

1

Timing-Based Browsing Privacy Vulnerabilities Via Site Isolation

Zihao Jin†‡, Ziqiao Kong†, Shuo Chen†, Haixin Duan‡
 †Microsoft Research Asia, Beijing, China ‡Tsinghua University, Beijing, China
jinzihao1996@gmail.com, ziqiaokong@outlook.com, shuochen@microsoft.com, duanhx@tsinghua.edu.cn

Abstract – Chromium’s site isolation ensures that different

sites are rendered by different processes, which is a vision that

academic researchers set forth over a decade ago. The journey

from academic prototypes to the commercial availability

represents a holistic rethinking about the security architecture

for modern browsers. In this paper, we emphasize that the

timing issues under site isolation need a thorough study.

Specifically, we show that site isolation enables a realistic

timing attack, which allows the attacker to identify which

websites in a given target-sites set are loaded into the browser,

as well as the website the user is currently interacting with.

Through these vulnerabilities, the user’s site-visit behavior is

leaked to the attacker. Our evaluation using Alexa Top 3000

websites gives very high vulnerability percentages – 99%, 99%

and 95% for our three key metrics of vulnerabilities. Moreover,

the attack is very robust without any special assumption, so will

be effective if deployed in the field. The main challenge

revealed by our work is the tension between the scarcity of

processes and the obligation to isolate cross-site frames in

different processes. We are working with the Google Chrome

team and Microsoft Edge team to propose and evaluate

mitigation options.

1 Introduction
Site isolation is a major security feature that the Chromium

team developed over the last several years. Since 2018, this

feature is turned on by default in the Chrome browser. As

Microsoft’s Edge browser uses Chromium’s rendering engine,

the site isolation feature is also in effect in Edge. Mozilla’s

Project Fission is an effort to integrate site isolation into Firefox.

The feature started to be officially tested in 2019 [5]. Site

isolation has clearly become an industry-wide effort for browser

security moving forward.

The essence of site isolation is to place contents from

different sites in different OS processes, so that cross-site

accesses must go through the process boundaries. The literature

shows the benefit of having this process-level isolation when

mitigating many types of vulnerabilities and attacks [19]. Site

isolation is viewed as a fundamental technology offering

important security values, so the Chromium team spent years to

overcome significant performance and compatibility hurdles

and achieve the goal.

Despite the exciting achievements of the technology, we

show in this paper that many timing channels related to site

isolation can be combined into a very reliable attack that spies

on a user’s browsing activity. Specifically, once a user visits the

attacker’s webpage or a third-party webpage containing the

attacker’s script, the attacker can identify which websites in a

given target-sites set are being visited by the user’s browser.

The target-sites set may contain hundreds or a few thousands of

sites that the attacker wants to monitor. Once the sites in the

browser are identified, the attacker can monitor at real time

which site is in the foreground tab, i.e., the one the user is

interacting with. This allows the attacker to monitor how the

user spends time between the sites on the monitored list.

Compared to browsing privacy leaks in the past, this new attack

is more powerful as the user discloses more detailed behaviors.

Overview of our work. In this study, we focus on the

privacy implication of site isolation in light of cross-site timing.

Our major effort is spent in understanding Chromium’s cross-

site communication mechanisms. Guided by the analysis of the

IPC layer functions, we delve into many behaviors to examine

if there are timing characteristics reliably observable by the

attacker. We discover, for example, that the existence of a

renderer process, the process priority of a renderer, and the

“freshness” of a renderer are observable through cross-site

timing measurements. These observations are used as the

building blocks for our attack.

Although timing attacks are a familiar topic in the literature,

many of them need strong assumptions about the victim’s

behavior and environment, thus tend to be fragile in practice

(due to, for example, noise, jitters and workloads on the victim

browser). The severity of our attack is demonstrated by its

robustness. Our timing measurement techniques and the attack

algorithm effectively avoid or mitigate the measurement

fluctuations, and rely on multiple timing characteristics to

cross-examine a situation. The algorithm, together with the

insights about Chromium’s internal, constitute the core

technical value of our work.

Results. We have confirmed that the attack works reliably

on Chromium/Chrome and Microsoft Edge with the default

settings. The attack is fully automatic, and no prior knowledge

about the victim is needed before the attack script lands onto the

victim browser. Moreover, we do not assume that the browser

contains only the attacker-site tab and the victim-site tab. The

attack is robust enough so that workloads in other tabs do not

cause sufficient impact on the effectiveness. This makes the

threat very realistic.

The main results of our work are highlighted here:

(1) For the Alexa top 3000 sites, we test if the attack can

confidently detect whether each site is in the foreground

tab (FG), in a background tab (BG), or not present (NP).

We show very high vulnerability percentages: over 99%,

99% and 95% of the sites allow the attack to

differentiate confidently between BG vs. NP, FG vs. NP

and FG vs. BG, respectively. A video demo about the

attack scenario is available in reference [30].

(2) To demonstrate that the attack can simultaneously

check a large set of target sites as a batch, we measure

2

the accuracy of the attack within roughly one minute

when monitoring the Alexa top 500 sites altogether for

their presence. Assuming the browser loads 5 out of the

500 sites, the chances of having no false positive and no

false negative are 95.19% and 82.69%.

(3) To experimentally confirm site isolation as the cause of

the problem, we test the attack against a wide range of

Chromium versions. The result pinpoints to the earliest

vulnerable version 68.0.3403.0, which is the version

introducing site isolation [26]. We also confirmed that

Edge and the experimental nightly build of Firefox are

vulnerable.

(4) We are in a joint effort with the Microsoft Edge team

and the Google Chrome team. The details of this work,

including a full version of this paper, were disclosed to

the two teams in early July 2020. The attack was

confirmed. The Chrome team considers taking one of

our mitigation suggestions. We are helping the team

evaluate other mitigation options.

Paper organization. We give the background about site

isolation in Section 2. Section 3 gives an overview about our

attack. Many deeper insights are explained in Section 4, in

which we delve into Chromium’s internal to understand the

observable timing characteristics. The evaluation results are

shown in Section 5. Mitigation possibilities and our responsible

disclosure to Google and Microsoft are presented in Section 6.

Sections 7 and 8 give related work and conclusions.

2 Background about site isolation
Although the commercial availability of site isolation is

very recent, the pursuit of its objectives has been over a decade.

This journey represents perhaps the deepest holistic rethinking

about the security architecture for modern browsers.

Browser used to be a single-process program. As the

browser code became enormously complex, security bugs were

inevitable, such as memory bugs (e.g., buffer overflows), same-

origin-policy bugs (SOP bugs, e.g., universal cross-site

scripting) and plugins’ over-privilege issues. If an attack

website could exploit a bug, the entire browser was in jeopardy.

In response, security researchers began to experiment with

multi-process architectures. OP [8] and Gazelle [23] browsers

were two early prototypes treating different websites as

distrusting principals at the OS level, i.e., isolating them in

different processes. This is the same goal as site isolation,

although achieving it in a commercial browser is a long journey.

Chromium before 2018. Chromium was the first

commercial browser to adopt a multi-process architecture.

However, it did not isolate websites, as the primary goal was

for reliability. The Chromium team explicitly listed “origin

isolation”1 as an “out-of-scope goal” [3]. The entire web was

treated as one OS principal, so an attack who compromised the

rendering engine could access all the web contents inside the

1 The difference between “site” and “origin” is not essential in this

paper. A site is a collection of origins sharing the same registerable

browser. The multi-process architecture did have an “in-scope

goal” to separate the web from the local machine. However,

researchers found that, without achieving site isolation, the

web/local separation became problematic with modern cloud

services integrated into local machines [11].

Chromium since 2018. With years of efforts, site isolation

was made practical for Chromium. It was a major milestone of

the decade-long pursuit for browser’s solid security foundation.

The Chromium team conducted a security evaluation [19] to

show that site isolation could provide a range of mitigations,

such as those for renderer vulnerabilities and transient

execution attacks (e.g., Meltdown and Spectre [13][17]). With

the evaluation result, site isolation clearly made the security

benefit of the multi-process architecture compelling.

It is also worth noting that researchers considered site

isolation as a countermeasure for timing attacks against pre-

2018 versions of Chromium. For example, Vila and Köpf

discovered in 2017 that Chromium was susceptible to a timing

attack through the shared event loop in a process rendering

contents from different sites. The attack could be mitigated by

site isolation [22]. What our attack shows is that, although site

isolation can be a countermeasure for Vila and Köpf’s timing

attack, it introduces a more dangerous and robust timing issue.

Chromium’s process models and the new challenge. The

Chromium team defines process models about how the web

contents are partitioned in its multi-process architecture. The

models include Single-process, Process-per-tab, Process-per-

site and Process-per-site-instance. The concepts were first

proposed in a research paper [18] and later described in a

Chromium project documentation [24]. The default model is

Process-per-site-instance, which creates a process for a set of

connected pages from the same site. The set is called a site

instance. Two pages are considered connected if they can

reference each other using script code.

The process models were defined before site isolation was

implemented. Site isolation brings a challenge to the process

models because the intended granularity becomes frame/iframe,

rather than tab. Process is a scarce resource in the OS. How

should Process-per-site-instance be realized under the new

granularity? For example, a typical CNN news page contains 15

iframes from 15 different sites (as a reference, this number for

Fox News is 12). If a user opened 10 CNN pages, i.e., 10 site

instances of CNN, then (15 + 1) * 10 = 160 processes would be

created. It would be a 16-time increase of the number of

processes compared to the previous Chromium versions, not

practical for a general-purpose browser so widely used.

 The tension between the scarcity of processes and the goal

of isolating cross-site frames implies that some frames from the

same site must share a process, even if they are in different site

instances. This tension is an inherent challenge for the site

isolation technology, and the root cause of the privacy issue we

will discuss in this paper.

domain and protocol. For example, a.google.com and b.google.com

are two origins belong to the same site google.com.

3

3 Overview of the Attack

In this section, we give an overview of the attack, including

the attack model, the basic operation, and the attack strategy.

These understandings will set up the context for our

investigation in Section 4 about Chromium’s design and code.

3.1 Attack model and goal

The threat model of our attack is commonly known as the

web attacker model in the literature [1], which assumes that the

victim’s browser, capable of script execution, visits the

attacker’s website http(s)://attacker.com, or a website

containing a script of the attacker. The attacker is unable to run

any binary code in the victim browser, or eavesdrop/intercept

the network communication.

Figure 1 shows the attack scenario: there is an attacker tab

running the attack script. The attacker’s goal is to monitor a set

of sensitive target sites – victim1.com, victim2.com, …, and

victim500.com. In Figure 1, the user is visiting victim1.com and

victim2.com. We call their tabs the victim tabs. The victim tabs

and the attacker tab can be in the same browser window, or

different browser windows belonging to the same browsing

instance (note that an “incognito” window runs as a separate

browsing instance). Moreover, a victim site does not need to be

loaded into the main frame of the tab.

In the attacker tab, a script iteratively uses an invisible

iframe to visit a list of URLs (one at a time), and measures the

times for loading completion. The focus of this section is to

explain how the script strategically chooses the list of URLs to

take the measurements, so that the combinations of the

measurement results can robustly achieve the attack goal,

despite the big variety of network environments and local

machine/workload conditions.

For the scenario in Figure 1, the goal of the attack script is:

(1) to determine that victim1.com and victim2.com, but not

other target sites, are present in the browser instance; (2) to

monitor and determine which site is in the foreground tab. For

example, victim1.com currently is. This allows the attacker to

observe the user’s behavior effectively.

To demonstrate the severity of the privacy problem, our

objective is to show that the attack can be launched at a large

scale. Therefore, our attack model requires the script to be fully

automatic, and has no input parameter. This makes our result

convincing – no prior knowledge about a victim’s circumstance

is needed before the script lands on the browser.

3.2 Basic operation – the loading-time measurement

We mention the process model in Section 2, as well as the

challenge due to the tension between site isolation and the

process scarcity. A question arises – whether site isolation

introduces an exploitable timing channel. The answer is yes.

The timing channel can be easily confirmed by measuring the

time for loading a URL of victim site into the iframe on the

attacker tab. Specifically for the example in Figure 1, when the

script measures the time for the iframe to load a victim1.com

URL versus a victim500.com URL (note that victim500.com is

not being visited by the user in this example), the time

difference is noticeable. This is because the process for

processing victim1.com already exists, but a new process needs

to be created in order to process victim500.com.

Timing channels generally exist to various extents in multi-

process systems, so its existence with the site isolation

mechanism may not be immediately concerning. The important

question is whether a robust and fully automatic attack can be

built. The rest of this section and Section 4 explain how such an

attack is fulfilled with insights about the internals of Chromium.

The pseudo code in Listing 1 shows the basic operation:

measuring the “relative time” r, defined later, for loading a URL

from victim_site.com (denoted as vtm). The calculation

requires another domain reference_site_1.com (ref1) that we

register in advance. The attack page first includes an empty

page from ref1, then repeatedly creates two iframes navigating

to ref1 and vtm, and measures their loading times in their onload

event handlers, then removes the iframes. Note that the two

iframes are created sequentially – the second iframe is created

only after the first one fires its load event. This avoids the

interference between the two measurements. The explanation of

this code is given next.

Network jitter. In a real-world scenario, the network jitter

can easily add hundreds of milliseconds, seriously affecting the

timing accuracy. There are techniques to avoid the network

jitter. For example, we use the “unsafe port” technique as

follows. Chromium defines a list of unsafe ports for HTTP(S)

requests, including port 1, 22, 23, 25, etc. Requesting a URL

with an unsafe port would be early terminated – it still initializes

a renderer process as if it is navigating to an ordinary page, but

does not make actual network requests. In this way, we can

reliably measure renderer initialization time by completely

avoiding the effect of network jitter. In the rest of this paper,

when we use the phrase “loading a URL”, it means “loading a

URL with an unsafe port”, and the phrase “loading a page”

means “loading a valid page”. In Section 5.2, we will show that

the attack does not fundamentally depend on using an unsafe

port. The attacker can utilize the browser’s disk cache to avoid

the network jitter effectively. The attacker script can load a

static resource in the victim site (e.g., favicon.ico or robots.txt)

for the first time. All subsequent loadings of this resource will

hit the disk cache without causing any network request.

Local machine fluctuation. The local machine fluctuation,

either due to unrelated sites' activities, or other programs

running on host OS, can interfere with the timing. To minimize

victim1.com tab victim2.com tab attacker tab

attacker tab

script

invisible
iframe

Figure 1: The attack scenario

4

the impact, we repeat the measurement for 10 times, take the

median value of each frame’s loading time as final result. Then

we calculate a relative time for loading a vtm URL, using

Equation 1 with pseudo code in Listing 1.

𝑟𝑣𝑡𝑚 =
loadingTime(𝑣𝑡𝑚)

loadingTime(𝑟𝑒𝑓1)

Equation 1: Calculation of the relative time for loading vtm

When multiple sites are loaded together, they are both

slowed down if there is a temporary surge in CPU usage. In this

situation, the victim site’s absolute loading time can increase

significantly, but the relative loading time is much more stable.

3.3 The attack algorithm

Baseline. The goal of the baseline measurements is to

obtain rnp and rbg. The former, in which “np” stands for “not-

present”, is the relative time for loading a URL of a site when

the renderer process for the site has not been created yet. In

other words, no other tab has loaded any page from this site yet.

The latter is the relative time for loading a URL of a site when

the renderer process for the site has been created to render an

existing page that is currently invisible (“bg” for “background”).

The calculation of rnp is done using Equation 1, in which

vtm is replaced by another domain reference_site_2.com (ref2)

that we register. Because ref2 is a domain that no user knows

about, it is valid to assume that it has not be present in the

browser before our attack script loads it.

The algorithm can now calculate rbg. To do it, the script

creates another invisible iframe to load ref2 again. Same as the

measurement for rnp, Equation 1 is used with vtm replaced by

ref2. The measurement result is rbg. The value is different from

rnp, because the renderer process for ref2 has already existed

prior to this measurement, i.e., rbg does not include the time for

renderer process creation. Moreover, since both measurements

are done using invisible iframes, no time is consumed due to

user interface (UI) functionalities. We will explain that the UI

time allows us to differentiate foreground and background tabs.

After obtaining rnp and rbg, we store their values in cookies

for later measurements. Note that the relative loading time (𝑟)
differs across different machines and operating systems, but it

is stable across different measurement runs on the same

installation of Chromium. Therefore, for each victim browser,

the baseline measurements only need to be performed once.

First run. With the baseline results in the cookies, the

attack starts. It uses the invisible iframe (as shown in Figure 1)

to load a URL of vtm. Equation 1 gives the value of rvtm. Figure

2 shows our conjectured distribution of rvtm. The X-axis is for

rvtm, and the Y-axis represents the websites in the test set. If the

victim site is not present, rvtm should be close to rnp. In the figure,

the left stripe indicates the range (rbg ± threshold), in which

threshold is anticipated to be very small. We conjecture that,

given a site vtm in the test set, if there is already a background

tab containing a page from vtm, rvtm should usually fall into the

left stripe. Similarly, if no tab contains a page from vtm, rvtm

should usually fall into the right stripe (rnp ± threshold), which

is anticipated not to overlap with the left stripe. However, if it

is the foreground tab that currently renders a page from vtm, we

do not know where the measured relative time will fall in the

figure, because the time due to UI functionalities varies

significantly depending on the page’s complexity. Therefore,

we use the shaded area to indicate the range of rvtm in this

situation, which overlaps with the two stripes. If a measurement

does not fall into the two stripes, it indicates that the foreground

tab is rendering a page from the site vtm; if it does, the attack

script needs to use the second measurement, described next, to

differentiate the situations.

Second run. Two cases need the second run.

Case 1: If rvtm falls into the left stripe, it indicates that a

page from vtm has already been loaded into one of the tabs, but

it is not clear whether the tab is in the foreground or not. We

will explain in Section 4.4.3 that Chromium assigns a higher

process priority for the foreground renderer, which helps the

foreground renderer to maintain its responsiveness when the

CPU is under a heavy pressure. Our attack exploits this timing

channel to differentiate the “foreground” and “background”

situations. It is accomplished as follows. To generate CPU

pressure, we use an iframe to include a helper page from another

domain (so that it runs in a renderer process different from the

attack page) which creates multiple JavaScript workers running

in an infinite loop to give the CPU a heavy pressure. The content

of the helper page is unimportant. Under the CPU pressure, a

foreground renderer’s responsiveness is degraded much less as

compared to a background renderer, thanks to Chromium’s

process priority strategy (additional details in section 4.4.4).

Referring to Equation 1, since ref1 is known to be in the

INIT: <iframe src=”http://reference_site_1.com/empty.html”>

REPEAT:

time_0 = performance.now();

<iframe src=”http://reference_site_1.com:1”

onload=”time_ref = performance.now()”>

<iframe src=”http://victim_site.com:1” onload=”time_vtm =

performance.now()”>

/* Note that the two iframes are loaded sequentially, so

Equation 1 is calculated below. */

r = (time_vtm – time_ref) / (time_ref – time_0)

Listing 1: iframe loading time measurement

Relative loading
time (𝑟𝑣𝑡𝑚)

𝑟 𝑟

Foreground

Background
Not present

Foreground

Foreground/background
overlapping
→ 2nd run

Foreground/not-present
overlapping
→ 2nd run

W
eb

si
te

s
in

 t
h

e
te

st
 s

et

Figure 2: Conjectured distribution of rvtm from first run

5

background, if the measurement result, denoted as r’vtm, does

not decrease noticeably, it indicates that vtm is also in the

background. Otherwise, it is in the foreground.

Figure 3 shows the conjectured distribution of the

measurements in the space using the values of the first and

second runs as the two dimensions. The effectiveness of the

attack depends on how well the space can be partitioned into

two regions, so that most BG dots are in one region, and most

FG dots are in the other. As we will show in Section 5, a

straightforward binary classification using SVM (Support

Vector Machine) is already effective. It simply partitions the

space using a straight line. We will report the precision and

recall rates in Section 5.

Case 2: If rvtm of the first run falls into the right stripe in

Figure 2, we need to determine whether this is a “foreground”

or “not-present” situation. The timing channel that our attack

exploits is the renderer’s HTML parsing performance. We will

show in Section 4.4.5 that, in the period shortly after a renderer

is created, its HTML parsing performance is considerably lower

than that of a renderer already running for a while. This enables

a robust measurement to differentiate between the “foreground”

and “not-present” situations. The measurement, denoted as

r’’vtm in Equation 2, uses three iframes. The first of them loads

a URL of ref1, same as the basic operation described in Section

3.2. After ref1 finishes loading, the other two iframes are added

to the page at once, with each loading a URL of vtm. The

loading times of the two vtm iframes are denoted as

loadingTime(vtm) and loadingTime’(vtm). Deferring many

technical details to Section 4.4.5, we will explain that the

denominator loadingTime(vtm) measures the time of the entire

iframe loading, while the numerator (loadingTime’(vtm) -

loadingTime(vtm)) measures the HTML parsing time, which is

the final stage of the iframe loading.

𝑟𝑣𝑡𝑚
′′ =

loadingTime′(𝑣𝑡𝑚) − loadingTime(𝑣𝑡𝑚)

loadingTime(𝑣𝑡𝑚)

Equation 2: Relative time for the HTML parsing

A higher r’’vtm indicates a longer HTML parsing time, i.e.,

a lower HTML parsing performance, which indicates that the

renderer is newly created (most likely due to our measurements).

Hence it is classified as a “not-present” situation. On the other

hand, a lower r’’vtm indicates the renderer has existed for a while

prior to our measurements. Since we are in case 2, this means

the “foreground” situation. Similar to case 1, a conjectured

distribution for case 2 is shown in Figure 4, in which the Y-axis

represents r’’vtm.

Pseudo code. The pseudo code in Listing 2 summarizes the

attack algorithm, including baseline, the first run, and the two

cases in the second run. The function calculate_SVM_params

calculates the separating hyperplane (i.e., the dashed lines) in

Figure 3 and Figure 4. Each result is defined by two parameters

A and B. Because the SVM classifier is pretrained, this function

only needs to do a quick adaption with the victim’s baseline

values r_np and r_bg to target the victim browser. The value

#CPU is the number of CPU cores on the victim’s computer. The

API navigator.hardwareConcurrency provides the value.

Empirically, we find creating one fewer JavaScript workers

than CPU cores can apply an adequate CPU pressure to the

victim renderer, without making the attack page unresponsive.

Multiple windows. It is worth noting that this section

describes the one-window scenario, for the purpose of

simplicity. If the victim user opens multiple windows, it is

possible that the victim site is rendered by multiple foreground

tabs, which can (but not necessarily) be handled by different

Relative loading time, 1st run (𝑟𝑣𝑡𝑚)

Foreground

Background

R
el

at
iv

e
lo

ad
in

g
ti

m
e,

 2
n

d
 r

u
n

 (
)

𝑟
Figure 3: Conjectured distribution of rvtm and r’vtm

 Relative loading time, 1st run (𝑟𝑣𝑡𝑚)

R
el

at
iv

e
lo

ad
in

g
ti

m
e,

 2
n

d
 r

u
n

 (
)

𝑟

Foreground

Not present

Figure 4: Conjectured distribution of rvtm and r’’vtm

const: DELTA
r_np, r_bg = load_baseline_results()
if r_np is None or r_bg is None {
 r_np = equation_one(“reference_site_2.com”)
 create_invisible_iframe(“reference_site_2.com”)
 r_bg = equation_one(“reference_site_2.com”)
 save_baseline_results(r_np, r_bg)
}
a_1, b_1, a_2, b_2 = calculate_SVM_params(r_np, r_bg)
r_vtm = equation_one(“victim_site.com”)
if abs(r_vtm – r_bg) < DELTA {
 create_invisible_iframe(“helper_site.com”, workers = #CPU-1)
 r_vtm_1 = equation_one(“victim_site.com”)
 if a_1 * r_vtm + b_1 * r_vtm_1 < 1 :
 output(“foreground”)
 else:
 output(“background”)
} elif abs(r_vtm – r_np) < DELTA {
 r_vtm_2 = equation_two(“victim_site.com”)
 if a_2 * r_vtm + b_2 * r_vtm_2 < 1 :
 output(“foreground”)
 else:
 output(“not present”)
} else:
 output(“foreground”)

Listing 2: The attack algorithm in pseudo code

6

renderers. When this situation happens, it will be observable as

𝑟𝑣𝑡𝑚 (i.e., the first run value) jumping between multiple values,

with each value reflecting the page complexity of one

foreground tab. We will further explain this in Section 4.4.2.

3.4 Batch testing for presence of target sites

The above steps describe how to monitor a single site. In

fact, the first run can be done in a batch manner for a set of sites

(in our experiment, we do it for 500 sites within one minute).

This allows the attacker to know which sites in a large set of

target sites are present. Admittedly, the site in the foreground

tab has a small possibility to be detected as not present, if it

happens to have the FG-NP overlapping. However, because

there is only one foreground tab per window, misidentifying an

FG case as an NP case has a very small impact on the overall

accuracy of the batch test. Moreover, if the attacker really wants

to minimize the chance of misclassification, he can build a list

prior to the attack, which contains all the target sites having the

FG-NP overlapping. These sites need the “second run, case 2”

test after the batch test.

The purpose of the batch test is to quickly narrow down to

the present sites, so that the attack script can monitor them

closely with the more expensive “second run” techniques.

There are technical details to make the batch as fast and

accurate as possible. They are summarized below:

(1) It is feasible to measure two sites in parallel without

making the browser less responsive. Responsiveness is a

requirement for the accuracy of the measurements. Of course,

maintaining the responsiveness also makes the attack stealthy –

a normal user is unlikely to notice its existence.

(2) The basic operation described in Section 3.2 is used as

a measurement run, which gives the rvtm value. Given the time

budget, our strategy is to spend more measurement runs on sites

that are more likely present. Suppose the set contains 500 target

sites. The algorithm is: all 500 sites are measured once; among

which the 250 sites with lower rvtm values are measured again,

among which 125 sites with lower rvtm values are measured

again, and so on, until the number of sites gets to 1. With this

strategy, the average number of measurements for a single site

is 2, but low rvtm sites (i.e., the likely-present sites) are measured

many times. We find that it results in a good accuracy within

the small time budget.

4 Deeper into Chromium’s Design and Code
Both the algorithm and the detailed steps described in

Section 3 are the result of our deep investigations about cross-

process timing characteristics of Chromium, which is the focus

of this section. It is worth emphasizing that timing differences

are not hard to find when we broadly investigate browser

behaviors, but identifying the robustly exploitable ones is the

key in our research.

4.1 Investigation approach and tools

The codebase of Chromium has over 25 million lines of

code. To study the timing issues introduced by site isolation, we

start from understanding the major components in the

Chromium architecture and how they interact. It requires a great

amount of effort to read standards and developers’ forums/

documentations, and to step through the actual code. The effort

enables us to locate the focused areas related to cross-site

communication, which is described in Section 4.2 and Section

4.3. The detailed investigations are described in Section 4.4,

which delves into the Chromium’s internal to explain why the

attack in Section 3.3 is effective and robust.

Besides reading documentations and code, we use and

develop tools for the investigation. First, we use LibClang to

parse Chromium’s source code, and create an index of tokens

and literals, which are mapped to their locations in source files.

When we try to locate the code responsible for a behavior of

Chromium, a keyword search in this index gives us a short list

of possible locations in source code. For those functions and

variables that we suspect to leak sensitive information, we first

recursively identify where it is referenced using this index, skip

those with a limited scope that does not involve any sensitive

information. Then, we add instrumentation code to the function

under investigation to get the stack trace when it is invoked.

After building and running the instrumented version, we

convert memory addresses in the stack trace to locations in

source files, utilizing the DWARF debug information compiled

into Chromium’s binary. This enables us to map the attacker

invoked behaviors to their underlying code paths.

4.2 Cross-site communication

The essence of the attack is that the attacker measures

timing characteristics of the behaviors of the victim-site’s

renderer process. It is important to identify the mechanisms for

cross-site communications. Given Chromium’s huge codebase,

the investigation could easily become aimless. What we realize

is that IPC is a highly desirable layer for our investigation,

because: (1) since sites are isolated by processes, all cross-site

communications need to be translated into IPC calls; (2)

Chromium currently has two IPC modules – legacy IPC and the

mojo IPC, and is gradually migrating from the former to the

latter. The fact that IPC can migrate suggests that the IPC

interface is relatively clean, allowing us to better understand

and runtime-trace the IPC calls; (3) although the number of IPC

message types is big, it is still feasible to enumerate them.

Therefore, it is feasible to achieve completeness if researchers

continue in the direction we have been taking.

Specifically, we insert a hook to the function used to create

mojo IPC connections, and capture 38 mojo receivers and 53

mojo remotes bound by any of the renderers during a browsing

session. (A mojo receiver is a group of functions callable by a

remote process, while a mojo remote is a proxy to a group of

functions implemented by a remote receiver.) Among them, we

identify a mojo receiver and a remote that carry all legacy IPC

messages, as a part of the transition from the legacy IPC to the

mojo IPC. We find no direct IPC connections between renderers,

which means all communications between renderers go through

browser process. With static analysis, we identify 768 legacy

IPC message types, each representing an action that can be

invoked, or a type of data that can be sent between processes.

7

Focusing on IPC helps us narrow the investigation space.

We study every cross-site communication with a corresponding

IPC interface pair, one from renderer to browser, and the other

from browser to renderer. Figure 5 highlights this space in

Chromium’s architecture, which is obviously a great reduction

from Chromium’s 25 million lines of code. In the following

subsections, we present our findings in this space.

4.3 PostMessage

As postMessage is one of the few legitimate ways of cross-

origin communication defined by HTML standard [14], and

cross-site interaction is a subset of cross-origin interaction, we

use it as a good entry point to understand the implementation-

level changes introduced by site isolation. Note that

postMessage is not used in our attack described in section 3, but

it guides our investigation and can be a building block for future

cross-site attacks that target implementation-level weaknesses.

Defined by the HTML standard, postMessage is a method

of the Window object. Internally, Chromium implements a

DOMWindow class, with a member function postMessage. After

site isolation is implemented, postMessage can be classified

into 3 cases: (1) cross-site, (2) cross-origin but same-site, and

(3) same-origin. Based on public documentations, we infer that,

before site isolation, Chromium’s postMessage implementation

checks the message and the recipient origin as required by the

HTML standard, but there is no distinction between case (1) and

(2). At implementation level, this distinction is made by

deriving two subclasses from DOMWindow, which are named

LocalDOMWindow and RemoteDOMWindow. The former lives

within a renderer and inherits the origin check mechanism from

the base class DOMWindow. The latter is conceptually a proxy

to a LocalDOMWindow that lives in another renderer, while the

data is forwarded by the browser process, as there are no direct

communication channels between renderers. The browser

process checks a message’s target site to deliver it to the right

renderer, which checks the message’s target origin before

passing it to the onmessage event handler.

The understanding of postMessage guides our study about

more complex cross-site communication mechanisms, which

are presented in the following subsections. They all share

similarities with postMessage: the browser process is only

responsible for delivering the cross-site message to the right

renderer, so that its handling logic is kept minimal. We find that

the amount of new code added by site isolation is relatively

small for handling a cross-site message. It is a thin wrapper

layer calling into the existing code that predates site isolation.

Therefore, our study of postMessage gives an important insight:

the study about timing issues should not only focus on the thin

layer of site isolation code, but needs to go deeper into the

existing code to analyze detailed timing characteristics of the

renderer’s behaviors, some of which are described next.

4.4 Cross-site iframe navigation

Even before postMessage was introduced into browsers,

embedding a web page from a different site had already been a

mechanism for cross-site communication. Our attack shown in

Section 3 uses this mechanism – the host page requests the

embedded iframe to load and render a given URL, which is a

complex process for modern browsers. Next, we show what

happens inside a renderer when it loads an iframe, and what

kinds of internal states might be leaked to the host page.

4.4.1 Renderer allocation

Cross-site iframe navigation begins with the host page’s

renderer sending a BeginNavigation IPC request to the browser

(i.e., the browser process). After some validity checks, the

browser updates its frame-process mapping, then dispatches the

request to the embedded page’s renderer, like in postMessage.

The browser is responsible for keeping track of a site’s

renderer processes. It first tries to assign the navigation task to

a visible (i.e., on the foreground tab) renderer hosting that site.

When there are multiple visible renderers (i.e., when the user

opens multiple windows, there can be multiple foreground tabs),

it randomly selects one. If it cannot find a visible renderer, it

then tries to randomly select a hidden (i.e., on a background tab)

renderer. If it fails again, then the browser launches a new

renderer process to handle this navigation request.

Since launching a new process introduces a millisecond-

level latency, it is observable by the host page from onload

event handler. Tens of milliseconds (around 60ms on a modern

Intel i7 CPU) saved on a cross-site iframe navigation indicates

that the target site already has an instance, which is either a tab

or an iframe. This enables a web attacker to detect any other

site’s existence on the user’s browser, without requiring the

consent from the user or the target site.

Note that the aforementioned renderer reuse policy only

applies to iframe navigation. Navigation by clicking on a link,

or directly entering a URL into address bar is subject to different

policies. In these situations, Chromium can create a new

renderer even if there is an existing same-site renderer.

Therefore, site isolation does not mean a one-to-one mapping

between sites and renderers, since Chromium does not always

attempt to reuse an existing renderer for all types of navigations.

4.4.2 RenderView initialization

Either by launching a new renderer or reusing an existing

one, the browser can always find a renderer to handle the iframe

navigation. Then, it passes on all the necessary information to

the renderer through CreateView IPC interface. (Note that if the

host page already has an iframe of embedded site, creating a

second iframe of that site will not trigger CreateView.)

IPC host

- postMessage
- iframe navigation
- iframe focus, size, visibility, …

renderer process

renderer process

browser process
network file systemUIGPU ……

Blink V8 compositor …

IPC

Figure 5: focused area of our investigation

8

When we investigate the process of creating a RenderView,

we are particularly interested in whether the process involves

existing frames in the renderer. If this is the case, it may reveal

information of other tabs or iframes of that site. We find that,

inside CreateView, there is a call to blink::SetSelectionColors,

which is a static function of Blink (Chromium’s rendering

engine) that updates a global setting shared by all frames in the

renderer. Listing 3 shows a pseudo code snippet based on

Chromium’s source code. As the code shows, after it updates

global color setting, it notifies every frame through its

PlatformColorsChanged method. In this way, it affects all

frames in a renderer, not only the newly-created frame.

Note that every frame has updated its selection colors, the

renderer needs to recalculate the style for each element in each

frame. However, to avoid unnecessary computation, it would

only redraw visible frames. The time to redraw a visible frame

depends on its visual complexity. Complex pages typically

found on video sites (e.g., YouTube) can consume additional

hundreds of milliseconds because of this when it is visible.

This behavior has two implications. First, a web attacker

can detect if a victim site is on the user’s foreground tab, as long

as the page is reasonably complex. Second, it also reveals the

visual complexity of a victim site’s page, which suggests the

type of content the user is currently viewing.

Multiple frames. The victim site may have multiple

frames that belong to different renderers. In the simple case,

when it has only one visible frame, as described in Section 4.4.1,

Chromium always selects the renderer hosting this visible frame

for a new iframe navigation task. Therefore, the redrawing time

of that visible frame will always be reflected when we create a

new iframe of that site. However, when the user opens multiple

windows, there can be multiple visible frames of victim site. If

the visible frames belong to the same renderer, the redrawing

time will be cumulative (i.e., reflecting the combined

complexity of all visible frames) when we create a new iframe.

Otherwise, if they belong to different renderers, as described in

Section 4.4.1, Chromium will randomly select a renderer from

them when a new iframe is created. In this situation, every time

an iframe navigation occurs, it can indicate the redrawing time

of visible frames in a different renderer.

4.4.3 Renderer state

A renderer process has two pairs of states: visible-hidden

and foreground-background. These two pairs of states are

shared by all frames handled by a renderer. A renderer is visible

whenever one of its frames is visible, and a renderer is

foreground if it is visible or playing sounds. When a renderer is

in foreground state, its process priority is set to high. The high

priority can speed up iframe loading, and the difference

becomes more noticeable when the system load is high.

Note that a renderer’s visibility can affect its iframe loading

time in both directions, depending on the visual complexity of

the contained page. When comparing the times for an invisible

frame and a visible frame to load the same page, we can see that

the former is noticeably faster when the page is complex (as

discussed in Section 4.4.2), and the latter is noticeably faster

when the page is simple. These two observations combined

enable a web attacker to detect the visibility of another site with

a high confidence.

4.4.4 Load event

When the embedded page of an iframe finishes loading, it

notifies the host page with a load event. For cross-site iframes,

this load event needs to cross process boundary to reach the host

page’s renderer. Similar to postMessage, the embedded page

sends a DispatchLoad request to browser process, which will

then dispatch the load event to the host page through another

IPC interface.

In other words, the iframe navigation in the attack scenario

is a two-way interaction between an attacker renderer and a

victim renderer. As Figure 6 shows, by observing the time

between BeginNavigation and DispatchLoad, the attacker can

infer the characteristics of the sequence of actions taken by the

victim renderer when navigating to an attacker-specified URL.

4.4.5 The HTML parsing performance

In previous subsections, we focus on identifying time-

consuming operations in a “full” iframe navigation, including

the initialization of renderer process and RenderView. As we

investigate deep into the code execution, we see that the iframe

loading time contains 5 stages. When multiple iframes of a site

are loaded concurrently, they are pipelined by the renderer, so

the stages of the loading tasks are interleaved.

Figure 7 shows a trace captured with Chromium’s trace

event profiling tool (screenshot of chrome://tracing). The texts

in the screenshot are too small to be legible, so we annotate the

key information above and below the screenshot. The trace is

generated from concurrently loading two URLs of the same site

into two iframes (referring to Section 3.2 for the meaning of

“loading a URL”). Suppose the two iframes fire the two onload

events at time1 and time2. It is easy to see that (time2 - time1)

indicates this renderer’s time consumed by stage 5 of the second

static void blink::SetSelectionColors() {

for (Page* page : AllPages()) {

for (Frame* frame = page->MainFrame(); frame != NULL; frame

= frame->Tree().TraverseNext()) {

/* update color setting here */

if (typeof(frame) == typeof(LocalFrame)) {

frame->GetDocument()->PlatformColorsChanged();

}}}}

Listing 3: global settings update in CreateView

attacker renderer victim renderer

BeginNavigation

Renderer process
initialization

RenderView
initialization

Process priority

DispatchLoad

Visible? Complexity?

Figure 6: timing about iframe navigation

9

concurrent task. Inspecting the call stack of stage 5 (which is

too small to read in Figure 7), we understand that the stage is

for HTML parsing, which means that the attacker can measure

the victim renderer’s HTML parsing performance. As described

in Section 3.3 (Case 2 of the Second Run), we rely on this

feature to distinguish between a newly-created renderer and a

long-existing one, as we observe that a newly-created renderer

spends noticeably more time for the HTML parsing.

5 Evaluations

5.1 Evaluation using Alexa top 3000 sites

To quantitatively measure the effectiveness of the attack,

we use Alexa top 3000 sites as our test set. We collect four

datasets for the evaluation, as described below.

5.1.1 Experiment setup and datasets

The browser is Chrome 87 running on Windows 10. The

datasets are collected on two machines. One is a desktop PC

with the specification Intel i7 8700 (6 cores, 12 threads @

3.2GHz), 16GB memory; the other is a laptop PC with the

specification Intel i7 5600U (2 cores, 4 threads @ 2.6GHz),

8GB memory. To represent different background workloads,

the datasets include the one-extra-tab and five-extra-tabs

scenarios. In the latter, the browser contains the attacker’s tab,

the victim’s tab, and five extra tabs loading five random sites

from Alexa top 1,000,000 sites. The former contains only one

such tab. The purpose is to confirm that our attack’s accuracy is

not affected by the number of extra tabs.

The evaluation is carried out using an automatic script. The

process for the five-extra-tabs scenario is:
(1) Start Chromium, open five new tabs to load the homepages of

five random sites from Alexa top 1,000,000 sites (tabs 1-5).

(2) Open a new tab for the homepage of a victim site (tab 6).

(3) Open another new tab, navigate to the attack page (tab 7).

(4) Switch to tab 1 to cause a BG situation. Measure rbg.

(5) Switch to tab 6 to cause an FG situation. Measure rfg.

(6) Close tab 6 to cause an NP situation. Measure rnp.

(7) Switch to tab 7, save output, exit Chromium. Go to (1).

The four datasets we collect are: (a) Desktop five-extra-

tabs, (b) Desktop one-extra-tab, (c) Laptop one-extra-tab, (d)

Laptop five-extra-tab. Datasets (a)(b)(c) are collected in

January 2021. Dataset (d) are collected in July 2021.

5.1.2 Results

The results of the four datasets are similar. Figure 8 ~

Figure 11 show the results of dataset-(a). These figures can be

viewed more clearly if color-printed. Figure 8 shows the

distribution of relative loading time (𝑟) in different situations:

“foreground (FG)”, “background (BG)” and “not-present (NP)”.

For every site foo.com, the script tries to visit http(s)://foo.com.

There are 225 sites not returning valid pages for the URLs,

because they do not exist or are temporarily inaccessible, so

dataset-(a) contains 2775 valid sites.

As expected, the rnp and rbg values of most sites fall into the

two narrow stripes. There are 21 sites having rnp and rbg values

that we consider as outliers. Even though most of the outlier

values are not reproducible upon re-measurements, we still

count them all against our accuracy. Also, we conservatively

assume that the accuracy for these websites is 0%, although a

blind guess of NP or BG would yield an accuracy better than

0%. Bearing this accuracy penalty, we remove the outliers, and

produce Figure 8 ~ Figure 11.

Background vs. not-present. Hiding the FG data points in

Figure 8, we produce Figure 9 to show the clear distinction in

the relative loading times for the BG and NP situations. The

accuracy shown in the figure is 100%. With the penalty due to

the outliers, the accuracy is (2775 – 21) / 2775 = 99.24%.

Foreground vs. background. The BG stripe is narrow.

There are 890 FG points falling into the BG stripe, which need

to be further analyzed by the “second run, case 1” method

described in Section 3.3. The method increases the CPU

pressure without causing unresponsiveness. As explained

earlier, the foreground renderer has a high process priority, so

the second-run measurement r’ tends to be lower in an FG

situation, as compared to a BG situation. Similar to the 21

outliers in the first run, we discard 10 outliers in the second run,

and count them against us with a 0% accuracy. Figure 10 shows

the hyperplane drawn by the SVM algorithm to separate the 880

BG points and the 880 FG points. The accuracy shown in the

figure is 93.47%. In summary, the end-to-end FG-BG accuracy

is (880 × 93.47% + (21 + 10) × 0% + (2775 – 880 – 21 – 10) ×

100%) / 2775 = 96.81%.

Foreground vs. not-present. Although the NP stripe is

wider than the BG stripe, there are only 43 FG points falling

into the NP stripe. They are further analyzed using the “second

run, case 2” method described in Section 3.3. It uses the HTML

parsing time to indicate the “freshness” of the renderer. The

method is highly effective. We do not need to remove any

outlier. Figure 11 shows that the SVM algorithm draws a

hyperplane, and all points are correctly separated. Therefore,

the end-to-end FG-NP accuracy is (43 × 100% + 21 × 0% +

(2775 – 43 – 21) × 100%) / 2775 = 99.24%.

Comparison of the four datasets. The figures for datasets

(b), (c) and (d) are shown in the appendix. The accuracy

numbers are shown below. Comparing dataset-(a) and dataset-

(b), we can see that the impact of the pages in the extra tabs on

the accuracy is too insignificant to be statistically meaningful.

Dataset-(c) is collected from the laptop PC less powerful than

the desktop PC for dataset-(a) and dataset-(b). The slight

decrease of the FG-BG accuracy (e.g., 91.81% in Dataset-(d))

t
i
m
e
1

t
i
m
e
2

RenderView
initialization

iframe 1,
stage 1

iframe 2,
stage 1

iframe 1,
stage 2

iframe 2,
stage 2

iframe 1,
stage 3

iframe 1,
stage 4

iframe 1,
stage 5

iframe 2,
stage 3

iframe 2,
stage 4

iframe 2,
stage 5

Figure 7: iframe loading pipeline (screenshot of chrome://tracing)

10

may suggest that our current setting for the CPU stressing is

slightly too heavy for the laptop, affecting the measurements.

 BG-NP FG-BG FG-NP

Dataset-(a) 99.24% 96.81% 99.24%

Dataset-(b) 99.36% 97.60% 99.36%

Dataset-(c) 99.24% 95.07% 98.72%

Dataset-(d) 99.22% 91.81% 98.99%

Average 99.26% 95.32% 99.08%

Other machines tested. In addition to the two desktop and

laptop machines, we also use several other machines with a

variety of specifications to do manual testing. We do not collect

datasets for the statistical evaluation, but only validate that the

same attack works on these machines. A subset of machines are

described in Table 1. The tests were performed from locations

in Asia and America. The environments included home,

university and corporate networks, with and without VPN.

Surface Book: i7-8650U @ 1.90GHz, 16GB RAM
Surface Pro 4: i5-7300U @ 2.60GHz, 8GB RAM
Surface Pro 3: i5-4300U @ 1.90GHz, 8GB RAM
HP Pavilion 690-0024: AMD Ryzen5-2400G @ 3.60GHz, 8GB RAM
ThinkPad T490: i7-8565U @ 1.80GHz, 16GB RAM
A desktop machine: Intel Xeon E5-1620 v4 @ 3.50GHz, 32GB RAM

Table 1: A subset of machines used for manual testing

5.2 Using the disk-cache instead of the unsafe port

In Section 3.2, we mention that the basic operation does not

fundamentally depend on the “unsafe port” behavior. Another

technique to avoid the network jitter is to use the disk cache.

The effect of the disk cache is that, if a resource is in the cache,

a subsequent loading of the resource will be completed without

having any network request, which serves the same purpose as

the “unsafe port” behavior.

The requirements for the resource. The attack requires a

resource that satisfies the following requirements:

(1) X-Frame-Options and Content-Security-Policy allow

the resource to be framed inside a page in another site;

(2) The cache-control header should allow it to be cached;

(3) It does not cause other files to be loaded. For example,

an HTML file containing other resources is not suitable.

Finding these resources requires crawling page contents of

the target site. To give a lower bound of the feasibility of the

attack, we crawl every site’s front page for such resources. In

addition, we try to find two common resources on the site,

favicon.ico and robots.txt. The former is the small icon image

for a website, and the latter is the file to tell web crawlers how

the site owner wants them to behave.

We use Alexa top 1000 sites for the experiment. There are

68 sites not returning a valid page visiting http(s)://foo.com,

where foo is the name of each site. For the remaining 932 sites,

we find suitable resources on 760 sites. It does not mean that

the other 172 sites do not have suitable resources, because our

crawling is a rather shallow one, which does not crawl into inner

pages and subdomains of the target site.

Figure 8: loading time distribution, dataset-(a)

Figure 9: Background vs not-present, dataset-(a)

Figure 10: foreground vs background, dataset-(a)

Figure 11: foreground vs not-present, dataset-(a)

11

Attack. The attack has only two differences from the

“unsafe port” attack in Section 3.2: (1) instead of loading the

URL with an unsafe port, it loads the URL of the resource; (2)

before any measurement, the attack script visits the resource

once to put the resource in the disk cache. As before, we remove

7 data points (or 1%) as outliers. Figure 12 shows the values of

the remaining 753 sites. The BG-NP differentiation is still

100%. The number of FG-BG overlapping is 157 (or 20.85%),

and the number of FG-NP overlapping is 82 (or 10.89%).

The second run is less convenient than using the unsafe port

approach, because the resources are site-specific. When using

the unsafe port approach, we conveniently put all the sites

together to get an overall distribution. However, when using the

site-specific resources, we lose the convenience, and need to get

a distribution result for every site. Figure 14 shows three cases

we study, each showing 92 data points of a site sampled during

a 16-hour duration. The cases show that the measurements r’
and r’’ remain clearly effective when we use the disk-cache

mechanism. Admittedly, profiling each site is a substantial

inconvenience for the attacker. However, it is a one-time effort,

which is not a fundamental mitigating factor of the threat.

5.3 Evaluation using different browsers

The attack is evaluated using different browsers for two

purposes: (1) to present a convincing evidence that the enabler

of the attack is indeed the site isolation mechanism; (2) to

evaluate the attack on Microsoft Edge and Firefox.

Finding the attack-enabling version of Chromium.

There are a great number of changes checked into the

Chromium codebase. To experimentally confirm that our attack

is enabled by the site isolation mechanism, not by any other

changes, we compile and test a wide range of Chromium

versions using a “binary search”, based on whether a version is

vulnerable or not. Figure 13 shows the versions that our attack is

tested against. The binary search ends up with a tight range

between version 68.0.3402.0 and 68.0.3403.0. The Chromium

changelog confirms that site isolation became enabled by

default at version 68.0.3403.0 [26].

Microsoft Edge. As Microsoft Edge has been rebuilt based

on Chromium in 2019, it also inherits site isolation from

Chromium. We test the attack on Edge 83.0.478.56 running on

Windows 10, and observe a similar pattern of 𝑟, compared with

Chrome 83.0.4103.116 running on the same machine and OS.

Table 2 shows the values of some top sites. For Microsoft Edge,

the 𝑟 values in the “not present” and “background” situations

are also distributed in two narrow stripes, and the 𝑟 values of

the “foreground” situation also reflect their page complexity.

These distribution characteristics can be seen in Table 2.

Browser Site 𝑟 𝑟𝑓 𝑟

Edge google.com 4.351909 1.080008 0.973337

amazon.com 4.276265 2.985395 0.995525

youtube.com 4.374174 13.482331 1.007836

Chrome google.com 3.454074 1.352866 1.326693

amazon.com 3.582909 2.889311 1.140386

youtube.com 3.887231 13.405612 1.122806

Table 2: Microsoft Edge compared with Chrome

Firefox. Site isolation is currently an experimental feature

in Firefox’s nightly build. To enable it, the fission.autostart
option needs to be set true. Firefox uses a different rendering

engine, namely Gecko. As we showed in Sections 3 and 4, our

attack is a result of a deep and broad investigation about

Chromium’s internal. Obviously, the same investigation needs

to be conducted for Gecko to see whether our attack can be fully

reproduced against Firefox. Although we have not investigated

deeply about Gecko, we have already reproduced the first run,

which allows the attacker to detect the presence of target sites.

We use the disk-cache approach in this evaluation. We

identify 730 sites in Alexa top 1000 sites as the dataset. Figure

Figure 12: the attack using disk cache

version (build)

Not vulnerable

Vulnerable

Figure 13: Chromium versions that we test

 gamespot.com vnexpress.net house365.com
 (FG-NP) (FG-NP) (FG-BG)

Figure 14: individual cases of the second run using cached resources

Figure 15: NP and BG values when Firefox’s Fission is on

12

15 shows that all the BG and NP points are separated, without

removing any outlier. Compared to Chromium’s distribution,

there are two differences: (1) the Firefox distributions are wider.

We believe that this is due to the experimental nature of the

feature. The feature is still premature at this point, as we see

serious performance degradation when it is turned on. (2) The

precision of Firefox’s timing API is reduced to one millisecond

[29], as a mitigation against Meltdown and Spectre. This causes

the values to be more “quantized” than those in Chromium.

5.4 Batch testing for the Alexa top 500 websites

We evaluate the accuracy of the batching method described

in Section 3.4. The target-site set is the Alexa top 500 sites. In

every evaluation, we randomly open 5 sites from the set, and

run the presence test through the 500 sites to see the accuracy.

We repeat the experiment for 104 runs. On average, it takes

56.536 seconds to complete the batch on a test machine with an

Intel i7-8565U @ 1.8GHz and 16GB of RAM. Table 3 shows

the numbers of runs resulting in 0 to 3 false positives and false

negatives. Among the 104 runs, 99 of them (95.19%) produce

no false positives, and 86 of them (82.69%) produce no false

negatives. We consider these a high accuracy for the one-

minute time budget.

Number of errors 0 1 2 3

False positive 99/104 4/104 1/104 0/104

False negative 86/104 9/104 7/104 2/104

 Table 3: Results of the batch testing for Alexa top 500 sites

6 Potential Mitigations and Responsible Disclosure
This section discusses potential mitigations, and report our

interactions with the Chrome and Edge teams.

6.1 Potential mitigations

The mitigation approaches can be considered under three

categories: (1) adding noise or decreasing the precision of time-

measurement APIs; (2) finer-grained process boundaries; (3)

not reusing processes across tabs. We discuss these approaches

below, and emphasize that they are all tradeoffs between

effectiveness, performance and functionality.

Mitigation 1: adding noise or decreasing the precision

of time-measurement APIs. A reasonable mitigation is to add

a random delay during the renderer process creation. A

moderate level of random delay will make the FG-NP and the

FG-BG detections harder. However, to cause an effective BG-

NP overlapping, the delay needs to be hundreds of milliseconds,

which may be a difficult tradeoff in practice. Another approach,

which does not incur any performance overhead, is to make the

time-measurement API less accurate. Earlier in Figure 15, we

see that Firefox lowers the API precision to one millisecond to

mitigate the Meltdown and Spectre attack. Similarly, Microsoft

Edge and Internet Explorer lowered the precision to 20 µs [9].

In our case, the resolution would need to be lowered to

tens/hundreds of milliseconds. Again, it is a difficult tradeoff.

Mitigation 2: finer-grained process boundaries. One of

the next steps of the site isolation effort is to explore the

feasibility of “origin isolation”, which offers finer grained

process boundaries (see Section 6.3 of Reis et al. [19]). Under

“origin isolation”, the attacker will need to hypothesize more

potential targets, because the number of origins is larger than

the number of sites, so the target-sites list needs to be large.

“Origin isolation” can be challenging to design and implement,

considering its resource and performance requirements.

Mitigation 3: not reusing processes across tabs. A good

mitigation would be to prohibit tabs from sharing processes.

The challenge, as we explain in Section 2, is the scarcity of

processes. We see two usability and programmability issues of

this approach. First, it will greatly limit the number of tabs the

user can open for sites like CNN.com and Foxnews.com, which

contains many cross-site iframe. Second, web technologies are

sophisticated. It is necessary for platform companies, e.g.,

advertisement, social networking, cloud, and CDN companies,

to provide web middleware. If the reusing is prohibited, popular

middleware will be restrained from using iframes, as it will

increase the number of processes in every tab that contains it.

6.2 Responsible disclosure

We reported our findings and shared a version of this paper

to Chrome and Edge team in early July 2020. We received

confirmation of the issue from the Edge team, and are having

several rounds of discussions with the Chrome team and the

Edge team on possible mitigations.

The Chrome team initially asked us to evaluate a proposal:

to isolate error pages in a separate process. This would make

the “unsafe port” technique no longer effective. The proposal

motivated us to construct the disk-cache attack described in

Section 5.2. The Chrome team acknowledged that the proposal

would not completely address the core problem.

We suggest to the Chrome team a mitigation for the FB-

BG detection: to add an early exit to blink::SetSelectionColors

(which is called by CreateView, as shown in Section 4.4.2). If

the selection colors of the newly created RenderView has no

change from the renderer’s existing settings, it can skip the style

recalculation, thus avoid exposing the currently visible frame.

Chrome team expressed the intention to consider it.

The Chrome team proposed an idea related to mitigation 3.

It was to avoid reusing a process for any top-level frame, but

still allow same-site iframes to reuse a process. This would

prevent the iframes on the attacker page from residing in the

same process as any top-level frame in another tab. We

considered this a helpful mitigation. However, the Chrome team

admitted that the attacker could fingerprint a victim page based

on the sites in all its iframes. Since the proposed mitigation does

not prevent the detection of these sites’ presence in the iframes,

the attacker may still infer the site in the top-level frame.

Status update. The Chrome team gave us an update in July

2021. They had made some progress in putting error pages in

different processes. An experiment about the revised process

reuse policy, as described in the paragraph above, had been

scheduled, but had a dependency on another experiment that the

team was undertaking. Therefore, it would take more time to

get a conclusive result about the new policy.

13

7 Related work
Section 2 has described the related literature about site

isolation, so we do not include them in this section. There are

many research papers about browser’s timing channel and other

side-channels, summarized below.

Timing-based cross-tab page identification. Using the

timing channel to infer a page on another tab has been shown

before, which is directly related to our work. Vila and Köpf [22]

showed that the event loop of the browser process (called the

host process in the paper) allowed a timing-based page-

identification attack, so that the attacker on one tab could

identify the page on another tab. Our work is different from Vila

and Köpf’s work in three aspects. First, site isolation is expected

as a countermeasure of Vila and Köpf’s attack, but is the enabler

of our attack. Second, the accuracy of our attack is much higher.

The accuracy of the cross-tab attack in [22] is 23%, measured

using 500 main pages from Alexa’s Top sites. Third, our test is

conducted with extra tabs rendering unrelated webpages, more

realistic than having only the attacker and victim tabs.

Another attempt for cross-tab page identification is by Kim

et al. [12]. It tries to use the temporal changes of memory

footprint sizes as the side channel to identify the very next site

visited after the attack starts. Although the attack shows

effectiveness under certain assumptions, the authors admit that

the assumptions are too friendly to attackers: no background

memory usage variation, no extra tab and a small sample set of

100 sites. They agree with other researchers’ assessment that

these assumptions may be unrealistic.

History sniffing – timing based. History sniffing is the

attack to determine if a page corresponding to a URL has been

visited by the user before. Cascading Style Sheet (CSS)

provides opportunities for this. Smith et al. show that the timing

of CSS Paint API can infer the value of the visited property of

a URL [21], which indicates whether the URL has been visited

before. (The original CSS-visited based attacks do not need to

exploit the timing channel. Janc and Olejnik have a paper about

the basic mechanism [10]. The problem has been fixed by all

major browsers.) Kotcher et al. use CSS filters to do image

transformations on every pixel in a target region on the screen.

The timing of every transformation allows the attacker to

determine the approximate color of the pixel [14]. The attacker

can thus “see” the color of a link to decide if the URL has been

visited. Along the same line of pixel-stealing, Andrysco et al.

discover that the multiply operation takes much longer to

complete when the operands are subnormal floating-point

numbers. The SVG filter, a type of CSS filter, can exploit the

timing difference to determine if a pixel is white or black [2].

History sniffing – using other side channels. Besides the

timing channel, other side channels also provide opportunities

for history sniffing. Lee et al. show that GPU’s memory is a side

channel, because one application’s data processed by the GPU

can be accessed by another application. As an example, they

show that when Chromium and Firefox turn on their GPU-

enabling options, an attacker program can infer whether a URL

has been visited before, based on the “webpage texture” left in

the GPU memory [15]. As mentioned above, paper [10]

references several early CSS-visited based attacks. They are not

based on timing channels.

Other browser side-channel studies. There are other side

channel consequences and studies in the literature. Lee et al.

discover that the new HTML5 functionality, AppCache, allows

a cross-site attacker to determine the login status of the victim

user, and an attacker outside a local network to determine if a

URL exists in the local network [16]. The AppCache side

channel is independently discovered by Goethem et al. [6], who

demonstrate the inference of certain user account attributes in

various social networks. Bortz et al. show that cross-site timing

can potentially reveal a user’s login status or the size of a user’s

hidden data (e.g., the approximate number of items in the

shopping cart) [4]. Sanchez-Rola et al. showed a timing-based

attack to enumerate the extensions installed in a browser, thus

fingerprint the browser for the user tracking purpose [20].

Besides the local side channels, researchers also study how to

reduce the network jitter when measuring the timing

characteristics from a remote machine. A recent work shows

that the relative timing of concurrent requests is more robust

against the network jitter than the traditional absolute timing [7].

Note that, our attack, either using the unsafe port or the disk

cache mechanism, avoids the network jitter.

8 Conclusions
We show that site isolation enables a robust timing attack,

which allows the attacker’s script to test which target sites are

loaded into the browser, and determine whether each loaded site

is in a foreground tab that interacts with the user. The attack is

a result of an in-depth investigation and experimentation about

a wide range of timing characteristics involving cross-site

interactions under site isolation. We get very high vulnerability

percentages about this issue, when evaluating it using the Alexa

Top 3000 websites. We also show that the attack can do the

presence test for the 500 sites altogether within roughly one

minute, achieving a high accuracy. The attack does not need any

special assumption, thus can be turned into a realistic privacy

threat in the general population.

The main challenge revealed by our work is the tension

between the scarcity of processes and the objective of site

isolation to separate cross-site frames in different processes. We

are working with the Google Chrome team and Microsoft Edge

team to propose and evaluate mitigation options.

Acknowledgments

We thank the anonymous reviewers for valuable feedbacks for

improving the paper. Michael Ens, Johnathan Norman, Charlie

Reis and Andrew Ritz of the Chrome and Edge teams offered

many detailed technical insights and discussions. Xian Zhang

and Xuan Feng helped improve the presentation. We also thank

Mia Chen for producing a video demo included in this paper.

14

References

[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell,

and Dawn Song. Towards a Formal Foundation of Web Security.

Proceedings of the 23rd IEEE Computer Security Foundations

Symposium, 2010

[2] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit

Jhala, Sorin Lerner, Hovav Shacham. On Subnormal Floating

Point and Abnormal Timing. Proceedings of the IEEE

Symposium on Security and Privacy (Oakland), May 2015

[3] Adam Barth, Collin Jackson, Charles Reis, and Google Chrome

Team. The Security Architecture of the Chromium Browser.

http://seclab.stanford.edu/websec/chromium/chromium-security-

architecture.pdf, 2008.
[4] Andrew Bortz, Dan Boneh, Palash Nandy. Exposing Private

Information by Timing Web Applications. Proceedings of the

International conference on World Wide Web (WWW), 2007

[5] Martin Brinkmann. Firefox 70: Site Isolation testing begins

officially. https://www.ghacks.net/2019/08/11/firefox-70-site-

isolation-testing-begins-officially/

[6] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The

clock is still ticking: Timing attacks in the modern web. In the

Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, 2015.

[7] Tom Van Goethem, Christina Pöpper, Wouter Joosen, Mathy

Vanhoef. Timeless Timing Attacks: Exploiting Concurrency to

Leak Secrets over Remote Connections. Proceedings of the

USENIX Security Symposium, 2020.

[8] Chris Grier, Shuo Tang, and Samuel T. King. Secure web browsing

with the OP web browser. Proceedings of the 2008 IEEE

Symposium on Security and Privacy (Oakland), May 2008.
[9] John Hazen. Mitigating speculative execution side-channel attacks

in Microsoft Edge and Internet Explorer.

https://blogs.windows.com/msedgedev/2018/01/03/speculative-

execution-mitigations-microsoft-edge-internet-explorer/

[10] Artur Janc, Lukasz Olejnik. Web Browser History Detection as a

Real-World Privacy Threat. In Proceedings of European

Symposium on Research in Computer Security 2010

[11] Yaoqi Jia, Zheng Leong Chua, Hong Hu, Shuo Chen, Prateek

Saxena, Zhenkai Liang. The "Web/Local" Boundary Is Fuzzy: A

Security Study of Chrome’s Process-based Sandboxing.

Proceedings of the ACM Conference on Computer and

Communications Security (CCS), October 2016

[12] Hyungsub Kim, Sangho Lee, Jong Kim. Inferring browser activity

and status through remote monitoring of storage usage.

Proceedings of the 32nd Annual Conference on Computer Security

Applications (ACSAC), 2016

[13] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel

Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,

Thomas Prescher, Michael Schwarz, Yuval Yarom. Spectre

Attacks: Exploiting Speculative Execution. In the Proceedings of

the 40th IEEE Symposium on Security and Privacy, 2019.

[14] Robert Kotcher, Yutong Pei, Pranjal Jumde, Collin Jackson. Cross-

Origin Pixel Stealing: Timing Attacks Using CSS Filters.

Proceedings of the ACM Conference on Computer and

Communications Security, 2013

[15] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim.

Stealing Webpages Rendered on Your Browser by Exploiting GPU

Vulnerabilities. Proceedings of the IEEE Symposium on Security

and Privacy (S&P), 2014.

[16] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim.

Identifying Cross-origin Resource Status Using Application Cache.

Proceedings of the Network and Distributed System Security

Symposium (NDSS), 2015.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J.

Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M.

Hamburg. Meltdown: Reading Kernel Memory from User Space.

In the Proceedings of USENIX Security, 2018.

[18] Charles Reis, Steven Gribble. Isolating Web Programs in Modern

Browser Architectures. Proceedings of the 4th ACM European

conference on Computer systems (EuroSys), April 2009

[19] Charles Reis, Alexander Moshchuk, Nasko Oskov. Site Isolation:

Process Separation for Web Sites within the Browser. In the

Proceedings of the 28th USENIX Security Symposium. August,

2019. Santa Clara, CA, USA

[20] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti.

"Extension breakdown: Security analysis of browsers extension

resources control policies." In the Proceedings of the 26th USENIX

Security Symposium, 2017

[21] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown,

Deian Stefan. Browser history re:visited. In Proceedings of

USENIX Workshop on Offensive Technologies (WOOT), 2018

[22] Pepe Vila, and Boris Köpf. "Loophole: Timing attacks on shared

event loops in chrome." Proceedings of the 26th USENIX Security

Symposium (USENIX Security 17). 2017.

[23] Helen Wang, Chris Grier, Alexander Moshchuk, Samuel T. King,

Piali Choudhury, Herman Venter. The multi-principal OS

construction of the gazelle web browser. In Proceedings of the 18th

conference on USENIX security symposium, August 2009
[24] The Chromium Projects: Process Models. https://www.chromium

.org/developers/design-documents/process-models

[25] Cross-document message – HTML Standard. https://html.spec

.whatwg.org/multipage/web-messaging.html#web-messaging

[26] Log - 68.0.3402.0..68.0.3403.0 - chromium/src - Git at Google.

https://chromium.googlesource.com/chromium/src/+log/68.0.340

2.0..68.0.3403.0?pretty=fuller&n=10000

[27] Microsoft Edge: Making the web better through more open source

collaboration Windows Experience Blog.

https://blogs.windows.com/windowsexperience/2018/12/06/micro

soft-edge-making-the-web-better-through-more-open-source-

collaboration/

[28] HTML Standard, https://html.spec.whatwg.org/#origin

[29] Firefox API performance.now(). https://developer.mozilla.org/en-

US/docs/Web/API/Performance/now

[30] Video demo about the attack. https://youtu.be/vdu81XYX2Ew

http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
https://www.ghacks.net/2019/08/11/firefox-70-site-isolation-testing-begins-officially/
https://www.ghacks.net/2019/08/11/firefox-70-site-isolation-testing-begins-officially/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://chromium.googlesource.com/chromium/src/+log/68.0.3402.0..68.0.3403.0?pretty=fuller&n=10000
https://chromium.googlesource.com/chromium/src/+log/68.0.3402.0..68.0.3403.0?pretty=fuller&n=10000
https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/
https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/
https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/
https://html.spec.whatwg.org/#origin
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://youtu.be/vdu81XYX2Ew

15

Appendix: datasets (b), (c), (d)

Figure 16: loading time distribution,

dataset-(b)

Figure 17: Background vs not-present,

dataset-(b)

Figure 18: foreground vs background,

dataset-(b)

Figure 19: foreground vs not-present,

dataset-(b)

Figure 20: loading time distribution,

dataset-(c)

Figure 21: Background vs not-present,

dataset-(c)

Figure 22: foreground vs background,

dataset-(c)

Figure 23: foreground vs not-present,

dataset-(c)

Figure 24: loading time distribution,

dataset-(d)

Figure 25: Background vs not-present,

dataset-(d)

Figure 26: foreground vs background,

dataset-(d)

Figure 27: foreground vs not-present,

dataset-(d)

