
Sound capture and speech enhancement
for speech-enabled devices

Dr. Ivan Tashev, Partner Software Architect
Dr. Sebastian Braun, Researcher

Audio and Acoustics Research Group,
Microsoft Research Labs, Redmond, WA, USA



Agenda

• Audio processing pipeline and statistical speech enhancement

• Application of deep learning methods in speech enhancement

• Conclusions

12/01/2021
Sound capture and speech enhancement for speech-enabled 

devices
2



Introduction and Brief History

• Sound capture? Speech enhancement? 

• Speech enhancement pipeline in Windows XP
• NetMeeting – grandfather of Skype, Teams, etc. 

• Microphone array support in Windows Vista
• For Windows Live Messenger

• Microsoft Auto Platform

• Kinect for Xbox 360, for Windows, for Xbox One, for Azure

• HoloLens, HoloLens 2, Mixed Reality Platform

• Major update in Windows 10

• Teams
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Audio processing pipeline and statistical speech enhancement



Audio pipeline architecture
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Acoustic echo reduction systems

• Acoustic echo cancellation (AEC):

• Acoustic echo suppression (AES)

• Mono AEC – part of every speakerphone
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Acoustic echo reduction systems

• Acoustic echo cancellation (AEC):

• Acoustic echo suppression (AES)

• Mono AEC – part of every speakerphone

• Stereo AEC: non-uniqueness problem
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Acoustic echo reduction systems

• Acoustic echo cancellation (AEC):

• Acoustic echo suppression (AES)

• Mono AEC – part of every speakerphone

• Stereo AEC: non-uniqueness problem

• Stereo and surround sound AEC
• Estimate impulse responses

• Reduces the dimensionality

• Always one solution, close to optimal
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Beamforming

• Beamforming: 

• Time invariant beamformer

• Adaptive beamformer
• On the fly computation of  the weights
• Higher CPU requirements
• Does null-steering

• MVDR beamformer
•

• Affine projection beamformer

• Other adaptive beamformers exist
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• Estimates the probability of sound source 
presence for each direction pn(θ)

• Instantaneous Direction Of Arrival (IDOA)[1]

•
• where
• Compute the variation σn(θ) and the probability 

distribution pn(θ)

• Relative Transfer Function (RTF)[2]

• RTF: 

• Distance measure:
• pn(θ) derived per PDFs

 1 2 1( ) ( ), ( ), , ( )Mf f f f   −

1 1( ) arg( ( )) arg( ( ))j jf X f X f − = −

12/01/2021
Sound capture and speech enhancement for speech-

enabled devices
10

35°
40°

45°
50°

min( )k k  −

55°

Sound source at 45° noise

( )
( ) ( ) 

( ) 

*

1

,1 2

1

E , ,
ˆ ,

E ,

m

m

Y k n Y k n
B k n

Y k n
=

( ) ( )ˆcos ,k k = b b
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Sound source localization and spatial filtering

• Given pn(θ) for the current frame: 
estimate where the sound source is
• Find maxima

• Cluster and average

• Given pn(θ,k) for the current frame: 
estimate suppression gain
• Δθ = 3.0 σ(θ0)

• Smooth and apply
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• Given signal xn(t) and noise dn(t) mixed in yn(t)

• Observed in frequency domain, n-th frame, 
k-th frequency bin: Yk = Xk + Dk

• Noise suppression:

•

• Gk – time varying, non-negative, real value gain (or suppression rule)
• The estimator keeps the same phase as Yk: under Gaussian 

assumptions the best phase estimator is observed phase 

• The goal of noise suppression is for each frame to estimate Gk
vector optimal in certain way
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• Prior and posterior SNRs:

• MMSE, Wiener (1947)

• Spectral subtraction, Boll (1975):

• Maximum Likelihood, McAulay&Malpass (1981):

Noise suppression: Suppression rules
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• Efficient alternatives, Wolfe&Godsill (2001):
• Joint Maximum A Posteriori Spectral 
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• Also see Tashev, Slaney, ITA 2014

Noise suppression: Suppression rules (2)
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End-to-end optimization

• Mean Opinion Score (MOS), Perceptual Evaluation of Sound Quality  
(PESQ), Word Error Rate (WER)

• 75 parameters for optimization: time constants, limitations, etc. 

• Optimization criterion:
• Q = PESQ+0.05*ERLE+0.5*WER+0.001*SNR-0.001*LSD-0.01*MSE

• Optimization algorithm
• Gaussian minimization

• Data corpus with various distance, levels, reverberation

• Parallelized processing on computing cluster
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End-to-end optimization: results
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Assumptions in classic speech enhancement 

• Noise has Gaussian distribution

• Speech signal has Gaussian distribution

• Noise changes slower than the speech signal

• We need minimum mean squared error amplitude estimator,
• or, minimum mean squared log-amplitude estimator,

• or, maximum likelihood estimator, etc. 

• The signals in different frequency bins are statistically independent

• The consecutive audio frames are statistically independent

12/01/2021
Sound capture and speech enhancement for speech-enabled 

devices
19



Assumptions in classic speech enhancement 

• Noise has Gaussian distribution

• Speech signal has Gaussian distribution

• Noise changes slower than the speech signal

• We need minimum mean squared error amplitude estimator,
• or, minimum mean squared log-amplitude estimator,

• or, maximum likelihood estimator, etc. 

• The signals in different frequency bins are statistically independent

• The consecutive audio frames are statistically independent

Not correct!
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Still, worked well in 
RoundTable, Lync/Skype, 
Microsoft Auto, Kinect ☺



Application of deep learning methods in speech enhancement



Modular blocks for Speech Enhancement

features DNN target
Enhancement/ 
transformation

Noisy 
audio

loss

Estimated
speech

STFT iSTFT

Target
speech

Dataset

• Suppression filter (“mask”)
• Complex filter
• (log) magnitude spectrum
• Complex spectrum

• Log magnitude
• Complex spectrum
• Compressed spectrum
• Phase (inst. Freq., 

group delay, …)

• “mask” error
• Magnitude vs. complex
• Compression (log, exp.)
• Ratios (SDR, SNR, …)
• Normalization (signal vs. 

SNR dependence)
• (perceptual) weightings
• Combinations …

• Architecture
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Training data generation and augmentation

Speech

Noise

spectral augment

active 
noise 
level

active 
speech 

level
SNR 

scaling

Level

Training mixtureTraining target

spectral augment

Level
copy scaling

copy filter

*

RIR

Reverb shaping

reverberantnon-reverb.

*

Target speech Mic speech

• 500 h high MOS-rated speech (LibriVox)
• 8k measured + 140k simulated impulse 

responses
• 250 h noise from Audioset, Freesound
-> augmentation enables training networks 
on unique data of ~18 months
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All data publicly available at https://github.com/microsoft/DNS-Challenge
S. Braun, H. Gamper, C. Reddy, I. Tashev, “Towards efficient models for real-time deep noise suppression”, to appear in ICASSP 2021.
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Spectral distance-based loss functions
distance metric magnitude complex

MSE (L2)

MAE (L1)

Log spectral amplitude 
(LSA)

LSA x phase error

compressed MSE

Signal Ratios (SNR/SDR)

Correlation

Speech distortion 
weighted (SDW)

x
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S. Braun and I. Tashev, “A consolidated view of loss functions for supervised deep learning-based speech enhancement“, arXiv:2009.12286, 2020.
Y. Xia, S. Braun, C. Reddy, R. Cutler, I. Tashev, “Weighted Speech Distortion Losses for Neural-Network-Based Real-Time Speech Enhancement”, ICASSP 2020.

𝐿 = 1− λ 𝐿𝑚𝑎𝑔+ λ 𝐿𝑐𝑜𝑚𝑝𝑙𝑒𝑥
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[1] S. Braun and I. Tashev, Data augmentation and loss normalization for deep noise suppression, International Conference on Speech and Computer, 2020.
[2] S. Braun, H. Gamper, C. Reddy, I. Tashev, Towards efficient models for real-time deep noise suppression, to appear in ICASSP 2021.
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Results model efficiency
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2GRU->1GRU

[Tan2019]

≈ 15ms / sec @ 3.5 GHz CPU

≈ 30ms / sec @ 3.5 GHz CPU

K. Tan, D. Wang, A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement, in Proc. 
Interspeech, 2018.

S. R. Park, J. W. Lee, A Fully Convolutional Neural Network for Speech Enhancement, Proc. Interspeech, 2017.
M. Strake, et. al., Fully Convolutional Recurrent Networks for Speech Enhancement, in Proc. ICASSP, 2020.
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2nd Deep Noise Suppression Challenge

Sound capture and speech enhancement for speech-enabled 
devices

27

(CRUSE)
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Demo recording
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Conclusions

• Most of the modern devices include speech input for communication 
and speech recognition

• They operate in challenging environments: reverberation, echo, noise

• Using multiple microphones provides opportunities for better 
improvements for both near and far field capture

• Statistical signal processing:
• Computationally and memory inexpensive

• Pretty much saturated in terms of improvements
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Conclusions (2)

• DNN-based speech enhancement without look-ahead in real-time is 
possible with smaller computational effort

• Critical for the success:
• Dataset: defines the “signal model”. Data augmentation!
• Loss function allows model improvement at zero inference cost. Our current 

best supervised loss is signal-based, including magnitude and phase, 
compression (human perception related), and level-normalized for smoother 
training.

• Neural network architecture
• Model size scales the quality: we found direct influence of model width and memory 

capacity on enhancement performance.
• Recurrent networks seem more efficient for very small models, adding convolutional 

encoders achieve better quality at increased cost.
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Finally

Thank you for your attention!

Questions?

Ivan Tashev (ivantash@microsoft.com) 

Sebastian Braun (sebraun@microsoft.com) 

Audio and Acoustics Research Group

https://www.microsoft.com/en-us/research/group/audio-and-acoustics-research-group/
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