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Abstract

Energy consumption is a key concern for mobile devices.
Prior research has focused on the screen and the network
as the major sources of energy consumption. Through
carefully designed measurement-based experiments, we
show that for certain storage-intensive workloads, the
storage subsystem on an Android smartphone consumes
a significant amount of energy (36%), on par with screen
energy consumption. We analyze the energy consump-
tion of different storage primitives, such as sequential
and random writes, on two popular mobile file systems,
ext4 and F2FS. In addition, since most Android appli-
cations use SQLite for storage, we analyze the energy
consumption of different SQLite operations. We present
several interesting results from our analysis: for exam-
ple, random writes consume 15× higher energy than se-
quential writes, and that F2FS consumes half the en-
ergy as ext4 for most workloads. We believe our results
contribute useful design guidelines for the developers of
energy-efficient mobile file systems.

1 Introduction

The usage of smartphones has seen a remarkable growth
in recent times. Smartphones have become the most pre-
ferred computing device for a wide variety of applica-
tions. Over 70% of the world’s population is predicted to
use smartphones by 2020 [1]. There will be over a billion
Android devices in use by 2020 [2].

Despite the massive outgrowth of mobile devices, lim-
ited battery capacity is a major concern for the majority
of smartphone users. Improvements in battery technol-
ogy has been slower than other areas like memory and
processor performance [3, 4]. Compared to Moore’s law
that doubles transistor density every two years, smart-
phone battery density doubles once every 10 years [5].
Hence, it is important to identify methods to optimize
energy consumption in smartphones.

The problem of energy optimization in smartphones
has been analyzed from the perspective of the net-
work [6], the CPU [7], and the GPU [8]. How-
ever, the contribution of the storage subsystem to en-
ergy consumption has not been widely studied and has

gained researchers’ attention quite recently [9, 10]. The
storage subsystem was considered to be insignificant
when it comes to the consumption of energy by smart-
phones. Contrary to established wisdom [11–14], we
show through our experiments that the storage stack con-
tributes to about 36% of the overall energy consumption
for workloads dominated by random IO (§2). A random
IO workload is quite common, as most applications use
SQLite for storage, and multiple applications committing
SQLite records at the same time results in random IO at
the storage level [15–17]. Therefore, the storage subsys-
tem is a significant contributor to energy consumption
for many workloads, and understanding how it consumes
energy is important.

In this work, we seek to experimentally analyze and
understand how the energy consumption of the storage
subsystem varies by IO pattern, file system, and appli-
cation. Unlike prior work which used specialized hard-
ware [12], we use differential analysis to study energy
consumption in commercial mobile phones. We present
a comprehensive study on the energy consumption of dif-
ferent file IO operations (§3.1), various SQLite opera-
tions (§3.2), and two commonly used applications (§3.3)
in two different file systems supported by Android – the
default ext4 [18] and the log structured F2FS [19].

Our analysis reveals several interesting results that will
be of interest both to the developers of energy-efficient
mobile file systems and Android developers:
• Random writes consume 19× more energy than se-

quential writes on ext4; on F2FS the ratio is 12×
• Random reads consume 7× more energy than se-

quential reads on ext4; on F2FS the ratio is 8×
• The most energy-consuming operation is the ran-

dom write and the least energy-consuming opera-
tion is the sequential read. Their energy consump-
tion differs by 32× in ext4 and 18× in F2FS.
• Overall, for real-time Android applications F2FS

consumes 2× less energy as compared to Ext4.

Finally, we discuss the implications of our results for
the design of energy-efficient file systems for Android
devices (§4). Although F2FS does reduce energy con-
sumption compared to ext4, we believe there is signifi-
cant room for improvement (potentially reducing energy
consumption by half).



Component Energy Used (J) % of total
Screen 38.26 37.0%
CPU & Memory 0.64 0.6%
Network 25.40 24.5%
Storage 37.75 36.5%
Total 103.4 100.0%

Table 1: Energy consumption of each component. The
table shows that for an IO intensive workload (100 MB of
random 4K writes over the network), storage consumes
as much energy as the screen, and more than the network.

2 Motivation: Energy Consumption for
IO-Intensive Workloads

To motivate our research, we empirically measure the en-
ergy consumed by the storage subsystem and other com-
ponents for IO-intensive workloads. The challenge is
that most hardware power monitoring tools only provide
the total energy consumed by the device. Obtaining a
breakdown of the energy consumed by different compo-
nents requires using experimental phones that has spe-
cialized hardware support [12]. To obtain this breakdown
with a commercial smartphone, we use differential anal-
ysis: we designed a series of experiments that allow us
to tease apart each component’s energy consumption.

Experimental Setup. All experiments are performed
on a Samsung Galaxy Nexus S phone with a dual-core
1.2GHz Cortex-A9 processor; 32GB internal memory
and 1GB RAM running Android 6.0.1 (cyanogenmod
13.0) on Linux 3.0.101 (F2FS enabled) kernel. There
is no external SD card and all the IO happens on the
internal eMMC flash storage (/data partition) of An-
droid. To measure energy, we use a hardware based
power measurement tool known as the Monsoon Power
Monitor [20], which gives a fine grained energy measure-
ment. We have instrumented the battery of the Android
phone to connect to the Power Monitor hardware. All
experiments are conducted in airplane mode and at the
same level of brightness, averaged over 10 trials.

Differential Analysis. First, we measure the idle state
energy consumption (Screen in Table 1) by keeping the
display on and ensuring that no other application is run-
ning in the background. For our analysis, we make the
simplifying assumption that the mobile device is in the
same energy state throughout (i.e., the device does not
go into a low power mode).

After determining the idle state energy, we then deter-
mine the energy consumed by the CPU and memory by
writing 100 MB to storage in random writes of 4 KB each
to an in-memory file system. Since there is no storage or
network component to this workload, and we know the
idle state energy consumption, we can determine the en-

ergy consumption due to CPU and memory operations.
We find that the CPU and memory operations consume
very little energy for our workload.

To estimate network energy consumption, we re-run
the above experiment with the only difference being the
writes are sent continuously from a remote server to the
mobile device, where it is performed on an in-memory
file system. The difference between the energy con-
sumed by the previous experiment and this experiments
provides us the energy consumption of the network.

Finally, to estimate the storage energy cost, we run the
same IO-intensive workload locally by doing the writes
on the internal eMMC flash storage and measure the total
energy consumed. While doing so, the device is kept in
the airplane mode to ensure that there is no network inter-
ference. We calculate the energy consumption of storage
by subtracting the energy consumed by the screen, CPU,
and memory obtained from the previous experiment.

We measure the total energy consumed by doing the
IO-intensive workload on internal flash storage, with the
writes received over the network from a remote server.
This experiment exercises the screen, the network, the
storage, and the CPU and memory.

Table 1 shows the results: the storage stack consumes
36% of the total energy. For an IO-intensive workload,
the storage-stack energy consumption is almost equiva-
lent to the energy consumed by the display.

3 Energy Analysis

We now describe our experiments and analysis of energy
consumption by different file operations, SQLite opera-
tions, and applications in Android.

3.1 File IO Operations

We wrote C code to perform sequential and ran-
dom IO operations and cross-compiled them using
arm-linux-androideabi-gcc to run on Android. The
sequential workload comprises of 1GB of file reads and
writes (of IO size 512KB). The random workload in-
cludes 100MB of reads and writes (of IO size 4KB) to
randomly chosen 4K aligned locations over a 1GB file.
Each of these 4K writes are followed by a fsync(), to
ensure that the writes are persistent on storage. These ex-
periments were performed on two different file systems
– ext4 [18] and F2FS [19].

As shown in Figure 1a, random writes consume 19×
more energy than sequential writes in ext4 (12× in
F2FS). Interestingly, we see that random reads consume
7–8× more energy than sequential reads in both file sys-
tems. Comparing across file systems, random writes con-
sume 46% less energy in F2FS compared to ext4, since



(a) Energy Consumption for File Writes (b) Energy Consumption for File Reads

Figure 1: Energy Consumption for File IO. This graph shows that the energy consumed per KB of sequential write
is about 12× – 19× less than that of a random write in F2FS and ext4 respectively. Similarly, the energy consumed
per KB of sequential read is about 7× – 8× less than that of a random read in F2FS and Ext4.

F2FS is a log-structured file system that optimizes ran-
dom writes. Note that prior work [9] determined the
energy consumption of ext4 random writes to be 4000
uJ/KB for cold writes and 300 uJ/KB for warm writes;
our workload has a mix of both cold and warm writes,
resulting in an average of 800 uJ/KB.

Our workload incurs a lot of write amplification (ra-
tio of total write IO to user data): each random write is
followed by an fsync() call, and that forces the file sys-
tem to write both the data and associated metadata (e.g.,
in ext4, the journal transaction begin/end, list of blocks in
transaction etc.) to storage. For 10MB of random writes
issued, blktrace [21] reveals that ext4 actually writes
around 70MB of data, whereas F2FS issues only 30MB
of writes at the block level. This clearly demonstrates
that F2FS reduces write amplification, and hence the en-
ergy associated with random writes.

Read performance follows a similar pattern as writes.
Random reads consume 7× more energy as compared
to sequential reads in ext4 (8× in F2FS). Interestingly,
while F2FS consumes less energy for random writes than
ext4, F2FS random reads consume 20% more energy as
shown in Figure 1b. The overhead for F2FS random
reads is partially due to NAT table translations. The
NAT table holds node IDs to block address mapping,
which has to be accessed for each read to fetch the block
addresses. For 100MB of random reads, block traces
show that ext4 actually reads 195MB, while F2FS reads
272MB at the block level; part of the extra F2FS IO is
due to the NAT table.

3.2 SQLite Operations
Most Android applications use SQLite as the default
database to store app-related information [15,22,23]. We
analyze the energy consumed by SQLite operations – In-
sert, Update and Delete. We have developed an android
application to generate different workloads to the SQLite

database. The database is pre-populated with a million
entries before the start of experiment. If we did not pre-
populate a sufficiently large database1, the random writes
would be buffered and written out as sequential updates.
We perform 15000 each of SQLite operations (inserts,
updates and deletes) for a record size of 4KB. The de-
fault SQLite journal mode in Android is set to DELETE

and the synchronization mode is set to FULL. But the
most performance efficient mode of SQLite is the Write
Ahead Log (WAL) journal mode with NORMAL synchro-
nization. With WAL-NORMAL setting, a SQLite check-
point is issued after every 1000 pages are written into the
database. We report the results obtained by performing
the above experiments for both default (DELETE-FULL)
and WAL-NORMAL SQLite modes.

Figure 2a shows the energy consumed by SQLite
operations for a transaction of record size 4KB in
DELETE-FULL mode, which is the default mode in An-
droid. It can be seen that the energy consumed by ext4
is slightly lesser than F2FS for all the SQLite operations.
We suspect this is because SQLite issues an fsync()

after every transaction in DELETE-FULL mode, thus nul-
lifying the benefits of sequentialization in F2FS.

Figure 2b shows the energy consumed by SQLite
operations for a transaction of record size 4KB in
WAL-NORMAL mode. As seen in Section §3.1, we ex-
pect the energy consumed by F2FS for SQLite opera-
tions to be lower than ext4 in this mode. Surprisingly, we
see that SQLite inserts consume slightly more energy in
F2FS. However, updates and deletes behave as expected
and F2FS consumes 1.5× lesser energy than ext4, since
F2FS sequentializes the IO. Since inserts are sequential
appends while updates and deletes are random, inserts
consume equal or lower energy than updates and deletes
in both file systems.

1We configured the database to be 10× larger than each operation



(a) Energy consumption for DELETE-FULL SQLite mode (b) Energy consumption for WAL-NORMAL SQLite mode

Figure 2: Energy Consumption for SQLite operations. This graph shows that the energy consumed per transaction
for SQLite operations are slightly higher in F2FS as compared to ext4 in DELETE-FULL SQLite mode. However, in
WAL-NORMAL SQLite mode, the energy consumed per transaction for SQLite updates and deletes are about 1.5× lower,
while inserts consume about 1.3× higher energy in F2FS as compared to ext4.

3.3 Applications

We study two popular, storage-intensive applications on
Android devices, Mail and Facebook [24–26]. We enable
tracing in the kernel and capture block-level IO traces us-
ing blktrace [21]. We study the application IO to de-
termine its IO pattern and thereby estimate energy usage.

Workload. For the Mail app, we capture the IO traces
over a period of 3 minutes, which is fairly representative
of real-world interactivity, during which we first log in
to the email account, sync a total of 100 mails, and lo-
gout [9]. For the Facebook app, over a duration of 180
seconds, we capture the following activity traces – log-
ging in, loading the news feed, updating the profile pic-
ture and sharing a couple of status messages [15]. To en-
sure that no other application does IO over the trace du-
ration, we kill all the background applications and have
no other extra application installed from the play store.

Computing Randomness. We make use of the
blktrace version that has the ability to trace flush re-
quests by tracking the REQ FLUSH flag in the bio request.
We merge the IO requests that are sequential between the
two flush requests in the blktrace. After merging all such
successive requests, if the size of the IO is less than 32
KB, it is tagged as random IO. By tagging all requests
as sequential or random in this manner, we can compute
what percentage of requests results in random IO.

Figure 3 shows the percentage of randomness as seen
by the underlying flash device for the two file systems.
For the Mail application, both the file systems write out
around 110–120MB of data in total. For the Facebook
app, both file systems write about 30–35MB of data in
total. From the block traces, we see that F2FS issues
larger IOs to the storage device than ext4.

Figure 3: Percentage random I/O at block level. This
graph shows that the percentage of random writes in
F2FS is 1.5×–2× lesser than ext4, where as F2FS does
more random reads compared to ext4.

Estimating Energy Consumption. We estimate the en-
ergy consumed by these applications based on our results
from (§3.1). Once we have an estimate of the percent-
age of random and sequential IO, and the total amount of
data read and written, we can estimate the total energy
consumed by the application and the average IO size.

For the given workload, the estimated energy con-
sumption for Mail is approximately 42.91J in ext4 and
20.07J in F2FS. Similarly, for the Facebook app, the
energy estimation is approximately 14.13J in ext4, and
8.79J for F2FS. Thus, F2FS reduces energy consumption
by 2× when both applications are considered.

3.4 Limitations

Our study only examines the energy consumption of the
underlying file-system and SQLite operations; the actual
energy consumed by applications depends on their us-
age of the storage stack. While we do study two popular
applications, our results are not representative of all ap-



plications or of other workloads for these applications.
We plan on expanding our study in the future.

4 Implications for File-system Design

Use Sequential IO. Since the energy consumed by se-
quential I/O is almost a magnitude less than that con-
sumed by random I/O, an energy-efficient file system
should replace random I/O by sequential I/O as much
as possible. F2FS attempts this with its log-structured
design, achieving an impressive 2× reduction in energy
consumption when compared to ext4. Although this im-
provement is significant, F2FS still performs around 20–
28% of random writes and about 12–20% of random
reads. Since random writes are so expensive in terms of
energy, sequentializing the last 20–28% of random writes
can reduce energy consumption by half.

Seq Write vs. Rand Read Trade Off. Our experiments
show that while file systems can save energy by writing
data sequentially (e.g., using a log-structured approach),
it can result in more random reads. Random reads are
7–8× more expensive than sequential reads, so it may
not be a good fit for applications that do a lot of random
reads. Thus, it is not as simple as just make all writes
sequential; there is a trade-off involved based on appli-
cation IO patterns.

Compress IO. We found that for IO-intensive work-
loads, the CPU energy consumption is low. This indi-
cates that the file system should compress the data (by
using one of the idle cores [27]) before performing IO.

5 Related Work

Although prior research has investigated the energy con-
sumption of the network [6,13], the CPU [7,27], and the
GPU [8], recent research from Microsoft Research and
UC San Diego was the first to measure the energy con-
sumption of storage [9]. Li et al. showed that the storage
stack consumes 200× the energy of storage hardware,
pointing out that upgrading storage hardware alone will
not reduce storage energy consumption. Our indepen-
dent study replicates some of their results on different
hardware, and goes further to analyze the cost of differ-
ent file and SQLite operations.

Our work also analyzes the randomness of application
IO and ties it to the application energy cost. Similar anal-
yses have been done by prior work, which pointed out
that the random IO of applications is a big factor in their
poor performance on mobiles [15].

While prior work has measured component-wise
power consumption on an experimental phone with spe-

cialized hardware support [12], we are the first to do so
on a commercially available Android device.

Pathak et al. present an energy profiler for Android
apps which identified that most of the energy in an app
is spent in accessing the I/O components [28]. How-
ever their work does not provide a fine grained energy
analysis of the storage subsystem, as we do. Nguyen
et al. have analyzed how different storage stack con-
figurations (e.g., different IO schedulers) impacted per-
formance [10]. While their work analyzed the impact
of storage-stack parameters on storage energy consump-
tion, we believe our work is the first to show that storage
can consume as much energy as the network or the dis-
play for IO-intensive workloads.

There have been other attempts to reduce energy con-
sumption on mobile devices. MobiFS trades durabil-
ity for improved energy efficiency in smartphones [29].
Based on our results, we believe we can achieve greater
reduction in energy consumption than MobiFS without
sacrificing durability. Flashlogger uses amnesic com-
pression techniques to lower energy costs [30]. Although
FlashLogger is designed for sensor systems, its optimiza-
tions are applicable to mobile systems with limited mem-
ory and processing power.

6 Conclusion
Prior work in measuring energy consumption has used
specialized hardware; we use differential analysis to
measure energy consumption of different components on
a commercial mobile phone. Traditionally, the screen
and the network have been considered to consume the
most energy on a mobile device; we present experimen-
tal evidence that for IO-intensive workloads, storage can
consume more energy than the network, and as much en-
ergy as the display. We analyze the energy consumption
of different file operations and show that random IO con-
sumes significantly more energy than sequential IO. We
find that F2FS reduces the energy consumption of most
SQLite operations (compared to default ext4). We hope
our work spurs further research in energy-efficient file
systems; we believe file systems such as F2FS can be
made significantly more energy-efficient.
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