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ABSTRACT
With the increasing adaption of solar energy worldwide, there is a
huge interest to develop systems that help drive efficiency during
manufacturing and ongoing operations. Due to various real-world
conditions and processes, solar panels develop faults during their
manufacturing and operations. The objective of this work is to build
an End-to-End Fault Detection system to detect and localize faults
in solar panels based on their Electroluminescence (EL) Imaging.
Today, the majority of fault detection happens through manual
inspection of EL images. To this end, we propose the design and
implementation of an end-to-end system that firstly divides the
solar panel into individual solar cells and then passes these cell
images through a classification + detection pipeline for identifying
the fault type and localizing the faults inside a cell. We propose
a hybrid architecture that contains an ensemble of multiple CNN
model architectures for classification and detection. The ensemble is
capable of serving both – monocrystalline and polycrystalline solar
panels. The proposed system significantly helps in increasing the
efficiency of solar panels and reducing warranty and repair costs.
We demonstrate the performance of the proposed system using
an open EL image dataset with 95% of cell-level fault prediction
accuracy and high recall. The proposed algorithms are applicable
and can be extended for other solar applications that use RGB, EL,
or thermal imaging techniques.
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1 INTRODUCTION
Over the last decade, there has been a significant increase in the de-
velopment and deployment of photovoltaic solar energy generation
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across the globe. As of 2020, nearly 105 countries have invested in
Solar Energy [14] with a total of 580GW of installed capacity.

Photo Voltaic (PV) modules are the commercially available basic
building block in the solar deployment. PV modules (also inter-
changeably called as solar panels) can be broadly classified into two
types based on the type of the silicon used: (i) Polycrystalline and
(ii) Monocrystalline. While majority of the installed PV setups are
polycrystalline, there is a significant push towards monocrystalline
due to their increased efficiencies. With the increasing capacity of
PV modules, it is important to monitor the quality and performance
of these modules during manufacturing time as well as during their
operations. Due to various real-world conditions during the PV
modules manufacturing process, there is a possibility of certain PV
cells inside PV modules getting damaged or causing an abnormal
behavior with a fall in performance. If these defects are identified
during early stages of manufacturing process, the affected cells
can be either replaced or repaired, thereby effectively saving ma-
jor losses in plant efficiency and performance [15] [22] as well as
monetary losses and warranty issues.

Electro-luminescence (EL) Imaging is more commonly used in
detecting faults and degradation in PV cells [4]. During the EL
imaging process, the solar panel being inspected is placed inside a
dark chamber and excited by feeding current into the solar cells.
The radiative recombination carriers causes light emissions. This
light emission is captured by one or multiple cameras mounted
above the PV modules, thereby generating the EL image of the
PV module. Figure 1 shows EL images of different solar PV cells,
which are either working or have somemanufacturing defect. These
defects are typically categorized into different defect classes such
as - (i) Cracks (Micro and Branch Cracks), (ii) Grid Defect and
Power Mismatch, (iii) PECVD Marks, (iv) Short Circuiting of the
cell, (v) Chipped/Broken cell and (vi) Soldering Defect. Among
these defect classes, cracks are the most frequently observed defect
type during manufacturing, transportation or deployment of these
solar modules. Based on the severity, these cracks can also cause
open-circuits in the panel, disconnecting the cell completely from
the panel. Grid Defect and Power Mismatch is another common
fault in PV cells, which occur mainly due to the short-circuiting of
the bypass diode between two bus-bars in a cell, thereby incurring
power losses of nearly 18-25% in polycrystalline, and 20-28% in
monocrystalline cells [3, 28].

Today, majority of PV manufacturing plants employ a human
operator to manually visualize the EL image to determine if the
panel has a fault and further investigate which cell in the panel has
a fault (see Figure 1). Detecting and identifying the faulty cell and
its type is critical to ensure it is either repaired or replaced. Such
a manual inspection process is cumbersome and puts significant
pressure. Thus resulting in human fatigue and also prone to errors.
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(a) Working (b) Branch Crack (c) Micro Crack (d) Short Circuit (e) PECVD Marks (f) Grid Defect (g) Noise Crack (h) Bad Stitching

Figure 1: Different types of Faults in EL Images of PV Cells and current challenges

Recently, automated fault detection approaches in EL images has
gained interest in both- academia and industry [10]. However, there
are several challenges that still needs to be addressed [11]. ❶ Cell-
level fault detection: As we discuss in Section 3.2 majority of the
works focus on classifying if an entire PV panel is faulty or working
as opposed to detecting the cell which has a fault. Detecting faults
at cell level, requires precise cell segmentation which is non-trivial
as each EL image is obtained by stitching images frommultiple cam-
eras resulting in incorrect stitching which can pose problems during
cell segmentation (see Figure 1h). ❷ Presence of wafer marks: EL
images are typically low contrast gray-scale images, which makes it
difficult to distinguish between foreground (fault) and background
(cell image with wafer marks) (see Figure 1g). ❸ Variation in im-
age orientation and brightness: Since EL images are taken through
overhead camera, they generally have perspective issues with the
presence of angle of tilt, and need perspective distortion corrective
along with orientation correction [24]. ❹ Localization of faults: As
mentioned earlier, it is critical to detect individual fault types in
a cell such as crack, grid defect, etc., and also the location of the
fault. Given these faults are generally small in size and are typically
hard to distinguish from background it is challenging to localize
the faults accurately.

To this end, we have developed an automated end-to-end sys-
tem for cell-level, fine-grained PV module fault detection using EL
images. Specifically, we have developed a robust cell-segmentation
pipeline that takes the complete PV module EL image and segments
it to the individual cells accurately. The individual cells are then
fed to a CNN-based Deep learning pipeline to either classify the
status of the cell, i.e., working or specific fault type, or localize the
fault in a cell. We have performed extensive testing of the proposed
approach on a popular public dataset [6]. During the development
of such an automated algorithm, we have focused on reducing the
false negatives as missing a faulty cell would result in poor perfor-
mance and warranty issues. Further, we present several learnings
in developing such an automated algorithm. Finally, the proposed
algorithms are quite generic and can be applied to different solar
images such as EL, RGB, and thermal images. For example, the cell
segmentation algorithms can also be used to segment rooftop solar
panels and the fault detection algorithms can be applied to detect
hotspots in thermal images and so on. Our main contributions are:

(1) We have developed an end-to-end hybrid pipeline to accu-
rately detect and localize faults in EL images for both mono
and polycrystalline PV modules.

(2) We have designed a robust algorithm to accurately segment
individual cells in a PV module by considering real-world
challenges such as variations in image orientation and bright-
ness, etc.

(3) We have evaluated our proposed pipeline on a popular dataset
ELPV [6] and our CNN pipeline has an accuracy of 95%.

2 RELATEDWORK
While manual quality testing of EL images is the norm today, there
are several automated approaches that are being currently pro-
posed. The earliest attempt on understanding and detecting faults
in EL images was introduced by Deitsch et al., [7, 10]. The work
focused on using classical image processing to segment PV cells by
extracting edge-level features, but the algorithm does not perform
well in case of high contrast images. The work also does not classify
or detect faults in the cell explicitly and is focused on panel level
fault detection. Parikh et al., [20] focuses on detecting micro-cracks,
finger failures as two top faults in the PV cells as part of a drone-
mounted system. The paper solves perspective issues by correcting
it using homography transformation. However, the approach pri-
marily focuses on traditional algorithms such as Random Forest,
kNN and SVM for classification.

Over the past few years, a lot of papers have focused on solving
this problem using deep learning. Ding et al. proposed a trans-
fer learning approach for large scale PV solar plants for detecting
faults [12]. Li et al., [16] proposed a VGG based network along with
a SVM classifier achieving nearly 90% accuracy. But the drawbacks
of these papers are that, the same models do not generalize well on
polycrystalline panels, and also is not robust to high wafer marks
in the images as all the layers are not trained on EL Dataset due to
lack of training data. The work also does not capture many other
kind of faults that occur in PV cells which we focus and detect as
part of this paper. Akram et al. [1] uses CNN based approach with
data augmentation techniques and achieves 93.02% accuracy on
classification task but the work is on a binary classification task
of faulty and not-faulty classes. Tang et al., [26] proposed a more
robust approach by generating samples of EL images using genera-
tive methods for augmentation and also benchmarked the model
against VGG16, ResNet50[13], etc. Deitsch et al., [9] devised an
segmentation approach in [7] and further they proposed an SVM
based approach by extracting features using keypoint detection
methods such as KAZE [2], SIFT, and used a deep learning based
CNN approach. These papers generalized the use of traditional im-
age processing along with Deep Learning approach to differentiate
between defective and non-defective panels, obtaining state-of-the-
art results. Majority of the above works focus on just panel level
fault classification, i.e., is there a fault in the panel instead of which
cell has a fault and what type of fault. Further, even if a cell level
approach is proposed, they are mostly binary classification, i.e.,
working or faulty. However, as we described earlier detecting the
exact type of fault is critical as the operator can take appropriate



AI-assisted Cell-Level Fault Detection and Localization in Solar PV Electroluminescence Images AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

actions with regard to replacement or repair. Finally, most of the
networks are designed for either mono or polycrystalline, but not
both. Since these two PV modules have different characteristics
this requires additional considerations to efficiently detect fault in
EL images. We will next present our automated end-to-end fault
detection pipeline on EL images that can detect faults and its type
on each individual cell of the panel.
3 EL IMAGE FAULT DETECTION
EL Imaging is a technique used to determine the quality of electri-
cal contact between PV cells. In this technique, cells are forward
biased and made to emit radiations detected by silicon-charged
coupled camera device in a dark chamber. The area between bus-
bars in scanned cell images with high luminescence proves higher
efficiency of silicon; thereby, proving that dark regions in these EL
Images represent faulty parts of the cells with cracks, grid defect or
even a broken chipped cell. After generating EL Images of a Solar
Panel, it needs to be examined to determine the working condition
of every PV cell in the panel. To this end, we have a two-stage
pipeline, where we first pass the EL image (entire panel) as input
to a cell segmentation algorithm (see Section 3.1). The output of
cell segmentation algorithm is individual cells of the panel. These
individual cells are then passed through a Deep learning pipeline
to classify, detect and localize the type of faults (see Section 3.2).
3.1 Cell Segmentation Algorithm
The primary aim of the segmentation algorithm is to extract individ-
ual cells from the panel. We exploit the horizontal and vertical lines
in an EL Panel Image [8], such that for every image, we can extract
and crop the individual EL cell images (72 in case of 12x6 panel)
using Edge and Line detection algorithms along with advanced
Image Processing techniques as discussed next.

3.1.1 Cropping a panel image into 12 different sub-images.
We first crop the whole EL Image into K small sub-images or tiles
(12 in this case) as shown in the Figure 2. Specifically, to crop the
panel image to tiles, we rely on the image dimensions of the panel.
We crop the image in such a way that for each of the K cropped
images, we get at least X complete cells (6 cells in this case), so that
we get all (K x X) cells (72 cells in total - 12x6) from all the cropped
images.

Figure 2: Cropping a panel image into sub-images

3.1.2 Deriving cell boundaries for each individual cells. For
each cropped image or tile, we apply a sequence of pre-processing
steps to derive the boundaries of individual cells.

Masking and Line detection: Since the tiled EL images may
have noise in the form of wafer markes, we first apply Gaussian
Blurring and Histogram Equalization to derive a mask (see Fig-
ure 3(b)). After this we process the same image using Laplacian

Kernel along with the inRange Thresholding for detecting the lines,
based on the range of the pixel values (see Figure 3(c)).

Filtering: We use the K-Nearest Neighbor (KNN) approach,
along with the “Sliding Window” algorithm with a pixel width of
W, based on prior experimentation. We slide the window both hori-
zontally and vertically along the complete cropped image. While
sliding through the image, our algorithm counts the black and
white pixels concentration, and if number of black pixels exceeds
the number of white pixels:max(blackPixels, whitePixels), we assign
all the pixels in the window width W in the image to black and
vice-versa. As a result, we are able to remove the noise completely
from these tiled images as shown in Figure 3(d).

Cell Boundary Extraction: To extract the intersections of all
the horizontal and vertical lines, we compare the ratio of the num-
ber of black to number of white pixels for the vertical lines and
horizontal lines respectively. If the pixel-ratio is greater than a spec-
ified threshold T, then we replace the whole vertical/horizontal line
to white (255) otherwise we assign whole line to black pixels (0)
respectively. After extracting all the horizontal and vertical lines,
we operate the Bitwise-AND OpenCV technique on the array con-
sisting of horizontal and vertical lines, to get their intersections.
Furthermore, after calculating the intersection of the horizontal and
vertical lines we get a series of points for each of the intersection.
From these series of points we extract the exact centroid for each
of the corners of the cells, by averaging the horizontal and vertical
dimension coordinates for each of the intersection.

3.1.3 Extracting individual cells. Once we have coordinates
for the cell boundaries, we now segment the individual cells. The
solar cells in the EL Image are almost similar in size and are nearly
symmetrical in nature. Thus, we can use this domain knowledge
to filter cells whose length, width and diagonal distance between
the corners of the cell is within the expected range of an ideal cell
(500x500px in this case). We calculate the median of the length,
width and diagonal distance for each of the extracted cells from all
the K cropped images (12 in this case). If all three dimensions of an
extracted cell are within the range of the said threshold from their
median lengths, then we label them as correct segmented cells.

3.1.4 Extrapolating the Corrected Cells for whole image.
Even if one out of six cells in the cropped image is extracted cor-
rectly as described in the previous step, then we are able to extract
all the six cells using the extrapolation. However, there can be few
cropped images out of 12 sub-panel images, where the algorithm
may not able to detect even a single cell correctly after application
of post-processing mentioned previously. As a result due to the
lack of reference coordinates for extrapolation, the algorithm might
fail to detect cells in the cropped image. Hence, using the rules of
symmetry, we assume horizontal length = vertical width of a cell
and extrapolate the horizontal and vertical lines extracted to get
the coordinates of these cells in cropped images where earlier none
of the cells were detected as an alternative.

3.1.5 Additional check on the extractedCells to removeCell
borders and additional margins. We found that there were few
cells which were not segmented properly, because of alignment and
perspective issues and because of the problems we faced while ex-
trapolating the lines of the corrected cells. These incorrect cropped
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Figure 3: Step-wise Segmentation Output using Classical Image Processing techniques

Figure 4: Cell border removal

cells are shown in Figure 4. When these cells were passed through
the classification model, these cells are often misclassified because
of improper extraction of the cell. So, to improve the performance
of our model and make it more robust to change to contrast and
brightness of EL Panel Image, we apply two additional steps, i.e.,
one for removing the cell borders and other for removing the Panel
borders present in cropped cell images, generated while cropping
the border cells. We crop the borders of the cell as well as the panel
image using the “Contour Detection” algorithm, thus generating
a cell image with no cell borders (black edges). Finally, all the (K x
X) 72 cropped cell images extracted are passed to the classification
pipeline discussed in the next section.
3.2 Fault Classification: Polycrystalline Images
As mentioned earlier, we have developed a hybrid pipeline which
works with both mono and polycrystalline EL cells. Figure 5 shows
the overview of our end to end pipeline. In this section, we describe
the working of the pipeline for polycrystalline EL images. Here,
we first classify the cell to one of the classes (working or specific
fault) and then if it is a faulty cell, we run an additional object
detection pipeline to localize the fault. This is done mainly because
of the noise (wafer marks, etc.) present in the polycrystalline images
making it harder for object detection algorithms to both detect
and localize different faults accurately. We first describe the fault
classification approach and then the fault localization.

3.2.1 Fault classification using EfficientNet. EfficientNet [25]
based Classification Model is implemented as part of the pipeline
for multi-class classification to differentiate between faulty cell
from working cell. We employ a supervised learning approach to
train the classification model [19]. The PV cell classification for
a polycrystalline type cell is complex because of the lack of clear
distinctive features between most of the faulty classes, which often
leads to increased False Positives (FPs) and False Negatives (FNs)
because of loss in differentiating power between micro cracks and
wafer marks (noise) often generated during EL image generation.
As a trade-off between number of parameters to train/training time
for model to be deployed vs performance metrics, EfficientNet B7
achieves much higher performance on this dataset for multi-class
and binary classification task. The architecture is built using a
multi-objective Neural Architecture Search (NAS) with the primary

function of the base network to scale Depth, Resolution and width
by performing a grid search on the parameters (𝛼, 𝛽,𝛾 ) optimising
the objective (Compound Scaling) as follows:

depth: 𝑑 = 𝛼𝜙 , width:𝑤 = 𝛽𝜙 , resolution: 𝑟 = 𝛾𝜙

s.t. 𝛼 · 𝛽2 · 𝛾2 ≈ 2, 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1 (1)

We obtain strong spatial information from EfficientNet model
(𝐹 ) by passing it as an input to a Global Average Pooling layer to
generate GAP(F), as it helps collect distinctive features from top
of the network and suppresses the noise in the background of the
input image by adding “attention” to the fault and reducing the
unnecessary spatial dimensional information. Thus, concatenating
“X = [GAP(F), F]” the feature vectors obtained from both, Effi-
cientNet and EfficientNet+GAP, is useful in extracting complete
information from the input to generate class labels.

3.2.2 Fault localizationusing Feature PyramidNetwork. Once
the cells are classified to a specific class, the faulty cells are then
passed through a object detection network to localize the fault.
We employ RetinaNet [17] a Single Shot Detector (SSD) to localize
the fault. All the layers of the network is trained on the EL Image
Dataset (Full training). In the remainder of this section, we will use
localization of crack as an example. However, note that this pipeline
can be applied to localize all fault types such as grid defect, short
circuit, chipped cells, etc. Our Modified ResNet50 (Backbone) +
RetinaNet model focuses mainly on localizing the area of fault type.
It differs mainly in terms of the architecture of residual block, as
each block has an additional Batch Normalization(BN) layer along
with Dropout after the last conv layer of base network. This model
architecture is used in our paper for calculating the following:

• Length of fault detected (crack length)
• Total Faulty surface area of the cell (Percentage of defect
area)

• Number of faults in EL cell (number of cracks, etc.)
The backbone of the network features a Feature Pyramid Net-

work (FPN) [17] built over ResNet50 which generates convolutional
feature vectors for EL cell images at multiple levels of the feature
pyramid. As we go higher up in the FPN of the bottom-up architec-
ture, the spatial resolution of input image reduces, thereby making
the model more robust and it’s capability to detect minute cracks
more efficiently.

Another important feature of the network is the usage of focal
loss which solves the issue of extreme imbalance classes formed
from anchor candidates (positive and negative samples) bounding
boxes generated during training.

FL (𝑝t) = −𝛼t (1 − 𝑝t)𝛾 log (𝑝t) (2)
It improves the performance of models during training without let-
ting easy negatives immensely contribute to gradients, by focusing
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Figure 5: End-to-End EL Fault Detection Architecture

on hard samples and it’s contribution to the loss being higher during
training. Lastly, the FPN layer output is passed onto Classification
and Regression Subnets to classify the generated anchor box candi-
dates from FPN and regress over these EL faulty cell candidates to
generate bounding boxes of cracks in the image. These features of
the architecture helps us practically meet the requirements setup
during the manufacturing process of Solar Panels by determining
the characteristics properties of cells as discussed, allowing floor
operators to send faulty panels for being reworked or reject them
before final lamination in much lesser inference time.
3.2.3 DataAugmentation. The augmentationmodule is deployed
at training to mainly enhance the performance of the model by
improving the generalisation and reduce the impact of overfitting
by regularisation. Using Data Generator of tensorflow, Vertical
and Horizontal Flips, Randomised cropping, angled crops, edge
enhancement and adding gaussian noise proved to be effective in
generating more training samples. We mainly focus on proposing a
two-stage Data augmentation process, Augmentation during model
training and ensembling cell augmentation during model inference.
Ensembling the output predictions of the test image over different
augmentations improved the precision-recall scores by 9.82% and
an improved accuracy on the multi-class classification problem.
Thus, the training computation remains the same, but with a slight
increase in inference time, the model performance is improved by
approximately 10%.
3.3 Fault Detection: Monocrystalline EL Images
In this part of the pipeline, we detect faults occurring primarily
in Monocrystalline EL Images using a Faster R-CNN architecture,
a two-stage detection algorithm [21]. Faster R-CNN has the best
trade-off in terms of accuracy (performance) and latency (speed).

As part of this architecture, all cells from EL Panel image are
passed through the base model of the detector which extracts
feature vectors. In our case, we used ResNeXt-50 [27] instead of
VGG [23] to enhance the speed of training and also reduce over-
fitting due to the presence of residual and skip connections. The
model architecture uses a Region Proposal Network (RPN) to cre-
ate regions of interest (RoI) by generating k-anchor boxes using a
sliding-window approach for different aspect ratios.

The RPN optimises the below loss function, where i is the in-
dex of anchor box and P is the predicted probability, to generate

suitable proposals which is then passed onto the Classification and
Regression heads to detect and label the fault in the cell images.
The detector is trained on EL Image Dataset to detect Micro Cracks,
Branch Cracks and Grid Defect/Chipped Cells with 85.3% mAP as
we discuss in Section 4.3.
4 EXPERIMENTAL SETUP & EVALUATION
In this Section, we discuss the experimental setup of the proposed
system- specifying the details of the dataset for training and testing,
the evaluation metrics, and specific implementation details.
4.1 Dataset
We use the dataset curated by ZAE Bayern [6] which contains
both mono-crystalline and poly-crystalline EL Images. This dataset
consists of total 2624 PV Cells, out of which 1074 cells (from 18
PV module EL images) are Monocrystalline and 1550 cells (from
26 PV module EL images) are polycrystalline cells . The dataset is
curated and annotated based on defect probability and the level
of degradation in the cells in the range of (0,1), split into 4 classes
with the defect probabilities of 0, 0.3333, 0.6666 and 1. Each cell
image is of size 300x300 pixels and it contains 3 bus-bars in each
cell. Firstly, We converted this dataset into binary classification
dataset by assigning cell images to either of the two classes- (i)
Working (fault probability <0.5) and (ii) Faulty (Fault probability >
0.5). Then, we annotate the faulty cell images for Crack and Grid
defect with fault bounding box for training and evaluation.
4.2 Evaluation Metrics
The performance of the classification model for multi-class and bi-
nary classification tasks are evaluated using the F1-Score, Precision,
Recall and Accuracy.

We also understand the performance of the Object Detection
model - RetinaNet and Faster R-CNN using mAP (Mean Average
Precision) and by calculating Precision, Recall from IoU (Intersec-
tion over Union). IoU is computed based on the overlapping area
between predicted box and ground truth bounding box. The pre-
diction is considered True Positive (TP), if IoU >=0.5, False Positive
(FP) if IoU<0.5, and False Negative (FN) if there was no overlapping
predicted bounding box with respect to the Ground Truth.

Figure 6: Object Detection Output from ELPV Dataset
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Model Architecture Precision Recall F1 Score Accuracy
(in %)

Parameters
(in M)Working Faulty Working Faulty Working Faulty

XceptionNet 0.90 0.99 1.00 0.76 0.95 0.86 92.19 22
Inception V3 0.84 0.97 0.99 0.60 0.91 0.74 87.58 23
InceptionResNet V2 0.82 0.93 0.98 0.55 0.89 0.69 84.71 55
DenseNet 101 0.78 0.87 0.97 0.41 0.86 0.56 79.23 24
EfficientNet B7 + GAP 0.92 0.99 0.99 0.87 0.96 0.91 94.24 60
ResNeXt 50 0.80 0.84 0.95 0.50 0.87 0.62 81.17 23

Table 1: Comparative Performance of Model on ELPV Dataset

Type Model Architecture mAP Inference
Time(s)mAP@

[0.5:0.95]
mAP@
0.5

Poly RetinaNet (FPN) 0.836 0.892 0.135
Faster RCNN 0.807 0.872 0.288

Mono RetinaNet (FPN) 0.832 0.887 0.078
Faster RCNN 0.88 0.942 0.154

Table 2: Performance of Detection Models on both Datasets

4.3 Results and Implementation
In this section, we discuss experimental results for solar panel
fault detection using our proposed system. As shown in Figure 5,
we firstly execute cell segmentation algorithm on the solar panel
EL images. After performing Cell Segmentation, the segmented
cells are passed as input to two model pipelines: (i) Approach 1:
EfficientNet based classification + FPN based Detection pipeline in
case of Polycrystalline cell images, and (ii) Approach 2: Modified
Faster R-CNN approach in case of Monocrystalline cells.

In Table 1, we share the performance of Approach 1 on eval-
uation dataset to show the performance improvement in terms
of precision-recall for EfficientNet + Global Average Pooling ap-
proach, benchmarked against some of the current state-of-the-art
classification algorithms. This architecture outperformed all the
other architectures with high recall and precision for Faulty classes,
which was one of our primary objectives ensuring the model pre-
dictions detect all faults with very low False Negatives. We can
see that, the overall accuracy of our approach is 95% with working
class having 96% F1 score and faulty class having 91% F1 score.

We also benchmark and validate the performance of both the
detection models proposed in the paper- RetinaNet (FPN Detec-
tion) + EfficientNet B7(Classification) and Faster R-CNN on mono-
crystalline and poly-crystalline datasets in Table 2. Due to the
presence of high wafer marks and noise, polycrystalline images as
input to both models clearly show that RetinaNet being a single
stage detector still outperforms a two-stage detector due to the
advantages of model architecture discussed in earlier sections with
nearly 50% lower inference time. However, on monocrystalline
dataset, Faster RCNN maintains a clear performance boost with
mAP@[0.5:0.95] at 0.88 as compared to 0.832 for RetinaNet. This
demonstrates that Faster R-CNN outperforms RetinaNet pipeline
on mono-crystalline cells. Figure 6 shows some qualitative results
of our pipeline on both mono and poly-crystalline panels.

Optimizing Cell Segmentation: The cell segmentation algo-
rithm is the first process in the fault detection pipeline [5]. Since
the algorithm splits the EL Panel into K sub-panels and performs a

cell-splitting algorithm on each of these K sub-panels to obtain indi-
vidual cells, we optimise it by parallelizing this process and running
it on a multi-core CPU. We used storage optimized Azure F-16 VMs,
which have 16 CPU cores with 32GB memory to run 16 processes
in parallel using the Multiprocessing library [18]. The additional
speed-up was achieved by parallelizing the process, making the
pipeline nearly 4.8x times faster than a 4-core CPU.

Speed-up in Model Inference: Once the cells are extracted,
the Classification + Crack Detection pipeline is executed with these
cell images as input. The model inference was also parallelized
using Map and Pool methods of multiprocessing library to infer 16
cell images in parallel at once, thereby performing model inference
on an entire EL image (i.e., 72 cells) in 0.86s per panel. Depending
on the number of cores used on the deployed machine, the inference
time per panel ranges between 0.8-2s per Panel.

5 CONCLUSIONS
In this work, we present a holistic system for detection and local-
ization of faults in monocrystalline and polycrystalline solar panels
based on their electroluminescence imaging during manufacturing
time. The main objective of this fault detection system is to provide
high accuracy at the cell level and no fault should go undetected
through the system (low false negatives). We present the system
architecture and algorithms that take EL image of a solar panel as
an input and firstly run it through the cell segmentation algorithm
to divide this image into individual cell-images. Then the individual
cell images are passed through fault classification and detection
pipeline based on CNN model architecture to classify the cell as
working vs. faulty and localize the fault within the faulty cell. We
also provide the evaluation results of the proposed approach on
open ELPV dataset [6]. We further present our learnings based on
error analysis during evaluation, and the practical system imple-
mentation details for running the proposed system for real-world
manufacturing setup. The main advantage of the proposed system
is that it helps in detecting the faults not only at the panel-level, but
also at the individual cell-level within the panel and also capable of
localizing this fault within the cell image. This significantly reduces
the time required to identify the faulty cell and repair/replace that
cell during early stages of the manufacturing and thereby increas-
ing the efficiency of these solar panels. It further reduces warranty
and labor costs remarkably. The proposed algorithms for cell seg-
mentation and fault detection are quite generic and can be easily
applied in both manufacturing and on-field scenarios, and also to
other problem setting during solar operations for solar panel images
captured through RGB, EL and thermal images.
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