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Abstract

Pre-trained multilingual language models are gaining popu-
larity due to their cross-lingual zero-shot transfer ability, but
these models do not perform equally well in all languages.
Evaluating task-specific performance of a model in a large
number of languages is often a challenge due to lack of la-
beled data, as is targeting improvements in low performing
languages through few-shot learning. We present a tool - LIT-
MUS Predictor - that can make reliable performance projec-
tions for a fine-tuned task-specific model in a set of languages
without test and training data, and help strategize data label-
ing efforts to optimize performance and fairness objectives.

Introduction

As developers build NLP systems for wider audiences, mas-
sively multilingual models such as mBERT (Devlin et al.
2019) and XLM-R (Conneau et al. 2020) are seeing greater
adoption due to their cross-lingual zero-shot transfer abil-
ity (Turc et al. 2021; Choudhury and Deshpande 2021).
However, developers face many practical challenges while
deploying such systems. High-quality evaluation sets are
typically available only in a few languages, and for a
handful of tasks (Joshi et al. 2020). This is particularly
troubling since zero-shot task performance varies signifi-
cantly across languages (Hu et al. 2020; Wu and Dredze
2020; Pires, Schlinger, and Garrette 2019). Few-shot learn-
ing (Lauscher et al. 2020) and the choice of an appropri-
ate pivot language (Turc et al. 2021; Liang et al. 2020;
Lin et al. 2019) can significantly mitigate the poor zero-
shot performance in a language. However, the performance
gains per task-specific labeled example during fine-tuning
stage varies widely across the tasks and languages. There
are also notable positive and negative interferences between
languages observed during the fine-tuning process. Thus, a
second challenge for the developer is to decide how much
labeled data should be collected and for which language(s),
to achieve the desired performance in a set of languages.
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We present an Al assistant - the LITMUS! Predictor -
which helps a developer solve the above challenges by (1)
making performance projections for a language (without la-
beled test data) given task-specific fine-tuned model built on
a multilingual pre-trained model, and (2) suggesting how
much data one should label in which languages such that
desired performance objectives are met across a set of lan-
guages within a specified set of constraints. Thus, LITMUS
Predictor helps a developer build reliable and high per-
forming multilingual NLP models within a specified bud-
get, other constraints and fairness objectives (Choudhury
and Deshpande 2021). Further details on datasets, featur-
ization, experiments and results can be found in Srinivasan
et al. (2021). Our tool and code is released publicly to help
users build large-scale multilingual models?.

System Description

First, we will introduce the features of the LITMUS Pre-
dictor through its front-end, and then explain the back-end
architecture.

FRONT-END. The tool takes as input (Il in Fig. 1) the
type of pre-trained model (currently we support mBERT or
XLM-R, but it can be extended to any pre-trained model), a
task (presently, XNLI, UDPOS or WikiANN, but can be cus-
tomized for any task) and a set of fine-tuning configurations.
A fine-tuning configuration CY, is specified as a set of pivot
languages (henceforth pivots) and amount of labeled data in
each of them: {(l;, d;) } . In addition, the tool takes a set of
target languages (henceforth, rargets), {t;}. The output of
the tool are the projected performances, py;, of configura-
tion C;, on target ¢;, represented as a two dimensional heat-
map (R2 in Fig. 1, green = better than, amber = equal and
red = poorer than average). The performance of the best con-
figuration (defined as argmax;, > ; Pk;j) is highlighted (R1 in
Fig. 1) along with the expected error in the predictions.
Data Labeling Plan. The user can also specify a budget b
- the number of additional data points the user is willing to
label, a set of languages, {/'}, where further data can be
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Figure 1: LITMUS interface (some panels omitted).

collected, language-specific budget caps, {b; }, and the base
configuration C* for which a data labeling plan is required
(I2 in Fig. 1). The data labeling plan can be customized for
different maximizing objectives such as weighted average
or minimum?® performance across the targets, subjected to
different constraints (such as target-specific or overall min-
imum or average performance). Based on these parameters,
the tool suggests an optimal allocation, d}“, of the budget for

language l;-“ (Fig. 1, presented as a pie-chart) along with the
expected improvement in performance.

BACK-END. Fig. 2 shows the architecture of the system.
Performance Prediction: We learn the predictor by training
an XGBoost*-based regression model on previous training
outcomes, i.e., a configuration and target pair, (Cl, t j ), asin-
put and the corresponding performance, py;, as the output.
In addition to the fine-tuning data-sizes (d;), the predictor
model also uses features specific to the pre-trained model
such as pre-training data size of the target, target-specific
linguistic features obtained from WALS (Dryer and Haspel-
math 2013), the syntactic distance between the target and
pivot(s) computed as the cosine between the URIEL vec-
tors (Littell et al. 2017), and the fraction of shared vocabu-
lary in the pre-trained model between the target and pivot(s).
Currently, the system has predictor models trained for three
tasks — Natural language inferencing, POS tagging and
Named entity recognition, using the XNLI (Conneau et al.

3Maximizing the min across languages is a prioritarian or Rawl-
sian approach to fairness as opposed to average, which maximizes
an utilitarian objective (Choudhury and Deshpande 2021).

*https://xgboost.ai/. Other ML algorithms are also being tried;
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Figure 2: System Architecture

2018), UDPOS (Zeman et al. 2019) and WikiANN (Raiman
and Raiman 2018) datasets, respectively.

Customization: There is option to build task and pre-trained
LM specific custom predictors by providing appropriate
training data as defined above.

Evaluation: We evaluate the predictor model under two set-
tings, one where we assume that labeled test data is avail-
able for a language. In this case the mean average error of
the predictions across targets (all languages in the dataset)
are 0.61%, 0.85% and 0.89% for UDPOS, WikiANN and
XNLI, respectively. In the second scenario, we assume that
no labeled data is available for a target, and therefore, it
does not appear as a pivot or target in any of the training
instances. The average error across targets in this case are
4.62%, 8.08% and 9.93% for XNLI, UDPOS and WikiANN,
respectively. Thus, in both cases the model’s performance
projections are fairly accurate.

Data Labelling Plan Generation: The trained predictor al-
lows us to analyze the effect of adding fine-tuning data in
different languages. By searching across the space of such
possible data-augmentations subject to user’s budget and
other constraints, we can generate an optimal data labelling
plan. Internally, we run a beam-search starting from the
maximum allowable budget allocated to each [ (If a user
does not specify language specific budget, then the maxi-
mum allowable budget is simply b). We iteratively reduce
the data allocation in different languages and retain the op-
timal configurations as per our trained predictor projections.
We stop once the total augmentation across all languages is
within the user’s budget. Even though the prediction error
on unseen targets is high for some tasks, the budget alloca-
tion is still effective because the system is able to predict the
accuracy trends across targets correctly.

About the Demonstration. During the demonstration,
apart from explaining the features and technology, we will
also discuss some of the best practices and tips for train-
ing reliable and accurate performance predictors with lim-
ited training data.
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