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ABSTRACT
We consider the problem of inferring the latency sensitivity of user
activity in the context of interactive online services. Our method
relies on natural experiments, i.e., leveraging the variation in user-
experienced latency seen in the normal course. At its core, our
technique, dubbed AutoSens, compares the distribution of latency
of the user actions actually performed with the underlying distri-
bution of latency independent of whether users choose to perform
any action. This then yields a normalized user preference based on
latency. We discuss ways of mitigating various confounders and
then present our findings in the context of a large online email
service, Microsoft Outlook Web Access (OWA).

CCS CONCEPTS
• General and reference → Measurement; Metrics; Estima-
tion; Performance.
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1 INTRODUCTION
Latency is a key metric defining the user experience in the context
of online services such as email, search, e-commerce, and more.
The conventional wisdom is that users react negatively to latency
— the higher the latency of a service, the lesser the activity that
users are likely to perform in the service, which in turn means lost
revenue for the (commercial) service. For instance, there have been
studies from Amazon [19] (a 100 ms increase in latency can cause a
drop of 1% in sales), Google [14] (half a second increase in latency
results in a 20% drop in traffic), and Akamai [31] (a 100 ms increase
in latency can cause a drop of 7% in conversion).

Studies such as the ones above are typically performed through
active intervention in the form of A/B tests. For instance, in the case
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of the Amazon study, an additional 100ms of latencywas introduced
for the treatment group, while in the case of the Google study, the
treatment involved increasing the number of search results returned
to 20 or 30 instead of the default 10, and the increase in latency was
an intended side-effect, which nevertheless impacted user activity.

In this paper, we present AutoSens, a general framework for
automatically inferring the latency sensitivity of user activity through
natural experiments. Specifically, we leverage the variation in la-
tency that occurs in the normal course to glean the impact that
latency has on the level of user activity. Compared to the prior work
noted above, AutoSens is easier to use (avoiding the complexity of
active intervention) and also safer (no risk of adverse impact on
user experience).

The approach taken by AutoSens is to compare the biased dis-
tribution of latency (i.e., the distribution of latency of user actions
actually observed, which would reflect the impact, if any, of latency
on user activity) with the unbiased distribution reflecting the un-
derlying latency of actions without regard to when user actions
are actually performed. If the biased distribution is shifted to the
left (towards lower latency) compared to the unbiased distribution,
that would indicate a greater likelihood of user activity when the
latency is lower. We turn this basic insight into a metric dubbed
normalized latency preference, which quantifies the relative
likelihood of user activity at different levels of latency. Applying this
methodology, however, requires mitigating confounding factors
such as time-of-day effects, which we consider.

We apply AutoSens in the context of Microsoft Outlook Web
Access (OWA), a large web-based email service that serves millions
of users globally. We evaluate AutoSens for a variety of slices of the
data encompassing various types of user actions, different classes
of users (paying versus free tier), user conditioning based on expe-
rience, and more. Our findings broadly accord with intuition. 1

2 AUTOSENS DESIGN
2.1 Overview
AutoSens relies on minimal telemetry — logs of user actions, in-
cluding timestamp, as recorded at the server (e.g., web access logs).
Specifically, for our analysis, we need tuples of the form (𝑇,𝐴, 𝐿,𝑀)
for every action 𝐴 (e.g., selecting a mail item, switching between
mail folders, etc.) started at time 𝑇 , and which had an end-to-end
latency 𝐿. The end-to-end latency 𝐿 is measured by the client (e.g.,

1Our evaluation is done entirely passively through natural experiments, i.e., we do
not interfere, in any manner whatsoever, in the latency or other aspect of the service
experienced by users. We do not look at the content of user actions (e.g., email content)
or identify users or even analyze individual users. All of our analysis is performed at
the level of large user aggregates. For these reasons, we believe our work does not
raise any ethical concerns.
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Figure 1: The MSD/MAD ratio of the actual time series of
latency seen compared to two extremes: the series shuffled
randomly and the series sorted by latency.

Figure 2: The variation in latency and the rate of user activ-
ity over a 2-day period. (The y-axis scale is normalized be-
cause of the commercial sensitivity of the latency and user
activity data.)

web browser) as the time interval from when a user initiates an
action, e.g., clicking a mail item, until the end of the action, e.g.,
when the mail item is rendered.𝑀 refers to a set of minimal, and
optional, metadata about the user performing the action, e.g., their
subscription type (i.e., whether they are a business user or a con-
sumer user).𝑀 helps segregate the analysis based on user groups;
in the absence of𝑀 , the analysis would be performed for the overall
population, without any segregation. Such telemetry is available al-
most universally in the context of online services, which facilitates
the broad application of AutoSens.

Central to the working of AutoSens is the notion of ‘latency
bias’. If users dislike high latency, they would tend to perform
fewer actions when the latency is high compared to when it is low,
thereby exhibiting a ‘bias’ towards lower latency. Note that if the
latency were completely unpredictable, e.g., changing randomly
from one moment to the next, the latency would not bias the rate
of user actions. The reason is that even if the user has a preference
for low latency, they would not be able to exercise this preference,
since they would not know the latency of an action (e.g., clicking
on a link) in advance. On the flip side, although the latency could, in
theory, be predictable in complex ways, we argue that, in practice, it
would have to be predictable in a simple way for it to be actionable
by human users.

Specifically, locality in the occurrence of low latency could make
the latency preference, if any, of users actionable. When the service
is fast and responsive, users would likely stay on and do more

actions. Conversely, if the service is slow and unresponsive, they
might prefer to take a break and come back later.

To analyze the locality in occurrence of low latency, we pursue a
two-pronged approach. First, we apply the mean successive differ-
ence test on the time series of latency samples corresponding to user
actions. This test involves computing the ratio of the mean succes-
sive difference (MSD) and the mean absolute difference (MAD) [30].
Intuitively, greater the locality in latency (i.e., similarity in latency
level close in time), the smaller the ratio. Second, we compute the
temporal density of the latency samples, computed over windows
of 1-minute duration, and compare it to the average latency in that
window. Intuitively, a negative (or positive) correlation would point
to the temporal clustering of the low (or high) latency points.

Figure 1 shows that the MSD/MAD ratio is significantly smaller
than it is if the data were shuffled randomly. This suggests that there
is a high degree of locality in the latency time series, with periods
of low latency interspersed with periods of high latency. (Of course,
the ratio would be close to zero, if the data were perfectly sorted by
latency.) Figure 2 shows that the periods of low latency tend to have
a much higher rate of user activity, and vice versa. Together, these
findings suggests that the latency samples obtained from actual user
activity tend to be concentrated in periods of low latency and as
such provide a “biased” view of the underlying latency distribution,
an issue we turn to next.

2.2 Key Idea: Mitigating User Bias
The key idea in AutoSens is to construct and then compare the
distribution of latency of user actions (biased PDF, 𝐵) and the inher-
ent or underlying latency distribution independent of user actions
(unbiased PDF,𝑈 ).

The PDF, 𝐵, is constructed based simply on the latency of each
user action, as recorded in the logs. This is termed the biased PDF
because it reflects the bias, if any, on the part of users to perform
more frequent or less frequent actions based on the latency. In some
cases, such bias could arise because of explicit user preference, e.g.,
users might use a service less when the latency is high. In other
cases, the latency, being in the users’ critical path, could slow them
down and thereby result in fewer actions. For instance, a user who
is scanning through the new emails that have arrived in their inbox
would get slowed down if the action of clicking on and opening
each email takes longer. While in our work, we do not distinguish
between these cases because both ultimately impact the number of
actions that users perform, we do discuss this further in §3.5.

The unbiased PDF, 𝑈 , needs to be inferred through indirect
means, since it corresponds to what the latency would have been
at times that are unrelated to when users actually made accesses
and therefore we might not have direct latency measurements
for. To address this challenge, we use the following approach to
approximate𝑈 2: we draw samples by repeatedly picking points in
time uniformly at random and then picking the latency sample that
is closest in time to the chosen time. If there are multiple latency
samples at the chosen time, we pick one of the samples at random.
This procedure is illustrated in Figure 3(a), where the orange dots
correspond to actual latency samples (i.e., these are part of the

2For ease of exposition, we use the term “unbiased” for 𝑈 , though our estimation
might only provide an approximation of it.
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biased distribution 𝐵), the blue crosses denote the random times
picked in the construction of𝑈 , and the orange dots marked with
blue circles are the samples that feed into𝑈 .

2.3 Inferring Latency Preference
Both 𝐵 and𝑈 are computed as histograms, with a time bin of 10 ms.
Figure 3(b) shows the resulting 𝐵 and𝑈 PDFs. The latency prefer-
ence corresponding to each latency is computed as the ratio 𝐵/𝑈
of the corresponding probability densities. As shown in Figure 3(c),
this ratio is somewhat noisy. Therefore, we use the Savitzky–Golay
filter [25], with a window size of 101 and polynomial degree of
3, to smooth the latency preference estimate. Finally, we pick the
preference corresponding to a particular latency as the reference
and normalize the preference corresponding to the other latency
values to obtain the normalized latency preference, which we
report in all of our analyses. A normalized latency preference
of 𝑥 (e.g., 0.8) at a particular level of latency means that all other
factors (e.g., the confounders, discussed in Section 2.4 next) being
equal, the user is (1−𝑥) × 100% (e.g., 20%) less active at this latency
compared to the reference latency.

2.4 Mitigating Confounding Factors
While our interest is in identifying the impact of latency on user
activity, there are other confounding factors to contend with. We
discuss some of these and the steps we take to mitigate their effect.

2.4.1 Time. The time of day or the day of week could have a
significant impact on user activity. For instance, users are less likely
to be active during the middle of the night than during daytime.
Likewise, users might be less (or, depending on the service, more)
active during the weekend than during the weekdays.

Such an impact of time on user activity would not have a bearing
on AutoSens if it were uncorrelated with latency. However, latency
is often a strong function of time; for instance, it would be lower
during a less busy hour than during a busy hour because of reduced
load and congestion. Therefore, we might see fewer accesses by
users when latency is low, not because users have an aversion to
low latency but because of the time confounder noted above, which
could lead AutoSens astray.

To mitigate the above issue and allow us to pool together data
from across hours, we model the time confounder as a time-based
activity factor, 𝛼 , that reflects how active the user is during a par-
ticular time of day. For instance, 𝛼 would likely be high during
the daytime and low in the middle of the night. To estimate 𝑎𝑙𝑝ℎ𝑎,
we start by discretizing time (into 1-hour time slots) and also la-
tency (into bins of 10 ms). Consider two time slots, 𝑇1 and 𝑇2. Let
𝑓 𝐿1 represent the fraction of time in slot 𝑇1 when the latency is
𝐿 and 𝑐𝐿1 represent the count of user actions with latency 𝐿. 𝑓 𝐿2
and 𝑐𝐿2 are defined likewise for slot 𝑇2. 𝑓 𝐿𝑇 is estimated based on
the unbiased latency distribution 𝑈𝑇 for that time slot 𝑇 , e.g., if
𝑈𝑇 (𝐿𝑎) = 2×𝑈𝑇 (𝐿𝑏 ), then latency 𝐿𝑎 is said to occur twice as often
as 𝐿𝑏 , i.e., 𝑓

𝐿𝑎
𝑇

= 2 × 𝑓
𝐿𝑏
𝑇

.
The temporal rate of user actions corresponding to latency bin 𝐿

during time slot 𝑇1 is 𝑐𝐿1 /𝑓
𝐿
1 , and likewise is 𝑐𝐿2 /𝑓

𝐿
2 for time slot 𝑇2.

If we treat 𝑇1 as the reference time slot, then we estimate 𝛼𝑇2,𝐿 as
𝑐𝐿2 /𝑓 𝐿2
𝑐𝐿1 /𝑓 𝐿1

. Intuitively, this is the ratio of the temporal rates of actions for

Time slot Latency # actions % time with Normalized
this latency # actions

Day Low 90 30% 90
Day High 140 70% 140
Night Low 26 80% 250
Night High 4 20% 38

Table 1: Simple example to illustrate normalization to miti-
gate time confounder. The “day” time slot is used as the ref-
erence for normalization.

the same latency bin across the two hours. Therefore, the difference
in the rates is attributable to the time confounder. We estimate
𝛼𝑇2,𝐿 for each latency bucket 𝐿 and compute the average across all
latency buckets to estimate the overall time-based activity factor,
𝛼𝑇2 , corresponding to time slot 𝑇2. (See Section 3.6 for the finding
that 𝛼 remains stable across the latency bins.) To normalize the
counts in time slot𝑇2, we divide 𝑐𝐿2 corresponding to each 𝐿 by 𝛼𝑇2 .

Once such normalization has been performed for all time slots
and latency buckets, we then compute the biased (𝐵) and unbiased
(𝑈 ) distribution by pooling together information across all time
slots. The normalization helps neutralize the time confounder. For
instance, the low count of user actions in the middle of the night
would be replaced a higher count commensurate with the greater
prevalence of low latency during nighttime.

Illustration of time-based normalization: Table 1 illustrates nor-
malization with a simple example. Here, time is discretized into
two equal-length slots (“day” and “night”) and latency also into two
bins (“low” and “high”).

If we had ignored the time confounder, we would have computed
the user’s level of activity when latency is “low” as (90+24)/(30+80)
= 1.04 actions per unit time, and that when the latency is “high” as
(140+4)/(70+20) = 1.6 actions per unit time. This would indicate that
the user performs more actions when the latency is “high” than
when it is “low”, which clearly does not accord with intuition.

Instead, if we treat the “day” time slot as the reference and nor-
malize the counts corresponding to the “night” time slot, the time-
based factorwould be estimated as𝛼𝑁𝑖𝑔ℎ𝑡,𝐿𝑜𝑤 = (26/80)/(90/30) =
0.108 and 𝛼𝑁𝑖𝑔ℎ𝑡,𝐻𝑖𝑔ℎ = (4/20)/(140/70) = 0.100, so 𝛼𝑁𝑖𝑔ℎ𝑡 =

(0.108 + 0.100)/2 = 0.104, i.e., the average 𝛼 across the latency bins.
Therefore, the normalized count of actions during the night would
be 26/0.104 = 250 and 4/0.104 = 38, respectively, for the “low” and
“high” latency bins. Combining these normalized counts with those
from the day, the user’s level of activity would be estimated as
(90 + 250)/(30 + 80) = 3.09 actions per unit time when the latency
is “low” and as (140 + 38)/(70 + 20) = 1.97 actions per unit time
when the latency is “high”. That is, the level of activity would be
higher when the latency is “low” compared to when the latency is
“high”, just as we would expect.

Note that in general, noise in the data would result in somewhat
different results depending on the time slot that is picked as the
reference. Therefore, in our analysis, we pick multiple references
in turn and then average the results.

2.4.2 Content. The content of user actions could also impact the
volume of activity. User actions could be of different types, each
entailing a different level of user engagement (e.g., clicking on an
email, performing a search, etc.). Also, the content returned by the
service could determine future actions, e.g., whether the relevant
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Figure 3: Illustrative figures based on actual data to provide an overview of the AutoSens methodology: (a) Approximating
the unbiased distribution by drawing samples (blue circles) at random from the biased samples corresponding to actual user
activity, (b) the resulting biased (𝐵) and unbiased (𝑈 ) PDFs, and (c) the latency preference computed as the ratio 𝐵/𝑈 and then
smoothed.

results are returned at the top (in which case the user might be led
away from the search service) or the results are a poor match for
what the user was looking for (in which case the user might invoke
search again, say after refining their search terms).

To mitigate such confounders, in our analysis, we segregate the
actions based on their type and analyze each separately (Section 3.2).
Indeed, our analysis uncovers interesting differences in latency sen-
sitivity across the action types. In our work, we did not have access
to the content of emails or email folders themselves, but in gen-
eral, one could mitigate the effects of content-based confounding
through appropriate segregation. For instance, we could focus on
just the search actions for “head” queries, where the relevant results
are likely to be returned in the first go.

2.4.3 User Conditioning. User conditioning could have a bearing
on the latency sensitivity of users. For instance, if a user has come
to expect low latency (say because they have a strong network
connection), they might react more negatively than a user who is
accustomed poor latency. To address this confounder, our analy-
sis also segregates users based on the latency they have typically
experienced (see Section 3.4).

3 EVALUATION
We describe the data set used in our evaluation and then present
the results of various analyses.

3.1 OWA Data Set
Our data comprises server-side logs in OWA, a large web-based email
service with millions of users the world over. Each log entry records
the time stamp when an action is started, type of access (i.e., user
action, see Section 3.2), latency, an anonymized GUID of the user,
and the user type (see Section 3.3), among other information. Note
that the latency is measured at the client side (from the time an
action is initiated until a response is received) and then conveyed to
the server, where it is logged. We only focus on successful actions;
we ignore the cases where an error was returned.

Our analysis is based on logs of several billion user actions over
a 2-month period (January and February, 2021). Due to reasons of
commercial sensitivity, we are not in a position to report precise
statistics on the usage of the service.

In most of the analyses presented here, we pool in data across
different times of day to effectively compute latency preference
averaged across these times. However, in Section 3.6, we briefly
discuss the variation in latency preference across time of day.

Figure 4: normalized latency preference across action types
for “business” users in the U.S. during Feb 2021. The refer-
ence latency used for normalization is 300 ms.

3.2 Impact of Action Types
Of the various action types supported by OWA, we focus on four:
(1) SelectMail (click and open email item in the browser), (2)
SwitchFolder (click and switch folder), (3) Search (perform search
over mailbox content), and (4) ComposeSend (click to send email).

Figure 4 shows the normalized latency preference as a func-
tion of latency. The normalization is donewith respect to a reference
latency of 300 ms. We see that normalized latency preference
drops most sharply for SelectMail and then for SwitchFolder,
perhaps reflecting the expectation of “instantaneous” response
users have for these actions. For instance, as the latency grows to
500 ms, 1000 ms, and 1500 ms, respectively, normalized latency
preference drops to 0.88, 0.68, and 0.61, respectively. This indi-
cates that the increase in latency to 500 ms, 1000 ms, and 1500
ms reduces the incidence of user activity by 12%, 32%, and 39%,
respectively, relative to the reference latency of 300 ms.

On the other hand, the Search action shows a much less steep
drop off, suggesting that users are conditioned to tolerating a some-
what higher latency for the search operation.

Finally, ComposeSend is an asynchronous operation, wherein the
user interface returns control to the user even as the email is queued
up and sent in the background. This may explain why normalized
latency preference remains nearly flat, indicating that there is
little sensitivity to latency.

3.3 Business versus Consumer Users
OWA includes both a commercial service, wherein business users pay
for subscription, and a free service aimed at consumers. Figure 5
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Figure 5: The normalized latency preference for the
SelectMail action by business users and consumers in the
U.S. during February 2021.

Figure 6: The normalized latency preference for groups of
U.S. consumer users in February 2021, segregated into quar-
tiles based on their median latency.

graphs the normalized latency preference, as a function of
latency, for the SelectMail action by these two categories of users
in the U.S. We see that the drop off is sharper for the business users.
Possibly, consumer users are more tolerant of latency because they
are obtaining the service for free.

3.4 Conditioning to Speed
Next, we consider the impact of conditioning to speed. That is,
how does getting “used to” higher or lower speeds impact the
sensitivity of users to latency? To perform this analysis, we first
segregate users into quartiles based on their median latency, with
Q1 corresponding to the lowest latency (i.e., fastest speed) and Q4 to
the highest latency (i.e., slowest speed). We use an anonymized user-
identifier to compute the per-user median latency, which enables
grouping users into quartiles. As stated before, we do not look into
the content of individual user’s actions or analyze users individually.
We only analyze large aggregates of users.

Figure 6 plots the normalized latency preference for users
across the latency quartiles. We see a consistent trend, with the
sensitivity to latency decreasing progressively as we go from Q1 to
Q4. (Note that the comparison is being made for the same x value,
i.e., latency; indeed, even Q4 users experience low latency at times.)
In other words, users who are used to a lower latency tend to be
more sensitive to latency, which accords with intuition.

3.5 Latency Preference vs. Latency Bottleneck
As discussed in §2.2, in this work, we do not make a distinction be-
tween the ‘true’ latency preference of a user impacting the volume

Figure 7: The normalized latency preference for the
SelectMail action by U.S. business users in February 2021,
across different times of day.

Figure 8: The time-based activity factor, 𝛼 , for the
SelectMail action by U.S. business users in February
2021, across different times of day (with the 8am to 2pm
period taken as reference).

of user activity versus the user activity being bottlenecked by the
latency and hence dropping as the latency increases. Nevertheless,
our results do point to the former being a significant factor.

For instance, if we consider the SelectMail action in Figure 4,
we see that the normalized latency preference drops from 0.87
to 0.67 (a factor of 1.3), as the latency (i.e., the duration from the
initiation of a user action, such as clicking, until its completion)
increases from 500 ms to 1000 ms and then further drops to 0.59
as the latency doubles again to 2000 ms (a further factor of 1.1). If
the user were indeed bottlenecked by this end-to-end latency, we
would expect the volume of user activity, and hence the normalized
latency preference as computed, to drop much more sharply —
by a factor of two for each doubling of latency.

Furthermore, we see that for the same latency, the normalized
latency preference is significantly different across action types
(Figure 4) and across user groups (Figure 5). This again suggests
that actual user latency preference is a significant factor, and it is
not just that the user is bottlenecked on the latency.

3.6 Effect of Time of Day
While our analysis thus far has pooled together data from all hours,
we now segregate data across different times of day. We consider
four 6-hour periods: 8am-2pm, 2pm-8am, 8pm-2am, 2am-8am (all
with respect to local time of the user) and examine two questions.

First, Figure 7 shows the normalized latency preference for
SelectMail for business users across these 4 periods. In each pe-
riod, we see a consistent trend, with the preference decreasing as
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Figure 9: Stability over months

latency increases. However, the drop is sharper during the daytime
periods than it is during the nighttime ones. Perhaps users who
are active late in the night have a compelling reason to do so and
therefore are less sensitive to latency. We also see that the overall
latency preference curve obtained by pooling together data from
all hours (SelectMail curve in Figure 4) lies in between the range
of curves in Figure 7, which is as expected.

Second, we compute the time-based activity factor,𝛼 (Section 2.4.1),
for each period, with the 8am to 2pm period taken as reference. We
see from Figure 8 that, as expected, 𝛼 is lower during the late night
periods, reflecting the lower level of user activity then, regardless
of the latency. Furthermore, 𝛼 remains flat across the latency range,
lending support to our procedure in Section 2.4.1 of estimating the
overall 𝛼 for a period by averaging across latency bins.

3.7 Consistency across Months
Figure 9 plots the normalized latency preference for the SelectMail
and SwitchFolder actions for January and February 2021. We
find strong consistency in the drop off in normalized latency
preference across these months, which suggests that the sensitiv-
ity to latency remains stable over the time frame considered.

4 RELATEDWORK
Active experiments:Much of past work has been based on active
intervention, either by artificially varying network latency or by
actively polling user experience. Various authors [3, 9, 10, 20, 28]
performed laboratory experiments, while those in [29] conducted
surveys, aimed at understanding the relationship between web
search latency (which can potentially also affect search quality) and
user experience. The studies in [21, 22] performed analogous con-
trolled experiments, while [15] explored crowdsourcing, to model
user quality of experience (QoE) for video streaming and its depen-
dence with network performance. In [2, 4], the authors introduced
artificial delays in web search and studied the extent to which user
experience is impacted.

Passive studies: The problem of inferring user-sensitivity to
network performance is well-studied in the specific context of video
streaming. For instance, the authors of [26] studied the effect of
31 different network factors on user behavior in mobile video, and
also modeled the relationships between such factors and user en-
gagement (specifically video abandonment). Similarly, in [18, 27],
the authors apply quasi-experimental designs to investigate causal
impacts of stream quality on user playback behavior and account

for confounders such as geography, connection type and consumed
content. In [11, 12, 23], the authors use logs from streaming views
to infer the relationship between system performance and user
behavior. Some methods [1, 5, 6] built machine learning models
to predict QoE from network quality metrics. In [13], the authors
analyzed YouTube user sessions from the point of view of an edge
network to guide network capacity planning and design. The work
in [24] offered a study of various metrics of user activity in large
IPTV systems, in addition to constructing an IPTV user activity
workload generation tool. Apart from video, the work in [8] lever-
aged natural experiments to determine causality from broadband
service characteristics to pricing and user demand. Finally, [2, 4, 7]
also conducted passive experiments to establish that users are more
likely to perform clicks on search result pages served with lower
latency, and that this varies with user, query and context.

User-perceived latency metrics: Some attempts have been
made at quantifying the users’ perception of latency on the web.
In [17], the authors propose a user-perceived version of Page Load
Time (PLT) by analyzing users’ eye gaze as a proxy for their interest,
and show that it correlates poorly with traditional PLT metrics. The
authors [16] go on to measure PLT for mobile users by proposing
a model which incorporates a mobile user’s scrolling behavior to
view multiple viewports. Both works also demonstrate how such
metrics can be used to guide web page optimization.

AutoSens in comparison to prior work: AutoSens is based
purely on natural experiments, so there is no active intervention
or modification of the user experience. Furthermore, unlike much
of prior work, which has primarily focused on “non-sticky” ser-
vices like streaming and search (where a user can easily abandon
the service when facing very poor network conditions, potentially
migrating to a competing service), we have demonstrated our ap-
proach on a “sticky” service — email. In such a context, studying
user sensitivity is not as simple as monitoring abandonment, e.g., a
user facing high latency cannot, at least in the short-term, migrate
their entire mailbox to a different service. While we focus on email
in this work, we believe our approach can, in principle, be applied to
both sticky (e.g., email) and non-sticky services (e.g., web search).

5 CONCLUSION
In this paper, we have presented AutoSens, which uses natural
experiments to infer the latency sensitivity of users in the context
of online services. Specifically, AutoSens compares the “biased”
latency distribution of user actions to an estimate of the underlying
“unbiased” latency distribution, which then enables us to compute
the normalized latency preference corresponding to a given
latency. We apply AutoSens in the context of Microsoft OWA. The
findings from our various analyses accord with intuition.
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