
architecture to avoid these limitations. We demonstrate their
feasibility through synthesis using a 15-nm standard-cell
library, and find minimal impact on area, power, and timing.
Finally, we investigate the benefit of FPISA by implementing
accelerators for distributed training application, evaluating
its performance on a switch implementing our changes using
emulation. We find that FPISA allows distributed training
to use 25-75% fewer CPU cores and provide up to 85.9%
better throughput in a CPU-constrained environment than the
state-of-the-art framework.

Acknowledgments. We would like to thank our shepherd,
Ellen Zegura, and the anonymous reviewers for their help-
ful feedback. We also thank Zhe Chen, Muhammad Tirmazi,
and Minlan Yu for their technical support and discussion. This
research is partially supported by National Science Foundation
(No. CNS-1705047), by the King Abdullah University of Sci-
ence and Technology (KAUST) Office of Sponsored Research
(OSR) under Award No. OSR-CRG2020-4382, and by a gift in
kind from Huawei. For computer time, this research used the re-
sources of the Supercomputing Laboratory at KAUST. This re-
search was partially done when the first author was at Microsoft
Research. The work of Jiawei Fei at KAUST is supported by
a sponsorship from China Scholarship Council (CSC).

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’16),
Savannah, GA, Nov. 2016.

[2] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, A. Bright,
J. Brunheroto, C. Caşcaval, J. Castaños, W. Chan, L. Ceze,
P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T. Cipolla, P. Crum-
ley, K. Desai, A. Deutsch, T. Domany, M. Dombrowa, W. Do-
nath, M. Eleftheriou, C. Erway, J. Esch, B. Fitch, J. Gagliano,
A. Gara, R. Garg, R. Germain, M. Giampapa, B. Gopalsamy,
J. Gunnels, M. Gupta, F. Gustavson, S. Hall, R. Haring,
D. Heidel, P. Heidelberger, L. Herger, D. Hoenicke, R. Jack-
son, T. Jamal-Eddine, G. Kopcsay, E. Krevat, M. Kurhekar,
A. Lanzetta, D. Lieber, L. Liu, M. Lu, M. Mendell, A. Misra,
Y. Moatti, L. Mok, J. Moreira, B. Nathanson, M. Newton,
M. Ohmacht, A. Oliner, V. Pandit, R. Pudota, R. Rand,
R. Regan, B. Rubin, A. Ruehli, S. Rus, R. Sahoo, A. Sanomiya,
E. Schenfeld, M. Sharma, E. Shmueli, S. Singh, P. Song,
V. Srinivasan, B. Steinmacher-Burow, K. Strauss, C. Surovic,
R. Swetz, T. Takken, R. Tremaine, M. Tsao, A. Umamahesh-
waran, P. Verma, P. Vranas, T. Ward, M. Wazlowski, W. Barrett,
C. Engel, B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani,
D. Krolak, C. Li, T. Liebsch, J. Marcella, A. Muff, A. Okomo,
M. Rouse, A. Schram, M. Tubbs, G. Ulsh, C. Wait, J. Wittrup,
M. Bae, K. Dockser, L. Kissel, M. Seager, J. Vetter, and
K. Yates. An overview of the BlueGene/L supercomputer.
In Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing (SC’02), Baltimorem, MD, Nov. 2002.

[3] N. Alachiotis and A. Stamatakis. Efficient floating-point loga-
rithm unit for FPGAs. In Proceedings of the 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing, Work-
shops and Phd Forum (IPDPSW’10), Atlanta, GA, May 2010.

[4] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. CONGA: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014

ACM SIGCOMM Conference (SIGCOMM’14), Chicago, IL,
Aug. 2014.

[5] Arista. 7130 FPGA-enabled Network Switches.
https://www.arista.com/en/products/7130-fpga-enabled-
network-switches-quick-look, accessed in 2021.

[6] M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G. Payne,
and J. Watts. Interprocessor collective communication library
(InterCom). In Proceedings of the 1994 IEEE Scalable High
Performance Computing Conference (SHPCC’94), Knoxville,
TN, May 1994.

[7] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and
M. Mitzenmacher. PINT: Probabilistic in-band network
telemetry. In Proceedings of the 2020 ACM SIGCOMM
Conference (SIGCOMM’20), Virtual Event, Aug. 2020.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication
Review, 44(3), 2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in hard-
ware for SDN. In Proceedings of the 2013 ACM SIGCOMM
Conference (SIGCOMM’13), Hong Kong, China, Aug. 2013.

[10] Broadcom. NPL: Open, High-Level language for developing
feature-rich solutions for programmable networking plat-
forms.
https://nplang.org/, accessed in 2021.

[11] Broadcom. Trident4 BCM56880 Series.
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56880-series,
accessed in 2021.

[12] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo. Elastic
parameter server load distribution in deep learning clusters.
In Proceedings of the 11th ACM Symposium on Cloud
Computing (SoCC’20), Virtual Event, Oct. 2020.

[13] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project Adam: Building an efficient and scalable deep
learning training system. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’14), Broomfield, CO, Oct. 2014.

[14] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik,
A. Berger, G. Mendelson, M. Alizadeh, S.-T. Chuang,
I. Keslassy, A. Orda, and T. Edsall. dRMT: Disaggregated
programmable switching. In Proceedings of the 2017 ACM
SIGCOMM Conference (SIGCOMM’17), Los Angeles, CA,
Aug. 2017.

[15] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep
neural networks with low precision multiplications. arXiv
preprint arXiv:1412.7024, 2014.

https://www.arista.com/en/products/7130-fpga-enabled-network-switches-quick-look
https://www.arista.com/en/products/7130-fpga-enabled-network-switches-quick-look
https://nplang.org/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series

[16] P. Cui, H. Pan, Z. Li, J. Wu, S. Zhang, X. Yang, H. Guan, and
G. Xie. NetFC: Enabling accurate floating-point arithmetic
on programmable switches. In Proceedings of the 29th IEEE
International Conference on Network Protocols, Virtual
Event, Nov. 2021.

[17] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman,
H. Weatherspoon, M. Canini, F. Pedone, and R. Soulé. P4xos:
Consensus as a network service. IEEE/ACM Transactions on
Networking, 28(4), Aug. 2020.

[18] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers,
K. Ovtcharov, A. Vinogradsky, S. Massengill, L. Yang,
R. Bittner, A. Forin, H. Zhu, T. Na, P. Patel, S. Che, L. C.
Koppaka, X. Song, S. Som, K. Das, S. Tiwary, S. Reinhardt,
S. Lanka, E. Chung, and D. Burger. Pushing the limits of
narrow precision inferencing at cloud scale with microsoft
floating point. In Advances in neural information processing
systems 33 (NeurIPS’20), Virtual Event, Dec. 2020.

[19] C. De Sa, M. Leszczynski, J. Zhang, A. Marzoev, C. R. Aberger,
K. Olukotun, and C. Ré. High-accuracy low-precision training.
arXiv preprint arXiv:1803.03383, 2018.

[20] D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, and
T. Hoefler. Flare: Flexible in-network allreduce. arXiv
preprint arXiv:2106.15565, 2021.

[21] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng.
Large scale distributed deep networks. In Advances in neural
information processing systems 25 (NIPS’12), Lake Tahoe,
NV, Dec. 2012.

[22] W. Deng, J. Pan, T. Zhou, D. Kong, A. Flores, and G. Lin.
DeepLight: Deep lightweight feature interactions for ac-
celerating CTR predictions in ad serving. arXiv preprint
arXiv:2002.06987, 2020.

[23] A. Devarakonda, M. Naumov, and M. Garland. Adabatch:
Adaptive batch sizes for training deep neural networks. arXiv
preprint arXiv:1712.02029, 2017.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[25] M. Drumond, T. LIN, M. Jaggi, and B. Falsafi. Training
dnns with hybrid block floating point. In Advances in Neural
Information Processing Systems 31 (NeurIPS’18), Montreal,
Canada, Dec. 2018.

[26] N. Dukkipati. Rate Control Protocol (RCP): Congestion
control to make flows complete quickly. PhD thesis, Stanford
University, Dept. of Electrical Engineering, 2007.

[27] N. Gebara, P. Costa, and M. Ghobadi. In-network aggregation
for shared machine learning clusters. In Proceedings of the
4th MLSys confrence (MLSys’21), Virtual Event, Apr. 2021.

[28] N. Gebara, A. Lerner, M. Yang, M. Yu, P. Costa, and
M. Ghobadi. Challenging the stateless quo of programmable
switches. In Proceedings of the 19th ACM Workshop on Hot
Topics in Networks (HotNets’20), Virtual Event, Nov. 2020.

[29] J. Geng, J. Yan, and Y. Zhang. P4QCN: Congestion control
using P4-capable device in data center networks. Electronics,
8(3), 2019.

[30] Google Cloud. Using bfloat16 with TensorFlow models.
https://cloud.google.com/tpu/docs/bfloat16, accessed in
2021.

[31] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer,
G. Bloch, D. Goldenerg, M. Dubman, S. Kotchubievsky,
V. Koushnir, L. Levi, A. Margolin, T. Ronen, A. Shpiner,
O. Wertheim, and E. Zahavi. Scalable hierarchical aggregation
protocol (SHArP): A hardware architecture for efficient
data reduction. In Proceedings of the 1st Workshop on
Optimization of Communication in HPC (COM-HPC’16),
Salt Lake City, Utah, Nov. 2016.

[32] R. L. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer,
D. Cho, G. Elias, D. Klein, J. Ladd, O. Maor, A. Marelli,
V. Petrov, E. Romlet, Y. Qin, and I. Zemah. Scalable hierarchi-
cal aggregation and reduction protocol (SHARP) streaming-
aggregation hardware design and evaluation. In Proceedings
of the 35th International Conference on High Performance
Computing (ISC’20), Frankfurt/Main, Germany, June 2020.

[33] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian,
H. Liu, and C. Guo. Tiresias: A GPU cluster manager
for distributed deep learning. In Proceedings of the 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’19), Boston, MA, Feb. 2019.

[34] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford,
and W. Willinger. Sonata: Query-driven streaming network
telemetry. In Proceedings of the 2018 ACM SIGCOMM
Conference (SIGCOMM’18), Budapest, Hungary, Aug. 2018.

[35] S. Han, H. Mao, and W. J. Dally. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[36] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich,
F. Zeiger, R. Frank, and M. Menth. A survey on data plane
programming with P4: Fundamentals, advances, and applied
research, 2021.

[37] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the 2016 IEEE
conference on computer vision and pattern recognition
(CVPR’16), Las Vegas, NV, June 2016.

[38] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing. More effective
distributed ML via a stale synchronous parallel parameter
server. In Advances in neural information processing systems
26 (NIPS’13), Lake Tahoe, NV, Dec. 2013.

[39] S. Horvath, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini,
and P. Richtarik. Natural compression for distributed deep
learning. arXiv preprint arXiv:1905.10988, 2019.

[40] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park. Elastic
resource sharing for distributed deep learning. In Proceedings

https://cloud.google.com/tpu/docs/bfloat16

of the 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’21), Virtual Event, Apr. 2021.

[41] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer.
FireCaffe: Near-linear acceleration of deep neural network
training on compute clusters. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’16), Las Vegas, NV, June 2016.

[42] Intel Corporation. Intel Tofino.
https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-

series.html, accessed in 2021.

[43] Intel Corporation. Intel Tofino2.
https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-2-

series.html, accessed in 2021.

[44] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko.
Gist: Efficient data encoding for deep neural network training.
In Proceedings of the 45th International Symposium on Com-
puter Architecture (ISCA’18), Los Angeles, CA, June 2018.

[45] T. Jepsen, L. P. de Sousa, M. Moshref, F. Pedone, and R. Soulé.
Infinite resources for optimistic concurrency control. In
Proceedings of the ACM SIGCOMM 2018 Workshop on
In-Network Computing (NetCompute’18), Budapest, Hungary,
Aug. 2018.

[46] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu.
Highly scalable deep learning training system with mixed-
precision: Training ImageNet in four minutes. arXiv preprint
arXiv:1807.11205, 2018.

[47] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A unified
architecture for accelerating distributed DNN training in
heterogeneous GPU/CPU clusters. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20), Virtual Event, Nov. 2020.

[48] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim,
and I. Stoica. NetChain: Scale-free sub-RTT coordination.
In Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18), Renton, WA,
Apr. 2018.

[49] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,
and I. Stoica. NetCache: Balancing key-value stores with
fast in-network caching. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP’17),
Shanghai, China, Oct. 2017.

[50] J. Johnson. Rethinking floating point for deep learning. arXiv
preprint arXiv:1811.01721, 2018.

[51] M. Jose, K. Lazri, J. François, and O. Festor. InREC:
In-network real number computation. In Proceedings of
the 2021 IFIP/IEEE International Symposium on Integrated
Network Management, Virtual Event, May 2021.

[52] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu.
Exploring the limits of language modeling. arXiv preprint
arXiv:1602.02410, 2016.

[53] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das,
K. Banerjee, S. Avancha, D. T. Vooturi, N. Jammalamadaka,
J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke, E. Georganas,
S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul, and
P. Dubey. A study of bfloat16 for deep learning training. arXiv
preprint arXiv:1905.12322, 2019.

[54] D. Katabi, M. Handley, and C. Rohrs. Congestion control for
high bandwidth-delay product networks. ACM SIGCOMM
Computer Communication Review, 32(4), 2002.

[55] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford.
HULA: Scalable load balancing using programmable data
planes. In Proceedings of the 2016 Symposium on SDN
Research (SOSR’16), Santa Clara, CA, Mar. 2016.

[56] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and
S. Seshan. TEA: Enabling state-intensive network functions
on programmable switches. In Proceedings of the 2020 ACM
SIGCOMM Conference (SIGCOMM’20), Virtual Event, Aug.
2020.

[57] B. Klenk, N. Jiang, G. Thorson, and L. Dennison. An
in-network architecture for accelerating shared-memory
multiprocessor collectives. In Proceedings of the 47th Inter-
national Symposium on Computer Architecture (ISCA’20),
Virtual Event, May 2020.

[58] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 103(1),
2014.

[59] A. Krizhevsky. The CIFAR-10 dataset.
https://www.cs.toronto.edu/~kriz/cifar.html, accessed in
2021.

[60] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and
R. Steinmetz. P4-CoDel: Active queue management in
programmable data planes. In Proceedings of 2018 IEEE
Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Verona, Italy, Nov. 2018.

[61] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and
M. Swift. ATP: In-network aggregation for multi-tenant
learning. In Proceedings of the 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’21),
Virtual Event, Apr. 2021.

[62] A. S. Leon, K. W. Tam, J. L. Shin, D. Weisner, and F. Schu-
macher. A power-efficient high-throughput 32-thread SPARC
processor. IEEE Journal of Solid-State Circuits, 42(1), 2007.

[63] A. Lerner, R. Hussein, and P. Cudre-Mauroux. The case for
network accelerated query processing. In Proceedings of the
9th Biennial Conference on Innovative Data Systems Research
(CIDR’19), Asilomar, CA, Jan. 2019.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.cs.toronto.edu/~kriz/cifar.html

[64] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-free
consistent transactions using in-network concurrency control.
In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP’17), Shanghai, China, Oct. 2017.

[65] J. Li, E. Michael, A. Szekeres, N. K. Sharma, and D. R. K.
Ports. Just say NO to Paxos overhead: Replacing consensus
with network ordering. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’16), Savannah, GA, Nov. 2016.

[66] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports. Pegasus:
Tolerating skewed workloads in distributed storage with
in-network coherence directories. In Proceedings of the
14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20), Virtual Event, Nov. 2020.

[67] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14), Broomfield,
CO, Oct. 2014.

[68] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: An integrated power, area, and
timing modeling framework for multicore and manycore
architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’09),
New York, NY, Dec. 2009.

[69] Y. Li and W. Chu. Implementation of single precision floating
point square root on FPGAs. In Proceedings of the 5th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’97), Apr. 1997.

[70] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang.
Accelerating distributed reinforcement learning with in-
switch computing. In Proceedings of the 46th International
Symposium on Computer Architecture (ISCA’19), Phoenix,
AZ, June 2019.

[71] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. G.
Schwing, H. Esmaeilzadeh, and N. S. Kim. A network-centric
hardware/algorithm co-design to accelerate distributed
training of deep neural networks. In Proceedings of the 51st
International Symposium on Microarchitecture (MICRO’18),
Fukuoka, Japan, Oct. 2018.

[72] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin,
and I. Stoica. DistCache: Provable load balancing for
large-scale storage systems with distributed caching. In
Proceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST’19), Boston, MA, Feb. 2019.

[73] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker,
L. Rech, and J. Michelsen. Open cell library in 15nm FreePDK
technology. In Proceedings of the 2015 Symposium on
International Symposium on Physical Design (ISPD’15),
Monterey, CA, Mar. 2015.

[74] S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R. K.
Krishnamurthy, and S. Borkar. A 4-GHz 300-mW 64-bit
integer execution ALU with dual supply voltages in 90-nm
CMOS. IEEE Journal of Solid-State Circuits, 40(1), 2005.

[75] Mellanox. Mellanox scalable hierarchical aggregation and
reduction protocol (SHARP).
http://www.mellanox.com/page/
products_dyn?product_family=261&mtag=sharp, accessed in
2021.

[76] Mellanox. QM8700 Mellanox Quantum HDR Edge Switch.
https://www.mellanox.com/files/related-docs/
prod_ib_switch_systems/PB_QM8700.pdf, accessed in 2021.

[77] M. Menth, H. Mostafaei, D. Merling, and M. Häberle.
Implementation and evaluation of activity-based congestion
management using P4 (P4-ABC). Future Internet, 11, 2019.

[78] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad:
Making stateful layer-4 load balancing fast and cheap using
switching ASICs. In Proceedings of the 2017 ACM SIGCOMM
Conference (SIGCOMM’17), Los Angeles, CA, Aug. 2017.

[79] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev,
G. Venkatesh, and H. Wu. Mixed precision training.
arXiv preprint arXiv:1710.03740, 2017.

[80] MLCommons. Mlperf benchmark.
https://mlcommons.org/en/training-normal-10/, accessed
in 2021.

[81] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan.
SparkNet: Training deep networks in Spark. arXiv preprint
arXiv:1511.06051, 2015.

[82] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on optimization, 19(4), 2009.

[83] A. S. Nemirovsky and D. B. Yudin. Problem complexity and
method efficiency in optimization. Society for Industrial and
Applied Mathematics, 1983.

[84] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar.
Controlled delay active queue management. RFC 8289, 2018.
https://tools.ietf.org/html/rfc8289.

[85] NVIDIA. apex: Tools for easy mixed precision and distributed
training in Pytorch.
https://github.com/NVIDIA/apex, accessed in 2021.

[86] NVIDIA blog. TensorFloat-32 in the A100 GPU accelerates
AI training, HPC up to 20x.
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-
32-precision-format/, accessed in 2021.

[87] S. Oberman. Floating point division and square root algo-
rithms and implementation in the AMD-K7 microprocessor.
In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, Adelaide, Australia, Apr. 1999.

http://www.mellanox.com/page/products_dyn? product_family=261&mtag=sharp
http://www.mellanox.com/page/products_dyn? product_family=261&mtag=sharp
https://www.mellanox.com/files/related-docs/prod_ib_switch_systems/PB_QM8700.pdf
https://www.mellanox.com/files/related-docs/prod_ib_switch_systems/PB_QM8700.pdf
https://mlcommons.org/en/training-normal-10/
https://tools.ietf.org/html/rfc8289
https://github.com/NVIDIA/apex
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/

[88] OpenSwitch. Cavium-XPliant family of programmable
ethernet switches.
https://www.openswitch.net/cavium/, accessed in 2021.

[89] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch:
An imperative style, high-performance deep learning library.
In Advances in neural information processing systems 32
(NIPS’19), Vancouver, Canada, Dec. 2019.

[90] P. Patarasuk and X. Yuan. Bandwidth Optimal All-reduce
Algorithms for Clusters of Workstations. Journal of Parallel
and Distributed Computing, 69(2), 2009.

[91] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo. A generic communication scheduler for distributed
DNN training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19),
Huntsville, Canada, Oct. 2019.

[92] Y. Piasetzky, M. Kadosh, M. Pritsak, O. Shabtai, A. Lo, and
G. Lu. Switch asic programmability in hybrid mode. In
Proceedings of 2018 IEEE 26th International Conference on
Network Protocols (ICNP’18), Cambridge, UK, Sept. 2018.

[93] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishna-
murthy. Designing distributed systems using approximate
synchrony in datacenter networks. In Proceedings of the
12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’15), Oakland, CA, May 2015.

[94] D. R. K. Ports and J. Nelson. When should the network be
the computer? In Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS’19), Bertinoro, Italy, May 2019.

[95] H. Robbins and S. Monro. A stochastic approximation
method. The annals of mathematical statistics, 1951.

[96] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. MobileNetV2: Inverted residuals and linear bottlenecks.
In Proceedings of the 2018 IEEE conference on computer
vision and pattern recognition (CVPR’18), Salt Lake City, UT,
June 2018.

[97] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis.
In-network computation is a dumb idea whose time has
come. In Proceedings of the 16th Workshop on Hot Topics
in Networks (HotNets’17), Palo Alto, CA, Nov. 2017.

[98] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. R. Ports, and P. Richtárik.
Scaling distributed machine learning with in-network
aggregation. In Proceedings of the 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’21),
Virtual Event, Apr. 2021.

[99] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter. Evaluating the power of flexible packet
processing for network resource allocation. In Proceedings of
the 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’17), Boston, MA, Mar. 2017.

[100] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy.
Approximating fair queueing on reconfigurable switches. In
Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’18), Renton, WA,
Apr. 2018.

[101] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[102] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh,
H. Balakrishnan, G. Varghese, N. McKeown, and S. Licking.
Packet transactions: High-level programming for line-rate
switches. In Proceedings of the 2016 ACM SIGCOMM Con-
ference (SIGCOMM’16), Florianopolis, Brazil, Aug. 2016.

[103] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T.
Chuang, A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti,
and N. McKeown. Programmable packet scheduling at line
rate. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM’16), Florianopolis, Brazil, Aug. 2016.

[104] P. Soderquist and M. Leeser. Area and performance tradeoffs
in floating-point divide and square-root implementations.
ACM Computing Surveys, 28(3), 1996.

[105] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith. Turboflow:
Information rich flow record generation on commodity
switches. In Proceedings of the 13th European Conference on
Computer Systems (EuroSys’18), Porto, Portugal, Apr. 2018.

[106] A. Svyatkovskiy, J. Kates-Harbeck, and W. Tang. Training dis-
tributed deep recurrent neural networks with mixed precision
on GPU clusters. In Proceedings of the Machine Learning
on HPC Environments (MLHPC’17), Denver, CO, Nov. 2017.

[107] Synopsys. Design Compiler Graphical.
https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/design-compiler-graphical.html,
accessed in 2021.

[108] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Proceedings of the 2015 IEEE
conference on computer vision and pattern recognition
(CVPR’15), Boston, MA, June 2015.

[109] P.-T. P. Tang. Table-driven implementation of the logarithm
function in IEEE floating-point arithmetic. ACM Transactions
on Mathematical Software, 16(4), 1990.

[110] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu. Cheetah:
Accelerating database queries with switch pruning. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20)
https://arxiv.org/pdf/2004.05076.pdf, Virtual Event, June
2020.

[111] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zil-
berman. The case for in-network computing on demand. In
Proceedings of the 14th EuroSys Conference (EuroSys’19),
Dresden, Germany, Mar. 2019.

https://www.openswitch.net/cavium/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://arxiv.org/pdf/2004.05076.pdf

[112] Y. Tokusashi, H. Matsutani, and N. Zilberman. LaKe: An
energy efficient, low latency, accelerated key-value store.
arXiv preprint arXiv:1805.11344, 2018.

[113] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and
R. S. Schreiber. Presto: Distributed machine learning and
graph processing with sparse matrices. In Proceedings of
the 8th ACM European Conference on Computer Systems
(EuroSys’13), Prague, Czech Republic, Apr. 2013.

[114] M. Voogel, Y. Frans, and M. Ouellette. Xilinx Versal Premium
series. In HotChips’20, Virtual Event, Aug. 2020.

[115] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakr-
ishnan. Training deep neural networks with 8-bit floating
point numbers. In Advances in neural information processing
systems 31 (NIPS’18), Montreal, Canada, Dec. 2018.

[116] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowdhury,
Z. Liu, and X. Jin. Programmable packet scheduling with a
single queue. In Proceedings of the 2021 ACM SIGCOMM
Conference (SIGCOMM’21), Virtual Event, Aug. 2021.

[117] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and X. Jin. Net-
Lock: Fast, centralized lock management using programmable
switches. In Proceedings of the 2020 ACM SIGCOMM
Conference (SIGCOMM’20), Virtual Event, Aug. 2020.

[118] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin. Is
network the bottleneck of distributed training? In Proceedings
of the Workshop on Network Meets AI & ML (NetAI’20),
Virtual Event, Aug. 2020.

[119] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng,
L. Zhu, Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and
M. Xu. Flow event telemetry on programmable data plane.
In Proceedings of the 2020 ACM SIGCOMM Conference
(SIGCOMM’20), Virtual Event, Aug. 2020.

[120] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica,
and X. Jin. Harmonia: Near-linear scalability for replicated
storage with in-network conflict detection. In Proceedings of
the 2019 International Conference on Very Large Data Bases
(VLDB’19), Los Angeles, CA, Nov. 2019.

	Introduction
	Background and Challenges
	PISA
	Floating Point Overview
	Challenges

	Fpisa Design
	Representing FP in PISA
	Performing FP operations in PISA
	Additional Floating Point Features and Operations

	Realizing Fpisa on PISA Architectures
	Challenges
	PISA Architectural Extensions
	Fpisa-a: Fpisa on Existing Architectures

	Case Study: Distributed ML Training
	Setup
	Characteristics of Training Gradients
	Evaluation
	Fpisa-a Error Analysis
	Fpisa-a's Impact on Training Convergence
	Training Speedup with Fpisa-a

	Related Work
	Conclusion

