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ABSTRACT

The DNS hijacking attack represents a significant threat to users. In
this type of attack, a malicious DNS server redirects a victim do-
main to an attacker-controlled web server. Existing defenses are not
scalable and have not been widely deployed. In this work, we pro-
pose both unsupervised and semi-supervised defenses based on the
available knowledge of the defender. Specifically, our unsupervised
defense is a graph-based detection approach employing a new vari-
ant of the community detection algorithm. When the IP addresses
of several compromised DNS servers are available, we also propose
a semi-supervised defense for the detection of compromised or ma-
licious web servers which host the web content. We evaluate our
defenses on a real-world attack. The experimental results show that
our defenses can successfully identify these malicious web servers
and/or DNS server IPs. Moreover, we find that a deep learning-
based algorithm, i.e., node2vec, outperforms one which employs be-
lief propagation.

Index Terms— DNS, Hijacking, Community, Detection, node2vec

1. INTRODUCTION

The DNS (Domain Name System) [1] lives at the foundation of the
modern Internet. With its capability in IP address resolution, most
Internet users can enjoy the more user-friendly domain names during
their web browsing. Furthermore, DNS has enabled many operations
on websites, such as load balancing amongst servers, to be transpar-
ent to visitors. The security of the native DNS infrastructure relies on
two important assumptions. First, each DNS server is trustworthy.
This does not only apply to the DNS server to which end users send
their domain queries, but also to each DNS server that is involved in
the recursive process if the previous server does not have a response
to the query. Second, the communication channel between the end
user and the DNS server is not tampered with. An attacker cannot
forge or modify a DNS query or response. With a strong adversary
(sometimes even state-sponsored), meeting these two assumptions
can often be challenging.

To address the issue in the native DNS, the IETF proposed the
use of DNS Security Extension (DNSSEC) [2], utilizing digital sig-
natures for the end user and the DNS server. However, DNSSEC is
not currently widely deployed [3]. In addition, this extension only
addresses the authenticity part of the issue (the second assumption
above). A DNS server can be run or compromised by an adver-
sary, and the end users are still vulnerable to malicious websites if
the DNS returns a malicious IP address. More recently, DNS hi-
jacking has become a more widespread behavior of malware. As an
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example, the Novidade malware campaign [4] exploited vulnerable
routers, which led to any devices (infected or not) connecting to the
network being impacted.

In this work, we present our analysis on identifying DNS hijack-
ing attacks using an internal Microsoft dataset. We propose utiliz-
ing an innovative graph-based approach to convert the dataset into
a bipartite graph. Given the constructed graph, we build both un-
supervised and semi-supervised defenses. Specifically, our unsuper-
vised defense is based on a variant of community detection. We
have two semi-supervised defenses. The first defense is based on
Node2vec [5], which is a deep learning-based graph embedding al-
gorithm. The second defense is based on belief propagation [6]. We
use a Novidade malware campaign, a real-world DNS hijacking at-
tack, to validate the effectiveness of the proposed defenses. We have
the following findings from our experimental results:

1. With disjoint training and evaluation sets, our approach can
detect the confirmed malicious web servers (i.e., IPs) involved
in the Novidade with high precision.

2. On top of the previous approach and with manual confirma-
tion, our graph-based approach can identify additional, com-
promised or malicious DNS and web servers from the dataset
that were not published in the original blog post.

3. When applying our graph-based approach on unlabeled
browsing records, we can identify anomalous web servers
with high precision.

This paper is organized as follows: Section 2 introduces our
approach to address the research problem. Section 3 discusses the
dataset we used in our experimentation. Section 4 demonstrates the
results from our experiments. Section 5 illustrates prior research in
DNS hijacking detection. Section 6 summarizes our findings and
concludes the paper.

2. METHODOLOGY

In this section, we introduce an unsupervised method, which is based
on community detection, and then consider two semi-supervised ap-
proaches including a graph embedding-based method which builds
upon the node2vec algorithm and belief propagation.

2.1. Unsupervised Defense

Our community detection-based unsupervised method is applicable
to the scenario where we do not have any labels. In other words, we
do not any know compromised or malicious DNS or web server IPs
that are used to mount an attack. We have the following goals when
designing our unsupervised method:



1. The method should be parallelizable and efficient since: a)
there are many domains on the Internet, b) each domain on the
Internet may own many web servers, and c) there are many
DNS servers on the Internet.

2. The method should be accurate in detecting attack IPs.

To fulfill the first goal, we propose to design a method that can
be executed for each domain independently. Then, we can parallelize
our method for each domain when deploying it in practice. To reach
the second goal, our first intuition is that the attack IPs are usually
“novel” for the victim domain. In other words, attack IPs do not fre-
quently serve as the web server IPs for the victim domain in the past.
Our second intuition is that the attack IPs are usually connected. For
instance, when launching the attack for a victim domain, an attacker
will either compromise a DNS server or deploy a new DNS server
and use it to translate the victim domain to an attacker-controlled
web server IP. Based on these intuitions, we propose a community
detection-based method to detect attack IPs. In particular, we first
construct a base graph Gc that can capture the relationship between
DNS server IPs and web server IPs for the victim domain. Specif-
ically, each DNS server IP (or web server IP) represents a node in
the graph and there is an edge between a DNS server IP and a web
server IP if the DNS server IP redirects the victim domain to the
web server IP. We construct the bipartite graph by leveraging histor-
ical DNS resolution data for the victim domain. Then, given a new
DNS resolution graph Ga, which we call an attack graph, that may
contain attack IPs, our goal is to identify IPs that are most likely to
be attacks IPs based on Gc. Our idea is to divide Ga into multiple
communities. Then, we assign a community score for each commu-
nity and this community score is further used to assign the score to
each IP in the community.
Dividing Ga into communities. Our first step is to divide Ga
into multiple communities by a community detection algorithm. For
simplicity, we use C1, C2, · · · , Cγ to denote these individual com-
munties. In this work, we use the Louvain method [7] since it is
efficient. Roughly speaking, given a graph, it aims to find a division
that maximizes the modularity, which measures the density of edges
within communities compared to edges between communities. Note
that our framework is general and any community detection method
can be adopted.
Assigning a community score. Given the communities in the pre-
vious step, we assign a community score for each community. For
simplicity, given a DNS server IP or a web server IP in graph Ga,
we say the IP is a “novel” IP if it does not appear in Gc. Based on
our intuition that the attack IPs are “novel” for the victim domains,
we consider the following factors:

• F-I: Given base graph Gc and a community Ci, we use wi to
denote the fraction of “novel” web server IPs in Ci .

• F-II: An attacker can either compromise an existing DNS
server or deploy a new DNS server to redirect the victim do-
main to an attacker-controlled web server. Therefore, given
base graph Gc, we use di and si to denote the fraction of DNS
server IPs and “novel” DNS server IPs that redirect the victim
domain to a “novel” web server IP.

Given these two factors, we define the following reputation score for
a community Ci:

RC(Ci) =
1

1 + e−wi
· 1

1 + e−si−di
. (1)

Estimating a reputation score for each IP. Given an arbitrary web
(or DNS) server IP ∈ Ga, we can compute its reputation score as

follows:

RP (IP ) =
∑
i

RC(Ci) · I(IP ∈ Ci), (2)

where I is the indicator function. We note that other information
like the traffic of an IP can also be incorporated into our framework.
Specifically, we define the traffic score of an IP as the ratio between
the traffic associated with the IP and the overall traffic of the entire
domain. For simplicity, given an arbitrary web (or DNS) server IP ,
we use TIP to denote the traffic score. Then, we can define the new
reputation score for the web (or DNS) server IP as follows:

RP (IP ) =
∑
i

RC(Ci) ·
1

1 + eTIP
· I(IP ∈ Ci). (3)

Intuitively, an IP tends to have a larger reputation score if it has a
smaller traffic score. In other words, it is more likely to be an attack
IP in this case.

Ranking IPs based on Reputation Scores. Given the reputation
score of each IP in the graph, we can rank these IPs based on their
scores. Then among all IPs that we are interested in, we can predict
the Top-N IPs that have the largest scores as attack IPs.

2.2. Semi-supervised Defenses

2.2.1. Node2vec

We next develop a semi-supervised method based on node2vec [5]
if we have some groundtruth attack IPs. Similar to the proposed
unsupervised method, our semi-supervised method can also be ap-
plied to each domain such that it is scalable and efficient. Node2vec
is a graph representation learning algorithm which can learn low-
dimensional representations for nodes in the graph. Such low-
dimensional representations contain the graph structure information
which can be used for many downstream tasks, e.g., link prediction
and node classification. We omit the details of the node2vec due
space limitations. Similar to our unsupervised method, we use a
graph Ga to model the relationships between web server IPs and
DNS server IPs for the victim domain. Specifically, each web server
IP (or DNS server IP) represents a node in the graph and there is an
edge between a DNS server IP and a web server IP if the DNS server
IP redirects the victim domain to the web server IP. Our goal is to
detect attack IPs in Ga. Given a graph Ga, an IP address IP ∈ Ga,
and the node2vec algorithm A, we have the following:

A : IP −→ Rd. (4)

In other words, the algorithm A maps an arbitrary IP to a low-
dimensional embedding vector.

Estimating a reputation score for each IP. Similar to our unsu-
pervised method, our intuition is that the attack IPs are usually con-
nected. The reason is that an attacker needs to compromise some
DNS servers or deploy some new DNS servers to redirect the vic-
tim domain to an attacker-controlled web server. Therefore, given
an arbitrary IP , we propose to estimate its reputation score by com-
puting its similarity with the groundtruth attack IPs. Formally, given
an arbitrary IP and a set of K groundtruth attack IPs, which are
denoted as T = {IP1, IP2, · · · , IPK}, we can compute the repu-
tation score for the given IP as follows:

RP (IP ) =

∑K
i=1 Sim(A(IP ),A(IPi))

K
, (5)



where Sim measures the similarity between two embedding vectors
A(IP ) and A(IPi). We note that any similarity metric can be used
in the equation above. In this work, we use the cosine similarity
function which measures the angle between two embedding vectors.

Ranking IPs based on reputation scores. Given these reputation
scores and the set of IPs that we are interested in, we can predict the
Top-N IPs that have the largest scores as attack IPs.

2.2.2. Belief Propagation

Recall that we use a graph Ga to model the relationships between
web server IPs and DNS server IPs for the victim domain. Then,
given such graph Ga and a set of groundtruth attack IPs, we can
also leverage belief propagation [6] to obtain a reputation score for
each remaining IP in the graph. For simplicity, we use B to de-
note the belief propagation algorithm. Then, given a set of IPs T =
{IP1, IP2, · · · , IPt}, which contains both benigh IPs and attack
IPs, the reputation score for a given IP is as follows:

RP (IP ) = B(Ga, T , IP ). (6)

We adopt the SybilScar [8] belief propagation approach in this work.
The reason is that it is more accurate and efficient compared with the
original belief propagation algorihm. Similarly, we can also rank the
reputation scores and predict the Top-N IPs that have the largest
scores as attack IPs.

3. DATA

To evaluate the performance of the proposed methods, we collect
historical network traffic from Microsoft Defender SmartScreen for
the compromised IP addresses used in the Novidade campaign and
identifed two domains which we call Novidade Domain 1 and Novi-
dade Domain 2. From the SmartScreen logs, we can get the times-
tamp, domain and its associated DNS server IP and web server IP
from real-world traffic. For each domain, we construct a bipartite
graph based on the DNS server and web server IPs. In the unsuper-
vised method, the base graph and attack graph are generated sepa-
rately using a different timeframe’s traffic. We receive the label for
the attack DNS and web server IPs from the published Novidade
campaign reports [4] and manual analysis from Microsoft security
analysts.

To improve the data quality, we conducted two steps. 1) Remove
the DNS server and web server IPs which belongs to multicast, pri-
vate, reserved and local IPs from the traffic telemetry that are as-
sociated with the compromised domain. 2) Extract the largest con-
nected component for the bipartite graph to remove the unconnected
nodes. After those steps, the graph details for the two compromised
domains include:

1. Novidade Domain 1

(a) Base graph Gc: Network traffic before the attack
09/01/2018 - 11/30/2018

(b) Attack graph Ga: Network traffic during the attack
12/01/2018 - 01/31/2019

i. 1,814 nodes (164 web servers and 1,650 DNS
servers) and 3,390 edges

ii. 6 attack DNS IPs, and 4 malicious web server IPs
used in the pharming attack

2. Novidade Domain 2

(a) Base graph Gc: Network traffic before the attack
09/01/2018 - 11/30/2018

(b) Attack graph Ga: Network traffic during the attack
12/01/2018 - 01/31/2019

i. 1,985 nodes (414 web servers and 1,571 DNS
servers) and 3,057 edges

ii. 6 attack DNS IPs, and 1 malicious web server IPs
used in the pharming attack

4. NUMERICAL EVALUATION

We provide an evaluation of the proposed methods for the task of de-
tecting compromised DNS and malicious web servers in this section.
We begin by providing a summary of the implementation steps used
to conduct these experiments. Next, we consider the unsupervised
learning case using the community detection algorithm. Two semi-
supervised approaches, including belief propagation and node2vec,
are then used to detect malicious web servers.
Implementation. The algorithms were implemented in either
Python or C++. For the proposed community detection variant, we
modified the Louvain algorithm which is implemented in Python [9].
Belief propagation is implemented in C++ [10]. The node2vec al-
gorithm is implemented in Python [11] using the Tensorflow deep
learning backend [12], and the experiments were run on an Azure
virtual machine (VM) which included an NVIDIA P100.
Community Detection. Because it is unsupervised, we can detect
both compromised DNS servers in Figure 1 as well as compromised
web servers in Figure 2. We compare the results for including the
proposed traffic term in Figure 1a compared to the standard commu-
nity detection algorithm in Figure 1b. In the figures, the precision
and recall are plotted for increasing values of N (i.e., Top-N) where
N indicates the number DNS or web servers with the largest repu-
tation score (Eq (2) without traffic and Eq (3) with traffic). These
figures indicate that including the proposed traffic term provides sig-
nificant benefit to the analyst - including the traffic term begins to
increase the precision and recall beginning with N = 10 whereas
the values start to increase starting at N = 15 without the traffic
term. The highest precision is reached in relatively short lists with
N = 16 where the traffic term is included and N = 18 without the
traffic term.

(a) With Traffic (b) Without Traffic

Fig. 1: Community Detection: Precision and recall for DNS servers
using the Novidade Domain 1.

Next, Figure 2 considers the detection of compromised or mali-
cious web servers which are the final destination of the attack using
the community detection algorithm. We observe that including the
traffic term in Figure 2a offers no improvement in the precision or
recall compared to the standard community detection algorithm in
Figure 2b. For both approaches, the precision and recall begin to
improve with N = 10, and the precision reaches a value of 1.0 at
N = 13.



(a) With Traffic (b) Without Traffic

Fig. 2: Community Detection: Precision and recall for web servers
using in the Novidade Domain 1.

Figure 1 and 2 analyze the performance of the community detec-
tion algorithm for DNS and web servers using the Novidade Domain
1. Our data also includes compromised DNS and web servers from
the Novidade attack which use the Novidade Domain 2. The per-
formance of the community detection algorithm is provided for the
DNS servers in Figure 3a and the web servers in Figure 3b. The pre-
cision and recall begin to increase for smaller values of N for both
DNS servers (Figure 3a) and web servers (Figure 3b) compared to
the Novidade Domain 1.

(a) DNS Servers (b) Web Servers

Fig. 3: Community Detection: Precision and recall for DNS servers
(a) and web servers (b) using the Novidade Domain 2 and including
the traffic term.

Belief Propagation. Next, we consider a semi-supervised approach
where we have a few labeled DNS server nodes, and we would like
to discover additional compromised or malicious web servers based
on belief propagation [6]. The precision and recall for this task are
provided in Figures 4a and 4b, respectively, for increasing numbers
of known and labeled DNS servers K in the Novidade Domain 1.
We plot these results for the Top-1, -3, and -5 ranked lists based on
the reputation score (Eq (6)). These results indicate that the precision
and recall both tend to increase as we reach the maximum value of
the 6 known compromised DNS servers using the Novidade Domain
1.

(a) Precision (b) Recall

Fig. 4: Belief Propagation: Precision and recall for web servers us-
ing the Novidade Domain 1.

Node2vec. Finally, we utilized the node2vec algorithm [5], again in

a semi-supervised manner, to detect compromised or malicious web
servers based on DNS servers which are known to be compromised.
The precision and recall for the Top-N reputation scores (Eq (5)) are
depicted in Figures 5a and 5b, respectively, for the Novidade Domain
1. Comparing the results in Figure 5 for the node2vec approach with
those from Figure 4 for belief propagation, we see that node2vec
offers superior performance for this attack.

(a) Precision (b) Recall

Fig. 5: Node2vec: Precision and recall for web servers using the
Novidade Domain 1.

5. RELATED WORK

Many DNS hijacking attacks [13, 14, 15, 16, 17, 18, 19, 20] have
been proposed. For instance, Stamm [16] proposed the Drive-by
Pharming attack where an attacker can change the DNS server set-
tings when a victim visits the attacker-controlled web page. Akritidis
et al. [19] showed that an attacker can redirect users to spoofed web
sites via providing free Internet access by malicious wireless routers.
Karlof et al. [17] proposed dynamic pharming attacks which exploit
DNS rebinding vulnerability in browsers and the name-based, same-
origin policy to hijack the victim’s authenticated session.

To mitigate the attacks, many defenses [21, 22, 23, 24] have been
proposed in the literature. Cao et al. [21] proposed maintaining a
white-list of user’s all familiar Login User Interfaces of web sites to
mitigate pharming attacks, which is not scalable and may negatively
impact user experience. Gastellier-Prevost et al. [23] proposed com-
bining IP checks and web page content analysis to detect pharming
attacks. However, it requires the knowledge about the IP address.
DNSSEC [2], which leverages digital signatures for the end user and
the DNS server, has also been used to mitigate the attacks. However,
it has not been widely deployed at this time [3]. All above defenses
are different from our proposed graph-based defenses.

6. CONCLUSION

DNS hijacking attacks pose severe security and privacy threats to
users both at home and when connecting to the internet using pub-
lic wifi. This work demonstrates the effectiveness of both unsuper-
vised and semi-supervised defenses for detecting compromised DNS
and web servers via the Novidade malware campaign, which is a
real-world DNS hijacking attack. Both approaches can be utilized
for other campaigns where the attacker utilizes compromised DNS
servers. The community detection defense, an unsupervised defense,
can be used to discover previously undetected attacks. In addition,
the community detection algorithm can generalize to different do-
mains. Semi-supervised defenses can improve the performance if
some comprised DNS servers have been previously labeled. For the
Novidade campaign, the deep learning node2vec algorithm offers
better performance than belief propagation.
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