Fake it till you make it: face analysis in the wild using synthetic data alone
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Abstract

We demonstrate that it is possible to perform face-related
computer vision in the wild using synthetic data alone. The
community has long enjoyed the benefits of synthesizing
training data with graphics, but the domain gap between real
and synthetic data has remained a problem, especially for
human faces. Researchers have tried to bridge this gap with
data mixing, domain adaptation, and domain-adversarial
training, but we show that it is possible to synthesize data
with minimal domain gap, so that models trained on syn-
thetic data generalize to real in-the-wild datasets. We de-
scribe how to combine a procedurally-generated parametric
3D face model with a comprehensive library of hand-crafted
assets to render training images with unprecedented real-
ism and diversity. We train machine learning systems for
face-related tasks such as landmark localization and face
parsing, showing that synthetic data can both match real
data in accuracy as well as open up new approaches where
manual labeling would be impossible.

1. Introduction

When faced with a machine learning problem, the hardest
challenge often isn’t choosing the right machine learning
model, it’s finding the right data. This is especially diffi-
cult in the realm of human-related computer vision, where
concerns about the fairness of models and the ethics of de-
ployment are paramount [31]. Instead of collecting and
labelling real data, which is slow, expensive, and subject to
bias, it can be preferable to synthesize training data using
computer graphics [68]. With synthetic data, you can guar-
antee perfect labels without annotation noise, generate rich
labels that are otherwise impossible to label by hand, and
have full control over variation and diversity in a dataset.

Rendering convincing humans is one of the hardest prob-
lems in computer graphics. Movies and video games have
shown that realistic digital humans are possible, but with
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Figure 1. We render training images of faces with unprecedented
realism and diversity. The first example above is shown along with
3D geometry and accompanying labels for machine learning.

significant artist effort per individual [22, 26]. While it’s
possible to generate endless novel face images with recent
self-supervised approaches [27], corresponding labels for
supervised learning are not available. As a result, previous
work has resorted to synthesizing facial training data with
simplifications, with results that are far from realistic. We
have seen progress in efforts that attempt to cross the domain
gap using domain adaptation [60] by refining synthetic im-
ages to look more real, and domain-adversarial training [13]
where machine learning models are encouraged to ignore
differences between the synthetic and real domains, but less
work has attempted to improve the quality of synthetic data
itself. Synthesizing realistic face data has been considered
so hard that we encounter the assumption that synthetic data
cannot fully replace real data for problems in the wild [60].

In this paper we demonstrate that the opportunities for
synthetic data are much wider than previously realised, and
are achievable today. We present a new method of acquiring
training data for faces — rendering 3D face models with an
unprecedented level of realism and diversity (see Figure 1).
With a sufficiently good synthetic framework, it is possible
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Figure 2. We procedurally construct synthetic faces that are realistic and expressive. Starting with our template face, we randomize the
identity, choose a random expression, apply a random texture, attach random hair and clothing, and render the face in a random environment.

to create training data that can be used to solve real world
problems in the wild, without using any real data at all.

It requires considerable expertise and investment to de-
velop a synthetics framework with minimal domain gap.
However, once implemented, it becomes possible to gener-
ate a wide variety of training data with minimal incremental
effort. Let’s consider some examples; say you have spent
time labelling face images with landmarks. However, you
suddenly require additional landmarks in each image. Re-
labelling and verifying will take a long time, but with syn-
thetics, you can regenerate clean and consistent labels at
a moment’s notice. Or, say you are developing computer
vision algorithms for a new camera, e.g. an infrared face-
recognition camera in a mobile phone. Few, if any, hardware
prototypes may exist, making it hard to collect a dataset.
Synthetics lets you render faces from a simulated device to
develop algorithms and even guide hardware design itself.

We synthesize face images by procedurally combining a
parametric face model with a large library of high-quality
artist-created assets, including textures, hair, and clothing
(see Figure 2). With this data we train models for common
face-related tasks: face parsing and landmark localization.
Our experiments show that models trained with a single
generic synthetic dataset can be just as accurate as those
trained with task-specific real datasets, achieving results in
line with the state of the art. This opens the door to other
face-related tasks that can be confidently addressed with
synthetic data instead of real.

Our contributions are as follows. First, we describe how
to synthesize realistic and diverse training data for face anal-
ysis in the wild, achieving results in line with the state of
the art. Second, we present ablation studies that validate the
steps taken to achieve photorealism. Third is the synthetic
dataset itself, which is available from our project webpage:
https://microsoft.github.io/FaceSynthetics.

2. Related work

Diverse face datasets are very difficult to collect and an-
notate. Collection techniques such as web crawling pose
significant privacy and copyright concerns. Manual annota-

tion is error-prone and can often result in inconsistent labels.
Hence, the research community is increasingly looking at
augmenting or replacing real data with synthetic.

2.1. Synthetic face data

The computer vision community has used synthetic data
for many tasks, including object recognition [23, 44, 51, 73],
scene understanding [12, 25, 47, 50], eye tracking [63, 68],
hand tracking [40, 61], and full-body analysis [4 1, 59, 65].
However, relatively little previous work has attempted to
generate full-face synthetics using computer graphics, due
to the complexity of modeling the human head.

A common approach is to use a 3D Morphable Model
(B3DMM) [5], since these can provide consistent labels for
different faces. Previous work has focused on parts of the
face such as the eye region [62] or the hockey mask [45,
76]. Zeng et al. [76], Richardson et al. [46], and Sela et al.
[58] used 3DMMs to render training data for reconstructing
detailed facial geometry. Similarly, Wood et al. [69] rendered
an eye region 3DMM for gaze estimation. However, since
these approaches only render part of the face, the resulting
data has limited use for tasks that consider the whole face.

Building parametric models is challenging, so an alter-
native is to render 3D scans directly [4, 55, 62, 68]. Jeni
et al. [24] rendered the BU-4DFE dataset [74] for dense 3D
face alignment, and Kuhnke and Ostermann [30] rendered
commercially-available 3D head scans for head pose estima-
tion. While often realistic, these approaches are limited by
the diversity expressed in the scans themselves, and cannot
provide rich semantic labels for machine learning.

Manipulating 2D images can be an alternative to using
a 3D graphics pipeline. Zhu et al. [79] fit a 3DMM to face
images, and warped them to augment the head pose. Noja-
vanasghari et al. [42] composited hand images onto faces to
improve face detection. These approaches can only make
minor adjustments to existing images, limiting their use.

2.2. Training with synthetic data

Although it is common to rely on synthetic data alone for
full-body tasks [54, 59], synthetic data is rarely used on its



own for face-related machine learning. Instead it is either
first adapted to make it look more like some target domain, or
used alongside real data for pre-training [76] or regularizing
models [16, 29]. The reason for this is the domain gap — a
difference in distributions between real and synthetic data
which makes generalization difficult [25].

Learned domain adaptation modifies synthetic images
to better match the appearance of real images. Shrivastava
et al. [60] use an adversarial refiner network to adapt syn-
thetic eye images with regularization to preserve annotations.
Similarly, Bak et al. [3] adapt synthetic data using a Cycle-
GAN [77] with a regularization term for preserving identities.
A limitation of learned domain adaptation is the tendency
for image semantics to change during adaptation [ 5], hence
the need for regularization [3, 40, 60]. These techniques are
therefore unsuitable for fine-grained annotations, such as
per-pixel labels or precise landmark coordinates.

Instead of adapting data, it is possible to learn features
that are resistant to the differences between domains [13, 57].
Wu et al. [71] mix real and synthetic data through a domain
classifier to learn domain-invariant features for text detection,
and Saleh et al. [560] exploit the observation that shape is
less affected by the domain gap than appearance for scene
semantic segmentation.

In our work, we do not perform any of these techniques
and instead minimize the domain gap at the source, by gen-
erating highly realistic synthetic data.

3. Synthesizing face images

The Visual Effects (VFX) industry has developed many
techniques for convincing audiences that 3D faces are real,
and we build upon these in our approach. However, a key
difference is scale: while VFX might be used for a handful
of actors, we require diverse training data of thousands of
synthetic individuals. To address this, we use procedural
generation to randomly create and render novel 3D faces
without any manual intervention.

We start by sampling a generative 3D face model that
captures the diversity of the human population. We then ran-
domly ‘dress up’ each face with samples from large collec-
tions of hair, clothing, and accessory assets. All collections
are sampled independently to create synthetic individuals
who are as diverse as possible from one another. This sec-
tion describes the technical components we built in order to
enable asset collections that can be mixed-and-matched atop
3D faces in a random, yet plausible manner.

3.1. 3D face model

Our generative 3D face model captures how face shape
varies across the human population, and changes during
facial expressions. It is a blendshape-based face rig similar to
previous work [17, 34], and comprises a mesh of N =7, 667

Figure 3. 3D faces sampled from our generative model, demonstrat-
ing how our model captures the diversity of the human population.
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Figure 4. Histograms of self-reported age and ethnicity in our scan
collection, which was used to build our face model and texture
library. Our collection covers a range of age and ethnicity.

vertices and 7,414 polygons, and a minimal skeleton of
K =4 joints: the head, neck, and two eyes.

The face mesh vertex positiong areﬁdefined by mesh gen-
erating function M(ﬁ, 0, 5) RIBIXIPIXIOL  RNX3 which
takes parameters ﬁ € R8I for identity, 1/_; € RI¥! for expres-
sion, and 6 € RX>3 for skeletal pose. The pose parame-

ters 0 are per-joint local rotations represented as Euler angles.
M is defined as

M(B,,0) = L(T(3,4).0,T (B); W)

where L£(X, 5, J; W) is a standard linear blend skinning
(LBS) function [33] that rotates vertex positions X € RV*3
about joint locations J € RX*3 by local joint rotations g,
with per-vertex weights W € R*** determining how rota-
tions are interpolated across the mesh. T(ﬁ, 1/_;) RIFIXIPI 5
RN 3 constructs a face mesh in the bind pose by adding
displacements to the template mesh T € R™Y*3, which repre-
sents the average face with neutral expression:

T(B, ), =T, + B:S™ + B,

given linear identity basis S € RIP*N*3 and expression
basis E € RIIXN*3_ Note the use of Einstein summation
notation in this definition and below. Finally, 7 (5):RI?| —
RE >3 moves the template joint locations J € RE >3 to ac-
count for changes in identity:

T By, = T, + WiBiS™,.

We learn the identity basis S from high quality 3D scans
of M =511 individuals with neutral expression. Each scan
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Figure 5. We manually “clean” raw high-resolution 3D head scans
to remove noise and hair. We use the resulting clean scans to build
our generative geometry model and texture library.

Figure 6. Examples from our data-driven expression library and
manually animated sequence, visualized on our template face.

was cleaned (see Figure 5), and registered to the topology
of T using commercial software [52], resulting in training
dataset V. € RM>3N We then jointly fit identity basis S and
parameters [51, ceey ,6_" M] to V. In order to generate novel
face shapes, we fit a multivariate normal distribution to the
fitted identity parameters, and sample from it (see Figure 3).
As is common in computer animation, both expression basis
E and skinning weights W were authored by an artist, and
are kept fixed while learning S.

3.2. Expression

We apply random expressions to each face so that our
downstream machine learning models are robust to facial mo-
tion. We use two sources of facial expression. Our primary
source is a library of 27,000 expression parameters {t); }
built by fitting a 3D face model to a corpus of 2D images
with annotated face landmarks. However, since the annotated
landmarks are sparse, it is not possible to recover all types
of expression from these landmarks alone, e.g. cheek puffs.
Therefore, we additionally sample expressions from a manu-
ally animated sequence that was designed to fill the gaps in
our expression library by exercising the face in realistic, but
extreme ways. Figure 6 shows samples from our expression
collection. In addition to facial expression, we layer random
eye gaze directions on top of sampled expressions, and use
procedural logic to pose the eyelids accordingly.

3.3. Texture

Synthetic faces should look realistic even when viewed
at extremely close range, for example by an eye-tracking
camera in a head-mounted device. To achieve this, we col-
lected 200 sets of high resolution (8192x8192 px) textures
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Figure 7. We apply coarse and meso-displacement to our 3D face
model to ensure faces look realistic even when viewed close-up.

Figure 8. Our hair library contains a diverse range of scalp hair,
eyebrows, and beards. When assembling a 3D face, we choose hair
style and appearance at random.

from our cleaned face scans. For each scan, we extract one
albedo texture for skin color, and two displacement maps
(see Figure 7). The coarse displacement map encodes scan
geometry that is not captured by the sparse nature of our
vertex-level identity model. The meso-displacement map
approximates skin-pore level detail and is built by high-pass
filtering the albedo texture, assuming that dark pixels corre-
spond to slightly recessed parts of the skin.

Unlike previous work [45, 76], we do not build a genera-
tive model of texture, as such models struggle to faithfully
produce high-frequency details like wrinkles and pores. In-
stead, we simply pick a corresponding set of albedo and
displacement textures from each scan. The textures are
combined in a physically-based skin material featuring sub-
surface scattering [9]. Finally, we optionally apply makeup
effects to simulate eyeshadow, eyeliner and mascara.

3.4. Hair

In contrast to other work which approximates hair with
textures or coarse geometry [17, 55], we represent hair as
individual 3D strands, with a full head of hair comprising
over 100,000 strands. Modelling hair at the strand level
allows us to capture realistic multi-path illumination effects.
Shown in Figure 8, our hair library includes 512 scalp hair
styles, 162 eyebrows, 142 beards, and 42 sets of eyelashes.
Each asset was authored by a groom artist who specializes in
creating digital hair. At render time, we randomly combine
scalp, eyebrow, beard, and eyelash grooms.

We use a physically-based procedural hair shader to ac-



Figure 9. Each face is dressed in a random outfit assembled from
our digital wardrobe — a collection of diverse 3D clothing and
accessory assets that can be fit around our 3D head model.

Figure 10. We use HDRISs to illuminate the face. The same face can
look very different under different illumination.

curately model the complex material properties of hair [8].
This shader allows us to control the color of the hair with
parameters for melanin [38] and grayness, and even lets us
dye or bleach the hair for less common hair styles.

3.5. Clothing

Images of faces often include what someone is wearing,
so we dress our faces in 3D clothing. Our digital wardrobe
contains 30 upper-body outfits which were manually created
using clothing design and simulation software [10]. As
shown in Figure 9, these outfits include formal, casual, and
athletic clothing. In addition to upper-body garments, we
dress our faces in headwear (36 items), facewear (7 items)
and eyewear (11 items) including helmets, head scarves, face
masks, and eyeglasses. All clothing items were authored
on an unclothed body mesh with either the average male or
female body proportions [37] in a relaxed stance.

We deform garments with a non-rigid cage-based de-
formation technique [2] so they fit snugly around different
shaped faces. Eyeglasses are rigged with a skeleton, and
posed using inverse kinematics so the temples and nose-
bridge rest on the corresponding parts of the face.

3.6. Rendering

We render face images with Cycles, a photorealistic ray-
tracing renderer [6]. We randomly position a camera around
the head, and point it towards the face. The focal length
and depth of field are varied to simulate different cameras
and lenses. We employ image-based lighting [ 1] with high

Figure 11. Examples of synthetic faces that we randomly generated
and rendered for use as training data.

Figure 12. We also synthesize labels for machine learning. Above
are additional label types beyond those shown in Figure 1.

dynamic range images (HDRI) to illuminate the face and
provide a background (see Figure 10). For each image, we
randomly pick from a collection of 448 HDRIs that include
a range of different environments [75]. See Figure 11 for
examples of faces rendered with our framework.

In addition to rendering color images, we generate ground
truth labels (see Figure 12). While our experiments in sec-
tion 4 focus on landmark and segmentation annotations, syn-
thetics lets us easily create a variety of rich and accurate la-
bels that enable new face-related tasks (see subsection 4.5).

4. Face analysis

We evaluate our synthetic data on two common face anal-
ysis tasks: face parsing and landmark localization. We show
that models trained on our synthetic data demonstrate com-
petitive performance to the state of the art. Note that all
evaluations using our models are cross-dataset — we train
purely on synthetic data and test on real data, while the state
of the art evaluates within-dataset, allowing the models to
learn potential biases in the data.

4.1. Training methodology

We render a single training dataset for both landmark
localization and face parsing, comprising 100,000 images at
512x512 resolution. It took 48 hours to render using 150
NVIDIA M60 GPUs.

During training, we perform data augmentation including
rotations, perspective warps, blurs, modulations to brightness
and contrast, addition of noise, and conversion to grayscale.
Such augmentations are especially important for synthetic
images which are otherwise free of imperfection (see sub-
section 4.4). While some of these could be done at render
time, we perform them at training time in order to randomly
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Figure 13. We train a face parsing network (using synthetic data
only) followed by a label adaptation network to address systematic
differences between synthetic and human-annotated labels.

apply different augmentations to the same training image.
We implemented neural networks with PyTorch [43], and
trained them with the Adam optimizer [28].

4.2. Face parsing

Face parsing assigns a class label to each pixel in an
image, e.g. skin, eyes, mouth, or nose. We evaluate our
synthetic training data on two face parsing datasets: He-
len [32] is the best-known benchmark in the literature. It
contains 2,000 training images, 230 validation images, and
100 testing images, each with 11 classes. Due to labelling
errors in the original dataset, we use Helen* [35], a popu-
lar rectified version of the dataset which features corrected
training labels, but leaves testing labels unmodified for a fair
comparison. LaPa [30] is a recently-released dataset which
uses the same labels as Helen, but has more images, and ex-
hibits more challenging expressions, poses, and occlusions.
It contains 18,176 training images, 2,000 validation images
and 2,000 testing images.

As is common [35, 36], we use the provided 2D land-
marks to align faces before processing. We scale and crop
each image so the landmarks are centered in a 512 x 512px
region of interest. Following prediction, we undo this trans-
form to compute results against the original label annotation,
without any resizing or cropping.

Method We treat face parsing as image-to-image trans-
lation. Given an input color image x containing C classes,
we wish to predict a C-channel label image ¢ of the same
spatial dimensions that matches the ground truth label image
y. Pixels in y are one-hot encoded with the index of the
true class. For this, we use a UNet [49] with ResNet-18
encoder [21, 72]. We train this network with synthetic data
only, minimizing a binary cross-entropy (BCE) loss between
predicted and ground truth label images. Note that there
is nothing novel about our choice of architecture or loss
function, this is a well-understood approach for this task.

Label adaptation. There are bound to be minor sys-
tematic differences between synthetic labels and human-
annotated labels. For example, where exactly is the bound-
ary between the nose and the rest of the face? To evaluate

+ label
adaptation
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Input
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Figure 14. Face parsing results by networks trained with synthetic
data (with and without label adaptation) and real data. Label adap-
tation addresses systematic differences between synthetic and real
labels, e.g. the shape of the nose class, or granularity of hair.

our synthetic data without needing to carefully tweak our
synthetic label generation process for a specific real dataset,
we use label adaptation. Label adaptation transforms labels
predicted by our face parsing network (trained with synthetic
data alone) into labels that are closer to the distribution in
the real dataset (see Figure 13). We treat label adaptation
as another image-to-image translation task, and use a UNet
with ResNet18 encoder [72]. To ensure this stage is not able
to ‘cheat’, it is trained only on pairs of predicted labels g and
ground truth labels y. It is trained entirely separately from
the face parsing network, and never sees any real images.

Results See Tables 1 and 2 for comparisons against the
state of the art, and Figure 14 for some example predic-
tions. Although networks trained with our generic synthetic
data do not outperform the state of the art, it is notable that
they achieve similar results to previous work trained within-
dataset on task-specific data.

Comparison to real data. We also trained a network
on the training portion of each real dataset to separate our
training methodology from our synthetic data, presented as
“Ours (real)” in Tables 1 and 2. It can be seen that training
with synthetic data alone produces comparable results to
training with real data.

4.3. Landmark localization

Landmark localization finds the position of facial points
of interest in 2D. We evaluate our approach on the 300W [53]
dataset, which is split into common (554 images), challeng-
ing (135 images) and private (600 images) subsets.

Method We train a ResNet34 [21] with mean squared
error loss to directly predict 68 2D landmark coordinates
per-image. We use the provided bounding boxes to extract
a 256 x 256 pixel region-of-interest from each image. The
private set has no bounding boxes, so we use a tight crop



Table 1. A comparison with the state of the art on the Helen dataset, using F; score. As is common, scores for hair and other fine-grained
categories are omitted to aid comparison to previous work. The overall score is computed by merging the nose, brows, eyes, and mouth
categories. Training with our synthetic data achieves results in line with the state of the art, trained with real data.

Method Skin Nose Upperlip Inner mouth Lowerlip Brows Eyes Mouth Overall
Guoetal. [19] AAAI'18 938 94.1 75.8 83.7 83.1 80.4 87.1 92.4 90.5
Wei et al. [67] TIP’19 95.6 952 80.0 86.7 86.4 82.6 89.0 93.6 91.6
Linetal. [35] CVPR’'19 945 956 79.6 86.7 89.8 83.1 89.6 95.0 92.4
Liuetal [36] AAAr'20 949 958 83.7 89.1 91.4 83.5 89.8 96.1 93.1
Teetal. [64] ECCV'20 94.6 96.1 83.6 89.8 91.0 90.2 84.9 95.5 932
Ours (real) 95.1 947 81.6 87.0 88.9 81.5 87.6 94.8 91.6
Ours (synthetic) 95.1 945 823 89.1 89.9 83.5 87.3 95.1 92.0

Table 2. A comparison with the state of the art on LaPa, using F; score. For eyes and brows, L and R are left and right. For lips, U, I, and L
are upper, inner, and lower. Training with our synthetic data achieves results in line with the state of the art, trained with real data.

Method Skin Hair L-eye R-eye U-lip I-mouth L-lip Nose L-Brow R-Brow Mean
Liuetal. [36] AAAI'20 972 963  88.1 88.0 84.4 87.6 857 955 87.7 87.6 89.8
Teetal. [64] ECCV’20 973 962 89.5 90.0 88.1 90.0 89.0 97.1 86.5 87.0 91.1
Ours (real) 97.5 869 914 91.5 87.3 89.8 89.4 969 89.3 89.3 90.9
Ours (synthetic) 97.1 857 90.6 90.1 859 88.8 884  96.7 88.6 88.5 90.1

V Py ‘ gty N
Figure 15. Predictions before (top) and after (bottom) label adapta-
tion. The main difference is changing the jawline from a 3D-to-2D
projection to instead follow the facial outline in the image.
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Figure 16. Predictions by networks trained with real (top) and

synthetic data (bottom). Note how the synthetic data network gen-
eralizes better across expression, illumination, pose, and occlusion.

around landmarks.

Label adaptation is performed using a two-layer per-
ceptron to address systematic differences between synthetic
and real landmark labels (Figure 15). This network is never
exposed to any real images during training.

Results As evaluation metrics we use: Normalized Mean
Error (NME) [53] — normalized by inter-ocular outer eye dis-
tance; and Failure Rate below a 10% error threshold (FR ).
See Table 3 for comparisons against state of the art on 300W
dataset. It is clear that the network trained with our syn-
thetic data can detect landmarks with accuracy comparable
to recent methods trained with real data.

Table 3. Landmark localization results on the common, challenging,
and private subsets of 300W. Lower is better in all cases. Note that
0.5 FR rate translates to 3 images, while 0.17 corresponds to 1.

Common  Challenging Private
Method NME NME FR1o%
DenseReg [20] CVPR’17 - - 3.67
LAB [70] CVPR’18 2.98 5.19 0.83
AWING [66] ICCV’19 2.72 4.52 0.33
ODN [78] CVPR’19 3.56 6.67 -
LaplaceKL [48] ICCV’19 3.19 6.87 -
3FabRec [7] CVPR’20 3.36 5.74 0.17
Ours (real) 3.37 5.77 1.17
Ours (synthetic) 3.09 4.86 0.50
Ablation studies
No augmentation 4.25 7.87 4.00
Appearance augmentation 3.93 6.80 1.83
No hair or clothing 3.36 5.37 2.17
No clothing 3.20 5.09 1.00
No label adaptation (synth.) 5.61 8.43 4.67
No label adaptation (real) 3.44 5.71 1.17

Comparison to real data We apply our training method-
ology (including data augmentations and label adaptation) to
the the training and validation portions of the 300W dataset,
to more directly compare real and synthetic data. Table 3
clearly shows that training with synthetic data leads to better
results, even when comparing to a model trained on real data
and evaluated within-dataset.

4.4. Ablation studies

We investigate the effect of synthetic dataset size on
landmark accuracy. Figure 17 shows that landmark localiza-
tion improves as we increase the number of training images,
before starting to plateau at 100,000 images.
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Figure 17. Landmark localization accuracy improves as we use
more and more synthetic training data.

Figure 18. It is easy to generate synthetic training data for eye
tracking (left) which generalizes well to real-world images (right).

We study the importance of data augmentation when
training models on synthetic data. We train models with:
1) no augmentation; 2) appearance augmentation only (e.g.
colour shifts, brightness and contrast); 3) full augmentation,
varying both appearance and geometry (e.g. rotation and
warping). Table 3 shows the importance of augmentation,
without which synthetic data does not outperform real.

Table 3 also shows the importance of label adaptation
when evaluating models trained on synthetic data — using
label adaptation to improve label consistency reduces error.
Adding label adaptation to a model trained on real data
results in little change in performance, showing that it does
not benefit already-consistent within-dataset labels.

If we remove clothing and hair, landmark accuracy suf-
fers (Table 3). This verifies the importance of our hair library
and digital wardrobe, which improve the realism of our data.

Additional ablation studies analyzing the impact of render
quality, and variation in pose, expression, and identity can
be found in the supplementary material.

4.5. Other examples

In addition to the quantitative results above, this section
qualitatively demonstrates how we can solve additional prob-
lems using our synthetic face framework.

Eye tracking can be a key feature for virtual or aug-
mented reality devices, but real training data can be difficult
to acquire [14]. Since our faces look realistic close-up, it
is easy for us to set up a synthetic eye tracking camera and
render diverse training images, along with ground truth. Fig-
ure 18 shows example synthetic training data for such a
camera, along with results for semantic segmentation.

Dense landmarks. In subsection 4.3, we presented re-
sults for localizing 68 facial landmarks. What if we wanted
to predict ten times as many landmarks? It would be impossi-
ble for a human to annotate this many landmarks consistently

Figure 19. With synthetic data, we can easily train models that
accurately predict ten times as many landmarks as usual. Here are
some example dense landmark predictions on the 300W dataset.

and correctly. However, our approach lets us easily gener-
ate accurate dense landmark labels. Figure 19 shows the
results of modifying our landmark network to regress 679
coordinates instead of 68, and training it with synthetic data.

4.6. Discussion

We have shown that it is possible to achieve results com-
parable with the state of the art for two well-trodden tasks:
face parsing and landmark localization, without using a sin-
gle real image during training. This is important since it
opens the door to many other face-related tasks that can be
addressed using synthetic data in the place of real data.

Limitations remain. As our parametric face model in-
cludes the head and neck only, we cannot simulate clothing
with low necklines. We do not include expression-dependent
wrinkling effects, so realism suffers during certain expres-
sions. Since we sample parts of our model independently, we
sometimes get unusual (but not impossible) combinations,
such as feminine faces that have a beard. We plan to address
these limitations with future work.

Photorealistic rendering is computationally expensive,
so we must consider the environmental cost. In order to
generate the dataset used in this paper, our GPU cluster used
approximately 3,000kWh of electricity, equivalent to roughly
1.37 metric tonnes of CO,, 100% of which was offset by our
cloud computing provider. This impact is mitigated by the
ongoing progress of cloud computing providers to become
carbon negative and use renewable energy sources [, 18, 39].
There is also the financial cost to consider. Assuming $1 per
hour for an M60 GPU (average price across cloud providers),
it would cost $7,200 to render 100,000 images. Though this
seems expensive, real data collection costs can run much
higher, especially if we take annotation into consideration.
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