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Abstract
Prompt-based learning, with its capability to
tackle zero-shot and few-shot NLP tasks, has
gained much attention in community. The main
idea is to bridge the gap between NLP down-
stream tasks and language modeling (LM),
by mapping these tasks into natural language
prompts, which are then filled by pre-trained
language models (PLMs). However, for prompt
learning, there are still two salient gaps be-
tween NLP tasks and pretraining. First,
prompt information is not necessarily suffi-
ciently present during LM pretraining. Second,
task-specific data are not necessarily well rep-
resented during pretraining. We address these
two issues by proposing AdaPrompt, adaptively
retrieving external data for continual pretrain-
ing of PLMs by making use of both task and
prompt characteristics. In addition, we make
use of knowledge in Natural Language Infer-
ence models for deriving adaptive verbaliz-
ers. Experimental results on five NLP bench-
marks show that AdaPrompt can improve over
standard PLMs in few-shot settings. In addi-
tion, in zero-shot settings, our method outper-
forms standard prompt-based methods by up to
26.35% relative error reduction.

1 Introduction

Prompt-based methods (Brown et al., 2020; Liu
et al., 2021; Schick and Schütze, 2021a; Li and
Liang, 2021) have received increasing attention in
Natural Language Processing (NLP) recently. The
main idea is to make the most use of pre-trained lan-
guage models (PLMs) by adapting an NLP task into
a natural language prompt, which can then be filled
by PLMs. Take sentiment classification (Socher
et al., 2013) for example. Given the sentence “I
love the movie.”, the standard task is to make a
binary classification on its sentiment polarity (i.e.,
positive or negative). Prompt-based meth-
ods first transform the sentence into “I love the
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Figure 1: The distributions of data in prompt-based
models. Task data, domain data, prompt data, and gen-
eral data (for LM pretraining) are usually sampled from
different distributions while remaining certain overlap
(target data for prompt training). We aim to explore
data from the overlapping area of these distributions to
bridge the gap between PLM and downstream tasks in
prompt-based systems.

movie. The movie is ⟨mask⟩.” (the underlined text
is called prompt), and then identify its polarity by
checking whether PLMs tends to predict “good” or
“bad” for the ⟨mask⟩ token (where the predicted
words are then verbalized into class labels). The
prompt-based task formulation is close to masked
language modeling (Schick and Schütze, 2021a,b),
which is the mainstream pretraining strategy, al-
lowing PLMs to provide rich language knowl-
edge seamlessly. Prompt-based methods have been
shown particularly useful in zero-shot and few-shot
settings (Petroni et al., 2019; Yin et al., 2019; Min
et al., 2021), where with limited direct task data,
prompt-based inference benefits more from large-
scale pretraining than task-oriented finetuning.

Existing methods, however, still suffer from sev-
eral potential limitations. First, large raw text
data used for pretraining do not necessarily con-
tain sufficient patterns that are directly related to
task specific prompts (Illustrated in Figure 1). For



It’s a charming and often affecting journey.

It’s a charming and often affecting journey. In 
summary, the movie is <mask>.

Search Engine

Prompt-aware query
It’s a charming and often affecting journey. In summary, the movie
is great.

It’s a charming and often affecting journey. In summary, the movie
is amazing.

…

Retrieve from General Data
But it was a wonderful movie, and to this day, people will say to me, 
" I loved that movie Jersey Girl!" It really is a funny, charming 
movie. It‘s very sweet, and it‘s a great romantic comedy.

I first heard about this from Chelsi‘s blog (thanks Chelsi for getting 
the word out!) She gives a great summary of the movie which you 
can read about here. This was the best movie we had seen in a long 
time.

...

query

retrieve

Input text

continual pretrain

predicted label words
great

amazing

…

positive negative
good bad

great …

… …

verbalizer augmentation

Adapted Pretrained Language Model

pattern

PLM mask prediction

NLI filter

Adapted Verbalizers

Figure 2: Overall procedure of AdaPrompt.

instance, the prompt for a question classification
task is “Can you tell me the ⟨mask⟩: What are the
twin cities?”, where ⟨mask⟩ should be a class la-
bel word, e.g., location, person and etc (the correct
label for this sample is definition). In contrast, LM
pretraining data are typically BOOKCORPUS (Zhu
et al., 2015) plus WIKIPEDIA corpus, where such
prompts can occur scarcely in the literal or para-
phrased form. In addition, texts of specific task,
e.g., movie review, can differ from PLMs training
data. As a result, directly using PLMs to fill such
handcrafted prompts across domains can lead to
poor performance. Second, to project mask predic-
tion and label space, most existing work (Schick
and Schütze, 2021a,b; Cui et al., 2021; Yin et al.,
2019) uses a pre-defined verbalizer. However, it
requires expert knowledge to build a verbalizer that
can thoroughly cover candidate words and a poorly-
designed verbalizer limits the accuracy of predic-
tions. These problems become even more serious
under zero-shot or very-few-shot settings, where
prompt-based models highly rely on the generaliza-
tion ability of PLMs to new tasks and domains.

We propose AdaPrompt, a framework that can
adapt a PLM for the end task considering both the
prompts and the verbalizer. We are interested in
addressing the above issues under a zero-shot set-
ting, where little or no labeled training data are
available for a particular task. This setting is practi-
cally useful in that it involves manual labeling only
for the prompt itself. The main idea is to adapt a
PLM for the end task and prompt by making use-

ful for raw test input data. In particular, as shown
in Figure 2, given a test set, we expand each test
input by augmenting it with different filled prompt
templates (e.g., “In summary, the movie is great.”),
and then use the resulting sentences (prompt-aware
query) to retrieve relevant data from large raw texts.
Using this methods, we can obtain large data that
contain task and prompt characteristics, and then
we adaptively continual pretrain (Gururangan et al.,
2020) PLMs on the retrieved data, which can ben-
efit prompt-based methods on NLP downstream
tasks.

Given a specific task, different words can be
verbalized into the same class labels. For exam-
ple, a large number of adjectives can express the
positive sentiment, and the best-performing candi-
dates depend on the domain, PLM and context. In
AdaPrompt, we propose to adaptively augment ver-
balizers by making use of knowledge from PLMs
and Natural Language Inference (NLI) models.
Take sentiment analysis for example, given “good”
and “bad” as seed verbalizers, we first let PLMs to
predict more candidate words, such as “amazing”
and “great”. Then, to identify if these candidates
are suitable to verbalizer, we refer to a NLI model
to predict whether “This movie is amazing.” entails
the meaning of “This movie is good.”. Using this
method, we are able to automatically expand the
verbalizers.

Experiments on five text classification datasets
show that AdaPrompt can outperform baseline
prompt-based methods by 2.29%-5.79% under



very-few-shot setting and 2.46%-15.00% under
zero-shot setting on accuracy. To our knowledge,
we are the first to consider to bridge the gap be-
tween LM pretraining and NLP downstream tasks
for prompt-based NLP.

2 Related work

2.1 Prompt-based NLP for Zero/Few-shot
Learning

Although prompt-based methods have been used
for machine translation (Brown et al., 2020; Raffel
et al., 2020), summarization (Brown et al., 2020;
He et al., 2020; Li and Liang, 2021), informa-
tion extraction (Cui et al., 2021) and fact prob-
ing (Petroni et al., 2019), most of existing work
focus on text classification (Shin et al., 2020; Gao
et al., 2020; Min et al., 2021; Hu et al., 2021). A
typical related work is PET (Schick and Schütze,
2021a), where Schick and Schütze (2021a) for-
mally define pattern-verbalizer pairs that have
been widely adopted by successive works. By
using such pairs, Schick and Schütze (2021a,b)
develop a series of work to explore the poten-
tial of PLMs, including annotating soft labels for
raw training data, and data augmentation in it-
eratively. However, different from PET that as-
sumes the availability of large silver training set for
downstream tasks, we focus on zero and very-few-
shot settings, where even unannotated task-relevant
dataset is also limited (Perez et al., 2021). There-
fore, following Hu et al. (2021), we simply focus
on standard pattern-verbalizer pairs for text classi-
fication.

Prompt engineering (Jiang et al., 2020; Gao et al.,
2020) focuses on how to create discrete or con-
tinuous prompts that can better induce PLMs to
make correct predictions. Discrete prompt engi-
neering works by replacing, deleting, inserting or
paraphrasing parts of the prompt. For example,
Wallace et al. (2019) use gradient-based search to
explore phrases that can better trigger PLMs to
make target predictions. Yuan et al. (2021) para-
phrase prompts by replacing some phrases from
a thesaurus. Such methods require a set of anno-
tated data for validating the prompt quality. Con-
tinuous prompt (Lester et al., 2021; Li and Liang,
2021) performs prompting in the embedding space,
which can be free of human language and reduce
the cost of manually designing hard prompts. Meth-
ods with continuous prompts usually require tun-
ing trainable parameters for prompts (Li and Liang,

2021; Shin et al., 2020). Gao et al. (2020) pro-
pose LM-BFF, a method that can automatically
generate prompts and incorporate demonstrations
into context, which are then used for prompt-based
tuning using demonstrations. Those methods can
efficiently adapt PLMs to downstream tasks, but
they highly reply on annotated data for tuning pa-
rameters. Different from the above studies, we are
interested in narrowing the gap between LM pre-
training and NLP tasks for prompting learning in
zero or very-few-shot settings.

It has been shown that using different verbalizers
can be a key factor for prompt-based methods (Hu
et al., 2021; Cui et al., 2021). However, manu-
ally exploring these label words is time-consuming
and may neglect a lot of potential candidates. A
straightforward idea to extend verbalizer by iden-
tifying synonyms of pre-defined words. Such a
method can cause problems when a word has dif-
ferent meanings. To take the most advantage of
knowledge in PLMs, we propose to automatically
adapt verbalizers to be more relevant to prompt
context. Recently, Hu et al. (2021) propose Knowl-
edgeable Prompt-tuning that uses multiple external
knowledge bases, including related words and sen-
timent dictionaries, to augment verbalizer words
for corresponding tasks. Different from them, we
focus on exploring knowledge in PLMs themselves.
By making use of external NLI models AdaPrompt
can select verbalizers automatically without the
need of labeled task data, which is useful in zero-
shot settings.

2.2 Continual Pretraining for Domain
Adaptation

Continual pretraining (Gururangan et al., 2020)
has shown benefit of optimizing a PLM to a target
domain before further finetuning. It can be cate-
gorised into domain adaptive continual pretraining
and task adaptive continual pretraining. The differ-
ence is that, domain adaptive pre-training (DAPT)
uses domain relevant data while task adaptive pre-
training (TAPT) uses task-specific data. For ex-
ample, given the AGNews dataset for the news
classification, DAPT uses NEWS dataset (Zellers
et al., 2019) to continual pretrain a language model,
while TAPT uses the training set of AGNews.

Similar to continual pretraining, many recent
methods highlight the merits of relying on lan-
guage modeling objectives for domain adaptation.
Chronopoulou et al. (2019) and Radford et al.



(2018) propose to train task-specific parameters
for PLMs by using an auxiliary LM loss on target
domain. Works like SciBERT (Beltagy et al., 2019)
and DialogLM (Zhong et al., 2021) are PLMs that
are continually pretrained on large amounts of sci-
entific and dialogue corpora. UDALM (Karouzos
et al., 2021) first trains PLMs by masked language
modeling (MLM) on the target domain and then
trains a target classifier with source domain labeled
data, while keeping the MLM objective on unla-
beled target domain data.

Data selection is a common practice in domain
adaption for NLP models (Moore and Lewis, 2010;
Ruder and Plank, 2017; Van Der Wees et al.,
2017). It has been used in machine translation (Van
Der Wees et al., 2017; Wang et al., 2018), pars-
ing (Plank and Van Noord, 2011; Ruder and Plank,
2017), named entity recognition (Dai et al., 2019)
and sentiment analysis (Ruder et al., 2017). The
main idea is to have a selection model that can dis-
tinguish in-domain and out-of-domain data. The
selection model can be a supervised classifier (Aha-
roni and Goldberg, 2020), similarity-based met-
ric (Plank and Van Noord, 2011) or language model
perplexity (Moore and Lewis, 2010). Very recently,
Yao et al. (2021) propose to retrieve a small set
of training data from general corpora with labeled
task data as queries, finding that using language
modeling objective on this data as an auxiliary loss
can help train task-specific NLP models without
pretraining.

3 Method

Our method is based on prompt-based text classi-
fication methods (Section 3.1). The overall proce-
dure of AdaPrompt is shown in Figure 2, which
can be divided into two parts: PLM domain adap-
tation (Section 3.2) and verbalizer adaptation (Sec-
tion 3.4). In Section 3.3, we introduce a method
that adapts both PLMs and verbalizers in an itera-
tive way for continual improvements.

3.1 Prompt-based Text Classification

Given an input text, x = (x0, x1, ..., xn), we con-
sider various tasks to classify the sentence into a
class label l ∈ L. As mentioned in Section 1,
the standard prompt-based method reformulates
the input into a cloze-style question and identifies
its label by checking PLMs’ predictions. Table 1
shows the prompt templates and verbalizer patterns
for the SST-2 (Socher et al., 2013), Yelp (Zhang

et al., 2015), AGNews (Zhang et al., 2015), TREC
(Voorhees and Tice, 2000) and DBPedia (Lehmann
et al., 2015) datasets, which cover sentiment clas-
sification, topic classification and question clas-
sification tasks. Formally, let M be a language
model pre-trained on large-scale general data, and
⟨mask⟩ be the mask token. The prompt-based
method first defines a pattern function, Prompt,
that converts x into a cloze-style question contain-
ing ⟨mask⟩. Then, it defines a verbalizer function
v, which maps a small set of pre-defined verbal-
izer words (Y) predicted at the position of <mask>
into class labels, i.e., v : Y 7→ L.

Take sentiment classification for movie review
for instance. The task is to classify the sentiment
polarity, where L = {positive, negative}.
For an input x, we choose the pattern:

Prompt =“x. In summary, the movie is
⟨mask⟩.”

Then we define a verbalizer that maps Y =
{“good”, “bad”} into L:

v(“good”) = positive;
v(“bad”) = negative

Given an example:
x = “It’s a charming and often affecting jour-

ney.”,
we can convert the input into a cloze-style ques-

tion using Prompt:
Prompt(x) = “It’s a charming and often af-

fecting journey. In summary, the movie is ⟨mask⟩.”
Using such pattern-verbalizer pairs, we ask M

to directly give scores s for each label l ∈ L as:

s(l|x) = Pr[<mask> = y|Prompt(x),M] (1)

where l = v(y). The predicted label is:

l̂ = argmax
l∈L

s(l|x) (2)

3.2 Adaptively Retrieve Data for Continual
Pretraining

As discussed in the Section 1, the lack of domain
adaptation can be a potential challenge for prompt-
based NLP models, especially under zero-shot and
very-few-shot settings. To tackle this problem, we
propose to build a continual pretraining dataset by
retrieving from general corpora, with unannoated
test texts, designed prompts and label words as
queries. In this way, we can obtain task-relevant
data for any tasks or domains, using only test input.
Meanwhile, prompt and verbalzier information is



Dataset Class Classification Prompt Template Verbalizer
SST-2 2 sentiment Text In summary, this movie is ⟨mask⟩. “good”, “bad”
Yelp 2 sentiment Text In summary, this restaurant is ⟨mask⟩. “good”, “bad”
AGNews 4 news topic [Category: ⟨mask⟩] Title , Body “Sport”, “Tech”, “Business”, “World”

TREC 6 question type Can you tell me the ⟨mask⟩ Text “explanation”, “description”, “person”,
“location”, “number”, “entity”

DBPedia 14 ontology Introduction to the ⟨mask⟩ Text
“company”, “school”, “artist”,“film”,
“book”, “plan”, “building”, “village”,

“animal”, “sport”, “album”,
“officer”, “scenery”, “transportation”

Table 1: Datasets used in this paper with seed prompts and verbalizer words. Each seed verbalizer word corresponds
to a class label.

also considered during the retrieval process, lead-
ing to a more comprehensive dataset for prompt-
aware continual pretraining.

Formally, given a retrieval query q, a retrieval
engine ED indexed on a large general dataset D
can return a set of similar text dq = ED(q). In
order to obtain prompt-aware data that can not only
adapt PLMs to target domains but also make PLMs
more sensitive to prompts, we include both task
and prompt characteristics when building queries.
As shown in Figure 2, for an unannotated input text
x in text data, we first convert it into Prompt(x),
and obtain a set of predicted label words using a
PLM M:

O = M(Prompt(x)) (3)

where O = {o1, o2, ..., o|O|} are the top-|O| pre-
dictions. We replace the mask token in P (x) with
oi, to form a list Q of queries. For example:

Q = {q1, ..., q|O|} (4)

qi = “x. In summary, the movie is oi.” (5)

With this set of prompt-based queries, we retrieve
prompt-aware data Dp, which is a small subset
of the general data. In this work, we use Elastic-
Search1 as the search engine since it is fast and
training-free. ElasticSearch is a distributed search
engine that can return a list of top-k texts that
match the query. We consider TF-IDF as the sim-
ilarity metric and take BOOKCORPUS (Zhu et al.,
2015) plus WIKIPEDIA, CCNEWS (Nagel, 2016),
STORIES (Trinh and Le, 2018), and OPENWEB-
TEXT (Gokaslan and Cohen, 2019) as the set of
raw text data to query from. We first index general
corpora on sentence level, and use prompt-aware
query to retrieve relevant data. To enrich the con-
text information, we also extract the previous and

1https://www.elastic.co

Algorithm 1 Verbalizer Adaptation
Input: prompt P , seed verbalizer words y ∈ Yl, candidate
words c ∈ C and an NLI system N
for c in C do

if N (f(P, y), fill(P, c)) = Entail
or N (fill(P, c), f(P, y)) = Entail then
add c in Yl

end if
end for
Return Yl

following sentences of the one that is invoked by
prompt-aware queries, and concatenate them in
their natural order as a line of data. As shown
in Figure 2, one test input can lead to multiple
prompt-aware queries because the masked token in
the prompt can be replaced by the |O| predictions.
In addition, one query can lead to multiple outputs
returned by ElasticSearch engine as demanded.

We continue to pretrain the PLM M on Dp

with masked language modeling loss and obtain
an adapted PLM MDp . MDp now contains richer
knowledge of both the target domain and the
prompts. It can be used to replace M in Eq. 1
for zero-shot text classification.

3.3 Iterative Adaptation

After obtaining MDp for a specific task (Sec-
tion 3.2), we can iterate the process by replacing
M with MDp in Eq. 3, and obtain an iterative set
of predicted words and a list of queries marked as
O′ and Q′. Given that O′ contains more in-domain
knowledge, we can retrieve higher quality pretrain-
ing data with more task relevant information, using
Q′ to query the ED. In this way, we obtain a new
version of D′

p, and a new continual pretrained PLM
M′

Dp
, which can also be used to make zero-shot

predictions using Eq. 1. In this work, we conduct
this procedure twice.



Dataset Testset Top-|O| Espace Resulting Data
TREC 500 20 100 60k
SST-2 872 20 100 205k
AGNews 7,600 10 50 414k
YELP 38,000 1 50 267k
DBPedia 70,000 1 50 1,301k

Table 2: Data statistics for datasets. Espace corresponds
to the ElasticSearch space. Note that the resulting data
size is calculated after data de-duplication.

3.4 Adaptive Verbalizer Augmentation

As described in Section 3.1, the regular prompt-
based method defines the verbalizer that maps pre-
dicted label word into task classes, such as “good”
for positive and “bad” for negative. In par-
ticular, as shown in Figure 2, for an unannotated
test input, we infer top-|O| label words at mask
token position. We then collect these labels over
testset, filter by word frequency, and obtain a set of
words C than can be used as candidates for verbal-
izer augmentation. We find that Natural Language
Entailment models are good protocols to further
select these candidates. It can explore entailment
relation between candidate words and seed verbal-
izer words under certain context.

Specifically, given a seed verbalizer word yl ∈
Yl for label l , and a candidate word c ∈ C, we
compare whether a prompt filled by yl is entailed
with the prompt filled by c. The pseudo code is
shown in Algorithm 1, where N is an NLI system,
and N (s1, s2) = Entail means sentence s1 entails
sentence s2. fill(P,w) is a function that fills the
mask token with a word w in the prompt P . If
entailment relation holds for this pair, we then add
c add in to Yl, which can be used as an augmented
verbalizer.

After obtaining the augmented set of verbalizer
words, Eq. 1 can be rewritten as:

s(l|x) = 1

|Yl|
∑
y∈Yl

Pr[<mask> = y|Prompt(x),M]

(6)
and we can still use Eq. 2 for prediction.

3.5 Patterns and Verbalizers

To evaluate our methods, we conduct experiments
on five benchmarks: SST-2 (Socher et al., 2013),
Yelp (Zhang et al., 2015), AGNews (Zhang et al.,
2015), TREC (Voorhees and Tice, 2000) and DBPe-
dia (Lehmann et al., 2015) datasets. Table 1 shows
prompt templates and seed verbalizer words that we
use for each dataset. For AGNews and YELP, we

adapt patterns and verbalizers from PET (Schick
and Schütze, 2021a) since it is the basic prompt-
based method that has been mostly widely used.

AGNews is a text classification dataset in the
domain of News. Given a headline and a main
text body, the model is require to classify the news
into one of the classes: (1) World, (2) Sports, (3)
Business or (4) Science/Tech.

YELP is a sentiment analysis dataset. Given a
restaurant review, the task is to predict whether the
review is positive or negative.

SST-2 is a sentiment analysis dataset similar to
YELP but its domain is movie reviews. Thus, we
use the same seed prompt and verbalizer words
as for YELP, but change “restaurant” in prompt
template to “movie”.

DBPedia 2014 is an ontology classification
dataset, extracted from DBPedia 2014 with 14 non-
overlap classes, such as Educational Institution and
Office Holder. We define two patterns for this task:

P1(x) = “Description to the ⟨mask⟩ x”
P2(x) = “Introduction to the ⟨mask⟩ x”

and we use P2 as the seed pattern.
TREC-10 is a question classification dataset.

Given a question, the task is identify the objective
that the question asks, and classify it into one of six
classes, such as a definition question or a numeric
question. We define two patterns for this task:

P1(x) = “Tell me the ⟨mask⟩ x”
P2(x) = “Can you tell me the ⟨mask⟩: x”

and P2 as the seed prompt.

4 Experiments

4.1 Settings

Since AdaPrompt is completely free of annotated
data and it aims to enhance the domain knowl-
edge of PLMs, it can be easily applied to existing
prompt-based methods that use discrete prompts.
In this work, we take ROBERTA-large (Liu et al.,
2019) as our foundation PLM and adopt pattern-
verbalizer pairs from (Schick and Schütze, 2021a)
(Section 3.1) as the baseline setting, because it
is the basic prompt-based method that has been
mostly widely used and can be easily extended to
other methods, such as AutoPrompt (Shin et al.,
2020).

Since we consider zero-shot settings, the choice
of hyper-parameters is based previous work (Gao
et al., 2020; Schick and Schütze, 2021a,b) and em-
pirical consideration. For all continual pretraining,
we use a learning rate of 1e−5, batch size of 12 per



Models SST-2 Yelp AGNEWS DBPedia TREC Avg.
Channel 77.10±NA(NA) −− 61.80±NA(NA) 51.40±NA(NA) 30.50±NA(NA) −−
GPT-3 75.80± 0.00(75.80) −− 73.90± 0.00(73.90) 59.70± 0.00(59.70) 57.40± 0.00(57.40) −−
ROBERTA 64.56± 16.77(88.99) 72.63± 16.34(87.97) 69.52± 6.96(78.76) 56.32± 0.49(56.67) 45.50± 0.14(45.60) 61.71
Ada 75.92± 17.36(91.28) 75.09± 17.57(89.25) 76.55± 7.28(84.95) 70.95± 8.80(77.17) 60.50± 3.54(63.00) 71.80
iAda 77.18± 17.96(91.74) 75.81± 18.05(90.41) 74.28± 9.00(83.37) 73.01± 6.70(77.92) 61.10± 1.27(62.00) 72.28

Table 3: Zero-shot results. We report average accuracy and standard deviation of different patterns here. Results
of the best patterns are shown in brackets. The Avg. reports the overall averaged results. Ada and iAda denote to
AdaPrompt and iterative AdaPrompt based on ROBERTA-large, respectively. Channel (Min et al., 2021) is based on
GPT-2 large. GPT-3 results are reported by Zhao et al. (2021), using GPT-3 (175B). NA denotes to that results are
not reported. For GPT-3 (Zhao et al., 2021), they only use a fixed prompt format.

GPU. We train each model for 3 epochs and use
the 500 training step model for evaluation.

For few-shot settings, we evaluate our models
using regular prompt tuning and sequence classifier
with 10, 50, 100 training samples. Given that few-
shot learning can be influenced greatly by training
samples, we follow previous work (Hu et al., 2021;
Schick and Schütze, 2021a; Gao et al., 2020) and
repeat the training and evaluation for 5 times using
different seed, and report the averaged scores for
each datasets.

Prompt-Aware Data Retrieval Table 2 presents
the basic statistics of datasets used in this paper.
TREC and SST datasets contain smaller testsets,
while YELP and DBPedia contain much larger test-
sets. To balance the retrieved data size, we set
different top-|O| for predicted words and Elastic-
Search space (Espace) for different datasets based
on our practical experience. In other words, given
one test input, we have |O| × Espace data. After
de-duplication, the resulting retrieved data sizes are
shown in Table 2.

We also retrieve data using only input sentences
x instead of q, and use those data to continue
pre-train a PLM, referred as in-domain adaptation.
Since we cannot augment queries by using top-
|O| predicted words, we enhance the Elasticsearch
space by top-|O| times, and obtain retrieved data at
similar sizes of resulting data as reported in Table 2
for a fair comparison.

Verbalizer Augmentation To obtain possible
verbalizers that can better represent classes, we
first obtain top-N predicted words given a test sam-
ple (N = 20 for SST-2 and TREC, N = 10 for
AGNews and N = 5 for YELP and DBPedia, con-
sidering their testset sizes). We set the number of
candidate words |C| = 20× |L|, where |L| is num-
ber of classes. We use a ROBERTA-LARGE model
finetuned on MNLI (Williams et al., 2018), a Multi-
Genre Natural Language Inference dataset, as the

entailment model for identifying potential verbal-
izer words for augmentation. For each candidate
word, we apply this NLI model to infer its proba-
bility of having an entailment relationship with any
seed verbalizer word. Candidate with probability
higher than a threshold k is then added to the aug-
mented verbalizer. We set k = 0.4 by experiments.

For comparison, we also use Word2Vec
(Mikolov et al., 2013) to obtain word vectors and
explore potential verbalizer words by their similar-
ity with the seed verbalizer words.

4.2 Results

We conduct experiments under zero-shot and few-
shot settings. Under the zero-shot setting, we di-
rectly use PLMs to infer label words at masked
positions. Under the few-shot setting, we fol-
low Schick and Schütze (2021a) and Hu et al.
(2021) and use prompt-tuning, which directly fine-
tunes a LM given a small set of annotated data and
prompts.

4.2.1 Zero-shot Setting
In zero-shot setting, we compare AdaPrompt with
prompt-based methods using ROBERTA (Schick
and Schütze, 2021a), GPT-2 (Gao et al., 2020) and
GPT-3 (Zhao et al., 2021), respectively. The Chan-
nel refers to noisy channel model, which is based
on GPT-2 and uses channel models to enhance the
LM’s understanding of prompts. GPT-3 model is a
huge PLM that contains 175B parameters. Table 3
presents the results under zero-shot setting. Follow-
ing previous work (Schick and Schütze, 2021a,b),
we report average accuracy, standard deviation and
accuracy of the best pattern over different patterns.

First, compared with our foundation model,
ROBERTA-large, we see that AdaPrompt consis-
tently outperforms regular prompt-based methods
on all datasets with better average performance and
best pattern performance, bringing a 2.46 ∼ 14.63
improvement. It is noticeable that with AdaPrompt,



|T| Models SST-2 Yelp AGNEWS DBPedia TREC Avg.

10 ROBERTA 84.97± 9.88 86.84± 16.08 78.42± 6.23 86.78± 1.10 45.56± 9.55 76.51
AdaPrompt 90.42± 1.63 89.13± 13.30 84.21± 2.00 91.68± 1.84 57.56± 7.85 82.60

50 ROBERTA 92.56± 1.31 95.87± 0.57 85.50± 1.36 94.72± 0.49 73.88± 3.13 88.51
AdaPrompt 92.75± 1.03 95.74± 0.89 86.29± 0.80 94.59± 0.71 78.42± 6.17 89.56

100 ROBERTA 92.40± 1.04 95.89± 0.68 87.29± 1.31 95.59± 0.52 86.30± 2.14 91.49
AdaPrompt 92.75± 0.68 95.93± 0.95 87.98± 0.65 95.60± 0.51 87.58± 1.38 91.97

Table 4: Average accuracy and standard deviation on SST-2, YELP, AGNews, DBPedia and TREC under few-shot
settings. |T| is the training set size. Each experiment is repeated 5 times using different seeds.

Model Size SST-2
Albert 17M 54.67± 3.30(58.94)
Albert+AdaPrompt 17M 58.51± 5.79(63.99)
Bert 340M 58.03± 6.18(63.53)
Bert+AdaPrompt 340M 68.89± 16.11(85.67)
ROBERTA 355M 64.56± 16.77(88.99)
ROBERTA+AdaPrompt 355M 77.18± 17.96(91.74)

Table 5: We report average accuracy and standard devi-
ation here. Results of the best pattern are shown in the
bracket.

we can outperform GPT-3 in zero-shot setting,
which is a huge model pretrained on a gigantic cor-
pus. This confirms the effectiveness of AdaPrompt
in domain adaptation. We also observe that itera-
tive AdaPrompt can further bring improvements
on most datasets (SST-2, YELP and DBPedia).
This directly demonstrates that PLMs continual
pretrained on the retrieved data can be more adap-
tive to downstream tasks, and thus generate more
task relevant label words, which can serve as a
source to find better texts. Performance of iterative
AdaPrompt decreases on AGNEWS, we believe
this is because this news dataset is similar with
general data used for pretraining ROBERTA, and
thus continual pretraining on such retrieved data
can be less useful. Finally, we see that AdaPrompt
improves over 10.09 accuracy of the overall perfor-
mance.
4.2.2 Few-shot Setting
Table 4 reports the experimental results under few
shot setting. Each experiments is repeated 5 times
using different seed, and we report the average ac-
curacy and standard deviation here. To explore
whether AdaPrompt can consistently bring im-
provement to ROBERTA, we conduct experiments
using 10, 50, 100 samples, respectively.

We can see that compared with ROBERTA-large
baseline, under few-shot setting, AdaPrompt can
still improve model performance. Although the
relative improvement decreases as the size of train-
ing set improves, we can see that AdaPrompt out-
performs ROBERTA over tasks in all few-shot set-

tings. In particular, AdaPrompt outperforms stan-
dard ROBERTA models by 2.29 ∼ 5.79% in 10-
shot setting, showing that it is useful in very-few-
shot setting.

4.2.3 Ablation Study
AdaPrompt with different PLMs In this abla-
tion study, we apply AdaPrompt with different
PLMs (Bert-large, Albert-large and ROBERTA-
large). We report experimental results on the
SST-2 dataset. Table 5 shows the results. Al-
though the performance of different models varies,
we still observe that AdaPrompt can consistently
bring huge improvement over all models. We also
find that model performance increases with model
size. AdaPrompt using ROBERTA-large outper-
forms other models overall performance by a large
margin (8.29 ∼ 18.67) and achieves 91.74 accu-
racy with the best pattern.

Prompt-Aware Continual Pretrain and Ver-
balizer Augmentation To study the effectiveness
of continual pretraining on prompt-aware data and
verbalier augmentation, we conduct ablation ex-
periments with the combination of with or without
continual pretraining (CP) or verbalizer augmenta-
tion (va). As shown in Table 6, We can see that
compared with foundation model (-CP-va, 61.71
acc. on average), continual pretraining and verbal-
izer augmentation can both bring improvement to
model performance (5.31 and 5.89 acc. on average,
respectively), and the model has the best results two
methods are combined together (AdaPrompt), sug-
gesting these two methods can benefit each other.

In addition, we consider the influence of query
text on retrieving textual data for continual pre-
training. Table 6 shows the results using only test
input versus results using the prompts and ver-
balizer. With different verbalizers, our method
generates multiple queries from a single test in-
put. However, for both methods compared, the
retrieved text from ElasticSearch are confined to
k sequences (Section 3.2. From the table we can
see that on all datasets, using prompt-augmented



Models SST-2 Yelp AGNEWS DBPedia TREC Avg.
AdaPrompt 75.92± 17.36 75.09± 17.57 76.55± 07.28 70.95± 08.80 60.50± 03.54 71.80
-va 71.07± 13.58 71.04± 15.57 72.16± 05.78 65.90± 02.71 45.40± 01.13 65.11
-CP 72.16± 16.35 75.72± 17.79 75.70± 07.88 50.95± 00.09 58.70± 03.25 66.65
-PR 71.22± 15.55 74.85± 17.51 75.12± 05.71 70.40± 07.48 58.60± 00.57 70.04
-CP-va 64.56± 16.77 72.63± 16.34 69.52± 06.96 56.32± 00.49 45.50± 00.14 61.71

Table 6: Experimental results of ablation study. - means “without” here. va: verbalizer augmentation, CP:
Continual Pretraining, PR: Prompt-aware Retrieval. Note that -PR means we do not use prompt-aware retrieval, but
simply use test input data for retrieval and continual pretraining.

SST-2
Espace 1 10 50 100
Size 3k 23k 98k 205k

Accuracy 73.54 75.06 75.95 75.92
±16.77 ±17.34 ±17.73 ±17.36

DBPedia
Espace 1 5 25 50
Size 58k 235k 708k 1,301k

Accuracy 70.64 71.39 74.13 70.95
±9.66 ±10.78 ±7.51 ±8.80

Table 7: Analysis on retrieved data size. Data sizes are
calculated after de-duplication.

queries (AdaPrompt) give substantially stronger
results. Take SST-2 for example, the accuracy is
71.22 (SST-2 -PR) given only test input queries,
but 75.92 with prompt-augmented queries, with a
4.7 absolute improvement. This shows that contin-
ual pretraining using prompt-aware data is highly
beneficial to zero-shot prompt-based NLP.

4.3 Analysis

4.3.1 Size of Retrieved Data

As stated, Elasticsearch returns data in the order of
matching scores. Using a smaller size, the retrieved
data are more textual related to the query, while
using a larger size, the retrieved data can contain
noisy. To compare the effects of different sizes
of retrieved data for continual pretraining, We re-
trieve 1, 10, 50 and 100 texts using each query (i.e.,
Espace) for the SST-2 and 1, 5, 25, 50 for DBPe-
dia, respectively As shown in Table 7, we see that
accuracy rises in the beginning when retrieval size
increases. But as the retrieval size grows bigger, the
accuracy starts to decrease slightly. This can be ex-
plained by that the lower-ranked retrieved data have
a lower relevance to the target task, which intro-
duces more noise in continual pretraining. We used
fixed Espace sizes for our experiments in zero-shot
settings (Section 4.1), due to lack of a validation
set. In few-shot settings, in practice, the size can
be considered as a hyperparameter and tuned over
validation data.

4.3.2 The Effect of Verbalizer Strategies
Table 8 compares the model performance when
using different verbalizer augmentation strategies,
namely using NLI model and word similarity (Sec-
tion 4.1). Additional, we adopt a verbalizer aug-
mentation method using knowledge base (KB) (Hu
et al., 2021) 2. To set a fair comparison, we limit the
verbalizer word set for each label within 5. We re-
port average accuracy and standard deviation here.

Results show that, compared with using word
similarity to select candidate words and directly us-
ing KBs to augment verbalizer words, using NLI to
augment verbalizer words gives more better perfor-
mance on most tasks, and is more stable. We also
find that using KBs to augment verbalizer words
gives better performance on the DBPedia tasks, but
much worse performance on the TREC task. This
can be because TREC is less close to topic classifi-
cation (Min et al., 2021), and directly using most
related words can add noisy. This also suggests
that more sophisticated strategy that cares of task
and prompt information can be useful, which we
leave for future work.

4.3.3 Generalization Capability
For experiments in section 4.2.1 and section 4.2.2,
we use task testset as the sources to build queries
for retrieving pretraining data. However, in a
more general setting, we want to learn whether
AdaPrompt can also generalize to new samples that
are different from query data. To this end, we take
the original training set of SST-2 and DBPedia as
an unseen test set, evaluating models trained using
data retrieved from the original test data. As shown
in Table 9, we can see that AdaPrompt achieves
73.05 and 70.97 accuracy on SST-2 and DBPedia,
respectively. Compared with performance on test-
set (Table 3), we find that although the performance

2For sentiment analysis tasks, we take sentiment words
shown in (Hu et al., 2021), which are adopted from https:
//www.enchantedlearning.com/wordlist/; for
other tasks, we use most related words: https://
relatedwords.org/

https://www.enchantedlearning.com/wordlist/
https://www.enchantedlearning.com/wordlist/
https://relatedwords.org/
https://relatedwords.org/


Dataset SST-2 YELP AGNEWS DBPedia TREC Avg.
vaw 74.91± 11.71 75.39± 17.47 69.07± 06.70 55.32± 11.33 60.60± 03.39 67.06
vam 75.92± 17.36 75.09± 17.57 76.55± 07.28 70.95± 08.80 60.50± 03.54 71.80
vak 69.07± 15.80 74.64± 17.55 60.15± 07.79 74.85± 17.50 24.00± 00.57 60.54

Table 8: Model performance of AdaPrompt using different verbalizer augmentation strategies. vaw: using word2vec
similarity. vam: using ROBERTA trained on MNLI. vak: using most related words/sentiment dictionary. Avg. refers
to overall averaged results.

Model SST-2 DBPedia
ROBERTA 64.82± 11.62 56.49± 00.41
AdaPrompt 73.05± 13.08 70.97± 08.87

Table 9: Model performance when tested on full training
set. We report averaged accuracy and standard deviation
here.

of AdaPrompt sightly decreases when evaluated
on full SST-2 training set, it can still outperform
ROBERTA by a large margin (+8.23). It demon-
strates that although AdaPrompt uses a small part
of data to retrieve related text for continual pretrain-
ing, it can bring improvements over the full dataset,
and shows good generalization ability.

5 Conclusion

We investigated AdaPrompt, a zero-shot prompt-
based method for NLP that makes use of test in-
put data and prompts for adaptive continual pre-
training and verbalizer selection. Results on five
classification datasets show that AdaPrompt im-
proves over a standard prompt method by large mar-
gins. In particular, retrieving relevant data for con-
tinual pre-training of a language model can serve
to warm-up the model for both domain adaptation
and prompt-filling tasks. In addition, an NLI model
allows effective selection of filled tokens to achieve
improved performance.
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