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Abstract

Even though graphic layout generation has attracted growing
attention recently, it is still challenging to synthesis realistic
and diverse layouts, due to the complicated element relation-
ships and varied element arrangements. In this work, we seek
to improve the performance of layout generation by incor-
porating the concept of regions, which consist of a smaller
number of elements and appears like a simple layout, into the
generation process. Specifically, we leverage Variational Au-
toencoder (VAE) as the overall architecture and decompose
the decoding process into two stages. The first stage predicts
representations for regions, and the second stage fills in the
detailed position for each element within the region based on
the predicted region representation. Compared to prior stud-
ies that merely abstract the layout into a list of elements and
generate all the element positions in one go, our approach
has at least two advantages. First, by the two-stage decoding,
our approach decouples the complex layout generation task
into several simple layout generation tasks, which reduces the
problem difficulty. Second, the predicted regions can help the
model roughly know what the graphic layout looks like and
serve as global context to improve the generation of detailed
element positions. Qualitative and quantitative experiments
demonstrate that our approach significantly outperforms the
existing methods, especially on the complex graphic layouts.

1 Introduction
Graphic design appears almost everywhere, e.g., posters,
documents and mobile applications. In achieving a success-
ful graphic design, the layout, presented by positions and
sizes of all the elements on a design, plays a critical role.
To aid the creation of graphic layouts, growing interest has
been devoted to automatic layout generation. Most studies
abstract the layout into a list of bounding boxes and gener-
ate layouts by predicting positions of all the elements in one
go (Li et al. 2019; Patil et al. 2020; Lee et al. 2020; Gupta
et al. 2020; Arroyo, Postels, and Tombari 2021). Specif-
ically, recent work explores generic layout generation by
leveraging Transformer, while early studies usually impose
restrictions when generating layouts (e.g., using heuristic-
based labels for element relationships and handling a lim-
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Figure 1: Examples for graphic layouts. Each subfigure con-
tains a graphic design (left), a corresponding layout (middle)
and a possible region segmentation (right).

ited number of elements). Though meaningful attempts are
made, it is still challenging to generate realistic and com-
plex layouts, due to the complicated relationships between
elements and the enormous ways that individual elements
can be combined into a layout.

In this work, we propose generating graphic layouts in a
coarse-to-fine manner. While most studies consider the en-
tire layout as a single list of elements, our key insight is to
segment the layout into several regions, each of which ap-
pears like an individual simple layout and contains a smaller
number of elements from the whole layout. Figure 1 shows
examples for realistic layouts and their possible region seg-
mentations. Specifically, we leverage Variational Autoen-
coder (Kingma and Welling 2013) as the overall architecture
and decompose the decoding process into two stages (see
Figure 2(a)). The first decoder, called region decoder, pre-
dicts a set of region representations based on the latent code.
As the region segmentation is not explicitly provided by the
layout itself, we propose a simple yet effective method based
on grid lines to extract the pseudo region segmentation from
the layout and take it as the supervision for the training of
the region decoder. The second decoder, called element de-
coder, fills in the detailed position for each element within
the region by conditioning on the region representation. To
make the model treat each region as a simple layout, element
positions are transformed into relative positions to the corre-
sponding region during the training of the element decoder.



There are at least two advantages to the proposed ap-
proach. First, compared to generating the entire layout, pre-
dicting positions for the elements within a region is easier, as
a region contains a smaller number of elements and the ele-
ment arrangement within a region is relatively simple. Thus,
if we could first segment a layout into several regions and
then generate element positions within each region individ-
ually, a complex layout generation task will be decoupled
into several simple layout generation tasks. Second, the re-
gions can roughly depict what a graphic layout looks like.
Such information can serve as the global context and help
improve the generation of detailed element positions.

We evaluate our approach qualitatively and quantitatively
on UI layouts from RICO (Deka et al. 2017) and document
layouts from PubLayNet (Zhong, Tang, and Yepes 2019).
Experiments show that our approach outperforms existing
approaches, especially on complex layouts which have many
elements and complicated element arrangements.

2 Related Work
Graphic Layout Generation. Recently, deep generative
models have been studied for graphic layout generation.
LayoutGAN (Li et al. 2019) proposes a wireframe rendering
layer to capture the alignment characteristic of graphic lay-
outs. NDN (Lee et al. 2020) leverages Graph Convolution
Networks (GCNs (Scarselli et al. 2008; Kipf and Welling
2016)) to learn the layout representation, where the labels
of relationships are based on heuristics (e.g., top, below
and larger). Similarly, READ (Patil et al. 2020) also uses
heuristics to determine relationships between elements and
then leverage Recursive Neural Networks (RvNNs (Goller
and Kuchler 1996)) for layout generation. These studies im-
pose unreasonable restrictions when generating layout. First,
LayoutGAN and NDN only handle simple layouts with lim-
ited number of elements (e.g., single-column layouts with
less than 10 elements), while real layouts contain lots of el-
ements and are much complex. Second, NDN and READ
use heuristic-based labels, which are difficult to model el-
ement relationships comprehensively and objectively. Re-
cently, to achieve generic layout generation, VTN (Arroyo,
Postels, and Tombari 2021) and (Gupta et al. 2020) propose
leveraging Transformer (Vaswani et al. 2017) to handle arbi-
trary number of elements and discover element relationships
without heuristic-based labels. All the above prior studies
regard the entire layout as a single list of elements and gen-
erate element positions in one go. Unlike them, this work
considers segmenting a layout into several regions and de-
composing the generation process into two stages.

Besides, some studies also explore how to incorporate
user intents or constraints when generating layouts. Zheng
et al. studies generating layouts conditioned on visual and
textual semantics of the user input. Lee et al. synthesis lay-
outs by considering user-specified position and size rela-
tionships. Kikuchi et al. formulate the layout generation as
a constraint optimization problem to satisfy implicit and
explicit constraints specified by users. Moreover, a recent
study leverages multi-modal set of attributes for canvas and
elements to help layout generation (Yamaguchi 2021). These

works are orthogonal to the unconditional layout generation
discussed in this work.

Vector Image Generation. Vector image generation, e.g.,
sketches, strokes and icons, catches attention until very re-
cently, despite that raster image generation has achieved
great success (Radford, Metz, and Chintala 2015; Zhu et al.
2017; Arjovsky, Chintala, and Bottou 2017). For exam-
ple, SketchRNN (Ha and Eck 2017) models all strokes
in a sketch as a sequence; Sketchformer (Ribeiro et al.
2020) leverages Transformer to learn longer term temporal
structure in the stroke sequence; DeepSVG (Carlier et al.
2020) disentangles high-level shapes from the low-level
commands to reconstruct complex icons; and CoSE (Aksan
et al. 2020) factors local appearance of a stroke from the
global structure of the drawing to model stroke-based data.
As graphic layouts have different data structures with afore-
mentioned vector images, recent progress on them cannot
be directly adopted. Nevertheless, these studies inspire us
to think deeply about segmenting graphic layouts into sev-
eral regions, which is overlooked by existing studies about
graphic layout generation.

3 Problem Formulation
In this work, we aim at synthesizing a plausible graphic lay-
out, denoted as x. Concretely, a graphic layout is composed
of elements, i.e., x = {x1, . . . , xN}, where N is the num-
ber of elements and xi stands for the placement of the i-the
element. Here xi = (si, ti), where si represents the left-top
and right-bottom coordinates of element’s bounding box and
ti is the element type (e.g., buttons, texts and images).

Moreover, as introduced in Section 1, we segment a lay-
out into several regions, each of which appears like a simple
layout and contains a set of elements. We denote the regions
on a layout x as r = {r1, . . . , rM}, where M is the number
of regions and rj stands for the representation of the j-the
region. In this work, we represent a region by two kinds of
information, i.e., where the region is and which elements are
in this region. Thus, we have rj = (uj , vj), where uj rep-
resents the left-top and right-bottom coordinates of the min-
imal enclosing rectangle for all the elements within this re-
gion, and vj is a vector, each dimension of which represents
the number of one element type appearing in this region.

4 Approach
4.1 Architecture Overview
To synthesize a graphic layout x , we leverage VAE to maxi-
mize the data log likelihood log p(x), which is equivalent to
maximizing its Evidence Lower BOund (ELBO),

ELBO = Eqφ(z|x)[log pθ (x|z)]− KL (qφ (z|x) ‖pθ (z)) , (1)

where z stands for the latent code, pθ (z) is a fixed Gaussian
N (0, I), and θ and φ refer to the learnable parameters.

In this work, we seek to improve the performance of lay-
out generation by incorporating the concept of the regions
r into the generation process. Specifically, we propose de-
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Figure 2: Model architecture.

composing the decoding process pθ(x|z) into two stages,
ELBOtwo-stage

=Eqφ(z|x)[log
∑
r

pθ (x, r|z)]− KL (qφ (z|x) ‖pθ (z)) (2)

,Eqφ(z|x)[log pθ (x, r|z)]− KL (qφ (z|x) ‖pθ (z)) (3)

=Eqφ(z|x)[log pθ (x|r, z)] (4)

+ Eqφ(z|x)[log pθ (r|z)]− KL (qφ (z|x) ‖pθ (z)) .
Here, Eqn 3 holds under the natural assumption that
p(r|x, z), i.e., the distribution of region r given layout x and
latent code z, is a prior distribution that can be obtained from
data. To be more specific, when maximizing ELBOtwo-stage,
as the prior p(r|x, z) is a constant and log

∑
r p(x, r|z) =

log p(x|z) = log p(x, r|z) − log p(r|x, z), optimizing
log

∑
r p(x, r|z) can be regarded as equivalent to optimiz-

ing log p(x, r|z).
In detail, as shown in Figure 2, the first stage pθ (r|z),

called region decoder, predicts regions r conditioned on the
latent code z, while the second stage pθ (x|r, z), called ele-
ment decoder, generates the element placement x based on
the predicted regions r. Besides, qφ (z|x) refers to the en-
coder that transforms the graphic layout x to the latent code
z. Their details will be introduced in Section 4.2.

4.2 Model Details
Following the successful practice of the state-of-the-art ap-
proach (Arroyo, Postels, and Tombari 2021), we leverage
Transformer (Vaswani et al. 2017) as our backbone network,
design our decoders in an autoregressive manner, and use
normal distribution when optimizing KL-divergence.

Encoder. First, for the i-th element xi in a layout, the el-
ement embedding exi is produced by concatenating its posi-
tion embedding esi and type embedding eti, i.e.,

exi = fFC
([
esi ; e

t
i

])
, esi = fFC (si) , e

t
i = fFC (ti) . (5)

Here fFC is the fully connected layer and ti is the one-hot
encoding for the element type. Regarding si, following re-
cent studies (Gupta et al. 2020; Arroyo, Postels, and Tombari

2021), we discretize each coordinate and concatenate one-
hot encodings of the four discretized coordinates. Besides,
[·; ·] stands for the concatenation of two vectors.

Then, the layout embedding h is produced by leveraging
Transformer to learn relationships between elements, i.e.,

h =
1

N

∑
i

hxi , {hx1 , . . . , hxN} = fTF-ENC (ex1 , . . . , e
x
N ) . (6)

Here fTF-ENC stands for Transformer encoder.
Lastly, we learn the parameters µ and σ of a Gaussian dis-

tribution based on the layout embedding h, and then leverage
reparametrization trick to get the latent code z of VAE,
z = µ+ σ · ε and ε ∼ N (0, I), µ = fFC (h) , σ = fFC (h) . (7)

Region Decoder. In the first stage, we generate the repre-
sentation for each region. Taking the j-th region as an ex-
ample, the information about where the region is ûj and the
information about which elements are in this region v̂j is
predicted by conditioning on the latent code z and the em-
beddings of previous regions er1, . . . , e

r
j−1, i.e.,

ûj = fFC

(
ĥrj

)
, v̂j = fFC

(
ĥrj

)
, (8)

{ĥr1, . . . ĥrj} = fTF-DEC
(
z, {eBoS, e

r
1, . . . , e

r
j−1}

)
,

where fTF-DEC stands for Transformer decoder and eBoS is
the embedding of a special token indicating the beginning
of the sequence. Besides, erc (1 ≤ c ≤ j − 1) is obtained
following a similar process to Eqn 5.
Element Decoder. In the second stage, we generate the
placement detail for each element. This process is repeated
for every region predicted in the first stage. We take the k-
th element in the j-th region as an example. Specifically,
its position ŝj,k and the element type t̂j,k are generated
by considering the latent code z, the region representation
hrj and the embeddings of previous elements in this region
exj,1, . . . , e

x
j,k−1, i.e.,

ŝj,k = fFC

(
ĥxj,k

)
, t̂j,k = fFC

(
ĥxj,k

)
, (9)

{ĥxj,1, . . . , ĥxj,k} = fTF-DEC

([
ĥrj ; z

]
, {eBoS, e

x
j,1, . . . , e

x
j,k−1}

)
,
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Figure 3: An illustration for extracting a segmentation tree
from a graphic layout. The penultimate layer of the segmen-
tation tree is taken as the pseudo region segmentation.

where exj,c (1 ≤ c ≤ k − 1) is get by the same process as
Eqn 5. Note that ŝj,k is transformed into the relative position
to the region position ûj . This helps model to treat generat-
ing elements in a region the same as generating an individual
simple layout, and thus facilitates the knowledge sharing be-
tween different regions during the training.

In the implementation, input sequences to each Trans-
former mentioned above are padded to have the same length,
and the special tokens representing the beginning of the
sequence (BoS) and the end of the sequence (EoS) are
added. In both two decoders, we rely on the EoS to de-
cide whether to terminate the generation. Besides, during
the training, when producing the embeddings of previous
regions er1, . . . , e

r
j−1 and previous elements exj,1, . . . , e

r
j,k−1,

we use the ground-truth instead of the prediction.

4.3 Training Objective
According to ELBO in Eqn 4, our training objective com-
bines three parts, i.e., the reconstruction error between
generated elements and ground-truth elements, denoted as
Lele, the reconstruction error between generated regions and
ground-truth regions, denoted as Lreg, and KL-divergence
between the distribution of latent code z and N (0, I),

L = Lele + ω1Lreg + ω2KL(qφ(z|x)||N (0, I)), (10)

where ω1 and ω2 are hyper-parameters to trade-off the
weights among three parts. Specifically, Lele (or Lreg) is the
total loss for all the elements (or regions) in a layout,

Lele =
∑
i

lCE (ŝi, si) + lCE
(
t̂i, ti

)
, (11)

Lreg =
∑
j

lCE (ûj , uj) + lMSE (v̂j , vj) .

Here lMSE is mean square error and lCE is cross-entropy loss.
Note that as all the coordinates are discretized, the cross en-
tropy loss is leveraged for position reconstruction.

4.4 Supervision for Region Representation
As discussed in Section 4.3, to learn the region representa-
tion, the ground-truth region segmentation, represented by
rj = (uj , vj), is an indispensable supervision information
for the region decoder. However, graphic layouts hardly pro-
vide such information explicitly, since it is not a necessary
part of a final graphic design. To solve this problem, we

seek to automatically extract a pseudo region segmentation
from the graphic layout and regard it as the supervision for
learning the region representation. Prior studies (Armstrong
2009; Dayama et al. 2020; Jacobs et al. 2003) indicate that
when creating graphic designs, designers often leverage grid
lines to decide the overall spatial organization and guide the
placement of elements. This motivates us to consider ob-
taining a pseudo region segmentation with the help of grid
lines. In detail, as shown in Figure 3, we scan the layout
along either the horizontal direction or the vertical direction,
and check whether the layout can be divided into several
fragments along a certain direction. We repeat such opera-
tion recursively for each fragments until there is no divisible
fragments, and finally get a segmentation tree. In our im-
plementation, for simplicity, we take the penultimate layer
in the segmentation tree as the pseudo region segmentation
and find it can achieve good performance. Note that the re-
gion segmentation is not unique and some regions obtained
by this way may not be the most plausible solution. Never-
theless, they can also help factor a complex graphic layout
into several smaller regions to some extent, and thus will be
beneficial to the overall generation performance.

5 Experiments
5.1 Experimental Setup
Datasets. We evaluate our method on the following publicly
available datasets, which are widely used in recent studies
about graphic layout generation.

RICO (Deka et al. 2017) contains 66K+ mobile app UI
layouts with 25 element categories. The annotations are
structured by Android view hierarchies. Similar to (Arroyo,
Postels, and Tombari 2021), we omit layouts with more than
100 elements due to the memory constraint. In total, we get
54K screenshot data for training and 6K data for validation.

PubLayNet (Zhong, Tang, and Yepes 2019) contains
360K+ document layouts with 5 element categories. We also
omit layouts with more than 100 elements, and finally get
300K data for training and 33K for validation.
Compared Methods. Early studies usually impose restric-
tions when generating layout, e.g., using heuristic-based la-
bels for element relationships (Patil et al. 2020; Lee et al.
2020) or handling a limited number of elements (Li et al.
2019; Jyothi et al. 2019) (see Section 2). The recent work,
VTN (Arroyo, Postels, and Tombari 2021), explores generic
layout generation and achieves state-of-the-art performance.
Thus, we compare against VTN and its similar model from
Gupta et al.. We also compare against NDN (Lee et al.
2020) using their proposed metric based on rendered layout
images though it only tackles a limited number of elements.
Implementation Details. Our approach is implemented by
PyTorch. For Transformer blocks, we stack 4 layers with
a representation size of 512 and a feed-forward represen-
tation size of 1024, and use multi-head attentions with 4
heads. We use Adam optimizer (Kingma and Ba 2014) with
initial learning rate 10−3 reduced by a factor of 0.8. The
dropout rate of transformer blocks is set to 0.1. All mod-
els are trained for 300 epochs on RICO and 100 epochs on
PubLayNet, with batch size of 256 on two V100 GPUs.



RICO PubLayNet

Overlap ↓ Align. ↓ W class ↓ W bbox ↓ Overlap ↓ Align. ↓ W class ↓ W bbox ↓
Gupta et al. 0.145 0.366 0.004 0.023 0.006 0.361 0.018 0.012
VTN 0.165 0.373 0.007 0.018 0.017 0.347 0.022 0.012
Ours 0.139 0.276 0.007 0.012 0.005 0.352 0.007 0.012

Real data 0.175 0.410 - - 0.007 0.353 - -

Table 1: Quantitative comparisons of generation. For each method, we generate 1000 layouts for evaluation.

VTN Ours Real data VTN Ours Real data

(a) RICO

VTN Ours Real data VTN Ours Real data

(b) PubLayNet

Figure 4: Qualitative comparisons of reconstruction performance.

CD ↓ CD ↓

RICO VTN 0.0573 PubLayNet VTN 0.0304
Ours 0.0276 Ours 0.0278

Table 2: Quantitative comparisons of reconstruction.

5.2 Quantitative Comparisons
Evaluation Metrics. To evaluate reconstruction perfor-
mance, we leverage Chamfer Distance (CD). Regarding
generation performance, we resort to a set of metrics, each
of which represents one aspect of perceptual quality and di-
versity, including overlap index (Overlap), alignment score
(Align.), Wasserstein Distance (W class and W bbox) and
Fréchet Inception Distance (FID).

CD. Referring to the definition of CD on SVG im-
ages (Carlier et al. 2020), we define CD between the ground-
truth layout x and the reconstructed layout x̂ as the sum of
the minimal distance between elements, i.e., sCD(x̂,x) =
1
N

∑
i=1 minj ‖si − ŝj‖2.

Overlap. Usually, the elements on the layout should not
overlap excessively. Following (Li et al. 2020), we calculate
the intersection area of any two elements in the layout, i.e.,
sOverlap(x̂) =

1
2N

∑N
i=1

∑
j 6=i

ci∩cj
ci

, where ci denotes the i-
th element’s area and ci ∩ cj denotes the overlapping area
between element i and j.

Align. Good alignment can create a sense of tidiness. Fol-
lowing (Lee et al. 2020), we consider 3 common alignment

types in a graphic layout (including left, center and right),
i.e., sAlign.(x̂) = 1

N

∑N
i=1

∑
j 6=imin dT (o

T
i , o

T
j ), where T

denotes the alignment type, oTi denotes the corresponding
coordinate of the element xi under the alignment type T ,
and dT is the distance between the two coordinates.

W class and W bbox. The distribution for generated lay-
outs should be close to that for real layouts. Following (Ar-
royo, Postels, and Tombari 2021), we approximate Wasser-
stein distance between generated and real layouts for two
marginal distributions about element types and positions.

FID also describes distribution difference between real
and generated layouts. Unlike above metrics that are based
on element types and position values, FID depends on ren-
dered layout images. Following (Lee et al. 2020), we get lay-
out embedding for FID calculation by training a CNN clas-
sifier to discriminate ground-truth layouts from randomly-
perturbed layouts. The classifier is trained to achieve the ac-
curacy of 95% and 96% on RICO and PubLayNet.

Results and Analysis. Table 2 shows quantitative com-
parisons of reconstruction performance, where lower CD
indicates better performance on the training set. On both
datasets, our method achieves the best performance, demon-
strating the superiority of the proposed two-stage decoder.

Table 1 shows quantitative comparisons of generation per-
formance, where lower values indicate better performance.
Our approach achieves the best performance on almost every
metric. To further investigate the advantage of our approach,
we classify layouts into different groups by the number of el-
ements and conduct evaluations on these groups. As shown
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Figure 6: Quantitative comparisons when the layouts are
grouped by the number of elements (on RICO).

in Figure 6, on each metric, the performance gap between
our approach and VTN increases with the number of ele-
ments. This indicates that the advantage of our approach lies
in handling complex layout with more elements. It is also
consistent with the intuition that by introducing regions, our
approach can decouple a complex layout into several simple
layouts and thus reduce generation difficulty.

Besides, Table 31 compares generation performance from
another angle, i.e., rendered layout images instead of ele-
ment types and position values. Our approach outperforms
other methods, further demonstrating that our approach can
generate more realistic and diverse layouts.

5.3 Qualitative Comparisons2

Figure 4 shows qualitative comparisons of reconstruction
performance on training set. For ease of comparison, each
subfigure shows reconstructed layouts by VTN (left) and our
approach (middle) for the same real layout (right). Although

1On PubLayNet, FID of NDN is not displayed because we fail
to reproduce it by ourselves and the authors do not release codes.

2Please refer to Supplementary for more qualitative results.

FID↓
RICO PubLayNet

NDN 143.51± 22.36 -
VTN 104.67± 29.51 66.41± 20.55
Ours 61.87± 5.77 32.42± 19.76

Table 3: Quantitative comparisons of generation by rendered
layout images. Each experiment is repeated for 5 times.

both approaches perform well on the reconstruction, our ap-
proach still outperform VTN in terms of reconstructing posi-
tions more precisely and predicting element types correctly.

Figure 5 shows qualitative comparisons of generation per-
formance. On RICO, when there are lots of elements on a
layout, VTN struggles to handle overlaps between elements,
and tends to arrange elements in a disorderly manner. By
contrast, our approach seldom generates layouts with un-
reasonable overlaps and can arrange elements in more di-
verse and complicated way. Similarly, on PubLayNet, our
approach better handles the right alignment and the overlap
issue compared to VTN.

Figure 7 shows generated layouts and their closest real
graphic designs in the training set, which are obtained using
DocSim match mentioned in (Patil et al. 2020). While the
very similar real data can be found from the training set, our
generated layouts still have some differences with the real
one. This indicates that our generated layouts are reasonable,
realistic and diverse at the same time.

Figure 8 shows generated layouts and corresponding re-
gions predicted by the region decoder. It can be clearly ob-
served that the predicted regions depict a rough appearance
for the layouts. Besides, compared to the entire layout, each
region contains a much smaller number of elements and the
element arrangement within it also becomes simpler.



(a) RICO (b) PubLayNet

Figure 7: Generated layouts and their closest real graphic designs in the training set.

(a) RICO

(b) PubLayNet

Figure 8: Generated layouts and their predicted regions.

5.4 Model Variants
Table 4 shows performance for different model variants. In
the region decoder, we transform the absolute element po-
sitions into the relative positions w.r.t. the region, in order
to help the model treat generating elements in a region the
same as generating elements in an individual simple layout.
In the first model variant, we examine whether directly using
absolute positions will result in better performance, denoted
as AbsPos in Table 4. Experimental results show that this
variant does not perform as well as our original model (de-
noted as Ours in Table 4) on most metrics.

Moreover, we study the possible impact of different kinds
of region segmentation. Specifically, we leverage the An-
droid view hierarchy provided by RICO itself as the region
segmentation during the training. We denote this model vari-
ant as AndView in Table 4. It is observed that this variant
still outperforms other baselines shown in Table 1 on most
metrics, indicating the our approach is relatively robust to
the choice of the region segmentation. As for that this variant
does not perform as well as our original model, we hypoth-
esize the reason as that Android view hierarchy is mainly
based on relationships of widget functions rather than rela-

Model CD ↓ Overlap↓ Align.↓ W
class↓

W
bbox↓

Ours 0.028 0.139 0.276 0.007 0.012
AbsPos 0.041 0.131 0.470 0.011 0.016
AndView 0.049 0.142 0.320 0.009 0.017
TwoEnc 0.265 0.158 0.522 0.012 0.027

Table 4: Performance for model variants (on RICO).

tionships of element placement.
Besides, we consider a model variant that leverages an

extra two-stage encoder to incorporate the concept of re-
gions. Specifically, the two-stage encoder mirrors the two-
stage decoder, which first encodes elements into region em-
bedding and then encodes all the region embeddings into a
latent vector z. We denote it as TwoEnc in Table 4. We find
that this variant does not perform better than our original
model. We think it is comprehensible and reasonable. On
the one hand, by learning a two-stage decoder, the model
are already equipped to capture the concept of regions. On
the other hand, an extra two-stage encoder introduces more
parameters and thus increases the training difficulty.

6 Conclusion
In this work, we propose a coarse-to-fine approach for
graphic layout generation. Specifically, we decompose the
generation process into two stages, where the first stage pre-
dicts the region representations that depict rough appearance
of the layout, and the second stage generates the detailed el-
ement placement conditioned on the predicted region repre-
sentation. Quantitative and qualitative experiments demon-
strate that our approach achieve superior performance than
the previous methods which generates the entire layout in
one go. In the future, we plan to evaluate the performance
of our approach when user intents are incorporated, e.g., the
length of texts and the fixed aspect ratio of images. Besides,
we will continue to explore more effective region segmen-
tations, e.g. the one consistent with the layout semantics, to
better help graphic layout generation.



References
Aksan, E.; Deselaers, T.; Tagliasacchi, A.; and Hilliges, O.
2020. CoSE: Compositional Stroke Embeddings. arXiv
preprint arXiv:2006.09930.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In International conference
on machine learning, 214–223. PMLR.
Armstrong, H. 2009. Graphic design theory: Readings from
the field. Chronicle Books.
Arroyo, D. M.; Postels, J.; and Tombari, F. 2021. Variational
Transformer Networks for Layout Generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 13642–13652.
Carlier, A.; Danelljan, M.; Alahi, A.; and Timofte, R. 2020.
DeepSVG: A Hierarchical Generative Network for Vector
Graphics Animation. arXiv preprint arXiv:2007.11301.
Dayama, N. R.; Todi, K.; Saarelainen, T.; and Oulasvirta,
A. 2020. Grids: Interactive layout design with integer pro-
gramming. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 1–13.
Deka, B.; Huang, Z.; Franzen, C.; Hibschman, J.; Afergan,
D.; Li, Y.; Nichols, J.; and Kumar, R. 2017. Rico: A mobile
app dataset for building data-driven design applications. In
Proceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology, 845–854.
Goller, C.; and Kuchler, A. 1996. Learning task-dependent
distributed representations by backpropagation through
structure. In Proceedings of International Conference on
Neural Networks (ICNN’96), volume 1, 347–352. IEEE.
Gupta, K.; Achille, A.; Lazarow, J.; Davis, L.; Mahade-
van, V.; and Shrivastava, A. 2020. Layout Genera-
tion and Completion with Self-attention. arXiv preprint
arXiv:2006.14615.
Ha, D.; and Eck, D. 2017. A neural representation of sketch
drawings. arXiv preprint arXiv:1704.03477.
Jacobs, C.; Li, W.; Schrier, E.; Bargeron, D.; and Salesin, D.
2003. Adaptive grid-based document layout. ACM transac-
tions on graphics (TOG), 22(3): 838–847.
Jyothi, A. A.; Durand, T.; He, J.; Sigal, L.; and Mori, G.
2019. Layoutvae: Stochastic scene layout generation from
a label set. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 9895–9904.
Kikuchi, K.; Simo-Serra, E.; Otani, M.; and Yamaguchi, K.
2021. Constrained Graphic Layout Generation via Latent
Optimization. arXiv preprint arXiv:2108.00871.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Lee, H.-Y.; Jiang, L.; Essa, I.; Le, P. B.; Gong, H.; Yang, M.-
H.; and Yang, W. 2020. Neural design network: Graphic lay-
out generation with constraints. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part III 16, 491–506. Springer.
Li, J.; Yang, J.; Hertzmann, A.; Zhang, J.; and Xu, T. 2019.
Layoutgan: Generating graphic layouts with wireframe dis-
criminators. arXiv preprint arXiv:1901.06767.
Li, J.; Yang, J.; Zhang, J.; Liu, C.; Wang, C.; and Xu,
T. 2020. Attribute-conditioned layout gan for automatic
graphic design. IEEE Transactions on Visualization and
Computer Graphics.
Patil, A. G.; Ben-Eliezer, O.; Perel, O.; and Averbuch-Elor,
H. 2020. Read: Recursive autoencoders for document layout
generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 544–
545.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Ribeiro, L. S. F.; Bui, T.; Collomosse, J.; and Ponti, M.
2020. Sketchformer: Transformer-based representation for
sketched structure. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 14153–
14162.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model.
IEEE transactions on neural networks, 20(1): 61–80.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. arXiv preprint arXiv:1706.03762.
Yamaguchi, K. 2021. CanvasVAE: Learning to Gen-
erate Vector Graphic Documents. arXiv preprint
arXiv:2108.01249.
Zheng, X.; Qiao, X.; Cao, Y.; and Lau, R. W. 2019. Content-
aware generative modeling of graphic design layouts. ACM
Transactions on Graphics (TOG), 38(4): 1–15.
Zhong, X.; Tang, J.; and Yepes, A. J. 2019. Publaynet:
largest dataset ever for document layout analysis. In 2019
International Conference on Document Analysis and Recog-
nition (ICDAR), 1015–1022. IEEE.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.


