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ABSTRACT

Deep learning has been increasingly adopted in many application
areas. To construct valid deep learning models, developers must
conform to certain computational constraints by carefully selecting
appropriate neural architectures and hyperparameter values. For
example, the kernel size hyperparameter of the 2D convolution
operator cannot be overlarge to ensure that the height and width
of the output tensor remain positive. Because model construction
is largely manual and lacks necessary tooling support, it is possible
to violate those constraints and raise type errors of deep learning
models, causing either runtime exceptions or wrong output results.
In this paper, we propose REFTY, a refinement type-based tool for
statically checking the validity of deep learning models ahead of job
execution. REFTY refines each type of deep learning operator with
framework-independent logical formulae that describe the compu-
tational constraints on both tensors and hyperparameters. Given
the neural architecture and hyperparameter domains of a model,
REFTY visits every operator, generates a set of constraints that the
model should satisfy, and utilizes an SMT solver for solving the
constraints. We have evaluated REFTY on both individual operators
and representative real-world models with various hyperparameter
values under PyTorch and TensorFlow. We also compare it with an
existing shape-checking tool. The experimental results show that
REFTY finds all the type errors and achieves 100% Precision and
Recall, demonstrating its effectiveness.
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- Software and its engineering — Software verification and
validation.
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1 INTRODUCTION

In recent years, deep learning (DL) has been successfully applied
to many application areas such as image recognition, gaming, and
natural language processing. To design layered data representations
called deep learning models (aka deep neural networks) [9, 24], de-
velopers employ tensor-oriented mathematical operations provided
by deep learning frameworks such as PyTorch [56] and Tensor-
Flow [1]. These operations are known as operators that manipulate
one or more tensors (i.e., multi-dimensional arrays), including, for
example, matrix multiplication and 2D convolution. Developers use
additional arguments called hyperparameters (e.g., the batch size
and the kernel size) to control the model learning process.

Like functions in conventional programming languages, oper-
ators also enforce computational constraints on both tensors and
hyperparameters to construct valid DL models. Let us take Conv2d
[61, 74], the 2D convolution operator, as an example for illustra-
tion (a complete description is presented in Section 3.2). The input
tensor of Conv2d should have exactly four dimensions: batch (N),
channel (C), height (H), and width (W). Depending on the position
of the channel dimension, NCHW (channels first) and NHWC (channels
last) [44, 52] are two widely used tensor formats. PyTorch accepts
NCHW only [61]; TensorFlow supports both, but developers need
to explicitly specify the actual format. The kernel size, a hyper-
parameter of Conv2d that “specifies the height and width of the
2D convolution window” [74], is an array of two positive integers.
Besides, the values cannot be overlarge to ensure that the height
and width of the output tensor remain positive too. Because model
construction is largely manual and lacks necessary tooling support,
it is possible to violate the above constraints and raise type errors of
DL models just like those in conventional programs, causing either
a training/inference job to crash (e.g., an overlarge kernel size) or a
model to produce totally wrong output results (e.g., NHWC training
data being fed to a PyTorch model by mistake).

Recent empirical studies [30, 85, 87] indicate that type errors of
DL models are not uncommon. For example, Zhang et al. [87] dis-
covered that 24 out of the 175 (about 13.71%) TensorFlow program
bugs collected from Stack Overflow and GitHub were caused by
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incompatible tensor shapes (i.e., the lengths of all dimensions). It is
challenging to detect and eliminate these errors before job execu-
tion (at compile-time) because the hybrid programming paradigm
of DL frameworks hides the internal computation from high-level
programs written by developers. The type errors of DL models not
only waste significant shared resources (including CPU, GPU, net-
work I/O, and storage) but also severely slow down development
productivity. Their ill effects are even worse in the widely adopted
practice of automated machine learning (AutoML), where an ex-
periment launches many trial jobs simultaneously. That is to say,
if one trial job encounters a type error, other tens or hundreds of
the jobs with similar neural architecture and hyperparameter vector
(i.e., a value tuple of all hyperparameters) could also experience the
same error and fail.

A simple workaround is to run DL jobs for a while and check
whether any runtime exception is thrown. However, such a dy-
namic method is both resource- and time-consuming; it is espe-
cially unaffordable in the AutoML scenario because a large number
of possible neural architectures and hyperparameter vectors exist.
Furthermore, invalid DL models that do not lead to job crashes
but produce wrong output results cannot be caught. Type-based
techniques [2, 6, 17, 27, 32, 33, 37, 42, 45, 50, 67, 81] have been
promising to detect type errors. However, these previous works
target programs written in conventional programming languages
such as Haskell, C, C++, or Java; therefore, we cannot apply them
directly to DL models because of the wide differences in representa-
tion structure. Recently, a few tools [15, 40, 78] such as Pythia [40]
are able to find some shape incompatibility errors in certain DL
programs. Nevertheless, their approaches are TensorFlow-specific
and cannot capture non-shape issues.

In this paper, we propose REFTY, a refinement type-based tool for
statically checking the validity of deep learning models. Refinement
types [21] are types endowed with logical formulae that constrain
values; for example, int{v : 0 < v} stands for positive integers.
We observe that the algorithmic execution of a DL model can be
represented as iterative forward and backward propagation on the
model’s computation graph [24] whose nodes denote operators. Our
key insight is to refine each type of DL operator with logical formu-
lae that describe the computational constraints on both tensors and
hyperparameters, including those on how the output tensors are
produced. These logical formulae are framework-independent, be-
ing formulated from the mathematical definitions of operators. To
check whether a PyTorch or TensorFlow model is valid, developers
provide its neural architecture (which is described in the Protocol
Buffers [25] language or given from a serialized model file) and
hyperparameter domains. REFTY then traverses the computation
graph in strict accordance with the operator execution ordering and
generates a set of constraints [28] from the above logical formulae.
Therefore, the problem of checking model validity is reduced to a
constraint satisfaction problem (CSP) [64]. REFTY utilizes a satisfia-
bility modulo theories (SMT) [12] solver (e.g., Microsoft Z3 [11]) to
obtain the unsatisfiable hyperparameter vectors that result in po-
tential type errors. To accelerate constraint solving, we apply some
special optimization techniques. REFTY is extensible to incorporate
new operators and custom tensor shapes/element types/formats; it
can also be adapted to other DL frameworks.
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1 import torch.nn as nn

2 class CNNModel(nn.Module):

3 def __init__(self):

super (CNNModel, self).__init__()

self.conv = nn.Conv2d(in_channels = 1, out_channels = 16, kernel_size = 3)
self.pool = nn.AvgPool2d(kernel_size = 2, stride = 2)

self.fc = nn.Linear(in_features = 2704, out_features = 10)

self.softmax = nn.Softmax(dim = 1)

© % N o ;o

10 def forward(self, x):
11 x = self.conv(x)

12 x = self.pool(x)

13 X = x.reshape(x.size(9), -1)
14 x = self.fc(x)

15 x = self.softmax(x)

16 return x

Figure 1: A sample PyTorch model constructed with the
Conv2d, AvgPool2d, Reshape, Linear, and Softmax operators.

Forward Propagation Backward Propagation
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Figure 2: Computation graph for training the above model.

We have implemented REFTY and evaluated it on both individ-
ual DL operators (Conv2d, MaxPool2d, Linear, Add, and Concat)
and representative real-world models (AlexNet [39], VGG-16 [69],
Inception-V3 [71], LSTM [29]-based Seq2Seq [70], and GRU ([8]-
based Seq2Seq) under the PyTorch and TensorFlow frameworks.
We also compare REFTY with Pythia, a static shape-checking tool
for TensorFlow Python programs. The experimental results show
that REFTY finds all the type errors, achieves 100% Precision and Re-
call [51], and outperforms Pythia, demonstrating its effectiveness.

In summary, this paper makes the following contributions:

(1) We propose a novel refinement type-based approach for
checking the validity of DL models ahead of job execution.

(2) We implement a tool named ReFTY that generates a set of
constraints for DL models and utilizes an SMT solver to
detect potential type errors.

(3) We demonstrate the practical effectiveness of REFTY with a
rich set of experiments.

2 BACKGROUND
2.1 Deep Learning Models

A deep learning (DL) model is a layered data representation
learned from massive training data [9, 24]. The model is formalized
by frameworks like PyTorch [56] and TensorFlow [1] as a computa-
tion graph (i.e., a tensor-oriented, directed acyclic graph) [24]. Each
graph node denotes a mathematical operation called an operator
that manipulates a list of tensors. The node may contain numerical
learnable parameters (i.e., weights and biases), which are iteratively
updated during the model learning process. A directed edge from
node A to another node B delivers one output tensor of A to B as
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Table 1: Common type errors of deep learning models.

Dimension Category Description
The value of a hyperparameter is outside the domain. For example, typical hyperparameters such
Illegal Value . . i, rs .
as the batch size and stride are positive by definition, but zero or negative values are passed.
Hyperparameter - :
The value of a hyperparameter does not meet the computational constraints. For example, the
Improper Value . . . . . .
stride mistakenly exceeds the kernel size of Conv2d, causing some input data to be skipped.
Unsupported Format The format of a tensor is not supported. For example, an NHWC tensor is fed to the PyTorch Conv2d.
Mlegal Shape A certain dimensional length of a tensor is zero or negative. For example, if the kernel size of
Tensor & P Conv2d is too large, the output height or width may be reduced to a non-positive value.
. The shape of a tensor is unacceptable, or multiple tensors do not have matched shapes. For example,
Incompatible Shape . . .
the input tensor of Conv2d does not have exactly four dimensions.
Incompatible Element Type | A tensor’s element type is unacceptable, or multiple tensors do not have matched element types.

input and specifies their execution dependency. In this paper, the
terms “node” and “operator” are used interchangeably.

A tensor is a multi-dimensional array of numerical values of
the same element type. Its order (aka rank) is the number of di-
mensions [55]. Let R¢ denote the set of all 32-bit floating-point
numbers. Suppose that X is an n-order, 32-bit floating-point tensor,
and ; is the length (a positive integer) of its i-th dimension where
1 <i < n. Then, X € RetXEXXIn The array [I},Io, - - - ,I,] is
called the shape of X. For example, “[16, 1, 28, 28]” is the shape of a
4-order, NCHW tensor representing sixteen images of handwritten
digits [14]. Because each dimension of X may have application-
specific semantics (e.g., representing the batch size or the image
width), dimensional orderings derive different tensor formats. For
instance, NCHW (channels first) and NHWC (channels last) [44, 52] are
two widely used formats for a batch of 2D images.

Figure 1 shows a simple PyTorch training program, which sets
up a sequential model with the framework built-in Conv2d (2D con-
volution with a 3 X 3 kernel size), AvgPool2d (2D average pooling
with 2 X 2 kernel size and stride), Reshape (flattening the input into
one dimension without affecting the batch size), Linear (fully con-
nected layer with ten output features), and Softmax (normalizing
“the probability distribution over k different classes” [24]) operators
(lines 6-9, 14). The variables such as kernel_size, stride, and
out_features are hyperparameters since they participate in the
computation of operators to control the learning process. To obtain
the optimal model learning performance (e.g., predictive accuracy),
developers largely adopt a trial-and-error strategy by running mul-
tiple jobs, each with a different value tuple of all hyperparameters.
Figure 2 demonstrates the corresponding computation graph for
training the model. The operators on the left are specified by devel-
opers in the training program. The auxiliary operators in the middle
are automatically crafted by frameworks for computing gradients
under backward propagation. An optimizer at the bottom right is
responsible for weight update and loss minimization, marking the
end of one training iteration.

Although the model is simple enough, developers may make the
same mistakes mentioned in Section 1 at Conv2d and AvgPool2d
(lines 5-6). Furthermore, developers may pass a wrong number
of input features to the Linear operator (via the in_features
parameter in line 7) and raise an incompatible-tensor-shape error,
because such a number has to be manually calculated from the
output tensor shapes of the predecessor AvgPool2d and Conv2d.

2.2 Common Type Errors of DL Models

Table 1 lists six categories of common type errors, which are sum-
marized from related empirical studies [30, 85-87] and our experi-
ence. We further group these categories into two major dimensions:
Hyperparameter and Tensor. Errors in the former dimension are
directly caused by hyperparameter values. Illegal Value means that
the value of a hyperparameter is outside the domain. Typical hyper-
parameters are positive integers by definition; however, since they
are declared as signed integers in Python, developers may pass zero
or negative values by mistake. For example, a user encountered a
crash when setting the stride to zero [59]. Improper Value means
that the value of a hyperparameter violates the intrinsic computa-
tional constraints, although it is within the domain. For instance,
the stride should be less than or equal to the kernel size; otherwise,
some input data will be skipped [72]. Another example is that an
out-of-bounds exception is thrown when the axis (specified by dim)
of the PyTorch Gather operator exceeds the input tensor’s order.

Tensor-related errors result from inappropriate formats, shapes,
or element types of tensors. Unsupported Format means that the
format of a tensor is not supported by the operator, which is demon-
strated by the previous NHWC vs. NCHW example. Because the output
shape is computed by the input shape(s) and hyperparameters, it
is possible that a certain dimensional length of an output tensor
becomes less than or equal to zero and raises an Illegal Shape error.
For instance, if the kernel size of Conv2d is too large, the output
height or width may be reduced to a non-positive value [54]. In-
compatible Shape means that the shape of a tensor is unacceptable
or multiple tensors do not have matched shapes. This category is
also referred to as Unaligned Tensor, Mismatched Tensor, or Shape
Inconsistency in the related studies. ShapeFlow [78] shows an ex-
ample that the developer mistakenly interchanged the images and
their labels. Another example is that the two input tensors of the
addition operator do not have exactly the same shape. Similarly,
errors in the Incompatible Element Type category are caused by
unacceptable or mismatched element types.

2.3 Refinement Types

In programming languages, the type system [57] is an important
and useful formal method to enforce the expected behaviors of
programs. A type is an attribute of data that permits developers
to specify correct values for data operations. Therefore, a large
portion of unintended software faults (aka type errors) occurring
at run-time can be detected by compilers before execution.
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MatMul :: x1 @ ts{x1: px } — x2 1 ts{x2 : px,} — ts{y : py}

DPx; = (x1.0rder = 2) A (0 < x1.shape[0]) A (0 < xy.shape[1])

Dx, = (x2.et = x1.et) A(xz.0order =2) A(xy.shape[0] =x1.shape[1])
A (0 < xg.shape[0]) A (0 < x2.shape[1])

Py = (y.et = xy.et) A (y.order = 2) A (y.shape[0] = x1.shape[0])
A (y.shape[1] = xo.shape[0])

Figure 3: Refinement type of the MatMul operator.

In 1991, Freeman and Pfenning [21] first introduced the con-
cept of refinement types to Standard Meta Language (SML) [49], a
general-purpose functional programming language. A refinement
type lets developers endow logical formulae (from a decidable logic)
to limit the value set of the original type. For instance, the following
nat and pos refinement types specify non-negative integers and
positive integers, respectively:

nat = int{o: 0 < v}, pos =int{v:0 < v}.

For another example, a finite set of positive integers {n; | n; €
N A0 < n; fori € [0,k]} can be specified by the refinement type
pos{v:v=niVo=nyV---Vo=ng}

With refinement types, developers can write more precise con-
tracts [47] for programs to improve code testing and verification. In
the following, we take the MatMul (matrix multiplication) operator
as an example and illustrate its refinement type in Figure 3. Let ts be
the basic tensor type. For a tensor variable x, we use x.et, x.order,
and x.shape to denote the element type (e.g., float or double), or-
der, and shape of x, respectively. x.shape[i] refers to the length of
the i-th dimension of x. We ascribe MatMul a function type, specify-
ing that it accepts two input tensor parameters (denoted by x; and
x2) and produces one output tensor parameter (denoted by y). The
logical formula py, states that x; is a legal matrix; that is to say, the
order of x1 is 2, and the length of either dimension is positive. py,
declares that x; is a legal matrix with the same element type as x1,
and the number of rows of x3 is equal to the number of columns of
x1. Finally, py claims that the output tensor y is also a matrix with
the same element type as the two inputs, and y has the number of
rows of x; and the number of columns of x3. To save space, we do
not explicitly assert the legality of y, which has been implied by
the existing formulae.

2.4 Satisfiability Modulo Theories (SMT)

In the fields of mathematical logic and computer science, satisfiabil-
ity modulo theories (SMT) [12] refers to deciding the satisfiability
of mathematical formulae. Compared with Boolean satisfiability
(SAT), whose formulae are built up from only Boolean variables
and logical connectives (e.g., negation and conjunction), SMT sig-
nificantly generalizes the expressiveness by allowing more complex
first-order formulae with equality, quantifiers (V and 3), and sym-
bols of constants (e.g., 0), functions (e.g., X), and predicates (e.g., <).
The satisfiability of SMT formulae is interpreted within a theory
of integers, real numbers, bit vectors, arrays, strings, etc., which
explains the origin of the name of SMT. The theory defines a vari-
able domain (e.g., the set of real numbers) and assigns a definite
meaning to each constant/function/predicate symbol (e.g., “<” being
the lexicographical ordering on strings). For example, the formula
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(x Xy < 12) A (y — x = 3) is satisfiable within the theory of integer
arithmetic, and (x = 1,y = 4) is one solution.

Satisfiability modulo theories library (SMT-LIB) [4] is a promi-
nent standard that provides rigorous specifications of background
theories and an input/output language for expressing SMT formu-
lae. The syntax of the SMT-LIB language is very similar to that of
Lisp [20]. The following shows a portion of the SMT-LIB program
for the above formula, whose expressions use prefix notation.

1 (set-logic QF_NIA) ;quantifier-free integer arithmetic
2 (declare-const x Int) ;x is an integer variable

3 (declare-const y Int) ;y is an integer variable

4 (assert (and (< (* xy) 12) (= (- y x) 3)))

SMT solvers are software tools that deduce whether or not a set
of formulae is satisfiable, among which Microsoft Z3 [11], STP [22],
and Yices [16] are popular. Most SMT solvers accept an SMT-LIB
program as input. To facilitate writing formulae, they may also
provide APIs for other programming languages (e.g., Python and
Java). Because of the powerful functionality, SMT solvers have been
adopted as an essential module for various tools across many appli-
cation areas, such as software testing and program verification.

3 APPROACH AND IMPLEMENTATION

3.1 Problem Formulation

We summarize the syntax of types [34] in Figure 4. An element type
is an atomic primitive type (e.g., float for the set of 32-bit floating-
point numbers). Currently, there are four allowable element types.
A tensor type represents single- or multi-dimensional arrays whose
elements have the same type. For convenience, we use x.et, x.order,
x.shape, x.fmt to denote the element type, order (i.e., the number
of dimensions), shape (i.e., an array of all dimensional lengths), and
format of a tensor variable x : ts, respectively. Terms are mathe-
matical expressions built from constants and variables by applying
n-place elementary operations [18]. Because binary operations such
as addition, subtraction, multiplication, division, and modulo (de-
noted by mod) are mainly used, we specifically list their syntax
rules. In most cases, refinement types use quantifier-free formulae,
including Boolean constants, arithmetic comparison between two
terms, and negation/conjunction/disjunction of existing formulae.
Certain formulae may involve every dimension of a tensor variable
whose order is not known in advance. Therefore, we add an impli-
cation rule with the universal quantifier Vo : b. p; — p2, meaning
that for each v of basic type b, if the condition p; holds, then so
must pp. However, the usage is restricted by bounded quantifica-
tion [18] to ensure that the generated constraints remain decidable;
that is to say, v is placed under an upper bound in the condition
p1 (e.g, v < x.order). A refinement {v : p} is a pair such that
v is a variable and p is a logical formula. Types then include ei-
ther refined base types (i.e., basic types endowed with refinements)
for tensors and hyperparameters or dependent function types [34]
(i.e., function types depending on parameter values) for DL oper-
ators. Note that the type of an operator with n inputs is written
asxy : 14 — -+ — Xp : Tp, — [. A context is a sequence of
variable-type bindings to record which variables are in scope.

The basic types are distinct from each other, so there is no sub-
type relationship [57] between any two refined base types with
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(Symbols) sy =:=0,-1,1,--- |v,x,y,- -~ (constants/variables)
(Element Types) et :=bool | int | float | double
(Tensor Type) ts ::= et[sy] | ts[sy]
(Basic Types) b ::=et | ts
(Terms) e ::=sy

| e1+ex|er—ex|er Xe

| e1+ey|egmodey|:---

| fer---en
(Formulae) p := true, false

| e1=ex]er <ez]|---

| —plpiApz|p1Vpz

(constants and variables)

(2-place expressions)

(n-place expressions)

(Booleans)

(2-place predicates)
(negation/conjunction/disjunction)

| Yo:b.p1— p2 (implication)
(Refinements) r :={v: p} (known)
(Types) 7,y == b{r} (refined base)

| v:t—>p (dependent function)
(Context) T ==0|T;v:1

Figure 4: Syntax of types.

(variable-type binding)

different basic types. Supposing that p is a formula, p[v := z] de-
notes that all the free (i.e., not restricted by quantifiers) occurrences
of v in p are substituted by z [18]. Subtyping (denoted by <:) on
b{x : px} and b{y : py} is defined as follows [34]:

Trb{x:px} <:b{y:py} & TrVx:b px— pyly:=x].
(SuB-BASE)
Therefore, pos is a subtype of nat (i.e, pos <: nat) because Vo :
int. 0 < v — 0 < v is a valid formula. Another example is that the
3X 3 matrix type is a subtype of the 2-order, valid tensor type (which
is the type of the first input parameter of MatMul in Figure 3).
As mentioned before, a DL model M is formally represented as
the following directed acyclic computation graph [24]:

M=V = {opi}X . E = {(opi,opj)}ixj HP = {hpi ).

Each node op; is an operator specified by developers (e.g., Conv2d
and AvgPool2d in Figure 2). We ignore the automatically inserted
operators for backward propagation because they are crafted by
frameworks to calculate gradients in strict accordance with the
forward operators. We assume that a backward operator should
not introduce any type errors listed in Table 1 if its correspond-
ing forward operator executes correctly. A directed edge (op;, opj)
delivers a tensor from op; to op; and specifies that op; must wait
until the execution of op; finishes. Each hyperparameter hp; is en-
dowed with a refinement type b;{hp; : p;} that defines the domain
of hp; (denoted by A;). b; is a basic type such as int or the basic
tensor type, and p; is a logical formula. For unified handling, the
initial input tensors are treated as hyperparameters. We denote the
hyperparameter configuration space of M as A = Ay XAy x--- X Ag.
Each A € A is called a hyperparameter vector.

First, we explain the methodology of checking the validity of M.
LetT = hpy : bi{hp1 : p1};--- s hpk : b {hpk : px} be the context
of the model M. For an operator op; (similar to a conventional
function call), we check for each input argument v; j whether its
type is a subtype of (denoted by <:) that of the corresponding formal
input parameter v; i In other words, the context I' must deduce the
following judgment:

T+ by {0k © Py} < bore (T © P} - (CHK-IN)
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If so, we conclude that each output argument y;; is associated
with (denoted by ) the type of the corresponding formal output
parameter y;; (with variable substitution):

T+ yig o byrlvin : pyzlvin = viurl}- (Cuk-OuT)

For a directed edge (op;, op;) (similar to an assignment statement),

we conclude that op;’s n-th input tensor x; , is associated with the
type of op;’s m-th output tensor y; ,, (with variable substitution):

Tk xjn = by, xjn : Py [Yiim = xjnl}. (CHk-EDGE)

Next, we show how to generate a set of constraints whose satisfi-
ability implies that M is valid. We observe that the algorithmic exe-
cution of M is represented as iterative forward and backward propa-
gation on its computation graph. Model inference can be thought of
as single-pass forward propagation. Let S = (op;,, 0pi,, - -+ , 0pin )
be the actual runtime execution ordering of operators, which is
linearly extended from the edge ordering by referring to the frame-
work implementations [41, 60]. We traverse the computation graph
by strictly following S and generate the constraints according to the
above three judgments. For the CHK-IN judgment, we first generate
bo,; = bgy (ie, both basic types should be identical). We then
generate Yo; g : by, . o, — Pop[0ik = vik] from the previous
subtyping definition. However, since any defective hyperparameter
vector leads to unsatisfiability, we eliminate the universal quantifier
to discover all the defective vectors. We also notice that py, . either is
implied by T (if v; & is a hyperparameter) or has been generated dur-
ing the visit of a predecessor operator. Therefore, we finally use the
simplified constraint pg+-[0;x := v;]. For the CHk-OuT judgment,
we generate by,, = by;; and py7[y;; = y;]. For the CHK-EDGE
judgment, we generate a simpler constraint xj , = yj m.

Finally, we formulate the problem of checking the validity of
M as a constraint satisfaction problem (CSP) [64]. Being a general
and useful concept, CSP abstracts a problem as finding a solution
to a set of imposed constraints that must be satisfied as conditions
by the variables. It is an important research subject in artificial
intelligence (AI). Well-known CSPs include eight queens puzzle
and graph coloring. Our problem is defined as a triple (V, D, C) [64]:

V={WVa- - ,Vk|Vi=hpforie[1,K]},

D ={D1,Dy,---,Dg | Di = A fori € [1,K]},

C=(UN,C)U{xjn =yim | (opi,opj) € E},

Ci ={bo = by poloik =vikl}

U {by” = byTz’ Py [T',l = yi,l]} .

V is a set of variables that are actually the hyperparameters. D
represents the respective variable domains such that each D; is
the domain of hp;. C contains the generated constraints mentioned
above. For a hyperparameter vector A = (v1,02,- - ,0g) € A, M is

valid with A if the above set C is satisfiable when each V[ k] is
assigned the corresponding v;; otherwise, A results in type errors.

3.2 Refinement Types of DL Operators

In this section, we take Conv2d, the 2D convolution operator, as
an example to demonstrate how to define refinement types. We
consider the following hyperparameters: number of input channels
(ic), number of output channels (oc), tensor format (fimt), kernel size
(ks), stride (sd), padding (pad), dilation (dil), and number of groups
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Conv2d :: x : ts{x : px-1 A px-2} — ic: pos — oc : pos — fmt : {NCHW,NHWC} — ks : pos[2] — pad : pos[2] — dil : pos[2]
— sd : pos[2]{sd : psg1 A psa-2} = gp = POoS{gp : Pgpt = ts{y : py-1 A Py-2 A py-3}

Px-1 = (x.order = 4) A(0 < x.shape[0]) A (0 < x.shape[1]) A (0 < x.shape[2]) A (0 < x.shape[3]) A ((x.et = float)V (x.et = double))
Px-2 = (x.fmt = fmt) A (=IsPT V (x.fmt = NCHW)) A (x.shape[CHANNEL] = ic)
Psa-1 = (sd[0] < ks[0]) A (sd[1] < ks[1])
Psd-2 = —ISTEV ((dil[0] = 1) A (dil[1] = 1)) V ((sd[0] = 1) A (sd[1] = 1))
pgp = ((ic mod gp) = 0) A ((oc mod gp) = 0)
Py-1 = (y.et = x.et) A (y.order = x.order) A (y.fmt = x.fmt) A (y.shape[0] = x.shape[0]) A (y.shape[CHANNEL] = oc)
Py-2 = (y.shape[HEIGHT] = ((x.shape[HEIGHT] + 2 X pad[0] — dil[0] X (ks[0] — 1) — 1) + sd[0] + 1))

A (y.shape[WIDTH] = ((x.shape[WIDTH] + 2 X pad[1] — dil[1] X (ks[1] — 1) — 1) +sd[1] + 1))
Py-3 = (0 < y.shape[0]) A (0 < y.shape[1]) A (0 < y.shape[2]) A (0 < y.shape[3])
Figure 5: Refinement type of the Conv2d operator. Tunable hyperparameters include the numbers of input (ic) and output (oc)
channels, tensor format (fmt), kernel size (ks), stride (sd), padding (pad), dilation (dil), and number of groups (gp). pos refers to
the refinement type of positive integers, and ts is the basic tensor type. To save space, CHANNEL, HEIGHT, and WIDTH denote the

indices of the channel, height, and width dimensions, respectively. As usual, x.et, x.order, x.shape, x.fmt denote the element type,
order, shape, and format of the tensor variable x, respectively.

(g9p). The tensor format is either NCHW or NHWC; other hyperparame-
ters require positive integer values, although their declarations use
the Python int type. We assume that each of the kernel size, stride,
padding, and dilation is an array of two positive integers that are
used for the height and width dimensions, respectively.

The core computation of Conv2d is described as follows [61]:

y(i, j) = bias(j) + 1! weight(j, k) % x(i,k),

where 0 < i < the batch size, 0 < j < oc, x and y are the input and
output tensors, and * is the 2D cross-correlation [80] operation.
From the mathematical definition [24] and framework implementa-
tions of Conv2d, we extract the following computational constraints
on both tensors and hyperparameters and show the formalized re-
finement type of Conv2d in Figure 5, where item labels correspond
to the names of the logical formulae.

px-1 The input tensor should have exactly four dimensions whose
lengths are positive integers. Its elements are floating-point
numbers, i.e., the element type is either float or double.
px-2 The actual format of the input tensor should be equal to the

tensor format hyperparameter; for PyTorch models, it must
be NCHW. The latter is a PyTorch-specific constraint, so we
use a Boolean control variable IsPT initialized to true when
the framework is PyTorch. The length of the input tensor’s
channel dimension should be equal to the number of input
channels. Note that the dimensional indices except that of
the batch dimension (always 0) are not constants because of
two possible tensor formats. To save space in Figure 5, we
use CHANNEL, HEIGHT, and WIDTH to denote the indices of the
channel, height, and width dimensions, respectively.

psd-1 Each element of the stride cannot exceed that of the kernel
size; otherwise, some input data is mistakenly skipped.

Psd-2 TensorFlow additionally requires that the stride and dilation
cannot both be greater than 1 [74]. Similarly, we use another
Boolean control variable IsTF in this constraint, which is
initialized to true when the framework is TensorFlow.

Pgp The number of groups specifies the “number of blocked
connections from input channels to output channels” [61];
therefore, the numbers of input and output channels should
both be divisible by it.

Py-1 The output tensor has the same element type, order, format,
and length of the batch dimension with the input tensor.
The length of its channel dimension should be equal to the
number of output channels.

py-2 The output height and width are calculated as follows [61]:

Ho\ = Hip + 2 X pad[0] — dil[0] x (ks[0] —1) —1 .
out — { sd[O] + J >
| Win +2 X pad[1] - dil[1] x (ks[1] = 1) -1
Wour = \\ Sd[l] + 1J .

Both PyTorch and TensorFlow also allow developers to pass
a string “valid” or “same” as the value of the padding hy-
perparameter. “valid” means no padding. “same” means that
the framework automatically pads the input evenly; there-
fore, the above calculation can be simplified [75] as Hoyr =

[SZIE"] 1and Woyr = [%] . When using the “same” padding,

PyTorch requires that both elements of the stride must be 1,
so the output has the same height and width as the input.
py-3 The output tensor is also legal; that is to say, each length of
the four dimensions is a positive integer.
At present, we support 70+ types of DL operators. REFTY is
extensible to incorporate new operators, which is discussed in
Section 5.1.

3.3 Workflow

Figure 6 illustrates how REFTY works. REFTY accepts a computa-
tion graph, a model specification, and a tool specification as input
from developers or AutoML tools. The computation graph is recon-
structed from a serialized PyTorch or TensorFlow model in the form
of disk files, using our front-end parsers that invoke the framework
built-in model deserialization APIs. Also, developers can describe
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Figure 6: Workflow of REFTY.

such a graph manually in the Protocol Buffers [25] language, using
the intermediate representation of MMdnn [44], whose syntax is
very similar to that of ONNX [53]. The model specification includes
the tunable hyperparameters and their domain definitions. Unspec-
ified hyperparameters will use the framework default values. The
tool specification contains the framework type/version, solving
mode, optimization choice, etc.

REFTY traverses the computation graph by following the opera-
tor execution ordering to generate a set of constraints that the DL
model should satisfy. It then utilizes Microsoft Z3 [11] to obtain
the unsatisfiable hyperparameter vectors that result in type errors.
REFTY chooses SMT solvers for two reasons: (1) the constraints can
be specified with SMT solvers’ built-in types (e.g., integer and array),
algebraic data types (e.g., scalar and record), functions (e.g., mul-
tiplication and modulo), and value comparison (e.g., equality and
less-than); (2) they handle nonlinear (e.g., calculating the output size
of Conv2d) and higher-order mathematical expressions very effi-
ciently. Nevertheless, the scalability of SMT solvers may potentially
limit the usability of REFTY, which is discussed in Section 5.2. In the
final report to users, REFTY presents the corresponding hyperparam-
eter vector for each detected error. If needed for further diagnosis,
REFTY additionally reports all the error-related constraints and the
operators to which these constraints belong.

3.4 Graph Traversal and Constraint Generation

For each supported type of operator, REFTY aforehand translates the
logical formulae of its refinement type to SMT-LIB [4] statements
in a reusable template, using the Python API of Z3. The symbol
names of tensors and hyperparameters are parameterized to handle
variable substitution. REFTY declares integer constants for the avail-
able element types and known tensor formats. To denote the tensor
type, it defines a custom record type with four fields, representing
the element type, format, order (an integer), and shape (an array) of
the tensor, respectively. The manipulation over all the dimensions
of a tensor with a non-constant order (e.g., calculating the total
number of tensor elements) is implemented by recursive functions.

REFTY first creates a Z3 instance, checks the basic types of the
hyperparameters specified in the model specification, and defines
all the hyperparameter symbols. It then traverses the computation
graph one operator by another by following a predefined sequence
S = (opi,, 0pi,, - * + ,0piy ) that denotes the actual runtime execu-
tion ordering of operators. S is linearly extended from the edge
ordering by reference to the framework implementations [41, 60].
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When visiting an operator op, REFTY locates the SMT-LIB template
by op’s type, checks the basic types of both input and output argu-
ments against those of the corresponding formal parameters, fills
in the actual symbol names derived from op’s name, and executes
the SMT-LIB statements to add constraint formulae to the solver
instance. REFTY also inserts equality constraints that assert that
op’s input tensor arguments are exactly the same as those outputs
of the immediate predecessors. After the graph traversal finishes,
REFTY finally adds multiple formulae defining the domain of each
hyperparameter.

3.5 Constraint Solving

REFTY utilizes Microsoft Z3 to solve the generated constraints. To
reduce the nondeterminism in Z3’s conflict-driven clause learning
(CDCL) [68] implementation, we split a constraint formula into as
many smaller, self-contained ones as possible and add them one
by one to the solver instance in our SMT-LIB templates. If users
need to diagnose the root cause of an error, REFTY employs the
minimal unsatisfiable core (i.e., an unsatisfiable subset containing
the least number of the original formulae) returned by Z3 to report
all the error-related constraints and the operators to which these
constraints belong.

REFTY implements two solving modes: individual mode and bulk
mode. Under the individual mode, REFTY independently solves
the constraints for each vector in the hyperparameter configura-
tion space. This mode is simple, requires less effort, and facilitates
tool integration. For example, AutoML tools can work nearly as
usual: they need to invoke REFTY with the hyperparameter vector
being explored just before launching a trial job. However, there
exist continuous, significant warm-up overheads of traversing the
computation graph, generating the constraints, and initializing the
solver instance. REFTY applies the context reuse technique to im-
prove solving performance: it reuses the existing Z3 instance and
almost all the initialized constraint formulae, pops out the domain
definition formulae that were added last, and pushes new domain
definition formulae for the next hyperparameter vector.

Under the bulk mode, REFTY solves the constraints for once with
the whole hyperparameter configuration space. However, Z3 re-
turns only one satisfiable hyperparameter vector when there is any,
instead of supplying all at once. Therefore, REFTY implements a
simple AIISAT (all solutions SAT) [76] feature: it iteratively invokes
the same Z3 instance by appending the negation of the newfound
solution to derive the next one. Supposing that A = (v1,v2, - - - ,vg)
is a newfound satisfiable vector, REFTY will append the constraint
(hp1 # v1) A (hp2 #v2) A--- A (hpk # vk ). As more and more so-
lutions are discovered, AIISAT may get slower and slower because
the appended negation formulae are becoming too many. After
obtaining the set of the satisfiable hyperparameter vectors, REFTY
uses the set difference operation to derive all the unsatisfiable ones.
Finally, it reruns completely from the beginning under the individ-
ual mode for each unsatisfiable hyperparameter vector to get the
minimal unsatisfiable cores.

Constraint solving may slow down significantly if there exist a
large number of constraints or a huge hyperparameter configura-
tion space. REFTY adopts two optimization techniques proposed by
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DnnSAT [23]. The first is parallel (using worker threads) and dis-
tributed (using Spark [83]) solving, which divides the solving task
into subtasks and processes them simultaneously. The other is tiny
subspaces: the original hyperparameter configuration space is di-
vided into numerous, disjoint, small subspaces to reduce the AIISAT
overhead and tackle the skew problem [3]. These two techniques
can be used in conjunction with context reuse.

4 EVALUATION

4.1 Experimental Design

REFTY is evaluated on individual operators and real-world models
under two mainstream DL frameworks of PyTorch (v1.5.1) and
TensorFlow (v1.13.1). We aim to answer the following research
questions (RQs):

RQ1: How effective is REFTY on individual DL operators?

RQ2: How effective is REFTY on real-world DL models?

RQ3: How efficient is REFTY in constraint solving?

RQ4: How does REFTY compare with related work?

We fine-tune several hyperparameters that are often tuned by
developers in practice, including the batch size, input image size
(“height x width” for convenience), tensor format, kernel size, stride,
number of features, etc. For the hyperparameter values, we first
select some typical ones, such as 8 and 16 [36] for the batch size,
NHWC and NCHW for the tensor format, 1 X 1, 3 X 3, and 5 X 5 for
the kernel size of Conv2d [69, 71], 2 X 2 for the kernel size of
MaxPool2d [69, 71], 1 X 1 and 2 X 2 for the stride [69, 71], and
256 [63] for the number of features. The initial input size for the
ImageNet dataset [13] is usually 224 x 224, while Inception-V3 uses
299 X 299 by default. Some neighboring values (e.g., 4 X 4 for the
kernel size and stride) are also selected. We further try a few smaller
(e.g., 32 for the number of features), larger (e.g., 12x 12 for the kernel
size), or even invalid values that may lead to potential errors.

In order to obtain the ground truth of whether or not a hyper-
parameter vector A results in type errors, we feed A to the model
training program and run it with one batch of input data. Assertions
are also added to the program to detect errors that may not fail the
execution but cause the final model to produce wrong output results
(e.g., an input tensor having an unsupported format). If the program
crashes, we say that A is an actual positive; otherwise, A is an actual
negative. We then run REFTY on the hyperparameter configuration
space of the model, compare each result (including the hyperpa-
rameter vector and possible root cause) with the ground truth, and
calculate the numbers of true positives, false positives (i.e., correct
hyperparameter vectors being misreported as defective), true neg-
atives, and false negatives (i.e., defective hyperparameter vectors
not being detected).

We adopt the standard metrics of Precision and Recall to assess
the effectiveness of REFTY, which are defined as follows [51]:

' X 100%, Recall = i
+fp tp+fn
The above tp, fp, tn, and fn denote the numbers of true positives,
false positives, true negatives, and false negatives, respectively.
Consequently, the numbers of actual positives and actual negatives
are equal to tp + fn and fp + tn, respectively. The higher Precision
and Recall values, the more effective REFTY is.

Precision = X 100% .
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We conduct the experiments on an Azure Standard ND12 virtual
machine [48] that has 12 Intel Xeon E5-2690V3 vCPUs (2.60 GHz,
30M Cache) and 112 GB main memory, running Ubuntu 18.04.

4.2 RQ1: How effective is REFTY on individual
DL operators?

We select five typical operators of Conv2d, MaxPool2d (2D max
pooling), Linear, Add (addition of two tensors), and Concat (con-
catenation of a list of tensors in a given dimension) to evaluate the
effectiveness of REFTY.

For Conv2d and MaxPool2d, we tune their batch size (8 and 16),
tensor format (NCHW and NHWC), number of input channels (3), input
image size (7 X 7, 14 X 14, 27 X 27, and 224 X 224), kernel size (3 X 3,
6X6,9%9,12 X% 12, and 15 X 15), and stride (1 X 1,2 X 2, 4 X 4, and
8 X 8, 10 X 10).

For Linear, we use a 4-order image tensor as input and tune
its batch size (8, 16, 24, and 32), number of input channels (3), and
input image size (7 X 7, 14 X 14, 27 X 27, and 224 X 224). We also
tune the numbers of input features (147, 588, 2187, and 150528) and
output features (—128, 128, 256, 512, and 1024) of Linear.

For Add, we use two 4-order image tensors and independently
tune their batch size (8 and 16), input image size (7 X 7, 14 X 14,
27 X 27, and 224 X 224), and number of input channels (3, 6, and 9).

For Concat, the input sequence consists of two 4-order image
tensors. We independently tune their element type (float and
bool), batch size (8), input image size (7 X 7, 14 X 14, 27 X 27, and
224 % 224), and number of input channels (3, 6, and 9).

We devise the above hyperparameter domains to cover all the
error categories shown in Table 1. For example, when the input
image size is 7 X 7 and the kernel size is 15 X 15 in the Conv2d exper-
iments, Illegal Shape errors are raised. We also use a negative value
as the number of output features of Linear, which leads to Illegal
Value errors. To obtain the ground truth, we compose a program
for training a model that contains only the experimental operator.
Because of the small hyperparameter configuration spaces, REFTY
runs under the individual solving mode for simplicity. The average
warm-up time of REFTY is 0.04 second for Conv2d, MaxPool2d, and
Linear and is 0.1 second for Add and Concat. The solving time is
0.012 second per hyperparameter vector on average.

Table 2 shows the experimental results. REFTY finds all the type
errors and does not introduce any false alarms. It achieves 100%
Precision and Recall, which demonstrates the effectiveness of our
formulated refinement types of DL operators.

4.3 RQ2: How effective is REFTY on real-world
DL models?

We evaluate REFTY on five real-world DL models: AlexNet [39],
VGG-16 [69], Inception-V3 [71], LSTM [29]-based Seq2Seq [70],
and GRU [8]-based Seq2Seq. They are representative in the areas
of computer vision, natural language processing, and speech recog-
nition. Some of them, such as LSTM and GRU, are also widely used
in various DL for software engineering applications [26, 31, 43, 84].

For AlexNet and VGG-16, we set the number of input channels
to 3, input batch size to 8 or 16, and input image size to 224 X 224.
We tune the kernel size (3 X 3, 6 X 6,9 X 9, and 12 X 12) and stride
(1X1,2X%2,4X%4,and 8 x 8) of the first Conv2d operator. We also
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Table 2: Experimental results on individual operators.

Metrics Operator Conv2d | MaxPool2d | Linear | Add | Concat
PyTorch Total 400 400 320 576 576
True Positive 240 230 256 552 540
True Negative 160 170 64 24 36
False Positive 0 0 0 0 0
False Negative 0 0 0 0 0
Precision 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 100%
TensorFlow Total 400 400 320 576 576
True Positive 240 230 256 552 540
True Negative 160 170 64 24 36
False Positive 0 0 0 0 0
False Negative 0 0 0 0 0
Precision 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 100%

try different kernel sizes (1 X 1, 2 X 2, 4 X 4, and 8 X 8) and strides
(1x1,2%2,4 X4, and 8 X 8) for the first MaxPool2d operator.
For Inception-V3, we use identical hyperparameter domains except
that the input batch size is 8 and the input image size is 299 x 299.

For the other two Seq2Seq models, we tune the number of fea-
tures in the hidden state (32, 64, 128, and 256) and the number of
recurrent layers (32, 64, 128, and 256) for both encoder and decoder.

We implement AlexNet by ourselves, download the training pro-
grams and serialized model files of VGG-16 and Inception-V3 from
the official websites [62, 82], and implement Seq2Seq by referring
to open-source code [19, 77]. It takes about 6 to 7 seconds to run
the training programs with one batch of input data and one hy-
perparameter vector for obtaining the ground truth, excluding the
time of data preparation and model validation/testing. REFTY still
runs under the individual solving mode. The numbers of Z3 sym-
bols and constraint formulae of AlexNet, VGG-16, Inception-V3,
LSTM-based Seq2Seq, and GRU-based Seq2Seq are 112/183, 196/345,
920/1788, 16/28, and 16/28, respectively. The average warm-up time
and solving time (in seconds) of REFTY are 0.5/0.029, 0.67/0.045,
3.17/0.18, 0.11/0.013, and 0.11/0.013, respectively.

Table 3 shows the experimental results. REFTY again achieves
100% Precision and Recall in all the experiments, which demon-
strates its effectiveness on DL models. We notice a discrepancy
in the ground truth of the VGG-16 and Inception-V3 experiments.
The root cause lies in the differences between the official training
programs. In the TensorFlow VGG-16 experiments, many hyper-
parameter vectors cause the output shape of the last MaxPool2d
to violate the requirement of the succeeding Linear, which brings
120 more crashes. Instead, the PyTorch program inserts an extra
AdaptiveAvgPool2d (2D adaptive average pooling) operator with
proper padding to resolve this issue. In the PyTorch Inception-V3
experiments, the fixed padding values make the PyTorch program
more vulnerable to Illegal Shape errors and lead to 140 more crashes.

4.4 RQ3: How efficient is REFTY in constraint
solving?

We evaluate REFTY on the constraint solving efficiency with the op-

timization techniques mentioned in Section 3.5. Inception-V3 [71]
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Table 3: Experimental results on real-world DL models.

Model Seq2Seq | Seq2Seq

Metrics AlexNet | VGG-16 | Inception-V3
(LSTM) | (GRU)

PyTorch Total 512 512 256 256 256
True Positive 200 200 197 240 240
True Negative 312 312 59 16 16
False Positive 0 0 0 0 0
False Negative 0 0 0 0 0
Precision 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 100%
TensorFlow Total 512 512 256 256 256
True Positive 200 320 57 240 240
True Negative 312 192 199 16 16
False Positive 0 0 0 0 0
False Negative 0 0 0 0 0
Precision 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 100%

is selected as our experimental object; it is one of the representative
real-world models in computer vision and has a more complex neu-
ral architecture (in terms of width and height) than the other four
DL models. The tunable hyperparameters include the input batch
size (16 and 32), input image size ({299, 300, 301} x {299, 300, 301}; 9
different sizes), and kernel size ({1, 3,5} X {1, 3, 5}; 9 different sizes)
for the first three Conv2d operators. Therefore, the hyperparameter
configuration space of Inception-V3 consists of 13,122 vectors in to-
tal. To increase the solving difficulty, we carefully devise the above
hyperparameter domains to make every hyperparameter vector
satisfy the constraints.

For parallel solving, we create 1, 4, 8, and 12 worker threads.
More threads are not considered since there are only 12 vCPUs
on the experimental machine. For tiny subspaces, we try subspace
sizes of equipartition, 200, 100, and 50. “Equipartition” means that
the original hyperparameter configuration space is simply divided
equally by the number of threads. For example, if we use 12 worker
threads, each will independently solve one subspace that includes
about |'13i1222'| = 1,094 hyperparameter vectors. Context reuse is
enabled by default for all the experiments. The reason is that the
overhead of a complete Z3 instance initialization is evident (3.17
seconds on average, as reported in Section 4.3) and causes some
experiments to run too long.

Table 4 demonstrates the end-to-end execution time (in seconds)
of REFTY under both individual and bulk solving modes. We also
show the speedup relative to the baseline experiment (individual
mode: 1 thread; bulk mode: 1 thread + equipartition). Our results
confirm the strong effects of the optimization techniques. Under
the individual mode, parallel solving achieves a near-linear speedup
from 3.9X to 11.8X since the computational complexity of solving
each hyperparameter vector is identical. Under the bulk mode,
the overall speedup ranges from 3.5X to 51.0X. Simply creating
more worker threads (see the “Equipartition” row) achieves a super-
linear speedup from 10.3X to 43.4X because smaller hyperparameter
configuration spaces observably reduce the overhead of AlISAT.
Tiny subspaces (see the “1 thread” column) are also effective for the
above same reason. After combining these two techniques, REFTY
achieves a more promising and near-linear speedup from 10.3X to
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Table 4: Runtime performance of REFTY with parallel solving
and tiny subspaces. Context reuse is enabled by default.

Size of Number of Threads
Mode
Subspace 1 4 8 12
1.0 3.9 7.9 11.8
Individual 1
(2,365.35) | (594.95) | (298.85) | (2004 s)
. L. 1.0 10.3 28.3 434
Equipartition
(8,660.1s) | (8353 5) | (305.55) | (199.4s)
200 3.5 14.0 27.9 41.7
(2450.8's) | (615.4's) | (309.55) | (207.5s)
3.92 15.6 31.0 46.2
Bulk 100
(2,208.95) | (554.7s) | (279.15) | (187.3s)
50 4.3 17.2 34.2 51.0
(1,998.15) | (502.3s) | (252.95) | (169.8's)

Note: The two values in a cell represent the speedup and execution time

in seconds, respectively.

51.0X. As the subspace size decreases, the overhead of AlISAT also
continues to reduce, and the performance gain gradually increases.

4.5 ROQ4: How does REFTY compare with related
work?

We compare REFTY with Pythia [40], a static shape-checking tool for
TensorFlow Python programs. Pythia detects incompatible shapes
by modeling and tracking tensor shapes across TensorFlow API
calls. The analysis of Pythia uses the WALA [79] framework and
declarative Datalog [5] rules. We select the Unaligned-Tensor-1 (UT-
1) program! as the experimental object because Pythia does not
support the TensorFlow Slim API [66] used by the training programs
of our evaluated real-world models (Section 4.3). UT-1 is one of
the fourteen programs provided by Zhang et al. [87] that contain
Unaligned Tensor bugs, and it has been successfully analyzed by
Pythia. UT-1 trains a convolutional model for MNIST handwritten
digit classification [14], which is much more complicated than those
implemented in other UT programs.

Since Pythia checks tensor shape mismatches, we devise the
hyperparameter configuration space such that only Illegal Shape
and Incompatible Shape errors, if any, may be raised. Before the
experiment, we have actually tried some hyperparameter vectors
that led to errors in the other four categories and noticed that
Pythia could not detect them. UT-1 invokes the Primitive Neural Net
API[73] (e.g., tf.nn.conv2d) that uses a new filter hyperparameter
instead of the kernel size for convolutional operators. The filter is a
4-order tensor of the shape [kernel height, kernel width, number of
input channels, number of output channels]. We randomly select 9
and 10 shapes (such as “[5, 5, 1, 32]” and “[33, 33, 3, 64]”) for the filter
hyperparameter of the two Conv2d operators, respectively. We also
tune the kernel size (2x 2, 12X 12, and 22 x 22) of the first MaxPool2d
operator and set the padding of the two MaxPool2d operators to
“valid”. Therefore, there are 270 hyperparameter vectors in total.
For each vector, we fill the corresponding hyperparameter values
in the UT-1 program and then pass the program file to Pythia for
analysis. Pythia starts with a ten-minute warm-up, and after that,

!https://github.com/ForeverZyh/TensorFlow-Program-Bugs/tree/master/
StackOverflow/UT-1/38167455-buggy/mnist.py
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Table 5: Comparison with Pythia.

Tool A

Metrics Pythia REFTY
TensorFlow Total 270 270
True Positive 33 270
True Negative 0 0
False Positive 0 0
False Negative 237 0
Precision 100% 100%
Recall 12.2% 100%

each checking takes 12 seconds on average. REFTY runs under the
individual solving mode, and its warm-up time and solving time
are about 0.037 second and 0.019 second per vector, respectively.

Table 5 shows the experimental results. REFTY still achieves 100%
Precision and Recall. Although the Precision of Pythia is 100%, its
Recall is only 12.2%, a rather low percentage. The reason is that
Pythia does not detect 237 buggy cases. In 153 of them, a tensor
of an illegal shape is produced by a Conv2d operator. In the other
84 cases, the input and filter tensors of the first Conv2d operator
do not have a matched number of input channels, which causes
Incompatible Shape errors.

5 DISCUSSION
5.1 Extensibility of REFTY

Currently, REFTY supports two mainstream DL frameworks (Py-
Torch and TensorFlow) and 70+ types of commonly used opera-
tors. REFTY can be adapted to other frameworks such as Apache
MXNet [7] and ONNX [53] because they also adopt the same
abstraction to represent models as tensor-oriented computation
graphs. The syntax and semantics of their graphs and operators
are very similar to those of PyTorch and TensorFlow; therefore,
existing SMT-LIB templates of the refinement types can be reused
with minor modifications. Nevertheless, the graph traversal may
need to be adjusted to accord with the actual operator execution or-
dering of other frameworks. REFTY is also extensible to incorporate
new DL operators. To support a new type of operator, users need
to extract the computational constraints, formulate a refinement
type for each formal input/output parameter based on the opera-
tor’s mathematical definition and framework implementations, and
implement an SMT-LIB program template.

5.2 Threats to Validity

We discuss the following main threats to the validity of our work.

Refinement types. We formulate the refinement types of DL
operators by our domain experience based on their mathematical
definitions. We also examine the source code of both PyTorch and
TensorFlow to incorporate framework-specific computational con-
straints into the formulation. Nevertheless, because of the large
manual effort involved in formulating refinement types and prepar-
ing SMT-LIB templates, there might be a potential inaccuracy. To
mitigate this threat, we strived to reach group consensus before
making decisions, and we continuously refined our approach by
carefully referring to the documentation and framework source
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code. In our experiments, REFTY achieves 100% Precision and Recall,
confirming the validity of the refinement types of DL operators.
SMT solving. REFTY utilizes Microsoft Z3 to solve the gener-
ated constraints. As DL models become more sophisticated and
hyperparameter configuration spaces enlarge gradually, the compu-
tational complexity of constraint solving will increase observably
and thus may reduce the usability of our tool. Currently, REFTY
implements context reuse and adopts another two optimization
techniques of parallel/distributed solving and tiny subspaces from
DnnSAT [23] to accelerate constraint solving. Our experiments
on a fairly large hyperparameter configuration space with 13,122
vectors have demonstrated the strong effects of these optimiza-
tions (Table 4). In the future, we may advance SMT solvers and try
larger-scale distributed solving to better tackle this problem.

6 RELATED WORK

There are some recent empirical studies on deep learning program
defects and job failures. Zhang et al. [87] studied 175 TensorFlow
program bugs collected from Stack Overflow pages and GitHub
commits, 24 (about 13.71%) of which were caused by unaligned
tensors. Islam et al. [30] extended this work to cover more frame-
works such as Torch [10] and Caffe [35]; they discovered that the
same reason was a major root cause (about 13.48%) of the total 415
bugs and was the leading cause of Torch bugs. Zhang et al. [85]
conducted an empirical study on 4,960 failed DL jobs collected from
an internal platform of Microsoft; they found that about 57 (8.53%)
out of the 668 DL-specific failures were caused by mismatched ten-
sors. Zhang et al. [86] examined 715 Stack Overflow questions to
study common challenges in DL application development, many of
which asked for help on shape inconsistency bugs. These empirical
studies indicate that type errors of DL models are not uncommon
and motivate us for a formal and systematic solution.

There have been many type-based techniques to perform correct-
ness checking on programs. Some works [6, 17, 27, 32, 33, 50, 67]
enrich the type system with specific tensor properties for static
verification. For example, Eaton [17] proposed strongly typed linear
algebra for numerical algorithms in which the dimensions of matri-
ces were exposed. A few others [2, 37, 45, 81] reason whether the
array index is out of bounds. For instance, Index Checker [37] is an
open-source tool to discover array access errors in Java programs
whose type system is conditioned by cooperating hierarchies of
dependent types. As described before, these previous works target
programs written in conventional programming languages (e.g.,
Haskell and Java) and cannot be applied to DL models directly. Re-
cently, Wen et al. [38] leveraged refinement types and constrained
the values of tensor elements to verify the adversarial robustness
of neural networks, which was “commonly characterised as the
deviation in the neural network’s outputs given perturbations of its
inputs” [38]. Two libraries implemented in F* and Liquid Haskell
were provided for constructing fully connected neural networks
that use four common activation functions. To make verification
tractable, users need to reduce the tensor dimensionality and model
size manually. In comparison, REFTY targets a different problem
and supports more types of DL operators: it constrains hyperpa-
rameter values and tensor shapes/element types/formats to check
the validity of models and eliminate common type errors. Leonardo
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et al. [58] proposed TensorSafe, a Haskell library that helps devel-
opers define the neural architectures of DL models and leverages
the Haskell type system to validate the structural correctness. Ten-
sorSafe does not use refinement types to describe further compu-
tational constraints on tensors and hyperparameters. Therefore,
although TensorSafe detects Incompatible Shape errors, it cannot
find errors in the other categories shown in Table 1.

Popular DL frameworks adopt a hybrid programming paradigm:
the runtime is implemented in C++ for high execution performance,
while developers use other language bindings (e.g., Python) for
flexible programmability. Some recent works try to integrate DL
frameworks directly into programming languages. Swift for Ten-
sorFlow [65] (which was archived in February 2021) implements
language-integrated differentiable programming and allows devel-
opers to construct models with the Swift language and the familiar
TensorFlow API. ONNX-Scala [46] brings full support for ONNX
to the Scala ecosystem. Powered by the type systems of Swift and
Scala, the two works are able to detect some type errors of DL
models at compile-time. For example, Swift for TensorFlow checks
whether the types of hyperparameter arguments are expected, but
it does not inspect hyperparameter values and track tensor shapes.
Furthermore, they only support a specific framework and cannot
be adapted to others.

Recently, researchers proposed static and dynamic techniques
to detect bugs in DL programs. Ariadne [15] applies WALA [79]
program analysis to TensorFlow Python code and tracks tensors
via a custom type system. Pythia [40] is a static shape-checking
tool for TensorFlow programs that uses WALA and declarative
Datalog [5] rules. Pythia models and tracks tensor shapes across
TensorFlow API calls and checks whether incompatible shapes exist.
ShapeFlow [78] modifies the implementation of TensorFlow API
to capture and manipulate tensor shapes and runs DL programs
to detect shape incompatibility issues. These tools are friendly to
developers since they directly operate on Python code. However,
they are TensorFlow-specific, focus on Incompatible Shape errors,
and have difficulty detecting other errors caused by improper hy-
perparameter values, unsupported tensor formats, etc. REFTY is a
novel refinement type-based tool for both PyTorch and TensorFlow.
It rigidly formulates the computational constraints enforced by
operators and systematically detects invalid DL models caused by
six categories of type errors. REFTY also achieves good runtime
performance; for example, it checks 13,122 hyperparameter vectors
of Inception-V3 in about 200 seconds.

7 CONCLUSION

In this paper, we have presented REFTY, a refinement type-based
tool for statically detecting common type errors of deep learning
models. These errors are caused by tensors and hyperparameters
that violate the computational constraints. The problem of checking
the validity of a model is formulated as a constraint satisfaction
problem, and REFTY utilizes an SMT solver for solving the con-
straints. Our experiments demonstrate that REFTY is very effective
at detecting potential type errors before job execution.
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