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Abstract – Chromium’s site isolation ensures that different 

sites are rendered by different processes, which is a vision that 

academic researchers set forth over a decade ago. The journey 

from academic prototypes to the commercial availability 

represents a holistic rethinking about the security architecture 

for modern browsers. In this paper, we emphasize that the 

timing issues under site isolation need a thorough study. 

Specifically, we show that site isolation enables a realistic 

timing attack, which allows the attacker to identify which 

websites in a given target-sites set are loaded into the browser, 

as well as the website the user is currently interacting with. 

Through these vulnerabilities, the user’s site-visit behavior is 

leaked to the attacker. Our evaluation using Alexa Top 3000 

websites gives very high vulnerability percentages – 99%, 99% 

and 95% for our three key metrics of vulnerabilities. Moreover, 

the attack is very robust without any special assumption, so will 

be effective if deployed in the field. The main challenge 

revealed by our work is the tension between the scarcity of 

processes and the obligation to isolate cross-site frames in 

different processes. We are working with the Google Chrome 

team and Microsoft Edge team to propose and evaluate 

mitigation options.  

1 Introduction 
Site isolation is a major security feature that the Chromium 

team developed over the last several years. Since 2018, this 

feature is turned on by default in the Chrome browser. As 

Microsoft’s Edge browser uses Chromium’s rendering engine, 

the site isolation feature is also in effect in Edge. Mozilla’s 

Project Fission is an effort to integrate site isolation into Firefox. 

The feature started to be officially tested in 2019 [5]. Site 

isolation has clearly become an industry-wide effort for browser 

security moving forward. 

The essence of site isolation is to place contents from 

different sites in different OS processes, so that cross-site 

accesses must go through the process boundaries. The literature 

shows the benefit of having this process-level isolation when 

mitigating many types of vulnerabilities and attacks [19]. Site 

isolation is viewed as a fundamental technology offering 

important security values, so the Chromium team spent years to 

overcome significant performance and compatibility hurdles 

and achieve the goal. 

Despite the exciting achievements of the technology, we 

show in this paper that many timing channels related to site 

isolation can be combined into a very reliable attack that spies 

on a user’s browsing activity. Specifically, once a user visits the 

attacker’s webpage or a third-party webpage containing the 

attacker’s script, the attacker can identify which websites in a 

given target-sites set are being visited by the user’s browser. 

The target-sites set may contain hundreds or a few thousands of 

sites that the attacker wants to monitor. Once the sites in the 

browser are identified, the attacker can monitor at real time 

which site is in the foreground tab, i.e., the one the user is 

interacting with. This allows the attacker to monitor how the 

user spends time between the sites on the monitored list. 

Compared to browsing privacy leaks in the past, this new attack 

is more powerful as the user discloses more detailed behaviors.  

Overview of our work. In this study, we focus on the 

privacy implication of site isolation in light of cross-site timing. 

Our major effort is spent in understanding Chromium’s cross-

site communication mechanisms. Guided by the analysis of the 

IPC layer functions, we delve into many behaviors to examine 

if there are timing characteristics reliably observable by the 

attacker. We discover, for example, that the existence of a 

renderer process, the process priority of a renderer, and the 

“freshness” of a renderer are observable through cross-site 

timing measurements. These observations are used as the 

building blocks for our attack. 

Although timing attacks are a familiar topic in the literature, 

many of them need strong assumptions about the victim’s 

behavior and environment, thus tend to be fragile in practice 

(due to, for example, noise, jitters and workloads on the victim 

browser). The severity of our attack is demonstrated by its 

robustness. Our timing measurement techniques and the attack 

algorithm effectively avoid or mitigate the measurement 

fluctuations, and rely on multiple timing characteristics to 

cross-examine a situation. The algorithm, together with the 

insights about Chromium’s internal, constitute the core 

technical value of our work.  

Results. We have confirmed that the attack works reliably 

on Chromium/Chrome and Microsoft Edge with the default 

settings. The attack is fully automatic, and no prior knowledge 

about the victim is needed before the attack script lands onto the 

victim browser. Moreover, we do not assume that the browser 

contains only the attacker-site tab and the victim-site tab. The 

attack is robust enough so that workloads in other tabs do not 

cause sufficient impact on the effectiveness. This makes the 

threat very realistic. 

The main results of our work are highlighted here: 

(1) For the Alexa top 3000 sites, we test if the attack can 

confidently detect whether each site is in the foreground 

tab (FG), in a background tab (BG), or not present (NP). 

We show very high vulnerability percentages: over 99%, 

99% and 95% of the sites allow the attack to 

differentiate confidently between BG vs. NP, FG vs. NP 

and FG vs. BG, respectively. A video demo about the 

attack scenario is available in reference [30]. 

(2) To demonstrate that the attack can simultaneously 

check a large set of target sites as a batch, we measure 
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the accuracy of the attack within roughly one minute 

when monitoring the Alexa top 500 sites altogether for 

their presence. Assuming the browser loads 5 out of the 

500 sites, the chances of having no false positive and no 

false negative are 95.19% and 82.69%.   

(3) To experimentally confirm site isolation as the cause of 

the problem, we test the attack against a wide range of 

Chromium versions. The result pinpoints to the earliest 

vulnerable version 68.0.3403.0, which is the version 

introducing site isolation [26]. We also confirmed that 

Edge and the experimental nightly build of Firefox are 

vulnerable. 

(4) We are in a joint effort with the Microsoft Edge team 

and the Google Chrome team. The details of this work, 

including a full version of this paper, were disclosed to 

the two teams in early July 2020. The attack was 

confirmed. The Chrome team considers taking one of 

our mitigation suggestions. We are helping the team 

evaluate other mitigation options. 

Paper organization. We give the background about site 

isolation in Section 2. Section 3 gives an overview about our 

attack. Many deeper insights are explained in Section 4, in 

which we delve into Chromium’s internal to understand the 

observable timing characteristics. The evaluation results are 

shown in Section 5. Mitigation possibilities and our responsible 

disclosure to Google and Microsoft are presented in Section 6. 

Sections 7 and 8 give related work and conclusions.  

2 Background about site isolation  
Although the commercial availability of site isolation is 

very recent, the pursuit of its objectives has been over a decade. 

This journey represents perhaps the deepest holistic rethinking 

about the security architecture for modern browsers.  

Browser used to be a single-process program. As the 

browser code became enormously complex, security bugs were 

inevitable, such as memory bugs (e.g., buffer overflows), same-

origin-policy bugs (SOP bugs, e.g., universal cross-site 

scripting) and plugins’ over-privilege issues. If an attack 

website could exploit a bug, the entire browser was in jeopardy. 

In response, security researchers began to experiment with 

multi-process architectures. OP [8] and Gazelle [23] browsers 

were two early prototypes treating different websites as 

distrusting principals at the OS level, i.e., isolating them in 

different processes. This is the same goal as site isolation, 

although achieving it in a commercial browser is a long journey.      

Chromium before 2018. Chromium was the first 

commercial browser to adopt a multi-process architecture. 

However, it did not isolate websites, as the primary goal was 

for reliability. The Chromium team explicitly listed “origin 

isolation”1 as an “out-of-scope goal” [3]. The entire web was 

treated as one OS principal, so an attack who compromised the 

rendering engine could access all the web contents inside the 

 
1 The difference between “site” and “origin” is not essential in this 

paper. A site is a collection of origins sharing the same registerable 

browser. The multi-process architecture did have an “in-scope 

goal” to separate the web from the local machine. However, 

researchers found that, without achieving site isolation, the 

web/local separation became problematic with modern cloud 

services integrated into local machines [11]. 

Chromium since 2018. With years of efforts, site isolation 

was made practical for Chromium. It was a major milestone of 

the decade-long pursuit for browser’s solid security foundation. 

The Chromium team conducted a security evaluation [19] to 

show that site isolation could provide a range of mitigations, 

such as those for renderer vulnerabilities and transient 

execution attacks (e.g., Meltdown and Spectre [13][17]). With 

the evaluation result, site isolation clearly made the security 

benefit of the multi-process architecture compelling. 

It is also worth noting that researchers considered site 

isolation as a countermeasure for timing attacks against pre-

2018 versions of Chromium. For example, Vila and Köpf 

discovered in 2017 that Chromium was susceptible to a timing 

attack through the shared event loop in a process rendering 

contents from different sites. The attack could be mitigated by 

site isolation [22]. What our attack shows is that, although site 

isolation can be a countermeasure for Vila and Köpf’s timing 

attack, it introduces a more dangerous and robust timing issue. 

Chromium’s process models and the new challenge. The 

Chromium team defines process models about how the web 

contents are partitioned in its multi-process architecture. The 

models include Single-process, Process-per-tab, Process-per-

site and Process-per-site-instance. The concepts were first 

proposed in a research paper [18] and later described in a 

Chromium project documentation [24]. The default model is 

Process-per-site-instance, which creates a process for a set of 

connected pages from the same site. The set is called a site 

instance. Two pages are considered connected if they can 

reference each other using script code.  

The process models were defined before site isolation was 

implemented. Site isolation brings a challenge to the process 

models because the intended granularity becomes frame/iframe, 

rather than tab. Process is a scarce resource in the OS. How 

should Process-per-site-instance be realized under the new 

granularity? For example, a typical CNN news page contains 15 

iframes from 15 different sites (as a reference, this number for 

Fox News is 12). If a user opened 10 CNN pages, i.e., 10 site 

instances of CNN, then (15 + 1) * 10 = 160 processes would be 

created. It would be a 16-time increase of the number of 

processes compared to the previous Chromium versions, not 

practical for a general-purpose browser so widely used.  

 The tension between the scarcity of processes and the goal 

of isolating cross-site frames implies that some frames from the 

same site must share a process, even if they are in different site 

instances. This tension is an inherent challenge for the site 

isolation technology, and the root cause of the privacy issue we 

will discuss in this paper. 

domain and protocol. For example, a.google.com and b.google.com 

are two origins belong to the same site google.com. 
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3 Overview of the Attack 

In this section, we give an overview of the attack, including 

the attack model, the basic operation, and the attack strategy. 

These understandings will set up the context for our 

investigation in Section 4 about Chromium’s design and code. 

3.1 Attack model and goal 

The threat model of our attack is commonly known as the 

web attacker model in the literature [1], which assumes that the 

victim’s browser, capable of script execution, visits the 

attacker’s website http(s)://attacker.com, or a website 

containing a script of the attacker. The attacker is unable to run 

any binary code in the victim browser, or eavesdrop/intercept 

the network communication.  

Figure 1 shows the attack scenario: there is an attacker tab 

running the attack script. The attacker’s goal is to monitor a set 

of sensitive target sites – victim1.com, victim2.com, …, and 

victim500.com. In Figure 1, the user is visiting victim1.com and 

victim2.com. We call their tabs the victim tabs. The victim tabs 

and the attacker tab can be in the same browser window, or 

different browser windows belonging to the same browsing 

instance (note that an “incognito” window runs as a separate 

browsing instance). Moreover, a victim site does not need to be 

loaded into the main frame of the tab. 

In the attacker tab, a script iteratively uses an invisible 

iframe to visit a list of URLs (one at a time), and measures the 

times for loading completion. The focus of this section is to 

explain how the script strategically chooses the list of URLs to 

take the measurements, so that the combinations of the 

measurement results can robustly achieve the attack goal, 

despite the big variety of network environments and local 

machine/workload conditions.  

For the scenario in Figure 1, the goal of the attack script is: 

(1) to determine that victim1.com and victim2.com, but not 

other target sites, are present in the browser instance; (2) to 

monitor and determine which site is in the foreground tab. For 

example, victim1.com currently is. This allows the attacker to 

observe the user’s behavior effectively.    

To demonstrate the severity of the privacy problem, our 

objective is to show that the attack can be launched at a large 

scale. Therefore, our attack model requires the script to be fully 

automatic, and has no input parameter. This makes our result 

convincing – no prior knowledge about a victim’s circumstance 

is needed before the script lands on the browser.  

3.2 Basic operation – the loading-time measurement 

We mention the process model in Section 2, as well as the 

challenge due to the tension between site isolation and the 

process scarcity. A question arises – whether site isolation 

introduces an exploitable timing channel. The answer is yes. 

The timing channel can be easily confirmed by measuring the 

time for loading a URL of victim site into the iframe on the 

attacker tab. Specifically for the example in Figure 1, when the 

script measures the time for the iframe to load a victim1.com 

URL versus a victim500.com URL (note that victim500.com is 

not being visited by the user in this example), the time 

difference is noticeable. This is because the process for 

processing victim1.com already exists, but a new process needs 

to be created in order to process victim500.com. 

Timing channels generally exist to various extents in multi-

process systems, so its existence with the site isolation 

mechanism may not be immediately concerning. The important 

question is whether a robust and fully automatic attack can be 

built. The rest of this section and Section 4 explain how such an 

attack is fulfilled with insights about the internals of Chromium. 

The pseudo code in Listing 1 shows the basic operation: 

measuring the “relative time” r, defined later, for loading a URL 

from victim_site.com (denoted as vtm). The calculation 

requires another domain reference_site_1.com (ref1) that we 

register in advance. The attack page first includes an empty 

page from ref1, then repeatedly creates two iframes navigating 

to ref1 and vtm, and measures their loading times in their onload 

event handlers, then removes the iframes. Note that the two 

iframes are created sequentially – the second iframe is created 

only after the first one fires its load event. This avoids the 

interference between the two measurements. The explanation of 

this code is given next.  

Network jitter. In a real-world scenario, the network jitter 

can easily add hundreds of milliseconds, seriously affecting the 

timing accuracy. There are techniques to avoid the network 

jitter. For example, we use the “unsafe port” technique as 

follows. Chromium defines a list of unsafe ports for HTTP(S) 

requests, including port 1, 22, 23, 25, etc. Requesting a URL 

with an unsafe port would be early terminated – it still initializes 

a renderer process as if it is navigating to an ordinary page, but 

does not make actual network requests. In this way, we can 

reliably measure renderer initialization time by completely 

avoiding the effect of network jitter. In the rest of this paper, 

when we use the phrase “loading a URL”, it means “loading a 

URL with an unsafe port”, and the phrase “loading a page” 

means “loading a valid page”. In Section 5.2, we will show that 

the attack does not fundamentally depend on using an unsafe 

port. The attacker can utilize the browser’s disk cache to avoid 

the network jitter effectively. The attacker script can load a 

static resource in the victim site (e.g., favicon.ico or robots.txt) 

for the first time. All subsequent loadings of this resource will 

hit the disk cache without causing any network request. 

Local machine fluctuation. The local machine fluctuation, 

either due to unrelated sites' activities, or other programs 

running on host OS, can interfere with the timing. To minimize 

victim1.com tab victim2.com tab attacker tab

attacker tab

script

invisible 
iframe

 

Figure 1: The attack scenario 
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the impact, we repeat the measurement for 10 times, take the 

median value of each frame’s loading time as final result. Then 

we calculate a relative time for loading a vtm URL, using 

Equation 1 with pseudo code in Listing 1.  

𝑟𝑣𝑡𝑚 =
loadingTime(𝑣𝑡𝑚)

loadingTime(𝑟𝑒𝑓1)
 

Equation 1: Calculation of the relative time for loading vtm 

When multiple sites are loaded together, they are both 

slowed down if there is a temporary surge in CPU usage. In this 

situation, the victim site’s absolute loading time can increase 

significantly, but the relative loading time is much more stable. 

3.3 The attack algorithm 

Baseline. The goal of the baseline measurements is to 

obtain rnp and rbg. The former, in which “np” stands for “not-

present”, is the relative time for loading a URL of a site when 

the renderer process for the site has not been created yet. In 

other words, no other tab has loaded any page from this site yet. 

The latter is the relative time for loading a URL of a site when 

the renderer process for the site has been created to render an 

existing page that is currently invisible (“bg” for “background”).  

The calculation of rnp is done using Equation 1, in which 

vtm is replaced by another domain reference_site_2.com (ref2) 

that we register. Because ref2 is a domain that no user knows 

about, it is valid to assume that it has not be present in the 

browser before our attack script loads it.  

The algorithm can now calculate rbg. To do it, the script 

creates another invisible iframe to load ref2 again. Same as the 

measurement for rnp, Equation 1 is used with vtm replaced by 

ref2. The measurement result is rbg. The value is different from 

rnp, because the renderer process for ref2 has already existed 

prior to this measurement, i.e., rbg does not include the time for 

renderer process creation. Moreover, since both measurements 

are done using invisible iframes, no time is consumed due to 

user interface (UI) functionalities. We will explain that the UI 

time allows us to differentiate foreground and background tabs.  

After obtaining rnp and rbg, we store their values in cookies 

for later measurements. Note that the relative loading time (𝑟) 
differs across different machines and operating systems, but it 

is stable across different measurement runs on the same 

installation of Chromium. Therefore, for each victim browser, 

the baseline measurements only need to be performed once.  

First run. With the baseline results in the cookies, the 

attack starts. It uses the invisible iframe (as shown in Figure 1) 

to load a URL of vtm. Equation 1 gives the value of rvtm. Figure 

2 shows our conjectured distribution of rvtm. The X-axis is for 

rvtm, and the Y-axis represents the websites in the test set. If the 

victim site is not present, rvtm should be close to rnp. In the figure, 

the left stripe indicates the range (rbg ± threshold), in which 

threshold is anticipated to be very small. We conjecture that, 

given a site vtm in the test set, if there is already a background 

tab containing a page from vtm, rvtm should usually fall into the 

left stripe. Similarly, if no tab contains a page from vtm, rvtm 

should usually fall into the right stripe (rnp ± threshold), which 

is anticipated not to overlap with the left stripe. However, if it 

is the foreground tab that currently renders a page from vtm, we 

do not know where the measured relative time will fall in the 

figure, because the time due to UI functionalities varies 

significantly depending on the page’s complexity. Therefore, 

we use the shaded area to indicate the range of rvtm in this 

situation, which overlaps with the two stripes. If a measurement 

does not fall into the two stripes, it indicates that the foreground 

tab is rendering a page from the site vtm; if it does, the attack 

script needs to use the second measurement, described next, to 

differentiate the situations.   

Second run. Two cases need the second run. 

Case 1: If rvtm falls into the left stripe, it indicates that a 

page from vtm has already been loaded into one of the tabs, but 

it is not clear whether the tab is in the foreground or not. We 

will explain in Section 4.4.3 that Chromium assigns a higher 

process priority for the foreground renderer, which helps the 

foreground renderer to maintain its responsiveness when the 

CPU is under a heavy pressure. Our attack exploits this timing 

channel to differentiate the “foreground” and “background” 

situations. It is accomplished as follows. To generate CPU 

pressure, we use an iframe to include a helper page from another 

domain (so that it runs in a renderer process different from the 

attack page) which creates multiple JavaScript workers running 

in an infinite loop to give the CPU a heavy pressure. The content 

of the helper page is unimportant. Under the CPU pressure, a 

foreground renderer’s responsiveness is degraded much less as 

compared to a background renderer, thanks to Chromium’s 

process priority strategy (additional details in section 4.4.4). 

Referring to Equation 1, since ref1 is known to be in the 

INIT:    <iframe src=”http://reference_site_1.com/empty.html”> 

REPEAT: 

time_0 = performance.now(); 

<iframe src=”http://reference_site_1.com:1” 

onload=”time_ref = performance.now()”> 

<iframe src=”http://victim_site.com:1” onload=”time_vtm = 

performance.now()”> 

/* Note that the two iframes are loaded sequentially, so  

Equation 1 is calculated below. */ 

r = (time_vtm – time_ref) / (time_ref – time_0) 

Listing 1: iframe loading time measurement 

 

Relative loading
time (𝑟𝑣𝑡𝑚)
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Figure 2: Conjectured distribution of rvtm from first run 
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background, if the measurement result, denoted as r’vtm, does 

not decrease noticeably, it indicates that vtm is also in the 

background. Otherwise, it is in the foreground. 

Figure 3 shows the conjectured distribution of the 

measurements in the space using the values of the first and 

second runs as the two dimensions. The effectiveness of the 

attack depends on how well the space can be partitioned into 

two regions, so that most BG dots are in one region, and most 

FG dots are in the other. As we will show in Section 5, a 

straightforward binary classification using SVM (Support 

Vector Machine) is already effective. It simply partitions the 

space using a straight line. We will report the precision and 

recall rates in Section 5.  

Case 2: If rvtm of the first run falls into the right stripe in 

Figure 2, we need to determine whether this is a “foreground” 

or “not-present” situation. The timing channel that our attack 

exploits is the renderer’s HTML parsing performance. We will 

show in Section 4.4.5 that, in the period shortly after a renderer 

is created, its HTML parsing performance is considerably lower 

than that of a renderer already running for a while. This enables 

a robust measurement to differentiate between the “foreground” 

and “not-present” situations. The measurement, denoted as 

r’’vtm in Equation 2, uses three iframes. The first of them loads 

a URL of ref1, same as the basic operation described in Section 

3.2. After ref1 finishes loading, the other two iframes are added 

to the page at once, with each loading a URL of vtm. The 

loading times of the two vtm iframes are denoted as 

loadingTime(vtm) and loadingTime’(vtm). Deferring many 

technical details to Section 4.4.5, we will explain that the 

denominator loadingTime(vtm) measures the time of the entire 

iframe loading, while the numerator (loadingTime’(vtm) - 

loadingTime(vtm)) measures the HTML parsing time, which is 

the final stage of the iframe loading. 

𝑟𝑣𝑡𝑚
′′ =

loadingTime′(𝑣𝑡𝑚) − loadingTime(𝑣𝑡𝑚)

loadingTime(𝑣𝑡𝑚)
 

Equation 2: Relative time for the HTML parsing 

A higher r’’vtm indicates a longer HTML parsing time, i.e., 

a lower HTML parsing performance, which indicates that the 

renderer is newly created (most likely due to our measurements). 

Hence it is classified as a “not-present” situation. On the other 

hand, a lower r’’vtm indicates the renderer has existed for a while 

prior to our measurements. Since we are in case 2, this means 

the “foreground” situation. Similar to case 1, a conjectured 

distribution for case 2 is shown in Figure 4, in which the Y-axis 

represents r’’vtm. 

Pseudo code. The pseudo code in Listing 2 summarizes the 

attack algorithm, including baseline, the first run, and the two 

cases in the second run. The function calculate_SVM_params 

calculates the separating hyperplane (i.e., the dashed lines) in 

Figure 3 and Figure 4. Each result is defined by two parameters 

A and B. Because the SVM classifier is pretrained, this function 

only needs to do a quick adaption with the victim’s baseline 

values r_np and r_bg to target the victim browser. The value 

#CPU is the number of CPU cores on the victim’s computer. The 

API navigator.hardwareConcurrency provides the value. 

Empirically, we find creating one fewer JavaScript workers 

than CPU cores can apply an adequate CPU pressure to the 

victim renderer, without making the attack page unresponsive. 

Multiple windows. It is worth noting that this section 

describes the one-window scenario, for the purpose of 

simplicity. If the victim user opens multiple windows, it is 

possible that the victim site is rendered by multiple foreground 

tabs, which can (but not necessarily) be handled by different 

Relative loading time, 1st run (𝑟𝑣𝑡𝑚)
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Figure 3: Conjectured distribution of rvtm and r’vtm 
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Figure 4: Conjectured distribution of rvtm and r’’vtm 

 

const:  DELTA 
r_np, r_bg  =  load_baseline_results() 
if r_np is None or r_bg is None { 
    r_np  =  equation_one(“reference_site_2.com”) 
    create_invisible_iframe(“reference_site_2.com”) 
    r_bg  =  equation_one(“reference_site_2.com”) 
    save_baseline_results(r_np, r_bg) 
} 
a_1, b_1, a_2, b_2  =  calculate_SVM_params(r_np, r_bg) 
r_vtm  =  equation_one(“victim_site.com”) 
if abs(r_vtm – r_bg) < DELTA { 
    create_invisible_iframe(“helper_site.com”, workers = #CPU-1) 
    r_vtm_1  =  equation_one(“victim_site.com”) 
    if a_1 * r_vtm + b_1 *  r_vtm_1 < 1 : 
        output(“foreground”) 
    else: 
        output(“background”) 
} elif abs(r_vtm – r_np)  <  DELTA { 
    r_vtm_2  =  equation_two(“victim_site.com”) 
    if a_2 * r_vtm + b_2 * r_vtm_2 < 1 : 
        output(“foreground”) 
    else: 
        output(“not present”) 
} else: 
    output(“foreground”) 

Listing 2: The attack algorithm in pseudo code 
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renderers. When this situation happens, it will be observable as 

𝑟𝑣𝑡𝑚 (i.e., the first run value) jumping between multiple values, 

with each value reflecting the page complexity of one 

foreground tab. We will further explain this in Section 4.4.2. 

3.4 Batch testing for presence of target sites 

The above steps describe how to monitor a single site. In 

fact, the first run can be done in a batch manner for a set of sites 

(in our experiment, we do it for 500 sites within one minute). 

This allows the attacker to know which sites in a large set of 

target sites are present. Admittedly, the site in the foreground 

tab has a small possibility to be detected as not present, if it 

happens to have the FG-NP overlapping. However, because 

there is only one foreground tab per window, misidentifying an 

FG case as an NP case has a very small impact on the overall 

accuracy of the batch test. Moreover, if the attacker really wants 

to minimize the chance of misclassification, he can build a list 

prior to the attack, which contains all the target sites having the 

FG-NP overlapping. These sites need the “second run, case 2” 

test after the batch test.   

The purpose of the batch test is to quickly narrow down to 

the present sites, so that the attack script can monitor them 

closely with the more expensive “second run” techniques.  

There are technical details to make the batch as fast and 

accurate as possible. They are summarized below: 

(1) It is feasible to measure two sites in parallel without 

making the browser less responsive. Responsiveness is a 

requirement for the accuracy of the measurements. Of course, 

maintaining the responsiveness also makes the attack stealthy – 

a normal user is unlikely to notice its existence. 

(2) The basic operation described in Section 3.2 is used as 

a measurement run, which gives the rvtm value. Given the time 

budget, our strategy is to spend more measurement runs on sites 

that are more likely present. Suppose the set contains 500 target 

sites. The algorithm is: all 500 sites are measured once; among 

which the 250 sites with lower rvtm values are measured again, 

among which 125 sites with lower rvtm values are measured 

again, and so on, until the number of sites gets to 1. With this 

strategy, the average number of measurements for a single site 

is 2, but low rvtm sites (i.e., the likely-present sites) are measured 

many times. We find that it results in a good accuracy within 

the small time budget. 

4 Deeper into Chromium’s Design and Code 
Both the algorithm and the detailed steps described in 

Section 3 are the result of our deep investigations about cross-

process timing characteristics of Chromium, which is the focus 

of this section. It is worth emphasizing that timing differences 

are not hard to find when we broadly investigate browser 

behaviors, but identifying the robustly exploitable ones is the 

key in our research. 

4.1 Investigation approach and tools 

The codebase of Chromium has over 25 million lines of 

code. To study the timing issues introduced by site isolation, we 

start from understanding the major components in the 

Chromium architecture and how they interact. It requires a great 

amount of effort to read standards and developers’ forums/ 

documentations, and to step through the actual code. The effort 

enables us to locate the focused areas related to cross-site 

communication, which is described in Section 4.2 and Section 

4.3. The detailed investigations are described in Section 4.4, 

which delves into the Chromium’s internal to explain why the 

attack in Section 3.3 is effective and robust.  

Besides reading documentations and code, we use and 

develop tools for the investigation. First, we use LibClang to 

parse Chromium’s source code, and create an index of tokens 

and literals, which are mapped to their locations in source files. 

When we try to locate the code responsible for a behavior of 

Chromium, a keyword search in this index gives us a short list 

of possible locations in source code. For those functions and 

variables that we suspect to leak sensitive information, we first 

recursively identify where it is referenced using this index, skip 

those with a limited scope that does not involve any sensitive 

information. Then, we add instrumentation code to the function 

under investigation to get the stack trace when it is invoked. 

After building and running the instrumented version, we 

convert memory addresses in the stack trace to locations in 

source files, utilizing the DWARF debug information compiled 

into Chromium’s binary. This enables us to map the attacker 

invoked behaviors to their underlying code paths. 

4.2 Cross-site communication 

The essence of the attack is that the attacker measures 

timing characteristics of the behaviors of the victim-site’s 

renderer process. It is important to identify the mechanisms for 

cross-site communications. Given Chromium’s huge codebase, 

the investigation could easily become aimless. What we realize 

is that IPC is a highly desirable layer for our investigation, 

because: (1) since sites are isolated by processes, all cross-site 

communications need to be translated into IPC calls; (2) 

Chromium currently has two IPC modules – legacy IPC and the 

mojo IPC, and is gradually migrating from the former to the 

latter. The fact that IPC can migrate suggests that the IPC 

interface is relatively clean, allowing us to better understand 

and runtime-trace the IPC calls; (3) although the number of IPC 

message types is big, it is still feasible to enumerate them. 

Therefore, it is feasible to achieve completeness if researchers 

continue in the direction we have been taking.  

Specifically, we insert a hook to the function used to create 

mojo IPC connections, and capture 38 mojo receivers and 53 

mojo remotes bound by any of the renderers during a browsing 

session. (A mojo receiver is a group of functions callable by a 

remote process, while a mojo remote is a proxy to a group of 

functions implemented by a remote receiver.) Among them, we 

identify a mojo receiver and a remote that carry all legacy IPC 

messages, as a part of the transition from the legacy IPC to the 

mojo IPC. We find no direct IPC connections between renderers, 

which means all communications between renderers go through 

browser process. With static analysis, we identify 768 legacy 

IPC message types, each representing an action that can be 

invoked, or a type of data that can be sent between processes. 
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Focusing on IPC helps us narrow the investigation space. 

We study every cross-site communication with a corresponding 

IPC interface pair, one from renderer to browser, and the other 

from browser to renderer. Figure 5 highlights this space in 

Chromium’s architecture, which is obviously a great reduction 

from Chromium’s 25 million lines of code. In the following 

subsections, we present our findings in this space. 

4.3 PostMessage 

As postMessage is one of the few legitimate ways of cross-

origin communication defined by HTML standard [14], and 

cross-site interaction is a subset of cross-origin interaction, we 

use it as a good entry point to understand the implementation-

level changes introduced by site isolation. Note that 

postMessage is not used in our attack described in section 3, but 

it guides our investigation and can be a building block for future 

cross-site attacks that target implementation-level weaknesses. 

Defined by the HTML standard, postMessage is a method 

of the Window object. Internally, Chromium implements a 

DOMWindow class, with a member function postMessage. After 

site isolation is implemented, postMessage can be classified 

into 3 cases: (1) cross-site, (2) cross-origin but same-site, and 

(3) same-origin. Based on public documentations, we infer that, 

before site isolation, Chromium’s postMessage implementation 

checks the message and the recipient origin as required by the 

HTML standard, but there is no distinction between case (1) and 

(2). At implementation level, this distinction is made by 

deriving two subclasses from DOMWindow, which are named 

LocalDOMWindow and RemoteDOMWindow. The former lives 

within a renderer and inherits the origin check mechanism from 

the base class DOMWindow. The latter is conceptually a proxy 

to a LocalDOMWindow that lives in another renderer, while the 

data is forwarded by the browser process, as there are no direct 

communication channels between renderers. The browser 

process checks a message’s target site to deliver it to the right 

renderer, which checks the message’s target origin before 

passing it to the onmessage event handler. 

The understanding of postMessage guides our study about 

more complex cross-site communication mechanisms, which 

are presented in the following subsections. They all share 

similarities with postMessage: the browser process is only 

responsible for delivering the cross-site message to the right 

renderer, so that its handling logic is kept minimal. We find that 

the amount of new code added by site isolation is relatively 

small for handling a cross-site message. It is a thin wrapper 

layer calling into the existing code that predates site isolation.  

Therefore, our study of postMessage gives an important insight: 

the study about timing issues should not only focus on the thin 

layer of site isolation code, but needs to go deeper into the 

existing code to analyze detailed timing characteristics of the 

renderer’s behaviors, some of which are described next. 

4.4 Cross-site iframe navigation 

Even before postMessage was introduced into browsers, 

embedding a web page from a different site had already been a 

mechanism for cross-site communication. Our attack shown in 

Section 3 uses this mechanism – the host page requests the 

embedded iframe to load and render a given URL, which is a 

complex process for modern browsers. Next, we show what 

happens inside a renderer when it loads an iframe, and what 

kinds of internal states might be leaked to the host page. 

4.4.1 Renderer allocation 

Cross-site iframe navigation begins with the host page’s 

renderer sending a BeginNavigation IPC request to the browser 

(i.e., the browser process). After some validity checks, the 

browser updates its frame-process mapping, then dispatches the 

request to the embedded page’s renderer, like in postMessage. 

The browser is responsible for keeping track of a site’s 

renderer processes. It first tries to assign the navigation task to 

a visible (i.e., on the foreground tab) renderer hosting that site. 

When there are multiple visible renderers (i.e., when the user 

opens multiple windows, there can be multiple foreground tabs), 

it randomly selects one. If it cannot find a visible renderer, it 

then tries to randomly select a hidden (i.e., on a background tab) 

renderer. If it fails again, then the browser launches a new 

renderer process to handle this navigation request. 

Since launching a new process introduces a millisecond-

level latency, it is observable by the host page from onload 

event handler. Tens of milliseconds (around 60ms on a modern 

Intel i7 CPU) saved on a cross-site iframe navigation indicates 

that the target site already has an instance, which is either a tab 

or an iframe. This enables a web attacker to detect any other 

site’s existence on the user’s browser, without requiring the 

consent from the user or the target site. 

Note that the aforementioned renderer reuse policy only 

applies to iframe navigation. Navigation by clicking on a link, 

or directly entering a URL into address bar is subject to different 

policies. In these situations, Chromium can create a new 

renderer even if there is an existing same-site renderer. 

Therefore, site isolation does not mean a one-to-one mapping 

between sites and renderers, since Chromium does not always 

attempt to reuse an existing renderer for all types of navigations.  

4.4.2 RenderView initialization 

Either by launching a new renderer or reusing an existing 

one, the browser can always find a renderer to handle the iframe 

navigation. Then, it passes on all the necessary information to 

the renderer through CreateView IPC interface. (Note that if the 

host page already has an iframe of embedded site, creating a 

second iframe of that site will not trigger CreateView.) 

 

IPC host

- postMessage
- iframe navigation
- iframe focus, size, visibility, …

renderer process

renderer process

browser process
network file systemUIGPU ……

Blink V8 compositor …

IPC

 
Figure 5: focused area of our investigation 
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When we investigate the process of creating a RenderView, 

we are particularly interested in whether the process involves 

existing frames in the renderer. If this is the case, it may reveal 

information of other tabs or iframes of that site. We find that, 

inside CreateView, there is a call to blink::SetSelectionColors, 

which is a static function of Blink (Chromium’s rendering 

engine) that updates a global setting shared by all frames in the 

renderer. Listing 3 shows a pseudo code snippet based on  

Chromium’s source code. As the code shows, after it updates 

global color setting, it notifies every frame through its 

PlatformColorsChanged method. In this way, it affects all 

frames in a renderer, not only the newly-created frame. 

Note that every frame has updated its selection colors, the 

renderer needs to recalculate the style for each element in each 

frame. However, to avoid unnecessary computation, it would 

only redraw visible frames. The time to redraw a visible frame 

depends on its visual complexity. Complex pages typically 

found on video sites (e.g., YouTube) can consume additional 

hundreds of milliseconds because of this when it is visible. 

This behavior has two implications. First, a web attacker 

can detect if a victim site is on the user’s foreground tab, as long 

as the page is reasonably complex. Second, it also reveals the 

visual complexity of a victim site’s page, which suggests the 

type of content the user is currently viewing. 

Multiple frames. The victim site may have multiple 

frames that belong to different renderers. In the simple case, 

when it has only one visible frame, as described in Section 4.4.1, 

Chromium always selects the renderer hosting this visible frame 

for a new iframe navigation task. Therefore, the redrawing time 

of that visible frame will always be reflected when we create a 

new iframe of that site. However, when the user opens multiple 

windows, there can be multiple visible frames of victim site. If 

the visible frames belong to the same renderer, the redrawing 

time will be cumulative (i.e., reflecting the combined 

complexity of all visible frames) when we create a new iframe. 

Otherwise, if they belong to different renderers, as described in 

Section 4.4.1, Chromium will randomly select a renderer from 

them when a new iframe is created. In this situation, every time 

an iframe navigation occurs, it can indicate the redrawing time 

of visible frames in a different renderer. 

4.4.3 Renderer state 

A renderer process has two pairs of states: visible-hidden 

and foreground-background. These two pairs of states are 

shared by all frames handled by a renderer. A renderer is visible 

whenever one of its frames is visible, and a renderer is 

foreground if it is visible or playing sounds. When a renderer is 

in foreground state, its process priority is set to high. The high 

priority can speed up iframe loading, and the difference 

becomes more noticeable when the system load is high. 

Note that a renderer’s visibility can affect its iframe loading 

time in both directions, depending on the visual complexity of 

the contained page. When comparing the times for an invisible 

frame and a visible frame to load the same page, we can see that 

the former is noticeably faster when the page is complex (as 

discussed in Section 4.4.2), and the latter is noticeably faster 

when the page is simple. These two observations combined 

enable a web attacker to detect the visibility of another site with 

a high confidence. 

4.4.4 Load event 

When the embedded page of an iframe finishes loading, it 

notifies the host page with a load event. For cross-site iframes, 

this load event needs to cross process boundary to reach the host 

page’s renderer. Similar to postMessage, the embedded page 

sends a DispatchLoad request to browser process, which will 

then dispatch the load event to the host page through another 

IPC interface. 

In other words, the iframe navigation in the attack scenario 

is a two-way interaction between an attacker renderer and a 

victim renderer. As Figure 6 shows, by observing the time 

between BeginNavigation and DispatchLoad, the attacker can 

infer the characteristics of the sequence of actions taken by the 

victim renderer when navigating to an attacker-specified URL. 

4.4.5 The HTML parsing performance 

In previous subsections, we focus on identifying time-

consuming operations in a “full” iframe navigation, including 

the initialization of renderer process and RenderView. As we 

investigate deep into the code execution, we see that the iframe 

loading time contains 5 stages. When multiple iframes of a site 

are loaded concurrently, they are pipelined by the renderer, so 

the stages of the loading tasks are interleaved.  

Figure 7 shows a trace captured with Chromium’s trace 

event profiling tool (screenshot of chrome://tracing). The texts 

in the screenshot are too small to be legible, so we annotate the 

key information above and below the screenshot. The trace is 

generated from concurrently loading two URLs of the same site 

into two iframes (referring to Section 3.2 for the meaning of 

“loading a URL”). Suppose the two iframes fire the two onload 

events at time1 and time2. It is easy to see that (time2 - time1) 

indicates this renderer’s time consumed by stage 5 of the second 

 

static void blink::SetSelectionColors() { 

for (Page* page : AllPages()) { 

for (Frame* frame = page->MainFrame(); frame != NULL; frame 

= frame->Tree().TraverseNext()) { 

/* update color setting here */  

if (typeof(frame) == typeof(LocalFrame)) { 

frame->GetDocument()->PlatformColorsChanged(); 

}}}} 

Listing 3: global settings update in CreateView 
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Figure 6: timing about iframe navigation 
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concurrent task. Inspecting the call stack of stage 5 (which is 

too small to read in Figure 7), we understand that the stage is 

for HTML parsing, which means that the attacker can measure 

the victim renderer’s HTML parsing performance. As described 

in Section 3.3 (Case 2 of the Second Run), we rely on this 

feature to distinguish between a newly-created renderer and a 

long-existing one, as we observe that a newly-created renderer 

spends noticeably more time for the HTML parsing. 

5 Evaluations 

5.1 Evaluation using Alexa top 3000 sites 

To quantitatively measure the effectiveness of the attack, 

we use Alexa top 3000 sites as our test set. We collect four 

datasets for the evaluation, as described below. 

5.1.1 Experiment setup and datasets 

The browser is Chrome 87 running on Windows 10. The 

datasets are collected on two machines. One is a desktop PC 

with the specification Intel i7 8700 (6 cores, 12 threads @ 

3.2GHz), 16GB memory; the other is a laptop PC with the 

specification Intel i7 5600U (2 cores, 4 threads @ 2.6GHz), 

8GB memory. To represent different background workloads, 

the datasets include the one-extra-tab and five-extra-tabs 

scenarios. In the latter, the browser contains the attacker’s tab, 

the victim’s tab, and five extra tabs loading five random sites 

from Alexa top 1,000,000 sites. The former contains only one 

such tab. The purpose is to confirm that our attack’s accuracy is 

not affected by the number of extra tabs.  

The evaluation is carried out using an automatic script. The 

process for the five-extra-tabs scenario is: 
(1) Start Chromium, open five new tabs to load the homepages of 

five random sites from Alexa top 1,000,000 sites (tabs 1-5). 

(2) Open a new tab for the homepage of a victim site (tab 6). 

(3) Open another new tab, navigate to the attack page (tab 7). 

(4) Switch to tab 1 to cause a BG situation. Measure rbg. 

(5) Switch to tab 6 to cause an FG situation. Measure rfg. 

(6) Close tab 6 to cause an NP situation. Measure rnp. 

(7) Switch to tab 7, save output, exit Chromium. Go to (1). 

The four datasets we collect are: (a) Desktop five-extra-

tabs, (b) Desktop one-extra-tab, (c) Laptop one-extra-tab, (d) 

Laptop five-extra-tab. Datasets (a)(b)(c) are collected in 

January 2021. Dataset (d) are collected in July 2021. 

5.1.2 Results 

The results of the four datasets are similar. Figure 8 ~ 

Figure 11 show the results of dataset-(a). These figures can be 

viewed more clearly if color-printed. Figure 8 shows the 

distribution of relative loading time (𝑟) in different situations: 

“foreground (FG)”, “background (BG)” and “not-present (NP)”.  

For every site foo.com, the script tries to visit http(s)://foo.com. 

There are 225 sites not returning valid pages for the URLs, 

because they do not exist or are temporarily inaccessible, so 

dataset-(a) contains 2775 valid sites.  

As expected, the rnp and rbg values of most sites fall into the 

two narrow stripes. There are 21 sites having rnp and rbg values 

that we consider as outliers. Even though most of the outlier 

values are not reproducible upon re-measurements, we still 

count them all against our accuracy. Also, we conservatively 

assume that the accuracy for these websites is 0%, although a 

blind guess of NP or BG would yield an accuracy better than 

0%. Bearing this accuracy penalty, we remove the outliers, and 

produce Figure 8 ~ Figure 11. 

Background vs. not-present. Hiding the FG data points in 

Figure 8, we produce Figure 9 to show the clear distinction in 

the relative loading times for the BG and NP situations. The 

accuracy shown in the figure is 100%. With the penalty due to 

the outliers, the accuracy is (2775 – 21) / 2775 = 99.24%. 

Foreground vs. background. The BG stripe is narrow. 

There are 890 FG points falling into the BG stripe, which need 

to be further analyzed by the “second run, case 1” method 

described in Section 3.3. The method increases the CPU 

pressure without causing unresponsiveness. As explained 

earlier, the foreground renderer has a high process priority, so 

the second-run measurement r’ tends to be lower in an FG 

situation, as compared to a BG situation. Similar to the 21 

outliers in the first run, we discard 10 outliers in the second run, 

and count them against us with a 0% accuracy. Figure 10 shows 

the hyperplane drawn by the SVM algorithm to separate the 880 

BG points and the 880 FG points. The accuracy shown in the 

figure is 93.47%. In summary, the end-to-end FG-BG accuracy 

is (880 × 93.47% + (21 + 10) × 0% + (2775 – 880 – 21 – 10) × 

100%) / 2775 = 96.81%. 

Foreground vs. not-present. Although the NP stripe is 

wider than the BG stripe, there are only 43 FG points falling 

into the NP stripe. They are further analyzed using the “second 

run, case 2” method described in Section 3.3. It uses the HTML 

parsing time to indicate the “freshness” of the renderer. The 

method is highly effective. We do not need to remove any 

outlier. Figure 11 shows that the SVM algorithm draws a 

hyperplane, and all points are correctly separated. Therefore, 

the end-to-end FG-NP accuracy is (43 × 100% + 21 × 0% + 

(2775 – 43 – 21) × 100%) / 2775 = 99.24%. 

Comparison of the four datasets. The figures for datasets 

(b), (c) and (d) are shown in the appendix. The accuracy 

numbers are shown below. Comparing dataset-(a) and dataset-

(b), we can see that the impact of the pages in the extra tabs on 

the accuracy is too insignificant to be statistically meaningful. 

Dataset-(c) is collected from the laptop PC less powerful than 

the desktop PC for dataset-(a) and dataset-(b). The slight 

decrease of the FG-BG accuracy (e.g., 91.81% in Dataset-(d)) 
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Figure 7: iframe loading pipeline (screenshot of chrome://tracing) 
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may suggest that our current setting for the CPU stressing is 

slightly too heavy for the laptop, affecting the measurements.  

 BG-NP FG-BG FG-NP 

Dataset-(a) 99.24% 96.81% 99.24% 

Dataset-(b) 99.36% 97.60% 99.36% 

Dataset-(c) 99.24% 95.07% 98.72% 

Dataset-(d) 99.22% 91.81% 98.99% 

Average 99.26% 95.32% 99.08% 

Other machines tested. In addition to the two desktop and 

laptop machines, we also use several other machines with a 

variety of specifications to do manual testing. We do not collect 

datasets for the statistical evaluation, but only validate that the 

same attack works on these machines. A subset of machines are 

described in Table 1. The tests were performed from locations 

in Asia and America. The environments included home, 

university and corporate networks, with and without VPN. 

Surface Book: i7-8650U @ 1.90GHz, 16GB RAM 
Surface Pro 4: i5-7300U @ 2.60GHz, 8GB RAM 
Surface Pro 3: i5-4300U @ 1.90GHz, 8GB RAM 
HP Pavilion 690-0024: AMD Ryzen5-2400G @ 3.60GHz, 8GB RAM 
ThinkPad T490: i7-8565U @ 1.80GHz, 16GB RAM 
A desktop machine: Intel Xeon E5-1620 v4 @ 3.50GHz, 32GB RAM 

Table 1: A subset of machines used for manual testing 

5.2 Using the disk-cache instead of the unsafe port 

In Section 3.2, we mention that the basic operation does not 

fundamentally depend on the “unsafe port” behavior. Another 

technique to avoid the network jitter is to use the disk cache. 

The effect of the disk cache is that, if a resource is in the cache, 

a subsequent loading of the resource will be completed without 

having any network request, which serves the same purpose as 

the “unsafe port” behavior. 

The requirements for the resource. The attack requires a 

resource that satisfies the following requirements: 

(1) X-Frame-Options and Content-Security-Policy allow 

the resource to be framed inside a page in another site; 

(2) The cache-control header should allow it to be cached; 

(3) It does not cause other files to be loaded. For example, 

an HTML file containing other resources is not suitable. 

Finding these resources requires crawling page contents of 

the target site. To give a lower bound of the feasibility of the 

attack, we crawl every site’s front page for such resources. In 

addition, we try to find two common resources on the site, 

favicon.ico and robots.txt. The former is the small icon image 

for a website, and the latter is the file to tell web crawlers how 

the site owner wants them to behave. 

We use Alexa top 1000 sites for the experiment. There are 

68 sites not returning a valid page visiting http(s)://foo.com, 

where foo is the name of each site. For the remaining 932 sites, 

we find suitable resources on 760 sites. It does not mean that 

the other 172 sites do not have suitable resources, because our 

crawling is a rather shallow one, which does not crawl into inner 

pages and subdomains of the target site. 

 

 
Figure 8: loading time distribution, dataset-(a) 

 
Figure 9: Background vs not-present, dataset-(a) 

 
Figure 10: foreground vs background, dataset-(a) 

 
Figure 11: foreground vs not-present, dataset-(a) 
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Attack. The attack has only two differences from the 

“unsafe port” attack in Section 3.2: (1) instead of loading the 

URL with an unsafe port, it loads the URL of the resource; (2) 

before any measurement, the attack script visits the resource 

once to put the resource in the disk cache. As before, we remove 

7 data points (or 1%) as outliers. Figure 12 shows the values of 

the remaining 753 sites. The BG-NP differentiation is still 

100%. The number of FG-BG overlapping is 157 (or 20.85%), 

and the number of FG-NP overlapping is 82 (or 10.89%). 

The second run is less convenient than using the unsafe port 

approach, because the resources are site-specific. When using 

the unsafe port approach, we conveniently put all the sites 

together to get an overall distribution. However, when using the 

site-specific resources, we lose the convenience, and need to get 

a distribution result for every site. Figure 14 shows three cases 

we study, each showing 92 data points of a site sampled during 

a 16-hour duration. The cases show that the measurements r’ 
and r’’ remain clearly effective when we use the disk-cache 

mechanism. Admittedly, profiling each site is a substantial 

inconvenience for the attacker. However, it is a one-time effort, 

which is not a fundamental mitigating factor of the threat.    

5.3 Evaluation using different browsers 

The attack is evaluated using different browsers for two 

purposes: (1) to present a convincing evidence that the enabler 

of the attack is indeed the site isolation mechanism; (2) to 

evaluate the attack on Microsoft Edge and Firefox.   

Finding the attack-enabling version of Chromium. 

There are a great number of changes checked into the 

Chromium codebase. To experimentally confirm that our attack 

is enabled by the site isolation mechanism, not by any other 

changes, we compile and test a wide range of Chromium 

versions using a “binary search”, based on whether a version is 

vulnerable or not. Figure 13 shows the versions that our attack is 

tested against. The binary search ends up with a tight range 

between version 68.0.3402.0 and 68.0.3403.0. The Chromium 

changelog confirms that site isolation became enabled by 

default at version 68.0.3403.0 [26]. 

Microsoft Edge. As Microsoft Edge has been rebuilt based 

on Chromium in 2019, it also inherits site isolation from 

Chromium. We test the attack on Edge 83.0.478.56 running on 

Windows 10, and observe a similar pattern of 𝑟, compared with 

Chrome 83.0.4103.116 running on the same machine and OS. 

Table 2 shows the values of some top sites. For Microsoft Edge, 

the 𝑟 values in the “not present” and “background” situations 

are also distributed in two narrow stripes, and the 𝑟 values of 

the “foreground” situation also reflect their page complexity. 

These distribution characteristics can be seen in Table 2.  

Browser Site 𝑟   𝑟𝑓  𝑟   

Edge google.com 4.351909 1.080008 0.973337 

amazon.com 4.276265 2.985395 0.995525 

youtube.com 4.374174 13.482331 1.007836 

Chrome google.com 3.454074 1.352866 1.326693 

amazon.com 3.582909 2.889311 1.140386 

youtube.com 3.887231 13.405612 1.122806 

Table 2: Microsoft Edge compared with Chrome 

Firefox. Site isolation is currently an experimental feature 

in Firefox’s nightly build. To enable it, the fission.autostart 
option needs to be set true. Firefox uses a different rendering 

engine, namely Gecko. As we showed in Sections 3 and 4, our 

attack is a result of a deep and broad investigation about 

Chromium’s internal. Obviously, the same investigation needs 

to be conducted for Gecko to see whether our attack can be fully 

reproduced against Firefox. Although we have not investigated 

deeply about Gecko, we have already reproduced the first run, 

which allows the attacker to detect the presence of target sites.  

We use the disk-cache approach in this evaluation. We 

identify 730 sites in Alexa top 1000 sites as the dataset. Figure 

 

 
Figure 12: the attack using disk cache 
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Figure 14: individual cases of the second run using cached resources 

 

 
Figure 15: NP and BG values when Firefox’s Fission is on  
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15 shows that all the BG and NP points are separated, without 

removing any outlier. Compared to Chromium’s distribution, 

there are two differences: (1) the Firefox distributions are wider. 

We believe that this is due to the experimental nature of the 

feature. The feature is still premature at this point, as we see 

serious performance degradation when it is turned on. (2) The 

precision of Firefox’s timing API is reduced to one millisecond 

[29], as a mitigation against Meltdown and Spectre. This causes 

the values to be more “quantized” than those in Chromium. 

5.4 Batch testing for the Alexa top 500 websites 

We evaluate the accuracy of the batching method described 

in Section 3.4. The target-site set is the Alexa top 500 sites. In 

every evaluation, we randomly open 5 sites from the set, and 

run the presence test through the 500 sites to see the accuracy. 

We repeat the experiment for 104 runs. On average, it takes 

56.536 seconds to complete the batch on a test machine with an 

Intel i7-8565U @ 1.8GHz and 16GB of RAM. Table 3 shows 

the numbers of runs resulting in 0 to 3 false positives and false 

negatives. Among the 104 runs, 99 of them (95.19%) produce 

no false positives, and 86 of them (82.69%) produce no false 

negatives. We consider these a high accuracy for the one-

minute time budget. 

Number of errors 0 1 2 3 

False positive 99/104 4/104 1/104 0/104 

False negative 86/104 9/104 7/104 2/104 

 Table 3: Results of the batch testing for Alexa top 500 sites  

6 Potential Mitigations and Responsible Disclosure 
This section discusses potential mitigations, and report our 

interactions with the Chrome and Edge teams. 

6.1 Potential mitigations  

The mitigation approaches can be considered under three 

categories: (1) adding noise or decreasing the precision of time-

measurement APIs; (2) finer-grained process boundaries; (3) 

not reusing processes across tabs. We discuss these approaches 

below, and emphasize that they are all tradeoffs between 

effectiveness, performance and functionality.  

Mitigation 1: adding noise or decreasing the precision 

of time-measurement APIs. A reasonable mitigation is to add 

a random delay during the renderer process creation. A 

moderate level of random delay will make the FG-NP and the 

FG-BG detections harder. However, to cause an effective BG-

NP overlapping, the delay needs to be hundreds of milliseconds, 

which may be a difficult tradeoff in practice.  Another approach, 

which does not incur any performance overhead, is to make the 

time-measurement API less accurate. Earlier in Figure 15, we 

see that Firefox lowers the API precision to one millisecond to 

mitigate the Meltdown and Spectre attack. Similarly, Microsoft 

Edge and Internet Explorer lowered the precision to 20 µs [9]. 

In our case, the resolution would need to be lowered to 

tens/hundreds of milliseconds. Again, it is a difficult tradeoff. 

Mitigation 2: finer-grained process boundaries. One of 

the next steps of the site isolation effort is to explore the 

feasibility of “origin isolation”, which offers finer grained 

process boundaries (see Section 6.3 of Reis et al. [19]). Under 

“origin isolation”, the attacker will need to hypothesize more 

potential targets, because the number of origins is larger than 

the number of sites, so the target-sites list needs to be large. 

“Origin isolation” can be challenging to design and implement, 

considering its resource and performance requirements.  

Mitigation 3: not reusing processes across tabs. A good 

mitigation would be to prohibit tabs from sharing processes. 

The challenge, as we explain in Section 2, is the scarcity of 

processes. We see two usability and programmability issues of 

this approach. First, it will greatly limit the number of tabs the 

user can open for sites like CNN.com and Foxnews.com, which 

contains many cross-site iframe. Second, web technologies are 

sophisticated. It is necessary for platform companies, e.g., 

advertisement, social networking, cloud, and CDN companies, 

to provide web middleware. If the reusing is prohibited, popular 

middleware will be restrained from using iframes, as it will 

increase the number of processes in every tab that contains it.  

6.2 Responsible disclosure 

We reported our findings and shared a version of this paper 

to Chrome and Edge team in early July 2020. We received 

confirmation of the issue from the Edge team, and are having 

several rounds of discussions with the Chrome team and the 

Edge team on possible mitigations. 

The Chrome team initially asked us to evaluate a proposal: 

to isolate error pages in a separate process. This would make 

the “unsafe port” technique no longer effective. The proposal 

motivated us to construct the disk-cache attack described in 

Section 5.2. The Chrome team acknowledged that the proposal 

would not completely address the core problem. 

We suggest to the Chrome team a mitigation for the FB-

BG detection: to add an early exit to blink::SetSelectionColors 

(which is called by CreateView, as shown in Section 4.4.2). If 

the selection colors of the newly created RenderView has no 

change from the renderer’s existing settings, it can skip the style 

recalculation, thus avoid exposing the currently visible frame. 

Chrome team expressed the intention to consider it. 

The Chrome team proposed an idea related to mitigation 3. 

It was to avoid reusing a process for any top-level frame, but 

still allow same-site iframes to reuse a process. This would 

prevent the iframes on the attacker page from residing in the 

same process as any top-level frame in another tab. We 

considered this a helpful mitigation. However, the Chrome team 

admitted that the attacker could fingerprint a victim page based 

on the sites in all its iframes. Since the proposed mitigation does 

not prevent the detection of these sites’ presence in the iframes, 

the attacker may still infer the site in the top-level frame. 

Status update. The Chrome team gave us an update in July 

2021. They had made some progress in putting error pages in 

different processes. An experiment about the revised process 

reuse policy, as described in the paragraph above, had been 

scheduled, but had a dependency on another experiment that the 

team was undertaking. Therefore, it would take more time to 

get a conclusive result about the new policy. 
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7 Related work 
Section 2 has described the related literature about site 

isolation, so we do not include them in this section. There are 

many research papers about browser’s timing channel and other 

side-channels, summarized below. 

Timing-based cross-tab page identification. Using the 

timing channel to infer a page on another tab has been shown 

before, which is directly related to our work. Vila and Köpf [22] 

showed that the event loop of the browser process (called the 

host process in the paper) allowed a timing-based page-

identification attack, so that the attacker on one tab could 

identify the page on another tab. Our work is different from Vila 

and Köpf’s work in three aspects. First, site isolation is expected 

as a countermeasure of Vila and Köpf’s attack, but is the enabler 

of our attack. Second, the accuracy of our attack is much higher. 

The accuracy of the cross-tab attack in [22] is 23%, measured 

using 500 main pages from Alexa’s Top sites. Third, our test is 

conducted with extra tabs rendering unrelated webpages, more 

realistic than having only the attacker and victim tabs.  

Another attempt for cross-tab page identification is by Kim 

et al. [12]. It tries to use the temporal changes of memory 

footprint sizes as the side channel to identify the very next site 

visited after the attack starts. Although the attack shows 

effectiveness under certain assumptions, the authors admit that 

the assumptions are too friendly to attackers: no background 

memory usage variation, no extra tab and a small sample set of 

100 sites. They agree with other researchers’ assessment that 

these assumptions may be unrealistic.  

History sniffing – timing based. History sniffing is the 

attack to determine if a page corresponding to a URL has been 

visited by the user before. Cascading Style Sheet (CSS) 

provides opportunities for this. Smith et al. show that the timing 

of CSS Paint API can infer the value of the visited property of 

a URL [21], which indicates whether the URL has been visited 

before. (The original CSS-visited based attacks do not need to 

exploit the timing channel. Janc and Olejnik have a paper about 

the basic mechanism [10]. The problem has been fixed by all 

major browsers.) Kotcher et al. use CSS filters to do image 

transformations on every pixel in a target region on the screen. 

The timing of every transformation allows the attacker to 

determine the approximate color of the pixel [14]. The attacker 

can thus “see” the color of a link to decide if the URL has been 

visited. Along the same line of pixel-stealing, Andrysco et al. 

discover that the multiply operation takes much longer to 

complete when the operands are subnormal floating-point 

numbers. The SVG filter, a type of CSS filter, can exploit the 

timing difference to determine if a pixel is white or black [2].  

History sniffing – using other side channels. Besides the 

timing channel, other side channels also provide opportunities 

for history sniffing. Lee et al. show that GPU’s memory is a side 

channel, because one application’s data processed by the GPU 

can be accessed by another application. As an example, they 

show that when Chromium and Firefox turn on their GPU-

enabling options, an attacker program can infer whether a URL 

has been visited before, based on the “webpage texture” left in 

the GPU memory [15]. As mentioned above, paper [10] 

references several early CSS-visited based attacks. They are not 

based on timing channels. 

Other browser side-channel studies. There are other side 

channel consequences and studies in the literature. Lee et al. 

discover that the new HTML5 functionality, AppCache, allows 

a cross-site attacker to determine the login status of the victim 

user, and an attacker outside a local network to determine if a 

URL exists in the local network [16]. The AppCache side 

channel is independently discovered by Goethem et al. [6],  who 

demonstrate the inference of certain user account attributes in 

various social networks. Bortz et al. show that cross-site timing 

can potentially reveal a user’s login status or the size of a user’s 

hidden data (e.g., the approximate number of items in the 

shopping cart) [4]. Sanchez-Rola et al. showed a timing-based 

attack to enumerate the extensions installed in a browser, thus 

fingerprint the browser for the user tracking purpose [20]. 

Besides the local side channels, researchers also study how to 

reduce the network jitter when measuring the timing 

characteristics from a remote machine. A recent work shows 

that the relative timing of concurrent requests is more robust 

against the network jitter than the traditional absolute timing [7]. 

Note that, our attack, either using the unsafe port or the disk 

cache mechanism, avoids the network jitter. 

8 Conclusions 
We show that site isolation enables a robust timing attack, 

which allows the attacker’s script to test which target sites are 

loaded into the browser, and determine whether each loaded site 

is in a foreground tab that interacts with the user. The attack is 

a result of an in-depth investigation and experimentation about 

a wide range of timing characteristics involving cross-site 

interactions under site isolation. We get very high vulnerability 

percentages about this issue, when evaluating it using the Alexa 

Top 3000 websites. We also show that the attack can do the 

presence test for the 500 sites altogether within roughly one 

minute, achieving a high accuracy. The attack does not need any 

special assumption, thus can be turned into a realistic privacy 

threat in the general population. 

The main challenge revealed by our work is the tension 

between the scarcity of processes and the objective of site 

isolation to separate cross-site frames in different processes. We 

are working with the Google Chrome team and Microsoft Edge 

team to propose and evaluate mitigation options. 
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Appendix:  datasets (b), (c), (d) 

 
Figure 16: loading time distribution,  

dataset-(b) 

 
Figure 17: Background vs not-present,  

dataset-(b) 

 
Figure 18: foreground vs background,  

dataset-(b) 

 
Figure 19: foreground vs not-present,  

dataset-(b) 

 

 

 
Figure 20: loading time distribution,  

dataset-(c) 

 
Figure 21: Background vs not-present, 

dataset-(c) 

 
Figure 22: foreground vs background,  

dataset-(c) 

 
Figure 23: foreground vs not-present,  

dataset-(c) 

 

 

 
Figure 24: loading time distribution,  

dataset-(d) 

 
Figure 25: Background vs not-present, 

dataset-(d) 

 
Figure 26: foreground vs background, 

dataset-(d) 

 
Figure 27: foreground vs not-present,  

dataset-(d) 


