
HTGN-BTW: Heterogeneous Temporal Graph Network with
Bi-Time-Window Training Strategy for Temporal Link Prediction

Chongjian Yue
Northeastern University

Shenyang, China
20184545@stu.neu.edu.cn

Lun Du∗
Microsoft Research Asia

Beijing, China
lun.du@microsoft.com

Qiang Fu
Microsoft Research Asia

Beijing, China
qifu@microsoft.com

Wendong Bi
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China

biwendong20@mails.ucas.ac.cn

Hengyu Liu
Yu Gu

Northeastern University
Shenyang, China

1710589@stu.neu.edu.cn
guyu@mail.neu.edu.cn

Di Yao
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China
yaodi@ict.ac.cn

ABSTRACT
With the development of temporal networks such as E-commerce
networks and social networks, the issue of temporal link prediction
has attracted increasing attention in recent years. The Temporal
Link Prediction task of WSDM Cup 20221 expects a single model
that can work well on two kinds of temporal graphs simultaneously,
which have quite different characteristics and data properties, to
predict whether a link of a given type will occur between two given
nodes within a given time span. Our team, named as nothing here,
regards this task as a link prediction task in heterogeneous temporal
networks and proposes a generic model, i.e., Heterogeneous Tempo-
ral Graph Network (HTGN), to solve such temporal link prediction
task with the unfixed time intervals and the diverse link types. That
is, HTGN can adapt to the heterogeneity of links and the prediction
with unfixed time intervals within an arbitrary given time period.
To train the model, we design Bi-Time-Window training strategy
(BTW) which has two kinds of mini-batches from two kinds of time
windows. As a result, for the final test, we achieved an AUC of
0.662482 on dataset A, an AUC of 0.906923 on dataset B, and won
2nd place with an Average T-scores of 0.628942. Our source code is
publicly available on GitHub2.

KEYWORDS
link prediction, temporal network, heterogeneity, graph neural
network

∗Corresponding Author
1https://www.dgl.ai/WSDM2022-Challenge/
2https://github.com/dialectics-ycj/WSDM-2022-Challenge-tgn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM’22, February, 2022, XXX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Chongjian Yue, Lun Du, Qiang Fu, Wendong Bi, Hengyu Liu, Yu Gu, and Di
Yao. 2018. HTGN-BTW: Heterogeneous Temporal Graph Network with
Bi-Time-Window Training Strategy for Temporal Link Prediction. In Pro-
ceedings of WSDM conference (WSDM’22).ACM, New York, NY, USA, 4 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph, as a general data structure to represent relationships be-
tween entities, is ubiquitous in the real world. Many of them are
temporal graphs that are dynamic and evolving over time, such as
E-commerce networks, social networks and communication net-
works. In such real graphs, one popular demand is temporal link
prediction which is to predict new links in the future according
to the historical information, such as recommending products to
users in E-commerce networks, recommending friends to users in
social networks, etc [1].

In the Temporal Link Prediction task of WSDM Cup 2022, the
committee provides two datasets, dataset A and B. Dataset A is a
dynamic event graph, in which entities are represented by nodes
and different types of events are represented by different kinds of
links. Both nodes and links have related features. Dataset B is a
user-item graph in which users and items are represented by nodes
and various types of interactions are represented by links. But only
the links have features. For the task, the participants are required to
predict whether a link of a given type will occur between two nodes
within a given time span. The size of the prediction time span
can vary arbitrarily within a certain range. And the time intervals
between the training set and all prediction time spans are unfixed
which makes the task is unusual compared with normal prediction
tasks.

Many existing works have been proposed to tackle the tem-
poral link prediction problem [1]. TGN [3], as a representative
work, presents a general deep learning framework for this task
based on memory mechanisms and graph-based operators. How-
ever, compared to our problem in the challenge, previous works
mainly consider a more simple scenario where the temporal graph
datasets are homogeneous and without feature missing problems.
Besides, few works involve the prediction of unfixed time spans
which means that both the size of the prediction span and the time

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WSDM’22, February, 2022, XXX, USA Chongjian Yue, Lun Du, Qiang Fu, Wendong Bi, Hengyu Liu, Yu Gu, and Di Yao

Table 1: Statistics of Dataset

Dataset Node Number Link Number Relation Number Prediction Period Size

A 19,442 27,045,268 248 About 1200h
B 810,255 8,278,431 14 About 2300h

interval between the training set and the prediction are unfixed.
In summary, the challenges we faced include (1) heterogeneity of
graph data, (2) node/link feature missing problem, and (3) unfixed
time-span prediction.

In this paper, we propose a new model Heterogeneous Temporal
Graph Network (HTGN) with a new Bi-Time-Window (BTW) train-
ing strategy to tackle the above challenges. Similar to TGN, our
model also has a memory mechanism and a neighborhood infor-
mation aggregation module but with different updating strategies,
and several new modules. Specifically, to tackle the first challenge,
we introduce a relation embedding module to represent the type
of links, and we have different prediction modules for each type
of link to output an occurrence probability for such type of link.
For the second challenge, we use a new feature-independent node
embedding module to replace the raw node features to avoid the
feature missing problem. For the third challenge, we introduce new
prediction algorithm in the inference stage and BTW strategy in the
training stage. To be specific, we split a given time span to several
small time slices in the inference stage, and each small time slice can
be viewed as a time point. There, our model can still conduct time
point prediction, and then use an aggregation algorithm method to
obtain the final prediction for the whole time span. In the training
stage, we adopt two time windows, a memory window and a testing
window, and training samples within the memory window are only
used to update the memory module while the samples within the
testing window are only used to update the model parameters. The
BTW strategy can simulate the scenario of the final evaluation.
Besides, we adopt a time interval encoder to deal with unfixed time
span problem.

2 DATASET
The committee gives two datasets, dataset A and B, which have
many differences. And each dataset contains a training set, an
intermediate test set, and a final test set. For the intermediate test set,
we can get the evaluation result in time. We will briefly introduce
both datasets and our task as clear as possible.

2.1 Dataset Overview
Dataset A is a dynamic event graph, in which entities are repre-
sented by nodes and different types of events are represented by
links. Both nodes and links have related features. Dataset B is a
user-item graph, in which users and items are represented by nodes
and various types of interactions are represented by links. But only
the links have features. Therefore, unlike dataset A, dataset B is
bipartite.

For simplicity, we regard both datasets as dynamic heteroge-
neous information networks. In such networks, node represents
entities in Dataset A and users or items in Dataset B, link represents

events in Dataset A and interactions in Dataset B, relation repre-
sents link’s type, and timestamp in Unix Epoch indicates when the
link occurs. All links are undirected. And we ignore all raw features
provided by datasets.

Formally, (source, destination, relation, timestamp) means that a
link between source node and destination node of a given relation
occurs at time of timestamp in Unix Epoch.

Every timestamp can be divided by 3600 in the training set of A
but can’t in the dataset B and the test sets of A. For consistency, we
convert all timestamps in both datasets in this way:

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑛𝑒𝑤 = ⌊ 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑜𝑙𝑑
3600

⌋

Then, we can convert the unit of all timestamp from seconds to
hours.

2.2 Task Definition
We define the task as a temporal link prediction: Given link data
before time T, we predict whether a link of a given type will occur
between two nodes within a given time span which is from time
𝑇 +1 to𝑇 +𝑥 [2]. The time between𝑇 +1 and𝑇 +𝑥 is regarded as the
prediction span of this prediction, and the period which contains all
prediction spans is regarded as the prediction period of the dataset.

Formally, the prediction task from test sets is the probability
that (source, destination, relation, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝1, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝2) is true.
The time between 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝1 and 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝2 is its prediction
span we defined. The time between the min 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝1 and the
max 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝2 from all predictions is the prediction period of the
dataset.

For simplicity, we divide a prediction span into time points by
hour. So we only need to predict the probability that (source, desti-
nation, relation, timestamp) is true, where the timestamp is in hours.
For these probability values from the same prediction span, we try
many aggregation methods. Then we take the maximum as the
corresponding result. Now, the data from the training sets and the
test sets are same in form: (source, destination, relation, timestamp).

According to the words defined above, Table 1 shows the statis-
tics of dataset A and dataset B.

3 HETEROGENEOUS TEMPORAL GRAPH
NETWORK

Heterogeneous Temporal Graph Network (HTGN) can be regarded
as an encoder-decoder pair. The encoder, based on TGNs, is used
to map from a temporal graph to the embeddings of the nodes
𝑍 (𝑡) = (𝑧1 (𝑡), 𝑧2 (𝑡), ..., 𝑧𝑛 (𝑡)) for each time 𝑡 [3]. And the decoder
takes two embeddings as inputs and makes a link prediction. Figure
1 shows the structure of HTGN. Partial modules have been modified
to meet our needs, but there are still some modules that are similar

HTGN-BTW: Heterogeneous Temporal Graph Network with Bi-Time-Window Training Strategy for Temporal Link Prediction WSDM’22, February, 2022, XXX, USA

Memory
Window

Prediction

Window

ALL

Parameter Update
Batch

GRU

Memory

Static Node
Embedding

Temporal

Attention MLP

Temporal Node
Embedding

Link
Probability

Time

Axis

Sampler

Source Desti-
nation Relation Times-

tamp

Memory Update
Batch

1

p

Source Desti-
nation Relation Times-

tamp

1

q

1

p

Source Raw
Message

Destination Raw
Message

Source

Message

Destination
Message

1

q

1

q

Source
 Destination

1

p

1

p

1

p

Message

Function

Raw

Message Function

Memory

Figure 1: Operation Flow of HTGN. 𝐵𝑇𝑚𝑤 is the beginning time of the memory window. 𝐸𝑇𝑚𝑤 is the end time of the memory
window. 𝐸𝑇𝑚𝑤 + 1 is the beginning time of the prediction window. The length of the prediction window is 𝐿𝑝 hours. So the end
time of the prediction window is 𝐸𝑇𝑚𝑤 + 𝐿𝑝 .

or identical to those in TGNs. We will introduce the modules of
HTGN one by one.

3.1 Modules
Memory. Same as that in TGNs, the memory module consists of
vectors𝑚𝑖 (𝑡𝑖) for each node 𝑖 . 𝑡𝑖 is the memory update time of node
𝑖 , and each node has its own memory update time. The memory
of a node is initialized to a zero vector and updated when one link
associated with this node appears. Note that the memory is not
updated in backpropagation. This module is used to store nodes’
historical information. More details can be found in TGNs.

Static Node Embedding. It is a new module used to represent
nodes’ features. The static node embedding module also consists of
vectors 𝑠𝑛𝑒𝑖 for each node 𝑖 , which are initialized randomly. Unlike
the memory module, the static node embedding will be updated
in backpropagation. It can be viewed as a substitute for raw node
features so that we don’t have to care whether a dataset has node
features.

Relation Embedding. For each relation 𝑟 , there is an embedding
vector 𝑟𝑒𝑟 which is called relation embedding. By this module, we
can ignore whether a dataset has raw relation features and improve
the ability of HTGN to express the heterogeneity of graphs.

Time Encoder. It is an encoder that can map a time difference
𝑡2 − 𝑡1 to a vector 𝑡𝑒𝑡2−𝑡1 . But different from TGNs, we use a time
encoder with practical significance. Specifically, for each time dif-
ference, we calculate some numbers: the number of hours in a day,
the number of days in a week, the number of days in a month, the
number of weeks in a month, and the number of months in a year.
Then we concatenate these numbers to a vector, and encode this
vector by a two-layer MLP which is activated by ReLU after each
layer. There are three kinds of time differences: the link time minus
the memory update time, the query time minus the link time, and

the query time minus the memory update time. Correspondingly,
we use three such time encoders in HTGN.

RawMessage Function.We take the message function in TGNs
as the raw message function. For each link (𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛,
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝), we will record two raw messages for updat-
ing the memory of the source node and destination node. A raw
message is a simple concatenation of the source node memory𝑚𝑠 ,
the destination node memory𝑚𝑑 , the relation embedding 𝑟𝑒𝑟 and
the time difference embedding 𝑡𝑒𝑡𝑙−𝑡𝑠 for the difference between
the link time 𝑡𝑙 and the source node’s memory update time 𝑡𝑠 :

𝑟𝑚𝑠𝑔𝑠 (𝑡𝑙) =𝑚𝑠 ∥ 𝑚𝑑 ∥ 𝑟𝑒𝑟 ∥ 𝑡𝑒𝑡𝑙−𝑡𝑠 (1)
𝑟𝑚𝑠𝑔𝑑 (𝑡𝑙) =𝑚𝑑 ∥ 𝑚𝑠 ∥ 𝑟𝑒𝑟 ∥ 𝑡𝑒𝑡𝑙−𝑡𝑑 (2)

Message Function. The message function is a two-layer fully
connected feed-forward network. The first layer is activated by
ReLU, and the second layer is not activated but the output is batch
normalized. This function is used to map a raw message 𝑟𝑚𝑠𝑔𝑖 (𝑡𝑙)
of node 𝑖 to a message𝑚𝑠𝑔𝑖 (𝑡𝑙).

After a batch of links, a node will have many messages. In TGNs,
there is a message aggregator to aggregate these messages into
one message. But we remove this module to better save temporal
information in HTGN, which also brings an expensive time cost.

Memory Updater. We use a GRU as the memory updater. It
takes a node memory as the initial hidden state, messages of the
corresponding node as the features of the input sequence, and the
updated hidden state as the updated memory. Meanwhile, we take
the max timestamp of these messages as the new memory update
time.

Temporal Graph Attention. Similar to TGNs, this module is
used to generate the temporal embedding 𝑧𝑖 (𝑡) of node 𝑖 at any time
𝑡 . We choose temporal graph attention (attn) as the basic imple-
mentation and make some adjustments to it for better performance.
Now, this module is a one-layer graph attention to compute 𝑖’s
embedding by aggregating information from its partial one-hop

WSDM’22, February, 2022, XXX, USA Chongjian Yue, Lun Du, Qiang Fu, Wendong Bi, Hengyu Liu, Yu Gu, and Di Yao

neighbors in our model:

𝑧𝑖 (𝑡) = 𝑀𝐿𝑃 (𝑞𝑖 (𝑡) ∥ 𝑜𝑖 (𝑡)), (3)
𝑜𝑖 (𝑡) = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖 (𝑡), 𝐾 (𝑡),𝑉 (𝑡)), (4)
𝑞𝑖 (𝑡) = 𝑧̃𝑖 ∥ 𝜙𝑠𝑟𝑐 (𝑡 − 𝑡𝑖), (5)
𝐾 (𝑡) = 𝑉 (𝑡) = 𝐶 (𝑡), (6)
𝐶 (𝑡) = [𝑧̃ 𝑗 ∥ 𝜙𝑛𝑔ℎ (𝑡 − 𝑡 ′𝑗) ∥ 𝑟𝑒𝑖 𝑗 , ..., 𝑧̃𝑘 ∥ 𝜙𝑛𝑔ℎ (𝑡 − 𝑡 ′𝑘) ∥ 𝑟𝑒𝑖𝑘] . (7)

Here, 𝑡 is a prediction time, 𝑡𝑖 is the memory update time of 𝑖 ,
𝑧𝑖 (𝑡) is the temporal embedding of 𝑖 at time 𝑡 , 𝑧̃𝑖 (𝑡𝑖) is the initial
temporal embedding of node 𝑖 which is the weighted sum of the
memory𝑚𝑖 (𝑡𝑖) and the static node embedding 𝑠𝑛𝑒𝑖 . And we select
some links {𝑒𝑖 𝑗 (𝑡 ′𝑗), ..., 𝑒𝑖𝑘 (𝑡

′
𝑘
)} related to 𝑖 , whose link times are

closest to 𝑡𝑖 . {𝑟𝑒𝑖 𝑗 , ..., 𝑟𝑒𝑖𝑘 } are relation embeddings of these links,
{𝑡 ′
𝑗
, ..., 𝑡 ′

𝑘
} are timestamps of these links, and {𝑧̃ 𝑗 (𝑡 𝑗), ..., 𝑧̃𝑘 (𝑡𝑘)} are

initial temporal node embeddings of these links’ destination nodes.
We omit 𝑡𝑥 from 𝑧̃𝑥 (𝑡𝑥) in the equations. 𝜙 is a time encoder we
mentioned above: 𝜙𝑠𝑟𝑐 is only used to encode the time difference
between the prediction time and the memory update time, and
𝜙𝑛𝑔ℎ is only used to encode the time difference between the predic-
tion time and the link time. ∥ is the concatenation operator, and
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is an operation proposed in [4].

X-MLP. For each relation, we take an MLP as the corresponding
decoder, which takes two temporal node embeddings as input and
outputs a value as the probability of a link with a given relation.
The number of MLPs is the same as the number of relations. For
acceleration, we calculate all MLPs in parallel and name it XMLP.

3.2 Bi-Time-Window Training Strategy
In the training stage, we set two adjacent sliding time windows, i.e.,
Memory Window and Prediction Window, with length 𝐿𝑚 hours
and 𝐿𝑝 hours for the training batch generation. For the 𝜏-th train-
ing step, we select samples (i.e., temporal links) within Memory
Window and Prediction Window to construct a memory update
batch 𝐵𝑚𝜏 and a parameter update batch 𝐵𝑝𝜏 , respectively. The sam-
ples in the memory update batch are only used to update memory
and do not participate in the back propagation. The samples in the
parameter update batch are the opposite only serving parameters
update.

Intuitively, such a training strategy is more aligned with the real
inference stage where we need to conduct predictions for a time
span in a relatively far future. Thus, our model cannot leverage the
memory which is updated by real links close to the prediction time.
In our training stage, the length of Prediction Window 𝐿𝑝 is set to
be similar to the time length between the latest training data and
the latest test data, and the samples within the Prediction Window
cannot update the memory in the 𝜏-th training step, which can be
viewed as a simulation of the prediction procedure.

To be specific, when generating the memory update batch 𝐵𝑚𝜏 ,
we fix the number of samples instead of fixing time lengths for
performance issues. When generating the parameter update batch
𝐵
𝑝
𝜏 , we conduct a negative sampling to generate negative samples.

We design two sampling strategies: pure random and varying along
a certain dimension. Pure random is to randomly generate nega-
tive sample quadruples, (source, destination, relation, time) within
Prediction Window. Varying along a certain dimension means that

Table 2: Experimental Configuration and Result

Dataset A Dataset B

Relation Dimension 64 8
Other Dimensions 64 128
Attention Heads 2 4

Initial𝑤0 0.1 1.0
Initail𝑤1 0.9 0.0

Prediction Period 1300h 2300h
Memory Update Batch Size 1024 512

AUC 0.663338 0.906327

we select a dimension from the source, destination, and relation in
turn, then replace the corresponding dimension of the positive sam-
ples with a random value. Negative samples from two strategies
combined with positive samples form the parameter update batch.

Finally, the temporal graph attention module uses the initial
temporal embedding to calculate the temporal embedding of the
corresponding nodes in the prediction batch. As a decoder, X-MLP
will give the link probability by a pair of temporal node embeddings.
Lastly, through the ground truth and probability, we calculate the
loss value and update parameters of HTGN by back propagation.

4 EXPERIMENT
In our experiments, we use the whole training set for model training
and take the result on the intermediate test set as the measurement.
We select the best model from 10 epochs to generate the final
prediction result for dataset A, and 15 epochs for dataset B.

For both datasets, the learning rate is 0.001; the dropout is 0.1;
the size of a memory update batch is 1024; the size of a positive
prediction batch is 1024; the size of a negative prediction batch that
comes from pure random is 1024; the size of a negative prediction
batch that comes from the strategy of varying along a certain di-
mension is 3072; and we select 40 neighbors in the temporal graph
attention module. More hyperparameters and results are reported
in Table 2. Here, other dimensions include the message dimension,
the memory dimension, the time encoder dimension, and the tem-
poral node embedding dimension. The initial𝑤0 is the initial given
weight of the memory module, and the initial𝑤1 is the initial given
weight of the static node embedding module. AUC means the AUC
score on the intermediate test set.

5 CONCLUSION
In this paper, we introduce our proposed model HTGN with a
Bi-Time-Window training strategy in details. As a result of the
challenge, we won the second place on the leaderboard.

REFERENCES
[1] Aswathy Divakaran and Anuraj Mohan. 2020. Temporal link prediction: A survey.

New Generation Computing 38, 1 (2020), 213–258.
[2] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. 2011. Temporal link predic-

tion using matrix and tensor factorizations. TKDD 5, 2 (2011), 1–27.
[3] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, FedericoMonti,

and Michael Bronstein. 2020. Temporal Graph Networks for Deep Learning on
Dynamic Graphs. arXiv:2006.10637 [cs.LG]

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. NIPS
30 (2017).

https://arxiv.org/abs/2006.10637

	Abstract
	1 Introduction
	2 Dataset
	2.1 Dataset Overview
	2.2 Task Definition

	3 Heterogeneous Temporal Graph Network
	3.1 Modules
	3.2 Bi-Time-Window Training Strategy

	4 Experiment
	5 Conclusion
	References

