Unsupervised Machine Learning framework for
sensor placement optimization: analyzing methane

leaks
Shirui Wang* Sara Malvar*’  Leonardo O. Nunes Kim D. Whitehall
University of Houston Microsoft Microsoft Microsoft
Yagna D. Oruganti Yazeed Alaudah Anirudh Badam
Microsoft Microsoft Microsoft
Abstract

Methane is one of the most potent greenhouse gases, with the global oil and gas
industry being the second largest source of anthropogenic methane emissions,
accounting for about 63% of the whole energy sector. This underscores the impor-
tance of detecting and remediating methane leaks for the entire oil and gas value
chain. Methane sensor networks are a promising technology to detect methane
leaks in a timely manner. While they provide near-real-time monitoring of an area
of interest, the density of the network can be cost prohibitive, and the identification
of the source of the leak is not apparent, especially where there could be more than
one source. To address these issues, we developed a machine learning framework
that leverages various data sources including oil and gas facilities data, historical
methane leak rate distribution and meteorological data, to optimize sensor place-
ment. The determination of sensor locations follows the objective to maximize the
detection of possible methane leaks with a limited sensor budget.

1 Introduction

Methane (CHy), the primary component of natural gas, is a potent greenhouse gas with a Global
Warming Potential (GWP) of 84-87 over a 20-year timescale (1). The Intergovernmental Panel on
Climate Change (IPCC) recommends, with high confidence, that reduction of anthropogenic methane
emissions is an efficient way to limit global temperature rise to 1.5°C above pre-industrial levels by
2030 (2).

The global oil and gas industry is one of the primary sources of anthropogenic methane emissions,
with significant leaks occurring across the entire oil and gas value chain, from production and
processing to transmission, storage, and distribution (1). Capacity limitations in gathering, processing
and transportation infrastructure can lead to venting/flaring of excess CHy. The International Energy
Agency (IEA) estimates that it is possible to avoid around 70% of today’s methane emissions
from global oil and gas operations with existing technologies (3)). These statistics drive home the
importance of leveraging various methane detection technologies along with machine learning to
address this critical issue.

To measure CH, emissions, several methane-sensing instruments are used, with different sensitivities,
spatiotemporal resolutions, collection techniques and cost, and frequency of collection. Various
approaches have been proposed to detect methane emissions and leaks using different emerging
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methane-sensing technologies such as mobile methane detection and quantification of leaks and
monitoring with satellite (4;5), monthly and interannual aerial surveys to monitor CH4 persistence
(6; [7), FLIR cameras based on optical gas imaging technologies for detecting leakages with high
confidence (8)), IoT sensor grids for measuring real-time methane concentrations (9) and stationary
sensors to quantify sources of emissions and for monitoring large areas of interest (10; [11). One
of the technologies used to help with methane leak detection and remediation efforts (LDAR) is
ground sensor networks (12). While sensors can provide realtime/near realtime measurements of
methane concentration, the key challenge in employing them over a large area of interest - say, the
size of the Permian Basin in Texas, USA - would be the prohibitive cost of dense sensor placement.
While ground sensors can provide realtime/near-realtime measurements of methane concentration,
challenges arise in deploying them in a stationary configuration for maximum detection of leaks
within an area of interest that may contain multiple sources and establishing attribution to a given
source based on sensor readings. This underscores the importance of a robust sensor placement
optimization method to support LDAR efforts. To tackle this task, Klise et al. (11) proposed an
optimization strategy leveraging atmospheric dispersion and transport models and developed an
open-source Python package named Chama. The maximum-coverage problem is formulated based on
simulated methane dispersion maps and solved by mixed-integer linear programming formulations,
considering the ingested sensor data, such as sensitivities, number of sensors and budget. This
strategy starts from initialized sensor locations and finds the optimal subset as the result, but it is
highly dependent on the initialization of the sensor locations, that can only be placed on a specific
subset of initial positions. In our framework, the maximum-coverage problem is solved using a
machine learning (ML) unsupervised approach.

In this paper, we propose a framework to incorporate various oil and gas assets, leak/methane
emission history, meteorological data, topographical data, and pollutant dispersion and transport into
machine learning methods to suggest a sparse sensor placement in a stationary network for an area
of interest. The objective is to maximize the detection of all emissions sources and facilitate leak
source attribution, thereby helping mitigate and remediate methane emissions in an accurate and
timely manner.

2 Proposed sensor placement optimization method for methane leak
detection

The major innovation of the proposed method is that it provides an unsupervised learning solution
by leveraging the methane geospatial features generated from dispersion and transport models. It
allows different kinds of heterogeneous data sources as the inputs, varying from asset location,
asset properties to weather information, and underlying surface imagery. We followed the problem
formulation proposed by Klise et al. (I1) and construct the framework based on Figure[T} composed
of three core processes. The first two steps demonstrate similar modeling processes as outlined
in Klise et al. (11) and prepare the methane geospatial features for the optimization. Instead of
adopting mixed integer linear programming, we proposed a new ML based approach for solving the
optimization problem.

The proposed three core steps are:

1. Data ingestion: This step relates to acquiring and ingesting the data required for the solution.
Oil and gas facilities locations data, including wells, natural gas pipelines and processing
plants, available in the public domain, are ingested for the area of interest (13;/14). One can
also infer oil and gas facilities locations, such as tank batteries, using high spatial resolution
satellite imagery through image segmentation techniques, given sufficient labeled data.

Historical emissions distribution data related to source leak rates, which is a function of
the type of oil and gas facility in question and is based on data from an extensive airborne
campaign across the Permian Basin from September to November of 2019 (15), is also
ingested at this time. Further, as these sources can have varying heights and land topography
may impact the movement of the methane concentration in time, a digital elevation map
is also ingested in this step. Highly spatiotemporally resolved meteorological data at the
surface as well as within the atmosphere for the area of interest is also required. Ideally, these
data should be temporally resolved at a minimum of diurnally and be spatially representative
of the microclimate within the area of interest. These data may be point sourced or gridded.
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Figure 1: The proposed framework is composed of three steps: data ingestion, data transformation
and machine learning optimization. The data ingestion step ingests the data required for the modeling
and optimization components of the solution. In the next step, the results of several leakage scenarios
within an area of interest are simulated. In the final step, machine learning is applied to determine the
optimum location of the sensor, constraining on sensor information such as budget and sensitivity, or
on methane plume feature properties, or a combination of both.

Data related to the sensors to be used for the proposed network within the area of interest
are also ingested at this step. These data may be related to sensor cost, detection sensitivity
as outlined in Klise et. al (11).

2. Methane geospatial feature generation: This is the theory-driven aspect of the framework that
models the movement of CH, in the atmosphere over the area of interest within the planetary
boundary layer (up to 1.5km into the atmosphere) using atmospheric-based dispersion
models. These models may range from Large Eddy Simulation and the Gaussian plume
models, to atmospheric dispersion models and numerical weather prediction models with
radiative chemistry and transport schemes. The choice of model to use should be driven by
the complexity of the microclimate within the area of interest, the model accuracy required,
and the resources available to address the computational requirements of the model.

3. Integrate machine learning to identify the locations for sensor placement: Once the features
have been determined using the physics-based atmospheric dispersion models and sensor
placement optimized based on the sensor requirements for the network, the idea is to find
spatial redundancy for sensor locations that capture the variance of CH, geospatial features
over days. The coverage formulation is used which selects a set of sensors that maximizes an
objective. Two objectives can be used: (I) scenario coverage, which maximizes the number
of scenarios detected, and (II) scenario-time coverage, which maximizes the average amount
of time each scenario is detected. First, the optimization algorithm selects grid points with
maximum scenario coverage. Then, the points are spatially clustered using DBSCAN and
we get the centroid of the largest cluster. The covered scenario is then removed from the
simulation and the process repeated till the assigned number of sensors.

In a case study, preliminary results showed that the methodology proposed surpasses the baseline
model, in which sensors are placed along the downwind direction of each source. The proposed
cluster-greedy method detected 87.9% of the CH, leaking sources, while the baseline model detected
82.8%, a performance improvement of 5.8%. Using only one sensor for every three possible emission
sources, the improvement in performance is even more pronounced. In this scenario, the methodology
proposed in this paper detected 6.79% more leaks than the baseline model.

3 Summary

In this work, we proposed a framework for sensor placement optimization for an area of interest, using
the maximum coverage formulation given a sensor budget, by leveraging physics-based atmospheric
dispersion model outputs, and incorporating various data sources such as oil and gas facility maps,
weather data, and distribution of historical methane leak rates.
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