
1

Sentiment Detection from Speech Recognition
Output

Ivan J. Tashev, Senior Member, IEEE, and Dimitra Emmanouilidou, Member, IEEE

Abstract—Emotion and sentiment detection from text have
been one of the first text analysis applications. In the recent
years emotion and sentiment analysis from human voice made
serious progress with the application of the modern deep learn-
ing algorithms. Practical use of the emotion and sentiment
detection include human-computer interaction (HCI), media
content discovery and applications for monitoring the quality of
customer service. To increase the detection accuracy, multi-modal
algorithms that use both voice and text have been deployed. In
both scenarios, low voice quality comprises a shared challenge
that affects both the audio processing and speech recognition,
leading to low recognition rate from the automatic speech
recognition (ASR) and the need to revisit and reevaluate the
algorithms for emotion and sentiment detection from text. In
this paper we perform a review of established and novel features
for text analysis, combine them with the latest deep learning
algorithms and evaluate the proposed models for the needs of
sentiment detection for monitoring of the customer satisfaction
from support calls. The issues we address are robustness to the
low ASR recognition rate, the variable length of the text queries,
and the case of highly imbalanced data sets. We use a labeled
dataset of more than 100,000 utterances from real support calls,
and propose new optimality criterion, which is a combination of
weighted and unweighted accuracy. The proposed algorithm is
shown to significantly outperform the accuracy of the baseline
algorithms.

Index Terms—sentiment detection, text analysis, deep learning.

I. INTRODUCTION

Affective computing [1] is the art of recognizing emotions
from various modalities. It is widely growing within the
eld of Human Computer Interaction where speech remains
a primary form of expressive communication. Predominantly,
speech emotion recognition systems are built to classify speech
utterances, which comprise of one dialog turn and typically
range a few seconds in duration, or 5-10 words in length. It is
assumed that there is one emotion in each utterance and the
classification can be either categorical: into discrete categories
such as sadness, anger, happiness, neutral [2], or continuous:
emotional attributes such as arousal (passive vs active), and
valence (positive vs negative) [3]. For analysis of customer
service telephone calls the classification happens only on the
valence axis (positive, neutral, negative). Each classification is
performed on one dialog turn, i.e. one utterance of customer
speech. Classifications from each of the utterances in the call
are later fused to form the final evaluation of the customer
call. Typical architecture of such multi-modal sentiment clas-
sification system from utterances is shown in Fig. 1. The input
audio utterance is sent to an Audio Sentiment Analysis block,

Ivan J. Tashev and Dimitra Emmanouilidou are with Microsoft Research,
Redmond, WA 98052, USA (e-mail: {ivantash, diemmano}@microsoft.com).

Fig. 1. Typical architecture of a sentiment detection framework.

and to an Automatic Speech Recognition (ASR) block. The
recognized text is processed by a Text Sentiment Analysis
block. The conclusions of these two classifiers are fused and
form the final classification. In this paper we explore various
features and classifiers for sentiment analysis based on a single
utterance of a customer call.

For processing the audio (Audio Sentiment Analysis), Deep
Neural Networks (DNNs) [4] have shown promising perfor-
mance for the emotion classication task. The simplest DNN
systems for emotion recognition are feedforward networks
of fully connected (FC) layers, that are built on top of the
utterance level feature representations [5]. Recurrent Neural
Networks (RNN) [6] are a class of neural networks that have
cyclic connections between nodes in the same layer. These net-
works capture the inherent temporal context in emotions and
have shown improved performance for classication task [7].
Another class of DNNs, Convolutional Neural Networks
(CNN) [8], capture locally present context, patterns, working
on frame level features. CNNs enable the training of end-to-
end systems where the feature representations and classication
are trained together using a single optimization [9]. Algorithms
for sentiment detection from speech are out of the scope of
this paper, but we will reuse some of the neural network
architectures.

Emotion and sentiment detection from text is one of the
first applications of text analysis. Initial papers were rule-
based algorithms, later replaced by bag of words (BoW)
modeling using a large sentiment or emotion lexicon [10],
or statistical approaches that also assume the availability of a
large dataset annotated with polarity or emotion labels [11].
Word embedding [12] emerged as a powerful tool to map
words with similar meaning closer together. It also can be used
to transfer the knowledge from large numbers of unlabeled
documents [13] to smaller labeled data sets, in the context
of emotion or sentiment analysis. Analysis of text utterances
using deep neural networks faces the problem of different
number of words in the utterance, while classifiers (SVM, FC
DNNs) expect fixed number of input features. One approach



2

is to extract utterance statistics based on the word features a
priori, and use the extracted statistics as input to the classifier;
alternatively, statistics can be extracted after individual word
classification and then combined into a final decision. A third
approach is to use models with an intermediate hold state,
such as Hidden Markov Models (HMM) or RNN.

Sentiment analysis from call center conversations faces
additional set of problems: the noise in the audio signal that
harms both the audio-based classification and the ASR; the
need for speech diarization into customer and agent speech; the
need for robust text classifiers that overcome inevitable ASR
errors. Another aspect of the sentiment classification from
audio and text in real-life customer calls is that the collected
and labeled data sets are highly imbalanced, with neutral label
dominating - typically above 90%. If we train the classier on
weighted accuracy (WA) we will have very poor results for the
positive and negative classes. Even worse, a classifier which
outputs always neutral already will have above 90% WA. If we
train the classifier on unweighed accuracy (UA) instead, then
we will end up with a high absolute number of neutral phrases
misclassified as positive or negative, which is also non-ideal.

In this paper we explore various features and classifiers
for sentiment detection from the output of ASR from real-
life customer service calls. To address the issue with the
imbalanced dataset we propose a new cost function to train
the classifiers, which is a weighted sum of UA and WA. The
paper is structured as follows. In section II we describe the
real-life data set and the approaches for labeling it. Section III
covers the investigated feature sets, section IV - the classifier
architectures. We provide the experimental results in section V
and we finish the paper with discussion of the results and draw
some conclusions in section VI.

II. DATASET AND EVALUATION

The dataset is created from recorded Microsoft customer
support calls, and for a range of products and services. It
consists of 1957 sessions in total. Each conversation has been
automatically segmented into utterances, and separated into
agent and customer speech (although occasional mix-ups occur
due to crosstalk or processing glitches). An initial transcription
pass is done automatically, followed by human transcription.
For the purposes of our task, we will use only the audio
data from the customer side, with initial number of 139,493
utterances.

A. Labeling
Each utterance is labeled for sentiment by three judges in

the Microsoft UHRS crowd-sourcing system. All judges must
pass a qualifying test, scoring at least 75% on gold set of
pre-labeled utterances. Judges listen to the entire conversation,
one utterance at a time. Additionally, human-transcribed text
is presented on-screen for both current and context utterances
(three previous and three following). The context displayed
includes both agent and customer utterance. Each judge labels
the utterance using one of the following labels: clearly pos-
itive, somewhat positive, neutral, somewhat negative, clearly
negative, agent speech, not intended for service (side talk),
can’t label.

B. Data selection

The data selection includes removing all utterances labeled
agent speech, not intended for service, can’t label; collaps-
ing somewhat and clearly labels together; leaving only the
utterances where at least two of the judges agree. In the final
dataset we have 111,665 utterances left, with three labels:
positive, neutral, and negative. For each utterance we have
noisy transcription (the output of ASR) and exact transcription.

C. Dataset analysis

The overall judges agreement leads to UA of 84.85%. The
labels distribution is 93.01% neutral, 5.22% negative, and
1.77% positive as shown in Fig. 2a. The utterances contained
between 1 and 97 words, where 95% of them contained less
than 18 words. The histogram of the utterances length is shown
in Fig. 2b. More detailed analysis of the judges performance
and the dataset can be found in [14]. The dataset was split on
training, validation, and testing sets in proportion 80%-10%-
10%.

D. Evaluation parameters and cost function

Class labels were assigned in a way that emphasizes natural
proximity between pairs of classes: -1 for negative, 0 for
neutral, and +1 for positive. This way the negative class is
closer to neutral than positive. All classifiers initially act as
regressors that estimate one score value; the score value is
then converted to a class membership using two thresholds as
shown in Fig. 2c.

The first evaluation parameter for the classifier is weighted
accuracy (WA):

WA =
CL

N
, (1)

where WA is the weighted accuracy, CL is the total number
of correct labels, and N is the total number of labels. Note
that a classifier that always returns neutral achieves 93% WA
on the imbalanced dataset. The second evaluation parameter
is unweighed accuracy (UA):

UA =
1

K

K∑
k=1

CLk

Nk
, (2)

where UA is the unweighed accuracy, Nk is the total number
of labels in class k = 1, ..,K, and CLk is the total number
of correct labels in class k. Given the three classes of the
dataset, a classifier that always returns neutral achieves 33%
UA. With WA as a cost function during training, the trained
neural network will have a tendency to return mostly neutral,
reducing the accuracy for the other two classes. With UA as
a cost function, we will have a very large absolute number of
class neutral classified as one of the other two classes. This
will make the manual investigation of customer support calls
more difficult and time consuming. To address this issue we
propose using as a cost function the weighted sum of the two
accuracies:

Q = αWA+ (1− α)UA− 0.001Tt, (3)



3

(a) Distribution of the labels (b) Number of words in utterance (c) Conversion of score to class

Fig. 2. Dataset statistics and conversion from score to class.

where Q is the cost function, WA and UA are the weighted
and unweighed accuracies, in %, coefficient α denotes the
tradeoff between UA and WA, and Tt is the classifier training
time in seconds. The last member is a protection against
classifiers with very long training time and minimal advantage
in accuracy. The thresholds in Fig. 2c are determined as
follows:

[Th1, Th2] = argmax
Th1, Th2

(Qval) , (4)

where Th1 and Th2 are the thresholds, and Qval is the cost
function on the validation set.

III. FEATURES

The input for the feature extractor is a sequence of words with
variable length. The goal is to provide the classifier with the
most informative for the task set of features.

A. Statistical features

In this group are the classic for the field of computational
linguistics n-grams: uni-grams, bi-grams, and tri-grams [15].
Each n-gram is represented as one-hot vector and we let the
classifier learn which n-gram is carrying more information
about the utterance sentiment of a given class. The feature
set for the utterance is the sum of all of one-hot vectors.

This feature set can be further augmented with information
about the frequency of the n-grams in the utterances of each
class, which in information retrieval is called TF*IDF (term
frequency–inverse document frequency) [16]. In this case each
n-gram is represented by a sparse vector with length the
number of n-grams in each class and as many different than
zero numbers as classes we have, containing the TF*IDF
number of the n-gram for each class. Illustration of the
frequency of different words in different classes is shown in
the word clouds in Fig. 3.

One of the problems in the statistical features is out-of-
vocabulary (OOV) n-grams or TF*IDFs, which are not pre-
sented in the training set, but seen in the test and/or validation
dataset. Both n-grams and TF*IDF features are frequently
referred to as bag-of-words (BoW) features as they do not
keep track of the sequence, i.e. the position of the n-gram in
the utterance is not accounted for.

B. Embedded features

Word embedding represents each word as a long vector, i.e.
as a point in a large dimensional space. Because of the way
this vector is derived [12] the words with similar meaning are
close together. Even more, in this space king-man+woman is
very close to queen. For sentiment detection form text we can
use embedded vectors pre-trained on a large data corpus, such
as the 16 billion documents dataset in [13]. The probability of
OOV words will generally be small, but the word embedding
is language dependent and will not be domain specific.

A second approach is to train the word embedding on the
words in the training set. In this case the embedded space
will be domain-specific, but we can have increased number of
OOV words in the validation and test data sets.

Third approach is to train the embedding jointly with
the sentiment classifier. Then in the embedded space words
informative for a given class will be closer together. The
problem with OOV words will still be present.

We can use the word embedding vectors as a sequence, or
compute statistics across all of the word embedding in the
utterance: mean, max, min, standard deviation.

IV. CLASSIFIERS

Most of the classifiers expect fixed length input, while the
number of words in a customer utterance can vary signifi-
cantly. This means that we either have to do some statistical
processing of the features before the classifier, or to do
classification of each word and then do statistical processing
of the outputs, or use classifiers that carry a state from word
to word and output the final conclusion at the end of the
utterance. For sentiment detection the output of the classifier
is a score, which is converted to class decision as described
in section II-D.

A. Fixed input length

The potential feature sets for these classifiers is the BoW
group. There are multiple classifiers, described in the literature,
but in this paper we limit the scope to two: Extreme Learning
Machine (ELM) [17] and feed forward fully connected (FC)
neural network frequently referred to simply as DNN [4]. The
first is simple to train and slightly outperforms on the task
all of the traditional classifiers like support vector machines
(SVM). The second classifier can be made enough deep



4

Fig. 3. Word clouds for the three classes in the training set: negative (left), neutral (center), and positive (right)

Fig. 4. Weighted and unweighted accuracy dependency on the cost function.

to have substantial abstraction power and the performance
usually is limited by the size of the available dataset.

B. Classifiers with state

In this group we experiment with Long-Short Term Memory
(LSTM) [18] classifiers, which are in the group of RNN. The
LSTM classifiers process the input features consecutively and
account for the order of the input vectors. They also preserve
internal state and output the decision at the end of the input
sequence. LSTM classifiers perform better than the traditional
HMM [19]. In addition an LSTM-based neural network can
have more than one LSTM layer.

C. Hyper-parameter optimization

Each neural network has hyper-parameters, describing the
architecture: number of layers, number of neurons in each
layer, etc. The classification accuracy depends on these hyper-
parameters and on the dataset. All of the results in this
paper are presented after a formal process of hyper-parameters
optimization, using the cost function, defined in Equation (3),
as optimization criterion. The optimization space is small and
the optimization is carried iteratively, one hyper-parameter
at a time. For each of the single dimensional optimization
procedures a scanning method is used with eventual quadratic
interpolation.

V. EXPERIMENTAL RESULTS

We present the results in three main parts: using BoW as
features, using word embedding as features, and exploring the
effect on the speech recognition errors. All of the classifiers are

Fig. 5. ROC curves per class.

implemented in MATLAB using the Text Analytics toolbox.
Criterion (3) is used for optimization, where α = 0.5. The
training times, mentioned in the results, are measured on
a Windows computer with 12-core, 3.6 GHz, 64-bits CPU
and 128 Gbytes of RAM. The GPU is NVIDIA GeForce
GTX 980 Ti. All of the design decisions and algorithmic
performance ranking were based on performance achieved
on the vaidation dataset. The performance numbers from the
test set are provided as evidence for the generalization of the
proposed approaches.

A. Using bag of words as features

The numerical results from various neural networks using
BoW features are provided in Table I. We use as features uni-
grams, bi-grams, tri-grams and all of them simultaneously.
A separate experiment is done using TF*IDF features. The
two neural networks we experimented with are ELM and
DNN. Column Notes describes the architecture of the neu-
ral network: the number of hidden layers (hl) and neurons
in each layer (hu). As expected, the fully connected deep
neural network performs better than ELM with its single
hidden layer. The combined feature set of 1-, 2-, and 3-grams
provides the highest performance on the validation dataset,
achieving Q = 75.63. This is the model that achieves the
highest UA = 64.22%. Worth mentioning the performance of
the same neural network using uni-grams with Q = 75.08
and the ELM performance with uni-grams as features and
Q = 74.80. The good performance of the uni-grams as feature
can be explained with the lower number of OOV uni-grams,
compared to bi-grams and tri-grams. It is reasonable to expect



5

TABLE I
RESULTS FOR BAG-OF-WORDS AS FEATURES

Classifier Features Validation set Notes Test set
WA,% UA,% T, sec Q WA,% UA,% Q

unigrams 87.89 61.74 18.56 74.80 1500 hu 87.89 60.89 74.39
bigrams 91.04 45.92 159.22 68.32 6620 hu 92.02 45.94 68.98

ELM trigrams 92.56 35.09 3.28 63.82 2000 hu 93.23 34.75 63.99
1-, 2-, and 3-grams 88.15 58.78 73.34 146.81 4000 hu 89.37 59.20 74.29

TF*IDF 89.68 56.61 27.50 73.11 2000 hu 90.13 58.26 74.20
unigrams 88.33 62.49 335.00 75.08 3 hl, 800 hu 89.48 64.92 77.20
bigrams 91.72 46.89 843.00 68.46 4 hl, 1024 hu 92.85 46.12 69.49

DNN trigrams 92.50 35.33 8.52 63.91 2 hl, 128 hu 93.31 34.91 64.11
1-, 2-, and 3-grams 87.35 64.22 151.6 75.63 3 hl, 512 hu 88.04 66.23 77.14

TF*IDF 89.44 60.33 237.70 74.65 4 hl, 256 hu 90.40 62.76 76.58

TABLE II
RESULTS FOR WORD EMBEDDING AS FEATURES

Embedding Features Classifier Validation set Notes Test set
WA,% UA,% T, sec Q WA,% UA,% Q

stats: # words, mean ELM 88.67 56.23 169.00 72.28 300 emb,5265 hu 89.68 59.06 74.37
Pre-trained min, max, stdev DNN 84.48 63.89 530.00 73.66 300 emb,3 hl,600 hu 85.79 65.91 75.85

on 16B embeddings LSTM+FC, last 88.16 62.18 233.00 74.94 300 emb,150 hu 89.17 63.47 76.32
words as a sequence LSTM+stats+ELM 88.80 61.18 291.00 74.70 300 emb,480 hu 89.76 63.08 76.42

Pre-trained train set LSTM+FC, last 89.27 57.59 752.00 72.68 300 emb,256 hu 89.88 57.23 73.56
on dataset train+val sets LSTM+FC, last 89.23 58.04 747.00 72.89 300 emb,256 hu 89.91 58.55 74.23

Embedding trained jointly LSTM+FC, last 89.64 59.77 265.00 74.44 200 emb,180 hu 90.27 58.43 74.35

TABLE III
IMPACT OF THE SPEECH RECOGNITION ERRORS

Dataset Classifier Features Validation set Notes Test set Delta,
WA,% UA,% T, sec Q WA,% UA,% Q %

ASR LSTM+FC embedding 89.64 59.77 265.00 74.44 200 emb, 180 hu 90.27 58.43 74.35
output DNN unigrams 88.33 62.49 335.00 75.08 3 hl, 800 hu 89.48 64.92 77.20

DNN 1-,2-,3-grams 87.35 64.22 151.57 75.63 3 hl, 512 hu 88.04 66.23 77.14
Exact LSTM+FC embedding 87.98 70.99 533.10 78.95 200 emb, 180 hu 88.53 67.00 77.77 4.51

transcription DNN unigrams 88.97 72.74 247.73 80.61 3 hl, 800 hu 89.87 73.49 81.68 5.53
DNN 1-,2-,3-grams 87.57 73.51 521.90 80.02 3 hl, 512 hu 88.35 73.86 81.11 4.38

that with large datasets the combined use of all three features
will perform even better. The results from the test set confirm
the good generalization and have similar ranking.

B. Using embedding as features

Table II shows the results from the experiments with word
embedding. Again, the Notes column gives information about
the neural network architecture.

The first group of experiments uses a pre-trained word
embedding on 16 billion documents in American English.
This drastically reduces OOV words. As the utterances have
different length, in one of the cases we take statistics of
the embedding vectors with length of 300: mean, max, min,
standard deviation and add as additional feature the number
of the words in the utterance. These 1201 features from
each utterance are the input of two fully connected neural
networks: DNN and ELM. Another approach is to treat the
embedding vectors as a sequence of 300 features and use an
LSTM network as a classifier. In one of the cases we have
an additional fully connected layer at the LSTM output, in
another we collect the LSTM outputs after each word. In the
second case at the end of the utterances we do statistics as
above (mean, min, max, standard deviation, number of words)

and finalize the decision using ELM neural network. These
two approaches perform well, with slight advantage of the
classic LSTM and FC after the output. It achieves Q = 74.94
and UA = 62.18%.

A second group of experiments is with word embedding
trained either on the training set, or trained on the joint
training+validation sets. The advantages here are that the
embedding are domain specific, the disadvantages - the dataset
is small (less than a million words). The best performing
classifier from the previous group of experiments was used
(LSTM+FC, last), but in general this group has lower results
than the first one.

The last experiment is to train the classifier and embedding
jointly. In this case the embedding vector caries information
about how much this word belongs to a given class. The
used classifier is again LSTM+FC and this is the third best
performing configuration using word embedding. It doesn’t
require a language specific pre-trained word embedding and
doesn’t depend on the quality of such pre-trained embedding.
The price for this is minimal hit in the performance, which
can be increased with larger dataset. From this standpoint the
third approach is the winner of the classifiers using embedding
as features.



6

C. Impact of the speech recognition errors
The impact of speech recognition accuracy is explored in

Table III. We perform training and evaluation of the three
best performing algorithms using i) the ASR output, and ii)
the exact human-written transcription. For convenience, the
results using the ASR output are copied from the previous
two tables. The Delta column shows the increase of the
performance on the verification set when using the exact
transcription. Using the exact transcription shows an expected
increase in accuracy, between 4-6%. The highest performance
of Q = 80.61 is achieved with the combination uni-grams and
DNN, while using all n-grams with DNN achieves highest
UA = 73.51%. Note that for clear comparison we use the
network architectures, optimized for the ASR output. It is
highly probable that an optimization of the neural network
architectures for the exact transcription will achieve even
higher performance.

VI. DISCUSSION AND CONCLUSIONS

In this paper we explored various feature representations and
classifiers for the task of sentiment detection from speech
transcription. We proposed the use of a cost function that
accounts for both WA and UA via Equation (3), aiming to
mitigate highly imbalanced training dataset. A tradeoff coeffi-
cient of α = 0.5 was proposed. Fig. 4 shows the dependency
of the WA and UA on this parameter, for DNN classifier using
all n-grams as features. The trends for other combinations of
features an classifier are quite similar. When α = 1.0 we have
WA=94% and UW=42%. When the coefficient is moved to the
other extreme, α = 0.0, then weighted accuracy goes down
to 67% and unweighed accuracy goes up to 69%. Seems that
using α = 0.5 provides a good tradeoff between the weighted
and unweighed accuracy, where we have most of the gain in
unweighed accuracy (up to 64%), without losing much from
weighted accuracy (down to 87%).

Another aspect of the proposed algorithm is to use the
classifiers in regression mode and estimate a value ranging
from -1 (negative), through 0 (neutral), to +1 (positive). This
introduces the concept that negative is closer to neutral than
to positive, but also allows applying of two separate thresholds
to adjust individually the false positive and false negative rates
for the negative and positive classes. The ROC curves for
these two classes are shown in Fig. 5. It is well visible that
the classification error is much lower for the positive class,
than for the negative class. Customers are typically polite and
express verbally when they are satisfied, but can be less clear
in their words when the result is not satisfactory.

In terms of robustness to ASR error, the analysis on various
features and network architectures revealed that 1-, 2-, and
3-grams as features and a DNN-based classifier were the
best choice. It is closely followed by the same classifier
using just uni-grams, and using pre-trained word embedding
as a sequence and LSTM classifier. In our experiments the
traditional classifiers are represented by the ELM, which
performs close, but better than pretty much all of them. The
proposed algorithms outperform the ELM based classifier with
5-7% in UA for word embedding features and 2-6% in UA
for n-gram features.

The logical next step is to combine the results from both
audio-based and text-based classifiers. Since the feature rate is
different between audio (frames every 20 ms) and text (words
on the output of ASR), a late fusion of the two models would
be suitable for combining the outputs into a single decision.

VII. ACKNOWLEDGEMENT

Authors would like to thank our colleagues Ashley Chang,
Bryan Li, Dimitrios Dimitriadis, and Andreas Stolcke for
labeling the data and fruitful discussions on various aspects
of sentiment detection from customers calls.

REFERENCES

[1] Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir Hussain, “A
review of affective computing: From unimodal analysis to multimodal
fusion,” Information Fusion, vol. 37, pp. 98–125, 2017.

[2] B. Schuller, A. Batliner, S. Steidl, and D. Seppi, “Recognising realistic
emotions and affect in speech: State of the art and lessons learnt from the
first chalenge,” Speech Communication, vol. 53, no. 9, pp. 1062–1087,
2011.

[3] F. Weninger, F. Ringeval, E. Marchi, and B. Schuller, “Discriminatively
trained recurrent neural network for continuous dimensional emotion
recognition from audio,” in Proceedings of IJCAI, 2016, pp. 2196–2202.

[4] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[5] Kun Han, Dong Yu, and Ivan J. Tashev, “Speech emotion recognition us-
ing deep neural network and extreme learning machine,” in Interspeech,
2014.

[6] G. Keren and B. Schuller, “Convolutional RNN: an enhanced model for
extracting features from sequential data,” Preprint arXiv:1602.05875,
2016.

[7] Jinkyu Lee and Ivan J. Tashev, “High-level feature representation
using recurrent neural network for speech emotion recognition,” in
Interspeech, 2015.

[8] Yann LeCun, Fu-Jie Huang, and Leon Bottou, “Learning methods for
generic object recognition with invariance to pose and lighting,” in
Computer Vision and Pattern Recognition Conference, 2004.

[9] Srinivas Parthasarathy and Ivan J. Tashev, “Convolutional neural
netwok techniques for speech emotion recognition,” in Proc. IWAENC,
September 2018.

[10] G. Mishne and et al, “Experiments with mood classification in blog
posts,” in Proceedings of ACM SIGIR 2005 Workshop on stylistic
analysis of text for information access, 2005, pp. 321–327.

[11] L. Oneto, F. Bisio, E. Cambria, and D. Anguita, “Statistical learning
theory and ELM for big social data analysis,” IEEE Comput. Intell.
Mag., vol. 11, no. 3, pp. 45–55, 2016.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean, “Distributed representations of words and phrases and their
compositionality,” in Proceedings of NIPS, 2013.

[13] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch,
and Armand Joulin, “Advances in Pre-Training Distributed Word
Representations,” in Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

[14] Brian Li, Dimitrios Dimitriadis, and Andreas Stolcke, “Acoustic and
Lexical Sentiment Analysis for Customer Service Calls,” in Proceedings
of ICASSP. May 2019, IEEE.

[15] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer,
“Class-based n-gram models of natural language,” Computational
Linguistics,, vol. 18, pp. 467–479, 1992.

[16] K. Sparck Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of Documentation, vol. 28, pp. 11–21,
1972.

[17] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501,
2006.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
compution, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] L. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.


