
How Complex is DNS?
Siva Kesava Reddy Kakarla

UCLA

Ryan Beckett

Microsoft

Todd Millstein

UCLA & Intentionet

George Varghese

UCLA

ABSTRACT
Motivated by recent results that show that Internet protocols

can be surprisingly complex and, in particular, that BGP is

Turing complete, we ask the same question for the Domain

Name System (DNS). DNS is at least as pervasive and essen-

tial as BGP in the global Internet infrastructure. Besides the

scientific interest, the complexity of DNS can have implica-

tions for new applications (that can utilize the unsuspected

power of DNS), and for verification (to understand basic

complexity limits and suggest new verification algorithms).

In this paper, we show that using the power of DNAME record

type, DNS can express regular languages and pushdown

systems. The first result can be used to build a system for

controlling domain access (of which parental control is a

special case). The second result shows that verification of

DNS zone files is likely to take time that is at least cubic in

the number of records.

CCS CONCEPTS
• Theory of computation → Grammars and context-
free languages; Regular languages; • Networks → Ap-
plication layer protocols;

KEYWORDS
DNS, automata theory, pushdown systems, verification com-

plexity, computational complexity

ACM Reference Format:
Siva Kesava ReddyKakarla, Ryan Beckett, ToddMillstein, andGeorge

Varghese. 2021. How Complex is DNS?. In The Twentieth ACMWork-
shop on Hot Topics in Networks (HotNets ’21), November 10–12, 2021,
Virtual Event, United Kingdom. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3484266.3487369

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9087-3/21/11.

https://doi.org/10.1145/3484266.3487369

1 INTRODUCTION
Network protocols often have surprising and accidental com-

plexity. Such complexity can arise when practitioners design

new protocol features or extensions targeted towards realis-

tic use cases, without considering the collective impact such

extensions can have on the system through their mutual in-

teractions. Perhaps the best example of accidental complexity

is in the Border Gateway Protocol (BGP) [24]. Designed to

enable routing over the Internet among organizations with

different, often conflicting policies, BGP was created to sup-

port an extremely rich set of policies. It took many years for

theoreticians to “catch up” to practice, demonstrating that

the seemingly simple policy mechanisms in BGP can be used

to simulate an arbitrary Turing machine [8].

The theoretical complexity of a networked system is im-

portant because it has broad ramifications related to the ease

with which humans and machines can analyze the system.

For instance, even for finite network topologies, simply de-

termining if BGP will converge is NP-Complete [13].

In this paper, we seek to analyze and understand the theo-

retical complexity of the Domain Name System (DNS) [22,

23], one of the oldest and most widely used distributed

networking protocols on the Internet. DNS provides the

“glue” that holds the Internet together, by translating user-

recognizable domain names (e.g., hotcrp.com) to machine-

recognizable IP addresses, text data, mail records, andmore [11,

30]. Arguably, DNS is as crucial and widely deployed as BGP,

and understanding its complexity has implications on the

cost of verification. Further, unlike BGP, DNS’s power can

be directly used by applications [2, 7].

As part of our investigation, we find that the DNS has sur-

prising complexity. We first show that DNAME rewriting [27],

a seemingly simple record type for domain redirection, al-

lows the DNS to recognize arbitrary regular languages en-

coded in the string labels of the DNS query. Hence users can

perform complex validation and lookup logic (e.g., string

validation, domain filtering, parental controls, etc.) in the

DNS itself as part of the configurable records that are pro-

cessed at authoritative nameservers. Second, we demonstrate

that the expressiveness of the DNS is beyond that of regular

languages. Specifically, the combination of DNAME records

and nondeterminism due to nameserver delegation allows

the DNS to encode both deterministic and nondeterministic

https://doi.org/10.1145/3484266.3487369
https://doi.org/10.1145/3484266.3487369

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Kakarla et al.

pushdown systems (PDS) [1, 3, 26] and hence to generate

strings of arbitrary context-free grammars (e.g., strings of the

form 𝑎𝑛𝑏𝑛). As a consequence of these results, verification for

arbitrary DNS zone files is likely to have a time complexity

that is at least cubic in the number of DNS records.

2 BACKGROUND
The domain namespace is a tree-like hierarchy, starting with

the root node, an empty label under which nodes like com and
edu exist. These child nodes can have child nodes recursively.
Nodes at any depth of the hierarchy can contain data, which

users can request by querying the domain name formed by

concatenating the labels from that node to the root. Data

is stored as DNS records where each record has a domain

(owner) name, a type, contents, and other attributes.

To scale to the worldwide Internet, the DNS namespace

is divided into smaller manageable portions called zones. A
zone starts at a domain and extends downward in the tree

to the leaf nodes or to the top-level of subdomains where

other zones start. Therefore, a zone is a collection of records

that share a common end domain name. For example, the

hotcrp.com zone has only records ending with hotcrp.com.
A distributed collection of organizations manage the zones

and provide the translation service through publicly accessi-

ble DNS servers, called nameservers. Each nameserver serves

one or more zones. Multiple servers also serve the same zone

to ensure redundancy and availability. Each nameserver can

provide the data requested for a domain name directly or

point to other nameservers. A resolver is the client-side soft-
ware that goes back and forth among different nameservers

to fetch the data requested by the client.

DNS supports many record types, including records for IP

addresses, text records, domain aliases, delegation records,

and more. Table 1 shows a few example records. When a

query (a pair of domain name and a type) arrives at a name-

server, it first checks the available zones to select the best

matching zone and then uses the best matching records from

that zone to answer the query. If the selected best records are

of type A or AAAA or TXT, then the resolver gets the intended

response. If the nameserver responds with an NS record then
the resolver must contact another nameserver. If the best

records are of type CNAME or DNAME then the original query

is rewritten.

Consider the CNAME and DNAME records in Table 1. For the

CNAME to apply, the input query domain name has to be the

same as the CNAME record name (c.uni.edu.), and the query

name is completely replaced by the content of the record

(w.uni.edu.). For a DNAME to apply on the other hand, the

query domain name only has to be a subdomain (for example,

x.y.b.uni.edu.) of the name in the DNAME record (b.uni.edu.).
The new query will preserve the subdomain and replace the

Example Record Description
a.uni.edu. A 1.1.1.1 IPv4 record

*.uni.edu. TXT “Awesome” Wildcard Text record

s.uni.edu. NS ns.dns.com. Delegation record

b.uni.edu. DNAME cs.edu. Domain redirection

c.uni.edu. CNAME w.uni.edu. Canonical name

Table 1: Examples of common DNS record types.

suffix that matches the DNAME record name (producing the

new query name x.y.cs.edu.). The DNAME record’s ability to

rewrite a suffix of the query, regardless of what comes before

it, turns out to be surprisingly powerful.

3 DETERMINISTIC FINITE AUTOMATA
We first define a deterministic finite automaton (DFA) and

then show how a DFA can be encoded in DNS. We then give

an example and conclude with potential applications.

A DFA is a finite-state machine that accepts or rejects a

given string of symbols, by running through a state sequence

uniquely determined by the input string [15]. DFAs recog-

nize exactly the set of regular languages – languages that

use regular expressions [15]. Formally, a deterministic finite

automaton M is a quintuple M = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) such that

𝑄 is a finite set of states, Σ is a finite set of input symbols

called the alphabet, 𝛿 : 𝑄 × Σ → 𝑄 is the transition function,

𝑞0 ∈ 𝑄 is an initial or start state, and 𝐹 ⊆ 𝑄 is a set of final

or accept states. The language ofM, denoted L(M), is the
set of strings whose processing by M ends in a final state.

While a DFA is a mathematical concept, it is often imple-

mented in hardware and software for solving specific prob-

lems such as lexical analysis in compilers and pattern match-

ing. For example, a DFA can model software that decides

whether or not online user input such as email addresses are

syntactically valid.

3.1 Encoding an arbitrary DFA in DNS
LetM = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) be any DFA. Let𝑄 = {𝑞0, 𝑞1, · · · , 𝑞𝑛},
Σ = {𝑎0, · · · , 𝑎𝑚}. We show thatM can be encoded in DNS

using a single zone. Let the zone file be for the domain

dfa.com.. Intuitively, we use the DNS query to encode both

the remaining input string and the current state. We then

use DNAME records to encode the transition relation and use

TXT records to encode the final accept/reject status.

The steps to encode a DFA M as a zone file 𝑧 are:

• Start: For each symbol 𝑎𝑖 in the alphabet, add a DNAME
record of the form “ai DNAME ai .q0”, where 𝑞0 is the
start state.

1
These records add the start state to the

beginning of the query without consuming any input.

1
For exposition purposes we use relative domains here, which lack the

trailing “.”: implicitly the zone domain dfa.com. is appended to form the

complete domain.

How Complex is DNS? HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

• Transition: For each transition of the form 𝑞𝑖 ×𝑎 𝑗 →
𝑞𝑘 in 𝛿 , add a DNAME record “ai .qj DNAME qk”. These
records consume an input symbol 𝑎𝑖 in a state 𝑞 𝑗 and

move to the state 𝑞𝑘 . By the DNS semantics, these

DNAME records only apply to a query if it is a strict

subdomain of ai .qj, so these records have the effect

of transitioning the system from the start state to the

penultimate state, with one input symbol remaining.

• Decision: For each transition of the form 𝑞𝑖×𝑎 𝑗 → 𝑞𝑘 ,

add a TXT record - “ aj .qi TXT “accept”” if 𝑞𝑘 ∈ 𝐹 ;

otherwise add “aj .qi TXT “reject””. These records
are the final step in the transition system, where 𝑎 𝑗 is

the last input symbol and the system is in state 𝑞𝑖 .

To test whether a given string 𝑆 ∈ Σ∗
is accepted by

the DFA M, we encode 𝑆 = 𝑠0𝑠1 · · · 𝑠𝑛 as the domain name

sn. · · · .s1 .s0 .dfa.com.. This query is then sent by the resolver
to the nameserver that contains the zone file 𝑧. The text

record responsewill contain “accept” if and only if the string
𝑆 ∈ L(M).

3.2 Example
In this subsection, we show an example DFA and its encoding

in DNS using the three steps mentioned above. Consider

the DFA MO over alphabet {𝑎, 𝑏} shown in Figure 1, which

accepts all strings that contain an odd number of 𝑎’s.

𝑝 𝑞
𝑎

𝑏 𝑏

𝑎

Figure 1: An example DFA MO that accepts strings
only if they contain an odd number of a’s

Table 2 shows the encoding of DFAMO shown in Figure 1

inDNS as a zone file 𝑧. Tomake it a valid zone, theremust also

exist an SOA and NS record for dfa.com., which are omitted

for brevity. To test whether the string 𝑎𝑏𝑎𝑎 is accepted by

the MO, we send the query ⟨a.a.b.a.dfa.com., TXT⟩ to the

nameserver serving 𝑧. The steps followed by the nameserver

to resolve the query are shown below.

⟨a.a.b.a, TXT⟩ ⟨a.a.b.a.p, TXT⟩ ⟨a.a.b.q, TXT⟩

⟨a.a.q, TXT⟩⟨a.p, TXT⟩7

1 3

6

5

The nameserver returns the entire trace along with the TXT
(7) record. Since the TXT record received contains “accept”
in its content, the string is accepted by MO.

In practice, there are zone files with millions of records;

therefore, complex DFAs with many states and transitions

can easily be encoded in DNS. We wrote a small script to

Start

1 a IN DNAME a.p
2 b IN DNAME b.p

Transition

3 a.p IN DNAME q
4 b.p IN DNAME p
5 a.q IN DNAME p
6 b.q IN DNAME q

Descision

7 a.p IN TXT “accept”
8 b.p IN TXT “reject”
9 a.q IN TXT “reject”
10 b.q IN TXT “accept”

Table 2: Zone file 𝑧 showing the enconding of DFAMO

shown in Figure 1.

encode a DFA in DNS and successfully tested it with two

popular DNS implementations, Bind [9] and Nsd [20]. In

DNS, the domain name has certain length restrictions; specif-

ically, the domain name cannot be longer than 255 charac-

ters, and each label cannot be more than 63 characters. The

nameserver can also limit the number of rewrites that it will

perform on a query. However, various techniques can be

used to overcome such limitations. For example, we can map

pairs of alphabet symbols from the DFA to single labels in

DNS and then change the encoding of the transition relation

to consume multiple symbols at a time, thereby processing

longer DFA input strings.

3.3 Applications
Regexes are frequently used to validate user in-

put for well-formedness. For example, the regex

“^[a-zA-Z0-9+_.-]+@[a-zA-Z0-9.-]+” is a simple

validator for email addresses. Since a regex can be repre-

sented as a DFA [29], using the construction detailed in the

previous subsection we can validate if user input is a proper

email address or not.

While the idea of using the DNS to check input well-

formedness may seem far-fetched, we believe that it could

have some natural use cases. For example, organizations gen-

erally want to control what domains their employees can

visit while using their office devices, due to security and vari-

ous other reasons. If the allowed domains can be represented

as a regular expression, then this validation can be done in

the DNS, as part of the DNS lookup for the domain. Office de-

vices are generally configured to use specific DNS resolvers.

Therefore, the resolver could first use our approach, with

a local DNS nameserver implementing the policy DFA, to

check that the user’s DNS query is to an allowed domain,

and only then send it to the outside world in order to resolve

it to an IP address. A similar setup could be used for parental

control in the home setting. Doing this directly in the DNS

gives a single, global, always-available vantage from which

to enforce policies.

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Kakarla et al.

4 PUSHDOWN SYSTEM
While the DNS can encode finite automata, its expressiveness

goes beyond that of regular languages. In this section, we

show that the DNS can express nondeterministic pushdown

systems and by extension can generate strings in arbitrary

context-free languages.

Definition 4.1. A pushdown system P = (𝑃, Γ,Δ, 𝑐0) is a
quadruple, where 𝑃 and Γ are finite sets called the control lo-

cations and the stack alphabet, respectively. A configuration

of P is a pair ⟨𝑝,𝑤⟩, where 𝑝 ∈ 𝑃 and𝑤 ∈ Γ∗, and 𝑐0 is the
initial configuration. The set of all configurations is denoted

by 𝐶𝑜𝑛𝑓 (P). Δ is a finite subset of (𝑃 × Γ) × (𝑃 × Γ∗),
which consists rules of the form ⟨𝑝,𝛾⟩ ↩→P ⟨𝑝 ′,𝑤⟩,
where 𝑝, 𝑝 ′ ∈ 𝑃,𝛾 ∈ Γ, and 𝑤 ∈ Γ∗. These rules define the
transition relation⇒ between configurations ofP as follows:

If ⟨𝑝,𝛾⟩ ↩→P ⟨𝑝 ′,𝑤⟩, then ⟨𝑝,𝛾𝑤 ′⟩ ⇒ ⟨𝑝 ′,𝑤𝑤 ′⟩ for all 𝑤 ′ ∈ Γ∗.

As shown above, each step depends only on the control

location (𝑝) and the topmost element (𝛾) of the stack (𝛾𝑤 ′
).

The rest of the stack (𝑤 ′
) is unchanged and has no influence

on the possible next actions. A pushdown system may

have infinitely many reachable states. An important use of

pushdown system is in representing sequential programs

with (possibly recursive) functions [25]. These programs in

general cannot be modeled using FSMs as there is no limit

on the depth of the call stack for function calls [28].

4.1 Encoding a PDS in DNS
With the help of an example, we show how a PDS can be

encoded in DNS. Similar to how we encoded a DFA, we will

encode both the stack and the current state in the query

and use DNAME records to implement the transition relation.

We employ multiple zone files and nameservers and delegate
among them to encode any nondeterminism in the transition

relation.

Consider a PDS P with 𝑃 = {p, q}, Γ = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑐0 =

⟨p, 𝑐⟩ and Δ given by:

𝑟1 = ⟨p, 𝑎⟩ ↩→ ⟨q, 𝑏⟩ 𝑟2 = ⟨p, 𝑎⟩ ↩→ ⟨p, 𝑐⟩
𝑟3 = ⟨q, 𝑏⟩ ↩→ ⟨p, 𝑑⟩ 𝑟4 = ⟨p, 𝑐⟩ ↩→ ⟨p, 𝑎𝑑⟩
𝑟5 = ⟨p, 𝑑⟩ ↩→ ⟨p, 𝜖⟩

We show some transitions between different configura-

tions of P starting with 𝑐0 and with the rules given by Δ.

⟨p, 𝑐⟩ ⟨p, 𝑎𝑑⟩

⟨q, 𝑏𝑑⟩

⟨p, 𝑐𝑑⟩

⟨p, 𝑑𝑑⟩ ⟨p, 𝑑⟩ ⟨p, 𝜖⟩ (i)

(ii)

(iii)

⟨p, 𝑎𝑑𝑑⟩
⟨q, 𝑏𝑑𝑑⟩

⟨p, 𝑐𝑑𝑑⟩

As with the DFA encoding, we assume we control the

pds.com. domain and all its subdomains. We create the

pds.com. zone file as shown below and place it in the

server1.pds.com. nameserver. The resolver is bootstrapped

with the IP address of this nameserver.

nameserver: server1.pds.com.
$ORIGIN pds.com.

b.q IN DNAME d.p 1

c.p IN DNAME d.a.p 2

d.p IN DNAME p 3

a.p IN NS server2 4

a.p IN NS server3 5

server2 IN A 2.2.2.2 6

server3 IN A 3.3.3.3 7

In the pds.com. zone, we first encode all the deterministic

rules, 𝑟3, 𝑟4, 𝑟5 with DNAME records, 1 , 2 , and 3 . We then

use DNS delegation (referral to a new nameserver) for each

nondeterministic set of rules. This apporach leverages the

nondeterminism inherent in DNS delegation – givenmultiple

NS records, DNS implementations will chose one nondeter-

ministically. Here we have only one set of nondeterministic

rules, namely ⟨p, 𝑎⟩ with two rules. For each rule, we create

an NS record
(
4 and 5

)
and assign it a nameserver not previ-

ously assigned. For each NS record, we also add a glue record(
6 and 7

)
to provide the IP address of the nameserver.

We then create a zone file for a.p.pds.com. at each of the

delegated nameservers and place a DNAME record for each

nondeterministic rule at a unique nameserver. In our example

we end up with two nameservers and zone files:

nameserver: server2.pds.com.
$ORIGIN a.p.pds.com.

a.p.pds.com. IN DNAME b.q.pds.com. 8

nameserver: server3.pds.com.
$ORIGIN a.p.pds.com.

a.p.pds.com. IN DNAME c.p.pds.com. 9

To execute the PDS from the initial configuration ⟨p, 𝑐⟩, we
ask the DNS query ⟨𝛽.c.p, TXT⟩. As with the DFA, the query

encodes the current stack followed by current state. Addi-

tionally, we start the query with a dummy subdomain 𝛽 .

This is necessary since DNAME records only apply to strict

subdomains; doing so ensures that the DNAME records apply

even when the stack contains only a single element.

One possible execution starting from the query

⟨𝛽.c.p, TXT⟩ at the resolver is as follows:
(1) Resolver: Queries the default server Server1 with the

query ⟨𝛽.c.p, TXT⟩.
(2) Server1: The server first rewrites the query, and the

best records for the new query are NS records. The

server returns the rewrite, the delegation records, and

the corresponding glue records to the resolver.

How Complex is DNS? HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

(a) R1 - ⟨𝛽.c.p, TXT⟩ ⟨𝛽.d.a.p, TXT⟩
2

(b) Delegation - 4 , 5 , 6 , and 7

(3) Resolver: The resolver now has a choice to con-

tact either Server2

(
4

)
or Server3

(
5

)
. We show

the sequence of steps if the resolver sends the query

⟨𝛽.d.a.p, TXT⟩ to Server2.

(4) Server2: Rewrites the query and returns it.

R2 - ⟨𝛽.d.a.p, TXT⟩ ⟨𝛽.d.b.q, TXT⟩
8

(5) Resolver: Queries Server1 again.
(6) Server1: Rewrites the query three times and returns

the final rewritten query

(
⟨𝛽.p, TXT⟩

)
to the resolver.

(a) R3 - ⟨𝛽.d.b.q, TXT⟩ ⟨𝛽.d.d.p, TXT⟩1

(b) R4 - ⟨𝛽.d.d.p, TXT⟩ ⟨𝛽.d.p, TXT⟩3

(c) R5 - ⟨𝛽.d.p, TXT⟩ ⟨𝛽.p, TXT⟩3

When the resolver gets the response from the Server1 in

step 6, it is clear that the stack is empty as the domain name

has only the control symbol and the dummy subdomain. If we

put together all the rewrites (R1, R2, R3, R4, and R5) starting

from the first rewrite thenwe have the trace corresponding to

the top trace (i) shown earlier in transitions between different

configurations in §3.2. A different set of configurations can

be explored if the resolver instead chooses Server3 at step 3.

In this way we can use the DNS to explore the reachable

configurations of a PDS. Generally records returned to the

resolver have a time to live (TTL) field for caching. The re-

solver will use the local cache when a matching query comes,

thus slowing down the exploration of other configurations.

We can avoid this by setting the TTL of the DNAME records to
be small, even to 0. Another issue is that nameservers often

have a limit on the number of rewrites they will perform,

at which point they stop processing the query further and

return it. To overcome this limitation and explore more con-

figurations, the resolver can then send a fresh query from

that last configuration.

So far, we have seen how to explore reachable configura-

tions of a PDS using the DNS. In the next subsection we will

describe how we can use this capability to generate strings
from any context-free language.

4.2 Context-free Language Generator
A formal grammar is a set of production rules that describe

all possible strings in a given formal language. A context-free

grammar (CFG) is a formal grammar whose production rules

are of the form “𝐴 → 𝛼”, with 𝐴 being a single nonterminal

symbol, and 𝛼 a string of terminals and/or nonterminals (𝛼

can be empty). Context-free grammars generate context-free

languages, which are strictly more expressive than regular

expressions. Context-free languages have many applications

in programming languages; in particular, most programming

language syntaxes are specified by context-free grammars.

Formally, a context-free grammar G is defined as a 4-tuple

G = (𝑁, Σ, 𝑃, 𝑆), where 𝑁 is a finite set of non-terminal

symbols, and Σ is a finite set of terminal symbols disjoint

from 𝑁 . The set of terminals is the alphabet of the language

defined by the grammar G. 𝑃 is the set of production rules

and is a finite relation in 𝑁 × (𝑁 ∪ Σ)∗. 𝑆 is the start symbol

and is one of the non-terminal symbols in 𝑁 .

We derive strings in the language of a CFG by starting with

the start symbol and repeatedly replacing some non-terminal

by the right side of one of its production rules. Consider the

context-free language 𝐿 = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 1}. The grammar of

this language, with the start symbol 𝑆 is:

𝑆 → 𝑎𝑆𝑏 (1)

𝑆 → 𝑎𝑏 (2)

The string 𝑎3𝑏3 in this language is generated by applying

rule (1) twice followed by (2): 𝑆 → 𝑎𝑆𝑏 → 𝑎𝑎𝑆𝑏𝑏 → 𝑎𝑎𝑎𝑏𝑏𝑏.

We first describe a program variant of the above grammar

and show how that program can be represented using a

pushdown system. Then based on the encoding described in

§4.1 we can implement this in the DNS.

A program that generates the strings in 𝐿 is:

procedure S1: procedure S2: procedure S:
ℓ1 output 𝑎 ℓ5 output 𝑎 ℓ8 if ?
ℓ2 call S ℓ6 output 𝑏 ℓ9 call S1
ℓ3 output 𝑏 ℓ7 return ℓ10 else call S2
ℓ4 return ℓ11 return

Here ℓ1, ℓ2, and other such symbols are used to denote

each program location (line of code) uniquely, which will

be later used as the stack alphabet Γ in our PDS. Since 𝑆 is

the start symbol in the grammar, the procedure S would be
called to start the program. The symbol “?” in ℓ8 represents

nondeterministic choice, reflecting the nondeterminism in

the original grammar.

The technique used to convert the above grammar into

a program can be generalized as follows. Let G be a CFG.

First, create a uniquely named procedure (disjoint from Σ ∪
𝑁) for each production rule in 𝑃 , as in S1 and S2 in the

above example. The body of the procedure then encodes the

right side of the corresponding rule. Specifically, there is an

“output t” line for each terminal symbol 𝑡 in the right side

and a “call A” line for each non-terminal𝐴 in the right side

of the rule, in order of their appearance in the rule. Finally,

for every non-terminal 𝐴 in 𝑁 create a “procedure A” and
use an if statement to nondeterministically call one of the

procedures created in the previous step whose corresponding

rule has 𝐴 on the left side.

We can create a PDS that encodes all possible executions

of such a program [28]. The PDS has a single control location

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Kakarla et al.

and uses the program labels as the stack alphabet. For ex-

ample, a PDS P𝐿 for the program shown above has 𝑃 = {p},
Γ = {ℓ1, · · · , ℓ11}, and 𝑐0 = ⟨p, ℓ8⟩. Δ is given by:

⟨p, ℓ1⟩ ↩→ ⟨p, ℓ2⟩ ⟨p, ℓ5⟩ ↩→ ⟨p, ℓ6⟩ ⟨p, ℓ8⟩ ↩→ ⟨p, ℓ9⟩
⟨p, ℓ2⟩ ↩→ ⟨p, ℓ8ℓ3⟩ ⟨p, ℓ6⟩ ↩→ ⟨p, ℓ7⟩ ⟨p, ℓ8⟩ ↩→ ⟨p, ℓ10⟩
⟨p, ℓ3⟩ ↩→ ⟨p, ℓ4⟩ ⟨p, ℓ7⟩ ↩→ ⟨p, 𝜖⟩ ⟨p, ℓ9⟩ ↩→ ⟨p, ℓ1ℓ11⟩
⟨p, ℓ4⟩ ↩→ ⟨p, 𝜖⟩ ⟨p, ℓ10⟩ ↩→ ⟨p, ℓ5ℓ11⟩

⟨p, ℓ11⟩ ↩→ ⟨p, 𝜖⟩
Intuitively, Δ encodes the control flow of the program.

For statements where control passes from one line to the

next (here just output), we add rules of the form ⟨p, ℓ1⟩ ↩→
⟨p, ℓ2⟩. A procedure call (for example, at ℓ2) is encoded by

pushing the return point (ℓ3) followed by the called proce-

dure’s (ℓ8) starting statement. A return statement is encoded

as a stack pop (𝜖).

Finally, we can use this encoding to generate strings in

our original CFG 𝐿. Define a full trace in P𝐿 as the sequence

of configurations starting with 𝑐0 and ending with an empty

stack. Given a full trace, consider the top symbol of the stack

in each configuration, and retain only those symbols that

correspond to an output code line. If we concatenate the

output of those lines, then we obtain a string. The set of such

strings is exactly the set of strings defined by the CFG 𝐿.

For example, the full trace that would generate 𝑎3𝑏3 is

shown in Figure 2. In the trace, among all the top stack

elements only six symbols, shown with circles and squares,

represent output code lines. If we concatenate them in the

order given by the full trace then we obtain the string 𝑎𝑎𝑎𝑏𝑏𝑏.

In summary, we have shown how to encode a PDS in DNS

in §4.1, and here we have shown how to encode a generator

for a CFG as a PDS. Hence we can use the DNS system to

generate strings in the language of a given CFG.

5 DISCUSSION
Our paper represents an initial investigation into the com-

plexity of DNS, and there are several directions for future

research.

Impact on DNS Verification. The most efficient algo-

rithms known for PDS reachability — determining whether

a given configuration can be reached in a given PDS —

have near-cubic time complexity in the number of rules [4–

6, 12, 14]. Hence DNS zone-file verification [17], which re-

quires reasoning about all possible query lookups, also has

at least this complexity today. This has not only theoretical

implications but is also a problem for real zone-file verifiers

like GRoot [17]. Even a simple four-record zone file with

interacting DNAME loops can create close to a million query

equivalence classes in Groot, quickly blowing up its verifi-

cation time. Interestingly, however, verification in Groot is

linear time in the absence of DNAME records. Can we design

⟨p, ℓ8⟩ ⟨p, ℓ9⟩ ⟨p, ℓ1ℓ11⟩ ⟨p, ℓ2ℓ11⟩ ⟨p, ℓ8ℓ3ℓ11⟩

⟨p, ℓ9ℓ3ℓ11⟩⟨p, ℓ1ℓ11ℓ3ℓ11⟩⟨p, ℓ2ℓ11ℓ3ℓ11⟩

⟨p, ℓ8ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ10ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ5ℓ11ℓ3ℓ11ℓ3ℓ11⟩

⟨p, ℓ6ℓ11ℓ3ℓ11ℓ3ℓ11⟩⟨p, ℓ7ℓ11ℓ3ℓ11ℓ3ℓ11⟩⟨p, ℓ11ℓ3ℓ11ℓ3ℓ11⟩

⟨p, ℓ3ℓ11ℓ3ℓ11⟩ ⟨p, ℓ4ℓ11ℓ3ℓ11⟩ ⟨p, ℓ11ℓ3ℓ11⟩

⟨p, ℓ3ℓ11⟩⟨p, ℓ4ℓ11⟩⟨p, ℓ11⟩⟨p, 𝜖⟩

Figure 2: The full trace of PDS P𝐿 that generates string
𝑎3𝑏3. The output code lines that are on top of the stack
are shown with circles for 𝑎 and squares for 𝑏.

new verification algorithms that scale well with the number

of DNAME records for real-world configurations?

Tighter Bounds. Can we show that the DNS is even more

expressive than a PDS? Alternatively can we reduce the DNS

to a PDS and hence show that they are equivalent?

Applications. The applications that we have presented

are somewhat contrived. Can we build a real application

that takes advantage of the complexity of DNS? We can

take inspiration from existing applications that use the DNS,

ranging from service discovery [7] to load balancing [2, 16]

to spam filtering [10, 11, 18, 19].

New Record Types. Contributors frequently add new

drafts and RFCs to the DNS specification, with new record

types intended to enable new use cases. For example, the

recent NAPTR record type [21] supports prioritized regular

expressions that provide lookup for dynamic resources. How

do these newly proposed types affect DNS complexity?

Security Implications. Does the complexity of DNS have

security implications? This is a natural direction to explore.

However, we note that, unlike for conventional DNS attacks,

the attacker must control the target’s zone files in order to

leverage the complexity of DNS.

6 CONCLUSION
In this paper, we have investigated the computational com-

plexity of DNS and shown its ability to simulate both a finite-

state machine and a pushdown system. While this work is

in the spirit of earlier investigations into the complexity of

protocols like BGP, we note that, unlike BGP, DNS features

are available to applications. Thus in addition to the implica-

tions for verification complexity, the computational power

of DNS is potentially an enabler of new applications.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1704336

and CNS-1901510.

How Complex is DNS? HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

REFERENCES
[1] Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability

analysis of pushdown automata: Application to model-checking. In

CONCUR ’97: Concurrency Theory, Antoni Mazurkiewicz and Józef

Winkowski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 135–

150.

[2] Thomas P. Brisco. 1995. DNS Support for Load Balancing. RFC 1794.

(1 April 1995). https://doi.org/10.17487/RFC1794

[3] Olaf Burkart and Bernhard Steffen. 1995. Composition, decomposi-

tion and model checking of pushdown processes. Nordic Journal of
Computing 2, 2 (1995), 89–125.

[4] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis.

2017. Optimal Dyck reachability for data-dependence and alias analysis.

Proceedings of the ACM on Programming Languages 2, POPL (2017),

1–30.

[5] Krishnendu Chatterjee and Georg Osang. 2017. Pushdown reachability

with constant treewidth. Inform. Process. Lett. 122 (2017), 25–29.
[6] Swarat Chaudhuri. 2008. Subcubic Algorithms for Recursive State

Machines. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’08). As-
sociation for Computing Machinery, New York, NY, USA, 159–169.

https://doi.org/10.1145/1328438.1328460

[7] Stuart Cheshire and Marc Krochmal. 2013. DNS-Based Service Discov-

ery. RFC 6763. (Feb. 2013). https://doi.org/10.17487/RFC6763

[8] Marco Chiesa, Luca Cittadini, Giuseppe Di Battista, Laurent Vanbever,

and Stefano Vissicchio. 2013. Using routers to build logic circuits:

How powerful is BGP?. In 2013 21st IEEE International Conference on
Network Protocols (ICNP). IEEE, 1–10.

[9] Internet Systems Consortium. 2021. BIND 9. (2021). https://www.isc.

org/bind/

[10] DNS Response Policy Zones 2019. (2019). Retrieved June 2020 from

https://dnsrpz.info/

[11] DNSBL information - spam database and blacklist check. 2020. (2020).

https://www.dnsbl.info/

[12] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon.

2000. Efficient algorithms for model checking pushdown systems.

In International Conference on Computer Aided Verification. Springer,
232–247.

[13] Timothy G Griffin, F Bruce Shepherd, and Gordon Wilfong. 2002. The

stable paths problem and interdomain routing. IEEE/ACM Transactions
On Networking 10, 2 (2002), 232–243.

[14] Nevin Heintze and David McAllester. 1997. On the cubic bottleneck

in subtyping and flow analysis. In Proceedings of Twelfth Annual IEEE
Symposium on Logic in Computer Science. IEEE, 342–351.

[15] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Intro-
duction to Automata Theory, Languages, and Computation (3rd Edition).
Addison-Wesley Longman Publishing Co., Inc., USA.

[16] Internet Initiative Japan Inc. 2019. IP Location Load Balancing
Resource Record. Internet-Draft draft-sonoda-dnsop-lb-01. Inter-

net Engineering Task Force. https://datatracker.ietf.org/doc/html/

draft-sonoda-dnsop-lb-01 Work in Progress.

[17] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Mill-

stein, and George Varghese. 2020. GRoot: Proactive Verification of

DNS Configurations. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM ’20). Association for Computing Machinery, New York, NY,

USA, 310–328. https://doi.org/10.1145/3387514.3405871

[18] Scott Kitterman. 2014. Sender Policy Framework (SPF) for Authorizing

Use of Domains in Email, Version 1. RFC 7208. (April 2014). https:

//doi.org/10.17487/RFC7208

[19] Murray Kucherawy, Dave Crocker, and Tony Hansen. 2011. Do-

mainKeys Identified Mail (DKIM) Signatures. RFC 6376. (Sept. 2011).

https://doi.org/10.17487/RFC6376

[20] NLnet Labs. 2021. NSD. (2021). https://nlnetlabs.nl/projects/nsd/

about/

[21] Michael H. Mealling. 2002. Dynamic Delegation Discovery System

(DDDS) Part Three: The Domain Name System (DNS) Database. RFC

3403. (Oct. 2002). https://doi.org/10.17487/RFC3403

[22] P. Mockapetris. 1987. Domain names - concepts and facilities. RFC

1034. (Nov. 1987). https://doi.org/10.17487/RFC1034

[23] P. Mockapetris. 1987. Domain names - implementation and specifica-

tion. RFC 1035. (Nov. 1987). https://doi.org/10.17487/RFC1035

[24] Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway

Protocol 4 (BGP-4). RFC 4271. (Jan. 2006). https://doi.org/10.17487/

RFC4271

[25] Thomas Reps, Akash Lal, and Nick Kidd. 2007. Program Analysis

Using Weighted Pushdown Systems. In FSTTCS 2007: Foundations of
Software Technology and Theoretical Computer Science, V. Arvind and

Sanjiva Prasad (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

23–51.

[26] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. 2005.

Weighted pushdown systems and their application to interprocedural

dataflow analysis. Science of Computer Programming 58, 1-2 (2005),

206–263.

[27] Scott Rose and Wouter Wijngaards. 2012. DNAME Redirection in the

DNS. RFC 6672. (June 2012). https://doi.org/10.17487/RFC6672

[28] Stefan Schwoon. 2002. Model-checking pushdown systems. Ph.D. Dis-
sertation. Technische Universität München.

[29] Ken Thompson. 1968. Programming Techniques: Regular Expression

Search Algorithm. Commun. ACM 11, 6 (June 1968), 419–422. https:

//doi.org/10.1145/363347.363387

[30] Paul A. Vixie and Vernon Schryver. 2018. DNS Response Policy
Zones (RPZ). Internet-Draft draft-vixie-dnsop-dns-rpz-00. Inter-

net Engineering Task Force. https://datatracker.ietf.org/doc/html/

draft-vixie-dnsop-dns-rpz-00 Work in Progress.

https://doi.org/10.17487/RFC1794
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.17487/RFC6763
https://www.isc.org/bind/
https://www.isc.org/bind/
https://dnsrpz.info/
https://www.dnsbl.info/
https://datatracker.ietf.org/doc/html/draft-sonoda-dnsop-lb-01
https://datatracker.ietf.org/doc/html/draft-sonoda-dnsop-lb-01
https://doi.org/10.1145/3387514.3405871
https://doi.org/10.17487/RFC7208
https://doi.org/10.17487/RFC7208
https://doi.org/10.17487/RFC6376
https://nlnetlabs.nl/projects/nsd/about/
https://nlnetlabs.nl/projects/nsd/about/
https://doi.org/10.17487/RFC3403
https://doi.org/10.17487/RFC1034
https://doi.org/10.17487/RFC1035
https://doi.org/10.17487/RFC4271
https://doi.org/10.17487/RFC4271
https://doi.org/10.17487/RFC6672
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://datatracker.ietf.org/doc/html/draft-vixie-dnsop-dns-rpz-00
https://datatracker.ietf.org/doc/html/draft-vixie-dnsop-dns-rpz-00

	Abstract
	1 Introduction
	2 Background
	3 Deterministic Finite Automata
	3.1 Encoding an arbitrary DFA in DNS
	3.2 Example
	3.3 Applications

	4 Pushdown System
	4.1 Encoding a PDS in DNS
	4.2 Context-free Language Generator

	5 Discussion
	6 Conclusion
	References

