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Serverless, or Functions-as-a-Service (FaaS), is an increasingly popular paradigm for application development,

as it provides implicit elastic scaling and load based billing. However, the weak execution guarantees and

intrinsic compute-storage separation of FaaS create serious challenges when developing applications that

require persistent state, reliable progress, or synchronization. This has motivated a new generation of serverless

frameworks that provide stateful abstractions. For instance, Azure’s Durable Functions (DF) programming

model enhances FaaS with actors, workflows, and critical sections.

As a programming model, DF is interesting because it combines task and actor parallelism, which makes

it suitable for a wide range of serverless applications. We describe DF both informally, using examples, and

formally, using an idealized high-level model based on the untyped lambda calculus. Next, we demystify

how the DF runtime can (1) execute in a distributed unreliable serverless environment with compute-storage

separation, yet still conform to the fault-free high-level model, and (2) persist execution progress without

requiring checkpointing support by the language runtime. To this end we define two progressively more

complex execution models, which contain the compute-storage separation and the record-replay, and prove

that they are equivalent to the high-level model.
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1 INTRODUCTION
Serverless computing, also known as Functions-as-a-Service (FaaS), has emerged as a fast-growing

paradigm for developing cloud applications. A FaaS application specifies only the function def-

initions and the events that trigger them. The entire provisioning and scaling of machines, and

the distribution of the function executions over those machines, is automatic. This reduces the
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1 import azure.functions as func
2 import urllib.request
3

4 def main(req: func.HttpRequest):
5 url = req.get_body().decode("utf-8")
6 fid = urllib.request.urlopen(url)
7 webpage = fid.read().decode('utf-8')
8 found_free = webpage.find("free") >= 0
9 return str(found_free)

"bindings": [ { "authLevel": "anonymous",
"name": "req",
"type": "httpTrigger",
"direction": "in",
"route": "checkWebPage",
"methods": [ "get" ] },

{ "name": "$return",
"type": "http",
"direction": "out" } ]

Fig. 1. An example of a simple serverless function (left) and its trigger declarations (right). The function is
triggered by an Http request, downloads a webpage from the URL specified in the request, tests if the page
contains the word "free", and returns the boolean result.

development effort, provides elastic scaling, and is cost-effective. For example, it takes just a few lines

of code to create a service where each web request triggers a function execution that returns a

result (Figure 1). And yet, this simple function can (a) scale out automatically to handle hundreds

of thousands of requests per second, and (b) operate cheaply under low load, because load-based
billing means that the cost is proportional to the execution time and memory that was consumed.

Because of its benefits, FaaS has already been shown to be a good match for compute-intensive

highly parallelizable workloads [Fouladi et al. [n. d.]a,n; Müller et al. 2020; Perron et al. 2020] and it

continues to grow in other application domains, such as workflow processing, and microservices.

A central assumption behind FaaS, and key to its relevance for developers, is the compute-storage
separation that is becoming a dominant architectural principle for cloud services. By separating the

application into ephemeral workers and a storage service, the state of an application is decoupled

from the computation, making it available when a processing worker crashes or is shut down due

to low load, and allowing for the workers to scale independently of the storage service.

Developer Challenges. FaaS is not limited to stateless input/output computations. Functions

can call external services, such as key-value stores, queues, or databases. However, dealing with

compute-storage separation can be very cumbersome for developers. The following desiderata are

particularly challenging to implement using serverless functions.

C1 Durable Execution Progress.Many applications require reliable execution of large or long-

running computations or workflows. But FaaS functions can fail transiently, and are subject to

strict time limits. Thus, execution progress must be saved to durable storage. As mainstream

language runtimes do not support checkpointing the state of an executing program (including

the call stack, the state of variables, and the heap), it is challenging to do so in a simple,

automatic, and robust manner.

C2 Durable Application State.All durable state must be stored in external storage or databases,

and must be explicitly read and written whenever used. This is inconvenient and can become

challenging, considering the weak execution guaranteed on FaaS, and the intricacies of the

storage APIs (such as transient errors, retries, and concurrency control).

C3 Exactly-Once Processing. Storage triggers meant to process events reliably do not in fact

guarantee exactly-once execution. For example, a trigger that invokes a function to process

each message in a queue may launch multiple executions for the same message, possibly

concurrently.

C4 Synchronization. Concurrency control must be achieved via some external service, which

is quite tricky. For pessimistic concurrency control, many storage services offer leases, which
temporarily grant exclusive access to the holder. For optimistic concurrency control, e-tags
are common, which can detect write-write conflicts. Both of these techniques are difficult to
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master: leases force developers to work with timing assumptions, and e-tags can only detect

conflicts, but not prevent them.

Stateful Abstractions. Asking application developers to understand and solve the issues listed

above means we lose the original promise of FaaS: to cleanly separate the application logic from

the concurrency, parallelism, distribution, and fault tolerance issues that are pervasive in the

cloud environment. This provides a strong motivation to augment the FaaS programming model
with abstractions for state and synchronization, hiding the challenges (C1–C4) within the runtime

implementation and thereby simplifying application development. Such abstractions can also

improve application performance, since they delegate the implementation of challenging patterns

to the experts implementing the runtime.

Two common stateful serverless abstractions we have seen emerge are workflows and actors.
Serverless workflow frameworks such as Amazon Step Functions, Azure Durable Functions (DF), and

IBM Composer allow functions to be composed into larger computations [Garcia Lopez et al. 2018].

On the other hand, serverless actor frameworks such as Orleans [Bykov et al. 2011], Cloudflare’s

Durable Objects [CloudFlare 2020a,b], Lightbend’s Akka Serverless [Bonér 2020], or Azure Durable

Entities [Microsoft 2020] allow application state to be encapsulated in actors.

As new frameworks providing stateful serverless abstractions are constantly appearing, it is

important to strive for a deeper understanding of the underlying principles. Online documentation,

code examples, blog posts, and debates often leave many questions unanswered, particularly in the

face of concurrency, parallelism, distribution, and faults. We thus follow the example of [Jangda

et al. 2019], and use formal semantics to shed light on recent developments in this space.

Durable Functions. In this paper, we focus on DF [Microsoft 2020] as our target of study. DF

supports multiple languages and can run in a hosted environment with load-based billing. From

a semantic perspective, DF is interesting because it contains a uniquely comprehensive set of

abstractions (including both workflows and actors, as well as critical sections). We start with an

informal description of the DF programming model (§3), using examples. Our results are based

on the publicly available documentation, the open-source implementations on Github, and on

conversations with the DF team at Microsoft.

Idealized Semantics. Our formal development proceeds as a sequence of three progressively

finer operational models, each of which serves a different purpose. The first, called the high-level
model (§4), is meant to serve as a semantic reference that exposes the core programming model

concepts while separating implementation details. It extends the untyped lambda calculus with

an async/await construct and the DF primitives, to represent code executing inside functions,

workflows, and actors. The high level model is the first formal study of DF and describes its

idealized semantics, that is it assumes that there are no faults and that all processing is reliable and

happens exactly once.

Reliable Execution Under Compute-Storage Separation. The second model is called the

compute-storage model (§5) and it describes an implementation of DF that separates the runtime

into two components: a durable store representing the persisted state of workflows and actors, and

an elastic collection of volatile workers that execute application code. This separation is inherent

to stateful serverless and enables serverless execution and billing. Unfortunately, it also poses

significant correctness challenges because workers are volatile and could fail at any time, or execute

the same work more than once. To validate the model in that respect, we prove that it guarantees

observably exactly-once execution of the application; the correctness condition is a simulation

relation between the compute-storage model and the high-level model (Thm. 5.3). The proof relies

on the storage system providing an atomic commit mechanism that serverless workers can use to
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persist progress (including updated states and message queues).
1
The implication of this proof

is that the internal state of a DF application, i.e., the state of all actors, queues, and the progress

of all orchestrations, is not visibly affected by any transient faults or recoveries of the underlying

infrastructure.

Correctness of Record-Replay. The third model is called the replay-based model (§6). It refines
the compute storage model by illustrating how the DF runtime uses a record-replay mechanism

to persist and restore the intermediate state of a workflow. This is important, as it allows DF

orchestrations to be authored in languages whose runtime does not support checkpointing, such

as all mainstream programming languages, yet still allows the runtime to persist and recover the

workflow progress in case of a crash, as well as unload workflows from memory to avoid billing

charges while they are waiting for a result. We then prove (§6.3) that this record-replay mechanism

is sound for deterministic orchestrations, by showing that the compute-storage model and the

replay-based model are bisimilar (Thm. 6.4).

Collaborationwith the DF Team. The development of all three models and their clean separation

required extracting interspersed information from documentation, code, and discussions with the

DF team. A beneficial side-effect of our collaboration was that our work helped identify areas of

underspecified behavior, as well as influenced the design of the two new DF backends [github

2021a,b].

Contributions. Overall, we make the following contributions:

(1) We describe how the DF abstractions help developers address the challenges (C1–C4) of
stateful serverless (§3).

(2) We define an idealized (fault-free) semantics of the DF programming model, formalizing the

intuition about its behavior given in the previous section (§4).

(3) We show how DF can be implemented using a compute-storage separated infrastructure in

the presence of faults by defining the semantics of such an implementation and proving its

equivalence with the idealized semantics (§5).

(4) We show how the progress of workflows written in general purpose programming languages

can be persisted and restored by defining the semantics of a replay-based DF implementation

and proving its equivalence with the compute-storage separated one (§6).

2 BACKGROUND: FAAS
Serverless frameworks, also known as Functions as a Service (FaaS), are provided by all major cloud

providers as an alternative to platforms where the user has to explicitly manage the provisioning

and maintenance of the servers running their application. Serverless offerings promise elasticity,

i.e., fast scaling of computational resources when the load increases, and at the same time no use of

resources, and therefore no cost, when there is no load. All of this administration cost is transferred

from the user to the provider, which is the one that assumes management of VMs, shutting them

down when there is no load, and launching more VMs and routing traffic to them when load

increases above the current capacity.

Serverless offerings have not only promised, but have also successfully delivered, as a lot of recent

work has shown how to leverage this abstraction for fast and cost efficient execution. For example,

the gg framework [Fouladi et al. [n. d.]a] achieves significant speedups on compute-heavy tasks, e.g.,

the compilation of big software projects, by executing them on serverless instead of multicore cloud

instances, with only a fraction of the cost! Other work that showcases the performance benefits of

1
Atomic commit is directly supported by database services offering transactions, like AzureSQL [Microsoft Azure 2021], or

can be implemented by the runtime using an appropriately designed commit protocol [Burckhardt et al. 2021]
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1 def main(message: QueueTrigger) -> bool:
2 current = storage.read("messagecount");
3 current = current + 1;
4 storage.write("messagecount", current);

Fig. 2. Pseudocode illustrating a naïve, flawed attempt of using a serverless function with a queue trigger to
count the requests in a queue. The function is triggered for each message in the queue, reads the current count
from storage, increments it, and writes it back. This counter is vulnerable to both under- and over-counting
because of races and duplicate executions.

serverless includes a query engine [Perron et al. 2020] and a video processing application [Fouladi

et al. [n. d.]b].

The basic building block of applications built on top of a serverless platforms is a serverless

function. At first glance, a serverless function looks just like any other function. For example,

Fig. 1, on the left, shows a Python function that downloads a webpage from a URL passed as an

argument, tests if the page contains the word "free", and returns the boolean result. However, unlike

a regular function, a FaaS function is not invoked using a standard function call. Rather, it comes

with additional declarations that specifies what events should trigger the function. For example, on

the Azure Functions platform, the JSON in Fig. 1 on the right indicates that the function is triggered

by Http GET requests, and the result is returned to that request. Most FaaS environments include a

rich set of triggers, including triggers that allow the processing of messages from storage queues.

2.1 Weak Execution Guarantees
The main attraction of FaaS is how it simplifies development while providing elastic scale and

load-based billing. However, expanding the scope from individual functions to entire applications is
not as easy as it may appear at first. For one, FaaS makes rather weak execution guarantees.

2.1.1 Execution Time Limit. Serverless functions come with a strict execution time limit; the typical

default for this limit is 5 minutes. For a simple function as in Fig. 1, it may be just fine to ignore

webpages that cannot be processed within 5 minutes. But this does not work for larger computations

or workflows that do not terminate within a short time.

2.1.2 Partial Execution. Because FaaS functions execute in a distributed environment, they are

inherently subject to faults. Besides timeouts, there are many other reasons why functions may stop

mid-execution. Incomplete executions can be caused by the application itself (e.g. out-of-memory

errors), the runtime (e.g. shutdown of host machines), or even the underlying hardware.

2.1.3 At-Least-Once Triggers. Storage triggers are designed to retry when uncertain whether the

function executed to completion. This means a single event can trigger multiple function executions.

2.2 Threats to Consistency
The weak execution guarantees and the implicit parallelism of FaaS are harmless for stateless

computations that are free of interference. However, when functions interact with state (e.g. by

calling a storage service, or just any stateful service in general), consistency issues can arise.

2.2.1 Non-Atomic Updates. If a function means to update multiple storage locations (e.g. update

two account balances), a partial execution (§2.1.2) means that it may execute only some of the

updates.
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2.2.2 Concurrency Control. Functions are inherently parallel, which can cause races. For example,

the naive counter in Fig. 2 has a race condition which can lead to under-counting: two concur-

rent invocations may interleave in such a way that the count is incremented only once. Solving

this problem can be quite difficult in general, as it requires the use of external synchronization

mechanisms (such as storage leases or storage e-tags) which are difficult to master.

2.2.3 Effect Duplication. At-least once triggers (§2.1.3) can lead to effect duplication. For example,

the function in Fig. 2 may over-count the number of requests if invoked multiple times for the

same message. To deal with duplicate executions, an often-repeated advice for programmers is to

"make their functions idempotent", which is not always easy. The practical consequence is that

application code is often sub-correct, or littered with deduplication mechanisms, or both.

2.3 Serverless Workflows
To enable developers to execute long-running computations and workflows in a FaaS environment

requires dealing with the issues outlined above. A number of methodologies and runtime frame-

works have been proposed to this end. All of them require the application developer to explicitly

decompose computations into small steps that fit within the serverless time limit and can be retried

when necessary. But they differ significantly in the generality of supported workflows, how those

workflows are expressed, and how they are executed:

• (External Coordinator) One can execute the orchestration code on a coordinator machine that

is not serverless itself [Fouladi et al. [n. d.]a].

• (Trigger-based workflows)One can use triggers to compose functions. For example, to sequence

two functions, the first function can write to a file or queue, which then triggers the execution

of a second function. Conventional triggers have limited expressivity, but more powerful

triggers can be added to support workflows involving aggregation [López et al. 2020].

• (Declarative workflows) One can use declarative schemas, such as XML-based workflows [She-

galov et al. 2001], JSON-based step functions [Amazon 2020], or visual design tools [Microsoft

Azure 2020].

• (Replay-based workflows) One can express orchestrations using regular code, but execute them
in a special mode that logs progress and can resume intermediate states via replay [Burckhardt

et al. 2021; Zhang et al. 2020a].

The replay-based approach, also known as workflows-as-code, is what underlies DF orchestrations,
and we will explain this solution, formalize it, and prove its salient properties in §4–§6.

2.4 Serverless Actors
Actors are a well-known paradigm for handling the challenges of concurrency and distribution.

In some sense, they are a stateful equivalent of functions, as both represent a "minimal unit"

that can then be composed to build large systems. Actor systems like Erlang [Armstrong 1997] or

Akka [Haller 2012] are widely used in industry to build scalable distributed systems. Orleans [Bykov

et al. 2011] can be considered a pioneer of "serverless" actors in the sense that it provides location

transparency and can automatically load-balance actors over an elastic cluster. However, Orleans is

not available in a hosted environment with load-based billing. More recent examples of actor-like

abstractions making an appearance on hosted platforms include Azure’s Durable Entities (§3.3),

Cloudflare’s Durable Objects
2
[CloudFlare 2020a,b] and Lightbend’s Akka Serverless

3
[Bonér 2020].

2
Durable Objects closed beta was announced on September 28th, 2020.

3
Akka Serverless was formerly known as Lightbend CloudState.
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function type programming paradigm unit of progress determinism required

Activity FaaS completion no

Orchestration async/await task parallelism completed tasks yes

Entity virtual actors operations no

Fig. 3. Types of functions used by the DF programming model.

Reliability. The vast majority of actor frameworks make either no reliability guarantees, or give

only partial guarantees (at-least-once or at-most-once). The only actor systems to provide exactly-

once delivery, to the best of our knowledge, are DF and Ambrosia [Goldstein et al. 2020]. Ambrosia’s

actors are not intended for a serverless architecture: they are coarse-grained, not load-balanced,

and offer no load-based billing.

3 DURABLE FUNCTIONS
In this section we introduce the Durable Functions (DF) programming model, which is a component

of Azure Functions, Microsoft’s FaaS platform. We use Python for all code here, but DF supports

several programming language frontends including JavaScript, C#, and PowerShell. DF defines

three types of functions (see also Fig. 3):

(1) Activities are the DF-equivalent of stateless FaaS functions.
(2) Entities are actors that encapsulate application state and process operations one at a time.

(3) Orchestrations use task-parallel async-await style code to coordinate activities and entities.

As the name suggests, durability is implicit in DF: the progress of orchestrations and the state of

entities are automatically saved to storage and transparently restored after faults. In that sense,

the DF model unifies compute and storage. This ability to run failure oblivious code in a failure

resilient manner is also known as virtual resiliency [Goldstein et al. 2020].

3.1 Activities
Activities are the equivalent of FaaS functions in DF, and their definitions look similar to Fig. 1.

Activities are automatically retried under partial execution (§2.1.2). However, if an activity exceeds

the FaaS time limit (§2.1.1), or if the application code in the activity throws an unhandled exception,

it is not automatically retried. Rather, the activity is considered to have completed with an exception

result, and the exception is re-thrown in the parent orchestration that invoked it.

3.2 Orchestrations
Orchestrations allow developers to create long-running computations and workflows by decom-

posing the computation into tasks. In DF, those tasks can be either activities, entity operations,

timers, or sub-orchestrations. The tasks are composed following the async/await paradigm; where

in Python, the yield keyword is used to represent await [Chris Gillum 2021]. The DF runtime

automatically saves the progress of orchestrations to storage and can recover the result of already

completed tasks after faults without reexecuting them (addressing C1, C3).

3.2.1 Sequential Composition. The orchestration in Figure 4 composes three activities in sequence.

It first calls an activity that downloads its input data (Line 3), which could happen using a call to a

storage service such as a database. The orchestrations then waits, as expressed by the yield on line

3, for the activity to finish and return the dataset result. After the data is downloaded, it calls the

next activity that processes the data and waits for the outputs (line 4). Then it calls a summarization

activity that produces a summary of the processing results (line 5) and returns it to the user (line 6).
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1 def orchestrate_pipeline(context: df.DurableOrchestrationContext):
2 try:
3 dataset = yield context.call_activity('DownloadData')
4 outputs = yield context.call_activity('Process', dataset)
5 summary = yield context.call_activity('Summarize', outputs)
6 return summary
7 except Exception as exc:
8 yield context.call_activity('CleanUp')
9 return f"Something went wrong" {exc}"

Fig. 4. Sequencing three activities DownloadData, Process, and Summarize using a durable functions orches-
tration written in Python.

1 def orchestrate_thumbnails(context: df.DurableOrchestrationContext):
2 # Get the directory that was given as an input argument
3 directory = context.get_input()
4 # Call an activity that lists all images in a directory and wait for its result
5 images = yield context.call_activity('GetImageList', directory)
6 # For each image, call activity without waiting and store the task in a list
7 tasks = []
8 for img in images:
9 tasks.append(context.call_activity('CreateThumbnail', img))
10 # Wait for all the tasks to complete
11 results = yield context.task_all(tasks)
12 # Return sum of all sizes
13 return reduce(lambda x, y: x + y, results, 0)

Fig. 5. Example orchestration that (i) calls an activity GetImageList, and then, in parallel, CreateThumbnail
for each image. It then waits for all to complete and returns the aggregated size.

1 def orchestrate_periodic_job(context: df.DurableOrchestrationContext):
2 # Call an activity that runs at a regular interval
3 yield context.call_activity('PeriodicJob')
4 wakeup_time = context.current_utc_datetime + timedelta(days=1)
5 yield context.create_timer(wakeup_time)
6 context.continue_as_new()
7 return

Fig. 6. Example eternal orchestration that performs some task, waits for a day, and then starts over from the
beginning.

Since orchestrations use standard Python control flow semantics, exceptions can be handled as

usual. In this example, we enclosed the three activities in a try expression that handles exceptions

raised by any of the three activities (line 7), calling some cleanup activity (line 8).

3.2.2 Parallel Composition. Instead of waiting for a task to finish executing before invoking the

next, we can also start multiple tasks at once, and then wait for them to complete later. Figure 5

shows an orchestration that uses this pattern to execute a dynamically determined number of

independent activities in parallel. It first calls an activity to get the image list in an external storage

service, and then it calls an activity to create a thumbnail for each image in parallel, waiting for all

of them to finish to return an aggregate of their sizes. This fan-out, fan-in pattern is very common; it

strongly benefits from the elastic scaling of the underlying FaaS platform, but is difficult to express

on pure FaaS.
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3.2.3 Eternal Orchestrations. It can be desirable for orchestrations to last for a long time, or even

forever. For example, to execute a periodic job once a day, an orchestration can run an infinite

loop and use a timer. Writing an infinite loop directly in code is however problematic, as DF uses a

record/replay mechanism (more about this in §3.5) that could lead to unbounded history growth.

To support infinite loops, DF thus provides a continue_as_new(x) primitive which restarts the

orchestration from the beginning, passing x as the input. Fig. 6 shows an example of an eternal

orchestration that runs a job (line 3), creates a day-long timer and waits for it to complete (line 4),

and then starts from the beginning (lines 5,6).

3.2.4 Client Operations. A client object is used to interface with the DF runtime. When starting

an orchestration, one may optionally specify an instance id for the orchestration. If so, the system

checks if that instance already exists and filters duplicates:
4

try:
await client.start_new("myOrchestration", instance_Id, input_argument)
print("new orchestration started")

except InstanceIDExc:
print("orchestration already exists")

Clients can also check the status of an orchestration with a specific instanceId, to determine if it

completed, and access the output value:

status = await client.get_status(instance_id)
if status.runtime_status is df.OrchestrationRuntimeStatus.Completed:

print("the result is", status.output)

3.3 Entities
Entities allow applications to encapsulate durable state, and to define the operations that can be

performed on it (addressing C2). Like actors, entities store operation requests in a queue and

execute them one at a time (addressing C4). Like virtual actors in Orleans [Bykov et al. 2011],

entities are identified by an entity ID that consists of two strings, the entity name and the entity key.

For example, an account entity may be identified by ("Account", "000-7-17-12-0-14-26"). Fig. 7 shows

example code for an account entity that supports three operations, for depositing, withdrawing,

and checking the account balance.

3.3.1 Orchestration Calls and Signals. Orchestrations can access entities either by calling an

operation, which means the orchestration creates a task that can be awaited and that returns a

result, or by signaling an operation, which sends a "fire-and-forget" one-way message. For example,

the following code first deposits money (fire-and-forget) and then checks the balance (waits for

response message):

entityId = df.EntityId("Account", "000-7-17-12-0-14-26")
context.signal_entity(entityId, "deposit", 1)
new_balance = yield context.call_entity(entityId, "get")
print("new balance =", new_balance)

DF guarantees that all messages sent to the same entity by the same orchestration are delivered in

order. Thus, for the above example it guarantees that the deposit operation is performed before the

get operation.

3.3.2 Entity-to-Entity Signals. Entities can signal other entities. This enables useful patterns, such

as using entities to represent stateful streaming operators, or even complex dataflow graphs. Also,

signals can be used to implement indexing or view maintenance.

4
The precise conditions for deduplication are controlled by the ‘OverridableExistingInstanceStates‘ configuration parameter.
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1 class Account:
2 # Initialize the entity state, which defaults to 0 balance
3 def __init__(self):
4 self.balance = 0
5

6 # Return the balance
7 def get(self):
8 return self.balance
9

10 # Deposit an amount, increasing the balance
11 def deposit(self, amount):
12 self.balance += amount
13 return self.balance
14

15 # Withdraw an amount, reducing the balance
16 def withdraw(self, amount):
17 self.balance -= amount
18 return self.balance

Fig. 7. Example entity that corresponds to a bank account supporting three operations: (i) depositing money
to the account, (ii) withdrawing money, and (iii) simply getting its balance.

3.3.3 No Entity-to-Entity Calls. To prevent deadlocks, DF does not allow entities to call other

entities. For example, consider two entities 𝑘1, 𝑘2 that each are currently executing some operation

𝑜1 and 𝑜2, respectively. If we allowed entity-to-entity calls, 𝑜1 could call an operation on 𝑘2, and

𝑜2 could call an operation on 𝑘1. Then, both requests would be stuck and both entities would be

(durably and reliably) deadlocked forever.

3.3.4 Scheduled Signals. DF supports signals to be scheduled for a specified delivery time. This can

be useful for operations that need to be performed at a specific time. An entity can also implement

a periodic background operation by sending a scheduled signal to itself. Another interesting use

of scheduled signals is to deliver high-priority operations. For example, consider an entity whose

input queue is backlogged (e.g. because operations are processed too slowly). Sending a scheduled

message can bypass that queue and be delivered to the entity directly, because scheduled messages

are not subject to the in-order delivery guarantee.

3.4 Critical Sections
A common requirement when interacting with multiple entities is that invocations across entities

must happen at once, atomically, to ensure that a specific invariant is not violated by concurrent

invocations. Durable Functions addresses this by supporting critical sections, i.e., regions of the

code where only one orchestration is allowed to call specific entities. This enables orchestrations to

modify or read from multiple entities atomically (addressing C4). Figure 8 shows an orchestration

that transfers money between accounts ensuring that the source account has an adequate balance

to prevent overdraft. It achieves that using a critical section (line 6).
5
The orchestration first obtains

its inputs and then acquires the locks for both account entities to ensure that no other invocation

to the entities happens while the locks are kept. It then checks if the balance covers the amount,

and if so performs the transfer, returning True, and releasing the locks.

5
Critical sections are only supported by the C# API at the time of writing, but we show the expected interface using Python

to avoid confusing readers with multiple languages.
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1 def transfer_safe_orchestration(context: df.DurableOrchestrationContext):
2 # From input, get entity ids for source and destination account, and the amount
3 [source, dest, amount] = context.get_input()
4 # Critical Section: Acquire a lock for each entity
5 with (yield context.lock([source, dest])):
6 # Make sure that the source account has adequate balance to avoid overdraft
7 source_balance = yield context.call_entity(source, "get")
8 if source_balance < amount:
9 return False
10 else:
11 # Wait for transfer to complete
12 yield context.task_all([context.call_entity(source, "withdraw", amount),
13 context.call_entity(dest, "deposit", amount)]);
14 return True

Fig. 8. Example of an orchestration with a critical section that reliably transfers money between account
entities checking for overdraft.

3.4.1 Progress and Fairness. To ensure progress, a critical section must specify all the entities it

wishes to access: while executing, it can call only entities that are already locked, it cannot call sub-

orchestrations, and it cannot enter another critical section. This allows the runtime implementation

to use a fair, deadlock-free distributed locking protocol.
6

3.4.2 Critical Sections vs. Transactions. Like transactions, critical sections guarantee atomicity

and isolation. Unlike transactions, they do not require the programmer to handle failures or issue

retries, and operate reliably even in the presence of contention.

3.5 Correct Use of Orchestrations
Internally, DF persists and restores the intermediate state of an orchestration by recording and

replaying task results in a history (§6). However, this only works if the user follows certain

guidelines.
7

For one, the orchestration code must be deterministically replayable. Any code that reads non-

deterministic data sources or calls I/O should not be done directly in the orchestration, but must

be wrapped in an activity, to ensure it is properly recorded and replayed. For commonly used

operations (e.g. read the current time, create a random new GUID), the API also provides built-in

support for convenience.

Secondly, history size can become an issue if it grows too large to be replayed quickly. Developers

whose workflows execute a very large number of tasks must structure them so that only small

portions of the overall history have to be replayed at any given time. This can be done either by

calling sub-orchestrations (sequentially or in parallel), or by using continue-as-new (§3.2.3).

4 HIGH-LEVEL MODEL
We now formalize the DF programming model, by modeling the system as a collection of compo-

nents, and representing the code executing within a component as an untyped lambda expression.

4.1 Expression Syntax
We use a standard call-by-value evaluation, with a minimal syntax based on variables 𝑥 , functions

𝜆𝑥.𝑒 , values 𝑣 , expressions 𝑒 , and function application 𝑒 𝑒 ′:

6
The current implementation achieves this by acquiring the locks in a globally consistent order, one at a time.

7
Using DF orchestrations correctly can be tricky for new users. For C# applications, DF thus includes a static analyzer that

can warn users about suspected error.
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context restrictions

Syntax Meaning Act. Orch. Entities CS

𝑒 ::= 𝑣 | 𝑒 𝑒 ′ | await 𝑒 (basic evaluation) ✓ ✓ ✓ ✓
| call 𝑛𝐴 (𝑒) (call activity) − ✓ − −
| call 𝑛𝐸 .𝑜 (𝑒, 𝑒) (call entity) − ✓ − ∈ lockset

| call 𝑛𝑋 (𝑒) (call external service) ✓ − ✓ −
| continue 𝑛𝑂 (𝑒) (continue as new) − ✓ − −
| signal 𝑛𝐸 .𝑜 (𝑒, 𝑒) (signal entity) − ✓ ✓ ∉ lockset

| get (read entity state) − − ✓ −
| set 𝑒 (update entity state) − − ✓ −
| lock⟨𝑒⟩ 𝑒 (critical section) − ✓ − −

execution context: 𝐸 [◦] ::= ◦ | 𝐸 [◦] 𝑒 | 𝑓 𝐸 [◦] | await 𝐸 [◦] | call 𝑛𝑂 (𝐸 [◦]) |
call 𝑛𝐴 (𝐸 [◦]) | call 𝑛𝐸 .𝑜 (𝐸 [◦], 𝑒) | call 𝑛𝐸 .𝑜 (𝑣, 𝐸 [◦]) | call 𝑛𝑋 (𝐸 [◦]) | signal 𝑛𝐸 .𝑜 (𝐸 [◦], 𝑒) |

signal 𝑛𝐸 .𝑜 (𝑣, 𝐸 [◦]) | set 𝐸 [◦] | continue 𝑛𝑂 (𝐸 [◦]) | lock⟨𝑣 𝐸 [◦] 𝑒⟩ 𝑒

Fig. 9. Expression syntax (top) and definition of execution context (bottom).

𝑓 ::= 𝜆𝑥 .𝑒 (function)

𝑥 ::= . . . (variable)

𝑐 ::= () | . . . (constants)

𝑣 ::= 𝑐 | 𝑥 | error | 𝑓 . . . (value)

𝑒 ::= 𝑣 | 𝑒 𝑒 ′ | . . . (expressions, see Fig. 9 for complete list)

Functions are defined by a variable name 𝑥 and a body 𝑒 . Constants are defined as usual, with ()
representing the unit or "void" value. Expressions include values and function application, as well

as all the operations for communication and synchronization shown in (Fig. 9). Values include

constants, variables, and functions as usual, as well as a constant error used to propagate runtime

errors. (Fig. 9) shows the list of all expressions. For each expression it also indicates the contexts

(activities, entities, orchestrations, or critical sections) in which it can be used.

4.1.1 Extensions and Sugar. Our calculus is meant to illustrate semantics and enable proofs, not

write actual applications, so we keep it minimal. In principle though, it could be extended to include

advanced types, features and control structures (including imperative ones) if desired [Pierce 2002].

For example, let-expressions and sequential composition can be defined as syntactic sugar:

let 𝑥 = 𝑒 in 𝑒 ′ ≡ (𝜆𝑥.𝑒 ′) 𝑒
𝑒; 𝑒 ′ ≡ let 𝑥 = 𝑒 in 𝑒 ′

where on the second line, 𝑥 is assumed to not be free in 𝑒 ′.

4.1.2 Asynchrony. The ability to overlap the latency of multiple calls is paramount for service-

oriented applications. We enable this in our formalization by supporting futures [Flanagan and

Felleisen 1995; Halstead 1985; Moreau 1996]. With futures, we can easily execute two calls 𝑛1, 𝑛2 in

parallel: let 𝑥1 = call 𝑛1 () in (let 𝑥2 = call 𝑛2 () in (await 𝑥1; await 𝑥2)). We represent futures by

adding unresolved and resolved placeholders to the syntax of values:

𝑣 ::= · · · | 𝑝 | done 𝜌 (value)

𝜌 ::= 𝑐 | error (execution result)

𝑝 ::= 𝑃𝑖 (placeholder)

𝑖 ∈ 𝐼 (unique identifier)
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A placeholder 𝑃𝑖 represents the result of an asynchronous request with identifier 𝑖 . When resolved,

a placeholder is replaced by done 𝜌 where 𝜌 is either a constant or the special error value.

4.1.3 Local Evaluation 𝑒 → 𝑒 ′ . To formalize call-by-value evaluation of expressions, we define

the execution context 𝐸 [𝑒] in Fig. 9. The meaning of 𝑒 = 𝐸 [𝑒 ′] is that 𝑒 ′ is the subexpression of 𝑒

that takes the next step. We define a local evaluation step 𝑒 → 𝑒 ′ of expressions as follows:

Eval-App

𝐸 [(𝜆𝑥 .𝑒) 𝑣] → 𝐸 [𝑒 [𝑣/𝑥]]
Eval-Await

𝐸 [await done 𝜌] → 𝐸 [𝜌]

Eval-Error

𝐸 [error] → error
Our model does not yet support error handling, so errors always propagate to the top level. Adding

exception handling should pose no major difficulties, however.

4.1.4 Application Definition. Applications are defined by mapping names to function definitions.

The namespaces 𝑛𝐴, 𝑛𝑂 , 𝑛𝐸 , 𝑛𝑋 represent activities, orchestrations, entities, and external service

calls, respectively, and 𝑜 represents entity operation names.

𝑛 ::= 𝑛𝐴 | 𝑛𝑂 | 𝑛𝐸 | 𝑛𝑋 (invocation target name)

𝑜 ::= . . . (entity operation name)

A ::= (𝑛𝑂 : 𝑓 ) (𝑛𝐴 : 𝑓 ) (𝑛𝐸 .𝑜 : 𝑓 ) (application definition)

4.2 System States and Transitions
Weuse a labeled transition system to describe ourmodel and reason about observational equivalence.

A system state C is defined to be an unordered sequence of components C, which include activities

and orchestrations (§4.3) as well as entities (§4.4). The initial state C0
is the empty sequence 𝜖 .

A system transition 𝛼 is of the form C
ℓ1ℓ2 ...ℓ𝑛
======⇒A C′

(where 𝑛 ≥ 0). It indicates that given an

application A, the state pre(𝛼) = C can transition to the state post(𝛼) = C′
, with global effects

indicated by the sequence of transition labels labels(𝛼) = ℓ1ℓ2 . . . ℓ𝑛 . The labels are:

transition label ℓ ::= 𝜖 | 𝑖 | in(𝑚) | out(𝑚)
unique identifier 𝑖 ::= . . .

𝜖 represents the absence of a label. The label 𝑖 indicates the creation of a fresh identifier. It is

included for proof-technical purposes; it allows us ensure that "fresh" identifiers are globally

distinct. The labels in and out model communication with the environment, and are considered

externally observable. in(𝑚) indicates that a message𝑚 is received from the external environment,

and out(𝑚) indicates that a message𝑚 is sent to the external environment.

Definition 4.1. An execution 𝛼 of A is a finite or infinite sequence of transitions 𝛼0, 𝛼1, . . . such

that pre(𝛼0) = C0
, post(𝛼𝑘 ) = pre(𝛼𝑘+1) for all 𝑘 , and the identifiers 𝑖 appearing in labels(𝛼𝑘 ) are

distinct.

External Requests and Responses. All messages exchanged with the environment are either request

messages or response messages (but both of those can go in either direction). We use unique

identifiers 𝑖 to correlate them, and we use the position (subscript or superscript) of the identifier to

syntactically distinguish requests from responses. In the high-level model, the messages are:

message 𝑚 ::= startnew(𝑑, 𝑛𝑂 , 𝑐)𝑖 | ok𝑖 | alreadyexists𝑖 | 𝑛𝑋 (𝑐)𝑖 | 𝜌𝑖

The startnew(𝑑, 𝑛𝑂 , 𝑐)𝑖 is sent to the system to start a new orchestration with instance id 𝑑 ; the

system replies with either ok𝑖 or alreadyexists𝑖 (§4.3.1). The message 𝑛𝑋 (𝑐)𝑖 is sent from the system

to the environment and represents a call to an external service 𝑛𝑋 with argument 𝑐 (§4.5). Its reply

is of the form 𝜌𝑖 , where 𝜌 is either a constant or runtime error.
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Abbreviated Notation for Transitions. For better readability, we drop A if there is no ambiguity to it,

and we use + to indicate consumed external messages on the left and produced external messages

on the right of the arrow; for example,

C +𝑚1

𝑖
==⇒ C +𝑚2 is short for C

in(𝑚1) 𝑖 out(𝑚2)
==============⇒A C′

4.3 Orchestrations and Activities
We define the following state components:

component C ::= A𝑖 (𝑥𝐴) | O𝑑 (𝑥𝑂 ) | . . .
instance id 𝑑 ::= 𝑐

activity execution state 𝑥𝐴 ::= busy𝑑 𝑒 | completed 𝜌
orchestration execution state 𝑥𝑂 ::= busy 𝑒 | completed 𝜌
A𝑖 (𝑥𝐴) is an activity with identifier 𝑖 and O𝑑 (𝑥𝑂 ) is an orchestration with instance id 𝑑 , which is

a constant string 𝑐 . The execution states of activities and orchestrations can either be busy, where 𝑒

indicates the current evaluation state, or completed with some result 𝜌 . For an activity, the subscript

𝑑 indicates the parent orchestration. To match both busy states with a single and short syntax in

our inference rules, we define 𝑏 𝑒 ::= busy 𝑒 | busy𝑑 𝑒 .

4.3.1 Starting Orchestrations. Clients can start a new orchestration. If an instance with the given

id already exists, an error is returned.

StartNew-Fresh

O𝑑 ∉ C (𝑛𝑂 : 𝑓 ) ∈ A
C + startnew(𝑑, 𝑛𝑂 , 𝑐)𝑖 ⇒ C O𝑑 (busy (𝑓 𝑐)) + ok𝑖

StartNew-Conflict

C O𝑑 (𝑏 𝑒) + startnew(𝑑, 𝑛𝑂 , 𝑐)𝑖 ⇒ C O𝑑 (𝑏 𝑒) + alreadyexists𝑖

4.3.2 Local Evaluation. Local evaluation is simply lifted from expression evaluation 𝑒 → 𝑒 ′:

Act-Local

𝑒 → 𝑒 ′

C A𝑖 (𝑏 𝑒) ⇒ C A𝑖 (𝑏 𝑒 ′)
Orch-Local

𝑒 → 𝑒 ′

C O𝑑 (𝑏 𝑒) ⇒ C O𝑑 (𝑏 𝑒 ′)
4.3.3 Calling Activities. When calling an activity, a fresh identifier 𝑖 is generated, and the call

evaluates to a placeholder 𝑃𝑖 . The identifier 𝑖 is also used as a suffix on the activity component.

Orch-Call-Act

(𝑛𝐴 : 𝑓 ) ∈ A

C O𝑑 (𝑏 𝐸 [call 𝑛𝐴 (𝑐)])
𝑖
==⇒ C O𝑑 (𝑏 𝐸 [𝑃𝑖 ]) A𝑖 (busy𝑑 (𝑓 𝑐))

4.3.4 Activity Timeouts. Activities are subject to FaaS time limits and can therefore time out. We

model this using a nondeterministic rule that replaces a busy execution state with an error state:

Act-Timeout

C A𝑖 (𝑏 𝑒) ⇒ C A𝑖 (𝑏 error)
4.3.5 Completing Activities and Orchestrations. Activities and orchestrations are complete when

the expression has evaluated to a result 𝜌 , which is either a constant 𝑐 or error. They then transition

into a state completed 𝜌 . Activities also replace all matching placeholders in the calling orchestration

with the result. Note that it is not enough to replace a single occurrence of the placeholder, since

placeholders can get replicated during expression evaluation.

Orch-Done

C O𝑑 (busy 𝜌) ⇒ C O𝑑 (completed 𝜌)

Act-Done

C O𝑑 (𝑥𝑂 ) A𝑖 (busy𝑑 𝜌) ⇒ C O𝑑 (𝑥𝑂 [done 𝜌/𝑃𝑖 ]) A𝑖 (completed 𝜌)
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4.3.6 Continue-as-New. An orchestration that calls continue 𝑛𝑂 (𝑐) immediately restarts the or-

chestration, passing 𝑐 as the input argument.

Orch-Continue

(𝑛𝑂 : 𝑓 ) ∈ A
C O𝑑 (busy 𝐸 [continue 𝑛𝑂 (𝑐)]) ⇒ C O𝑑 (busy (𝑓 𝑐))

4.4 Entities
We define the following state component to represent entities:

component C ::= · · · | E𝑘 (𝑞, 𝑥𝐸)
entity key 𝑘 ::= (𝑛𝐸, 𝑐)
entity execution state 𝑥𝐸 ::= idle𝜎 | busy𝜎 𝑒 | busy𝜎,𝑑,𝑖 𝑒 | idle𝑗𝜎 | busy𝑗

𝜎,𝑑,𝑖
𝑒

entity state 𝜎 ::= 𝑐

request queue 𝑞 ::= 𝑟

request 𝑟 ::= (𝑑, 𝑜, 𝑐) | (𝑘, 𝑜, 𝑐) | (𝑑, 𝑜, 𝑐, 𝑖)
An entity component E𝑘 (𝑞, 𝑥𝐸) represents the state of the entity scheduler of the entity with key 𝑘 .

The key 𝑘 is a pair consisting of the entity name 𝑛𝐸 , and a string 𝑐 . The first component 𝑞 is an

ordered queue of operation requests that are waiting to be serviced.

The execution state 𝑠 can represent that the entity is idle, busy processing a signal, or busy

processing a call. The subscript 𝜎 is the current entity state, which is a constant expression 𝑐 . The

subscript 𝑖 is the unique identifier of the currently executing call. The superscript 𝑗 , if present,

indicates that the entity is currently locked by the critical section 𝑗 . Entity requests can be separated

in signals (3-tuples) and calls (4-tuples):

• The first component, an entity key 𝑘 or an orchestration id 𝑑 , is the source of the request.

• The second and third components are the operation name 𝑜 and an input argument 𝑐 .

• For calls, there is a fourth component 𝑖 , which is the unique identifier for the request.

4.4.1 Lifecycle. Like virtual actors, entities cannot be created or deleted; but their state can be

"uninteresting", if it is the default state () and the queue is empty. Wemodel this by nondeterministic

transitions that can add or remove uninteresting entity components.

AutoStart

E𝑘 ∉ C 𝑘 = (𝑛𝐸, 𝑐) 𝜎 = ()
C ==⇒ C E𝑘 (𝜖, idle𝜎 )

Collect

𝜎 = ()
C E𝑘 (𝜖, idle𝜎 ) ==⇒ C

4.4.2 Local Reduction Steps. To match all the busy execution states with a single syntax, we define

𝑏𝜎 𝑒 ::= busy𝜎,𝑑,𝑖 𝑒 | busy𝜎 𝑒 | busy𝑗
𝜎,𝑑,𝑖

𝑒

Then the basic local evaluation steps are covered by:

Ent-Local

𝑒 → 𝑒 ′

C E𝑘 (𝑞,𝑏𝜎 𝑒) ⇒ C E𝑘 (𝑞,𝑏𝜎 𝑒 ′)

4.4.3 Accessing Entity State. Application code executing on entities can read or update the state:

Ent-Get

𝜎 = 𝑐

C E𝑘 (𝑞,𝑏𝜎 𝐸 [get]) ⇒ C E𝑘 (𝑞,𝑏𝜎 𝐸 [𝑐])

Ent-Set

𝜎 ′ = 𝑐

C E𝑘 (𝑞,𝑏𝜎 𝐸 [set 𝑐]) ⇒ C E𝑘 (𝑞,𝑏𝜎′ 𝐸 [()])
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4.4.4 Enqueueing Operations. Orchestrations can signal or call an entity operation, which enqueues
a request on the left of the queue:

Orch-Signal-Ent

𝑒 = signal 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐𝑖 ) 𝑘 = (𝑛𝐸, 𝑐𝑘 ) 𝑟 = (𝑑, 𝑜, 𝑐𝑖 )
C O𝑑 (𝑏 𝐸 [𝑒]) E𝑘 (𝑞, 𝑥𝐸) ⇒ C O𝑑 (𝑏 𝐸 [()]) E𝑘 (𝑟 𝑞, 𝑥𝐸)

Orch-Call-Ent

𝑒 = call 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐𝑖 ) 𝑘 = (𝑛𝐸, 𝑐𝑘 ) 𝑟 = (𝑑, 𝑜, 𝑐𝑖 , 𝑖)

C O𝑑 (𝑏 𝐸 [𝑒]) E𝑘 (𝑞, 𝑥𝐸)
𝑖
==⇒ C O𝑑 (𝑏 𝐸 [𝑃𝑖 ]) E𝑘 (𝑟 𝑞, 𝑥𝐸)

An entity can also signal another entity, or itself:

Ent-Signal-Ent

𝑒 = signal 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐𝑖 ) 𝑘 ′ = (𝑛𝐸, 𝑐𝑘 ) 𝑟 = (𝑘, 𝑜, 𝑐𝑖 )
C E𝑘 (𝑞,𝑏𝜎 𝐸 [𝑒]) E𝑘′ (𝑞′, 𝑥𝐸) ⇒ C E𝑘 (𝑞,𝑏𝜎 𝐸 [()]) E𝑘′ (𝑟 𝑞′, 𝑥𝐸)

Ent-Signal-Self

𝑒 = signal 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐𝑖 ) 𝑘 = (𝑛𝐸, 𝑐𝑘 ) 𝑟 = (𝑘, 𝑜, 𝑐𝑖 )
C E𝑘 (𝑞,𝑏𝜎 𝐸 [𝑒]) ⇒ C E𝑘 (𝑟 𝑞, 𝑏𝜎 𝐸 [()])

4.4.5 Dequeueing Operations. An idle entity can take a request (call or signal) from the queue

and start executing it. The queue is FIFO-per-origin: only the right-most (oldest) request from a

particular origin can be dequeued.

Ent-Take-Call

(𝑑, . . . ) ∉ 𝑞′ 𝑘 = (𝑛𝐸, 𝑐𝑘 ) (𝑛𝐸 .𝑜 : 𝑓 ) ∈ A
C E𝑘 (𝑞 (𝑑, 𝑜, 𝑐, 𝑖) 𝑞′, idle𝜎 ) ⇒ C E𝑘 (𝑞 𝑞′, busy𝜎,𝑑,𝑖 (𝑓 𝑐))

Ent-Take-Signal

(𝑦, . . . ) ∉ 𝑞′ 𝑘 = (𝑛𝐸, 𝑐𝑘 ) (𝑛𝐸 .𝑜 : 𝑓 ) ∈ A
C E𝑘 (𝑞 (𝑦, 𝑜, 𝑐) 𝑞′, idle𝜎 ) ⇒ C E𝑘 (𝑞 𝑞′, busy𝜎 (𝑓 𝑐))

4.4.6 Completed Operations. When the request processing has completed, the entity goes back to

idle. If the request was a signal, nothing else happens. If the request was a call, the placeholders in

the calling orchestration are replaced with the final value.

Ent-EndSignal

C E𝑘 (𝑞, busy𝜎 𝜌) ⇒ C E𝑘 (𝑞, idle𝜎 )

Ent-EndCall

𝑥 ′
𝑂
= 𝑥𝑂 [done 𝜌/𝑃𝑖 ]

C O𝑑 (𝑥𝑂 ) E𝑘 (𝑞, busy𝜎,𝑑,𝑖 𝜌) ⇒ C O𝑑 (𝑥 ′
𝑂
) E𝑘 (𝑞, idle𝜎 )

4.5 External Service Calls
Activities and entities can make external calls, which evaluate to a placeholder, and send a request

message to the environment. When a response 𝑐𝑖 is received from the environment, it replaces all

placeholders in the system.

Act-Send

C A𝑖′ (𝑏 𝐸 [call 𝑛𝑋 (𝑐)])
𝑖
==⇒ C A𝑖′ (𝑏 𝐸 [𝑃𝑖 ]) + 𝑛𝑋 (𝑐)𝑖

Ent-Send

C E𝑘 (𝑞,𝑏𝜎 𝐸 [call 𝑛𝑋 (𝑐)])
𝑖
==⇒ C E𝑘 (𝑞,𝑏𝜎 𝐸 [𝑃𝑖 ]) + 𝑛𝑋 (𝑐)𝑖

System-Receive

C + 𝜌𝑖 ⇒ C[done 𝜌/𝑃𝑖 ]
Including external calls in our formalization is interesting, because it allows us to understand the

weaker guarantees of subsequent models. Specifically, in a compute-storage separated system,

external calls can be duplicated if there are multiple attempts at executing a work item.
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4.6 Critical Sections
We extend expressions with a special runtime expression that indicates an active critical section,

with a unique identifier 𝑗 for the critical section:

𝑒 ::= . . . | lock𝑗 ⟨𝑘1 · · ·𝑘𝑛⟩ 𝑒

4.6.1 Enter and Exit. When entering a critical section, it generates a unique identifier 𝑗 for it, and

locks all the entities specified in the lock expression. Conversely, upon exiting the critical section,

it unlocks all the same entities:

CS
𝑗
-Enter

C E𝑘1 (𝑞1, idle𝜎1 ) · · ·E𝑘𝑛 (𝑞𝑛, idle𝜎𝑛 ) O𝑑 (𝑏 𝐸 [lock⟨𝑘1 · · ·𝑘𝑛⟩ 𝑒])
𝑗

==⇒ C E𝑘1 (𝑞1, idle
𝑗
𝜎1 ) · · · E𝑘𝑛 (𝑞𝑛, idle

𝑗
𝜎𝑛 ) O𝑑 (𝑏 𝐸 [lock𝑗 ⟨𝑘1 · · ·𝑘𝑛⟩ 𝑒])

CS
𝑗
-Exit

C E𝑘1 (𝑞1, idle
𝑗
𝜎1 ) · · · E𝑘𝑛 (𝑞𝑛, idle

𝑗
𝜎𝑛 ) O𝑑 (𝑏 𝐸 [lock𝑗 ⟨𝑘1 · · ·𝑘𝑛⟩ 𝑣])

=⇒ C E𝑘1 (𝑞1, idle𝜎1 ) · · ·E𝑘𝑛 (𝑞𝑛, idle𝜎𝑛 ) O𝑑 (𝑏 𝐸 [𝑣])

4.6.2 Executing the Critical Section. Once a critical section has been entered, it can do local

evaluation steps as below. Note that there is no overlap with earlier execution rules because

contexts 𝐸 do not reach into critical sections.

CS
𝑗
-Local

𝑒 → 𝑒 ′

C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨. . . ⟩ 𝑒]) ==⇒ C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨. . . ⟩ 𝑒 ′])

It can also call locked entities, and receive results when they finish executing:

CS
𝑗
-Call-Ent

𝑒 = call 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐𝑖 ) 𝑘 = (𝑛𝐸, 𝑐𝑘 ) (𝑛𝐸 .𝑜 : 𝑓 ) ∈ A

C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨. . . 𝑘 . . . ⟩ 𝐸 ′[𝑒]]) E𝑘 (𝑞, idle𝑗𝜎 )
𝑖
==⇒ C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨. . . 𝑘 . . . ⟩ 𝐸 ′[𝑃𝑖 ]]) E𝑘 (𝑞, busy𝑗𝜎,𝑑,𝑖 (𝑓 𝑐))

CS
𝑗
-EndCall

C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨. . . 𝑘 . . . ⟩ 𝑒]) E𝑘 (𝑞, busy𝑗𝜎,𝑑,𝑖 𝜌)
=⇒ C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨. . . 𝑘 . . . ⟩ 𝑒 [𝜌/𝑖]]) E𝑘 (𝑞, idle𝑗𝜎 )

Finally, it can signal non-locked entities:

CS
𝑗
-Signal-Ent

𝑒 = signal 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐𝑖 ) 𝑘 = (𝑛𝐸, 𝑐𝑘 ) 𝑘 ∉ 𝑘 𝑟 = (𝑑, 𝑜, 𝑐𝑖 )

C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨𝑘⟩ 𝐸 ′[𝑒]]) E𝑘 (𝑞, 𝑥𝐸)
=⇒ C O𝑑 (𝑏 𝐸 [lock𝑗 ⟨𝑘⟩ 𝐸 ′[()]]) E𝑘 (𝑟 𝑞, 𝑥𝐸)
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S ::= 𝜖 | S 𝜅⟨𝑔, 𝑥⟩ (storage system state)

𝜅 ::= 𝑖 | 𝑑 | 𝑘 (storage key)

𝑥 ::= ⊥ | 𝑥𝐴 | 𝑥𝑂 | 𝑥𝐸 (execution state)

𝑔 ::= (task message)

| 𝑘.𝑟 (request for entity 𝑘)

| 𝑑.(𝜌/𝑖) (response for orchestration 𝑑)

| 𝑑.𝑛𝑂 (𝑐) (start orchestration 𝑑)

| 𝑖 .𝑛𝐴 (𝑐, 𝑑) (start activity 𝑖)

Fig. 10. States of the compute-storage model.

5 COMPUTE-STORAGE MODEL
We now show how to implement the high-level operational model in a system where the compute

is separated from storage. The idea is to replace the failure-free system described in Section 4 with

a more realistic system that is composed by:

(1) A storage system that reliably stores the current state of all orchestrations and entities, and

supports an atomic commit operation.

(2) A variable number of stateless workers which fetch work-items from the storage, execute

them, and then commit them to storage.

Work-items are an important abstraction in the serverless context, since they act as the unit of

billing and application progress. The nature of a work-item depends on the type of function:

• For activities, a work-item is a single, complete execution of the activity function.

• For entities, a work item consists of executing a batch of queued operations to completion.

• For orchestrations, a work-item starts a new execution, or processes responses to a waiting

execution. It continues execution until the code completes or gets stuck waiting on a response.

Since workers stop the execution of waiting orchestrations, DF avoids the double-billing issue

[Baldini et al. 2017], where users have to pay for the execution of both the caller and the callee

while the caller waits on the callee to return a result.

Organization. We start by describing the storage system and its transitions in Section 5.1. We then

describeworkers (Section 5.2) and the transitions that describework-item processing (Appendix A.1).

Finally, in Section 5.3 we define what it means for the compute-storage system to be correct with

respect to the high-level system, and we prove that it is satisfied.

Future Extensions. The compute-storage model currently does not include external calls or

critical sections. Adding external calls to the formalism is technically easy, but requires an alternate

formulation of the correctness guarantees, because duplication of external calls (unlike internal

calls) is observable, and can happen when workers make repeated attempts at processing a work

item. Adding critical sections requires inclusion of the distributed locking protocol employed by

DF. Both of these extensions are interesting avenues for future study.

5.1 Storage System
The storage system is organized like a key-value store with a queue attached to each entry (Fig. 10).

Each key 𝜅 is either an activity id 𝑖 , and instance id 𝑑 , or an entity key 𝑘 . The store contains tuples

of the form 𝜅⟨𝑔, 𝑥⟩, where 𝑥 is the execution state, and 𝑔 is a queue of task messages. The task
messages represent "work" that needs to be processed for a given key.
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5.1.1 Enqueueing of Task Messages. First, we define a helper function enq(𝑔,S) that distributes
a sequence of task messages 𝑔 into their respective destination queues. Messages are enqueued

on the left. If a message targets a non-existent entry, a new one is added with empty queue 𝜖 and

undefined execution state ⊥.

Enq-New

𝑔 = 𝜅._ 𝜅 ∉ keys(S)
enq(𝑔,S) = S 𝜅⟨𝑔,⊥⟩

Enq-Existing

𝑔 = 𝜅._

enq(𝑔,S 𝜅⟨𝑔, 𝑥⟩) = S 𝜅⟨𝑔 𝑔, 𝑥⟩

Enq-Empty

enq(𝜖,S) = S
Enq-Multiple

enq(𝑔1,S) = S′ enq(𝑔2,S′) = S′′

enq(𝑔2 𝑔1,S)) = S′′

5.1.2 External Application Requests. Orchestrations are started the same way as in the high-level

model, but instead of starting the orchestration directly, a start message is added to the queue.

S-StartNew-Fresh

𝑑 ∉ keys(S) 𝑔 = 𝑑.𝑛𝑂 (𝑐)
S + startnew(𝑑, 𝑛𝑂 , 𝑐)𝑖 ⇒ S 𝑑 ⟨𝑔,⊥⟩ + ok𝑖

S-StartNew-Conflict

𝑑 ∈ keys(S)
S + startnew(𝑑, 𝑛𝑂 , 𝑐)𝑖 ⇒ S + alreadyexists𝑖

5.1.3 Commit. Workers continuously look for work items, i.e. entries 𝜅⟨𝑔in, 𝑥pre⟩ for which 𝑔in is
not empty. After a worker processes such an item (as defined in §5.2), it tries to atomically commit

the new execution state 𝑥post, as well as all task messages 𝑔out that were produced by the execution.

We model this with a message commit(𝜅,𝑔in, 𝑥pre, 𝑥post, 𝑔out). The rule below shows how, and under

what conditions, the commit is accepted and applied.

S-Commit

S 𝜅⟨𝑔new 𝑔in, 𝑥pre⟩ + commit(𝜅,𝑔in, 𝑥pre, 𝑥post, 𝑔out)𝑖 ⇒ enq(𝑔out,S 𝜅⟨𝑔new, 𝑥post⟩) + ok𝑖

There are several interesting observations about the (S-Commit) rule:

• If the queue has received new messages 𝑔new in the meantime, those remain in the queue

after the commit.

• The commit happens only if the original 𝑔in and 𝑥pre match. This ensures that even if multiple

workers attempt to execute the same work item, only one worker can commit it. This

mechanism is conceptually similar to compare-and-swap in shared-memory multiprocessors.

• The produced messages 𝑔out are distributed over all the queues, possibly including the queue

for the same 𝜅.

5.2 Work-Item Processing
We now describe workers and how they execute work-items. The execution steps are defined in

the appendix (§A.1). They fall into in three categories:

𝑥 →𝜅 𝑥 ′
(update execution state 𝑥 to 𝑥 ′

)

𝑥 + 𝑔 →𝜅 𝑥 ′
(receive message 𝑔 and update execution state 𝑥 to 𝑥 ′

)

𝑥 →𝜅 𝑥 ′ + 𝑔 (update state 𝑥 to 𝑥 ′
, send message 𝑔)
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Based on these, we then formulate a worker transition system, where the worker state is a triple

𝑔in | 𝑥 | 𝑔out of an input buffer, an execution state, and an output buffer:

WIn

𝑔 + 𝑥 →𝜅 𝑥 ′

𝑔in 𝑔 | 𝑥 | 𝑔out →𝜅 𝑔in | 𝑥 ′ | 𝑔out
WOut

not (WIn) 𝑥 →𝜅 𝑥 ′ + 𝑔
𝑔in | 𝑥 | 𝑔out →𝜅 𝑔in | 𝑥 ′ | 𝑔 𝑔out

WStep

not (WIn) 𝑥 →𝜅 𝑥 ′

𝑔in | 𝑥 | 𝑔out →𝜅 𝑔in | 𝑥 ′ | 𝑔out
Note that workers apply inputs more eagerly than they take other steps; this is indicated by the

precondition "not (WIn)" in (WOut) and (WStep), meaning that the latter apply only if (WIn) does

not. We now formalize the idea that workers execute work items as long as possible; to completion

or until the execution blocks.

Definition 5.1. Define the big-step execution relation 𝑔in | 𝑥 ↠𝜅 𝑥 ′ | 𝑔out to represent a sequence

𝑔in | 𝑥 | 𝜖 →∗
𝜅 𝜖 | 𝑥 ′ | 𝑔out of zero or more→𝜅 steps such that the final execution state 𝑥 ′

is of the

form (completed 𝜌), (𝑏 𝐸 (𝑝)), or (idle𝜎 ).

Workers only send commit messages to the storage system when they execute a work-item to

completion. Formally:

Definition 5.2. Given some application A, any commit message commit(𝜅,𝑔in, 𝑥pre, 𝑥post, 𝑔out)
sent by a worker satisfies 𝑔in | 𝑥pre ↠𝜅 𝑥post | 𝑔out.

5.3 Execution Guarantees under Faults
As in any system with compute-storage separation, we consider the state of the workers, and the

communication between the workers and the storage system, to be volatile. This means that is

possible for workers to fail mid-execution. Since it is important for workflows to never stall, we

need new workers to pick up and retry any stalled work items. Unfortunately, since it is in general

impossible to reliably detect failure of a previous worker, this means that multiple workers may be

concurrently executing the same work item. Nevertheless, the strongly consistent storage system

ensures that they can be committed only once. This means that the internal state of the system is

not exposed to any faults or duplication effects!

We now state and prove the main result of this section: all executions of the compute-storage

model correspond to an execution of the high-level model. To this end, we define a simulation

relation S ∼ C between the respective states (Fig. 11). The correspondence is defined individually

for each key. For entities, the correspondence is straightforward: both the queue and the execution

states have to match (sim-ent). For activities or orchestrations, however, there are no queues in the

high-level model; thus we define the simulation on the state obtained after applying all effects in the

S ∼ C sim-empty

𝜖 ∼ 𝜖
sim-ind

S ∼ C 𝜅 ∉ keys(S) 𝑘 ⟨𝑔, 𝑥⟩ ∼ C
S 𝑘 ⟨𝑔, 𝑥⟩ ∼ C C

𝜅⟨𝑔, 𝑥⟩ ∼ C sim-ent

∀𝑖 : 𝑔𝑖 = 𝑘.𝑟𝑖

𝑘 ⟨𝑔1 . . . 𝑔𝑛, 𝑥⟩ ∼ E𝑘 (𝑟1 . . . 𝑟𝑛, 𝑥)

sim-act

𝑖⟨𝑔𝑛 . . . 𝑔1, 𝑥1⟩ ∼ A𝑖 ((𝑔𝑛 · · ·𝑔1) (𝑥1))
sim-orc

𝑑 ⟨𝑔𝑛 . . . 𝑔1, 𝑥1⟩ ∼ O𝑑 ((𝑔𝑛 · · ·𝑔1) (𝑥1))

Fig. 11. Definition of the relation S ∼ C for a compute-storage state S and a high-level state C.
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queue (sim-act), (sim-orc); where the notation (𝑔𝑛 · · ·𝑔1) (𝑥1) = 𝑥𝑛 means that the effects 𝑔𝑛 · · ·𝑔1
transform 𝑥1 to 𝑥𝑛 , that is, that there exist a 𝜅 and execution states 𝑥𝑖 such that 𝑔𝑖 + 𝑥𝑖 →𝜅 𝑥𝑖+1.
The following theorem implies that the compute-storage model is a correct implementation

of the high-level model: that is, for all executions of the implementation there exists an obser-

vationally equivalent execution of the specification. It states that the specification simulates the

implementation, that is, the specification can mimic (and thus validate) all of the behaviors of the

implementation.

Theorem 5.3. ∼ is a weak simulation relation, when hiding commit messages.

To prove this, we add small-step transitions, prove the weak simulation on the small-step

transitions, and then show that the big-step commit transition are just sequences of small-step

transitions. The proof details are in the appendix §B.1.

6 REPLAY-BASED MODEL
We have shown how to implement the idealized high level model using a combination of a storage

system and a number of stateless workers. However, we have not explained how to store the

intermediate execution states 𝑥𝑂 of orchestrations. The state and progress of an orchestration

that is written in a mainstream programming language is not serializable by default, e.g., as is

the case for lambda expressions. Rather, the state of the orchestration can be dispersed, including

variables and the execution location, as well as arbitrary non-serializable objects on the heap,

such as promises and tasks, whose representation is managed by the runtime or by other libraries.

To make matters worse, state may even be external to the application heap, for example when

importing a linear algebra library that is implemented in C. While it may be possible to guarantee

serializability and provide checkpointing in some circumstances, such as by using a specialized

type system [Miller et al. 2014], it is not something we can expect to be available in all the host

languages supported by DF.

To address this, Durable Functions provides a replay-based model that stores orchestration

execution states as histories of events. Given that the orchestration code is deterministic, the

runtime can then replay the history, rehydrating the state of the orchestration in memory. This

approach has twomain benefits. First, it supports most mainstream programming languages without

requiring special treatment, since the history captures execution state in a language agnostic manner.

Second, saving the history improves debugging and observability, since the users can later inspect

not only the final execution state of the application, but also all of its intermediate steps. On the

other hand, record-replay means that nondeterminism or large histories can be a problem for

orchestrations that do not follow the guidelines (§3.5).

In this section, we extend the compute storage system introduced in Section 5 with histories, and

we prove that the extended system is bisimilar to the original, establishing (i) that persisting histories

is equivalent to persisting intermediate states, and (ii) that this model is a correct implementation

of the high-level model.

6.1 History Storage
The storage system remains largely unchanged, except that we replace execution states 𝑥 with

historiesℎ, where a history is simply a sequence of incoming messages in(𝑔) and outgoing messages

out(𝑔). Also, we extend the task messages 𝑔 with a new message 𝑘.𝜎 , which represents initializing

the state of entity 𝑘 to 𝜎 .
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𝑔 | 𝑥 | 𝑔 | ℎ ◦→𝜅 𝑔 | 𝑥 | 𝑔 | ℎ RIn

𝑔 + 𝑥 →𝜅 𝑥 ′

𝑔in 𝑔 | 𝑥 | 𝑔out | ℎout ◦→𝜅 𝑔in | 𝑥 ′ | 𝑔out | ℎout in(𝑔)

ROut

not (RIn) 𝑥 →𝜅 𝑥 ′ + 𝑔
𝑔in | 𝑥 | 𝑔out | ℎout ◦→𝜅 𝑔in | 𝑥 ′ | 𝑔 𝑔out | ℎout out(𝑔)

RStep-Cont

not (RIn) 𝑥 = 𝑏 𝐸 [continue 𝑛𝑂 (𝑐)] (𝑛𝑂 : 𝑓 ) ∈ A 𝑥 ′ = busy (𝑓 𝑐)
𝑔in | 𝑥 | 𝑔out | ℎout ◦→𝑑 𝑔in | 𝑥 ′ | 𝑔out | in(𝑑.𝑛𝑂 (𝑐))

RStep-DoneSignal

not (RIn) 𝑥 = busy𝜎 𝜌 𝑥 ′ = idle𝜎
𝑔in | 𝑥 | 𝑔out | ℎout ◦→𝑘 𝑔in | 𝑥 ′ | 𝑔out | in(𝑘.𝜎)

RStep-DoneCall

not (RIn) 𝑥 = busy𝜎,𝑑,𝑖 𝜌 𝑥 ′ = idle𝜎

𝑔in | 𝑥 | 𝑔out | ℎout ◦→𝑘 𝑔in | 𝑥 ′ | 𝑑.(𝜌/𝑖) 𝑔out | in(𝑘.𝜎)

RStep

not (RIn) or (RStep-_) 𝑥 →𝜅 𝑥 ′

𝑔in | 𝑥 | 𝑔out | ℎout ◦→𝜅 𝑔in | 𝑥 ′ | 𝑔out | ℎout

Fig. 12. Recording Transitions.

ℎ ⊲→𝜅 𝑥 YIn

𝑔 + 𝑥 →𝜅 𝑥 ′

in(𝑔) ℎin | 𝑥 ⊲→𝜅 ℎin | 𝑥 ′ YOut

not (YIn) 𝑥 →𝜅 𝑥 ′ + 𝑔
out(𝑔) ℎin | 𝑥 ⊲→𝜅 ℎin | 𝑥 ′

YStep

not (YIn) 𝑥 →𝜅 𝑥 ′

ℎin | 𝑥 ⊲→𝜅 ℎin | 𝑥 ′

Fig. 13. Replay Transitions.

S ::= 𝜖 | S 𝜅⟨𝑞, ℎ ⟩ storage system state

𝑤 ::= in(𝑔) | out(𝑔) history entry

ℎ ::=𝑤 history

𝑔 ::= · · · | 𝑘.𝜎 (init state of entity 𝑘)

All the rules for the storage system are straightforwardly adapted by replacing 𝑥 with ℎ. A commit

message now has the form commit(𝜅,𝑔in, ℎin, ℎout , 𝑔out).

6.2 Worker Semantics
When a worker fetches a work item, it has to first replay the history. The point of this "replay

execution" is to "rehydrate" the execution state. Any other effects are suppressed: for example,

messages that were already sent by the original execution are not sent again during replay. When

replay is complete, "recording execution" starts. Effects are normally applied, and also recorded into

the history to enable future replay. Record and replay are defined in Fig. 12 and 13, respectively.

Definition 6.1. Define the big-step recording execution relation 𝑔in | 𝑥 | ℎin ◦↠𝜅 𝑥 ′ | 𝑔out | ℎout to

represent a sequence 𝑔in | 𝑥 | 𝜖 | ℎin ◦→∗
𝜅 𝜖 | 𝑥 ′ | 𝑔out | ℎout such that the final execution state 𝑥 ′

is of

the form (completed 𝜌), (𝑏 𝐸 (𝑝)), or (idle𝜎 ).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 133. Publication date: October 2021.



Durable Functions: Semantics for Stateful Serverless 133:23

Definition 6.2. Define the big-step replay execution relation ℎ ⊲↠𝜅 𝑥 to represent a sequence

ℎ | ⊥ ⊲→∗
𝜅 𝜖 | 𝑥 ′

where the final execution state 𝑥 ′
is of the form (completed 𝜌), (𝑏 𝐸 (𝑝)), or (idle𝜎 ).

6.2.1 Worker Semantics. We now define the worker semantics by combining replay and record:

Definition 6.3. Given some application A, any message commit(𝜅,𝑔in, ℎin, ℎout, 𝑔out) sent by

a worker means that there exist execution states 𝑥pre and 𝑥post such that ℎin ⊲↠𝜅 𝑥pre and

𝑔in | 𝑥pre | ℎin ◦↠𝜅 𝑥post | 𝑔out | ℎout.

6.3 Observational Equivalence
We now show that the original storage system (§5.1) and the replay-based storage system (§6.1) are

observationally equivalent, by proving that they are bisimilar. We are proving bisimulation because

we are interested in both directions, namely, that persisting histories is equivalent to persisting

intermediate states. In contrast, in Theorem 5.3 we use a simulation because we are interested in

one of the directions, i.e., that any behavior of the implementation (compute storage model) is

equivalent to a behavior of the specification (high-level model).

First, consider again the relation (ℎ ⊲↠𝜅 𝑥). It means that the history ℎ replays to the execution

state 𝑥 . We now extend this relation so it applies to the whole storage system configurations defined

by (§5.1) and (§6.1):

𝜖 ∼ 𝜖

ℎ ⊲↠𝜅 𝑥 S ∼ S′

S 𝜅⟨𝑞, ℎ⟩ ∼ S′ 𝜅⟨𝑞, 𝑥⟩
Theorem 6.4. ∼ is a bisimulation.

Proof. As the transition systems are constructed identically, save for swapping the ℎ and 𝑥

components, the proof is boilerplate except for the transition (S-Commit), where we need to

show that the two workers from definitions 5.2 and 6.3 can simulate each other. Starting with the

simulation relation established, and thus (ℎin ⊲↠𝜅 𝑥pre),
• if the non-history-worker does commit(𝜅,𝑔in, 𝑥pre, 𝑥post, 𝑔out) then 𝑔in | 𝑥pre ↠𝜅 𝑥post | 𝑔out,
then by Lemma 6.7(2) we get 𝑔in | 𝑥pre | ℎin ◦↠𝜅 𝑥post | 𝑔out | ℎout, thus the history worker can

do commit(𝜅,𝑔in, ℎin, ℎout, 𝑔out), and by Lemma 6.6 we get ℎout ⊲↠𝜅 𝑥post, establishing the

simulation relation again.

• if the history worker does commit(𝜅,𝑔in, ℎin, ℎout, 𝑔out), then (ℎin ⊲↠𝜅 𝑥) and 𝑔in | 𝑥 | ℎin ◦↠𝜅

𝑥 ′ | 𝑔out | ℎout for some 𝑥 , 𝑥 ′
. By Lemma 6.7(1), 𝑔in | 𝑥 ↠𝜅 𝑥 ′ | 𝑔out. By Lemma 6.5, 𝑥 = 𝑥pre.

Thus the non-history worker can do commit(𝜅,𝑔in, 𝑥pre, 𝑥 ′, 𝑔out). And by Lemma 6.6 we get

ℎout ⊲↠𝜅 𝑥 ′
, establishing the simulation relation again. □

Proofs for all the lemmas below can be found in the appendix §B. Note that Lemma 6.5 relies on

the determinism of the execution, which in this model, is easy to prove for our simple lambda

calculus. In a mainstream programming language, nondeterminism is not implicitly guaranteed,

and requires programmers to be careful when writing orchestrations (§3.5).

Lemma 6.5 (Deterministic Replay). If ℎ ⊲↠𝜅 𝑥 and ℎ ⊲↠𝜅 𝑥 ′, then 𝑥 = 𝑥 ′.

Lemma 6.6 (Record/Replay). Given a recording execution 𝑔in | 𝑥 | ℎin ◦↠𝜅 𝑥 ′ | 𝑔out | ℎout such that
ℎin ⊲↠𝜅 𝑥 , then ℎout ⊲↠𝜅 𝑥 ′.

Lemma 6.7 (Transparency of Recording). Both of the following are true:
(1) If 𝑔in | 𝑥 | ℎin ◦↠𝜅 𝑥 ′ | 𝑔out | ℎout is a recording execution, then 𝑔in | 𝑥 ↠𝜅 𝑥 ′ | 𝑔out is a regular

execution.
(2) If 𝑔in | 𝑥 ↠𝜅 𝑥 ′ | 𝑔out is an execution, and ℎin is a history, then 𝑔in | 𝑥 | ℎin ◦↠𝜅 𝑥 ′ | 𝑔out | ℎout

is a recording execution for some ℎout.
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7 RELATEDWORK

Formal Semantics for Serverless. [Jangda et al. 2019] pioneered the study of serverless semantics,

presenting a formal model for FaaS and explaining its limitations. They also show how to compose

functions using a proposed language called SPL and how to create stateful applications by using

an external key-value store and transactions. While similar in spirit, our formal development is

focused on DF (a stateful serverless programming framework by a major cloud provider) which

uses a different and more comprehensive set of abstractions (see the discussion in the next section).

Stateful Serverless Abstractions. There has been a recent surge of proposals for stateful server-

less programming models that provide abstractions for developing serverless applications that

maintain state from both academia [Fouladi et al. [n. d.]a,n; Jonas et al. 2017; Sreekanti et al. 2020a,b;

Zhang et al. 2020b] and industry [Amazon 2020; Bonér 2020; CloudFlare 2020a,b]. Most of these

systems do not provide strong reliability guarantees, but still require programmers to detect and

handle transient storage errors. Also, none of them includes formal semantics or proofs.

[Zhang et al. 2020a] propose a runtime for serverless workflows that guarantees exactly-once

execution in the presence of faults for applications whose state is saved in a key-value store. This

is achieved by instrumenting storage accesses to enable record/replay.

DF’s tasks, actors, and critical sections provide a more expressive model than key-value stores

with transactions, which are used by [Zhang et al. 2020a] and [Jangda et al. 2019]. Ordered queues,

for example, cannot be efficiently represented by the latter. Also, optimistic transactions (unlike

critical sections or entities) expose transient failures to the application, rather than hiding them,

and perform poorly under congestion.

Kappa [Zhang et al. 2020b] is similarly expressive as DF, as it offers both task parallelism and

blocking queues (with which actors and critical sections can be expressed). Kappa’s design differs

from DF in several aspects; the decomposition into steps and tasks is semi-implicit (with some

boundaries inferred, others annotated), rather than explicit as in DF. And application progress is

persisted by an automatic checkpointing implementation using Python’s pickling feature, rather

than based on record/replay as in DF.

Reliable Programming Models. Much prior work has studied programming models that can

execute reliably in a distributed environment, hiding the presence of faults. These models are usually

focused on a specific application domain, proposing highly specialized solutions. A popular such

domain is data processing, some examples include MapReduce [Dean and Ghemawat 2008], Apache

Spark [Zaharia et al. 2012], and Apache Flink [Carbone et al. 2015]. Recently, AMBROSIA [Goldstein

et al. 2020] proposed “immortal” actors, a reliable actor abstraction for distributed application

development. Recent work on 𝜆FAIL [Ramalingam and Vaswani 2013] also proposes a semantics for

distributed services that execute on top of reliable storage, also providing a compilation procedure

using monads that guarantees correct execution in the presence of faults. DF is more general as

it supports both task- and actor parallelism, and can save intermediate execution states, even for

mainstream programming languages, via record/replay.

DF Implementations. DF is based on a precursor project called Durable Task Framework (DTFx)

[github [n. d.]]. DTFx contains the work-item and record-replay abstractions but is not by it-

self serverless. DTFx also defines the notion of an orchestration service, which allows different

storage backends to be used. Multiple such backends are available on github, and use slightly

different methods for storing the application state and atomically committing work items. The

DurableTask.SqlServer backend [github 2021a] keeps all state in a relational database and uses SQL

transactions for atomically committing work items. The DurableTask.Netherite backend [github
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2021b] uses static partitions that can atomically commit work items using a per-partition commit

log, and communicate via ordered persistent queues [Burckhardt et al. 2021].

The models we presented here are not meant to describe real implementations but are rather

focused on two implementation problems that are inherent to any stateful serverless solution:

(i) the unreliability of compute workers and (ii) the lack of checkpointing support for arbitrary

programming languages. Nevertheless, our compute storage model (§5) and the SqlServer back-

end [github 2021a] are actually very similar, as they both achieve reliable execution using an atomic

commit primitive.

8 CONCLUSION AND FUTUREWORK
We have studied DF from two viewpoints. First, we showed how DF enables stateful serverless

patterns informally (with examples) and formally (using an idealized high-level model). Second, we

defined two more models and proved them equivalent. Thereby, we demystified how (i) DF can

simulate reliable execution on unreliable serverless workers, and (ii) how DF can persist execution

progress without checkpoints. In future work, we plan to complete the compute-storage model

(§5), and to formalize and prove the CCC guarantee of the sharded Netherite implementation

[Burckhardt et al. 2021].

A DETAILS FOR THE COMPUTE-STORAGE MODEL
A.1 Execution Transition Rules
A.1.1 Starting Execution.

W-StartAct

(𝑛𝐴 : 𝑓 ) ∈ A
𝑖 .𝑛𝐴 (𝑐, 𝑑) + ⊥ →𝑖 busy𝑑 𝑓 𝑐

W-StartOrc

(𝑛𝑂 : 𝑓 ) ∈ A
𝑑.𝑛𝑂 (𝑐) + ⊥ →𝑑 busy 𝑓 𝑐

W-StartOp1

𝑘 = (𝑛𝐸, 𝑐) (𝑛𝐸 .𝑜 : 𝑓 ) ∈ A
𝑘.(𝑑, 𝑜, 𝑐, 𝑖) + idle𝜎 →𝑘 busy𝜎,𝑑,𝑖 𝑓 𝑐

W-StartOp2

𝑘 = (𝑛𝐸, 𝑐) (𝑛𝐸 .𝑜 : 𝑓 ) ∈ A
𝑘.(𝑦, 𝑜, 𝑐) + idle𝜎 →𝑘 busy𝜎 𝑓 𝑐

W-AutoStart

𝑘 = (𝑛𝐸, 𝑐) 𝑘.𝑟 + idle() →𝑘 𝑥

𝑘.𝑟 + ⊥ →𝑘 𝑥

A.1.2 Completing Execution.

W-DoneAct

busy𝑑 𝜌 →𝑖 completed 𝜌 + 𝑑.[𝜌/𝑖]
W-DoneSignal

busy𝜎 𝜌 →𝑘 idle𝜎

W-DoneCall

busy𝜎,𝑑,𝑖 𝜌 →𝑘 idle𝜎 + 𝑑.[𝜌/𝑖]
W-Cont

(𝑛𝑂 : 𝑓 ) ∈ A
busy 𝐸 [continue 𝑛𝑂 (𝑐)] →𝑑 busy (𝑓 𝑐)

A.1.3 Local steps.

W-ActStep

𝑒 → 𝑒 ′

𝑏 𝑒 →𝑖 𝑏 𝑒 ′
W-OrcStep

𝑒 → 𝑒 ′

𝑏 𝑒 →𝑑 𝑏 𝑒 ′
W-EntStep

𝑒 → 𝑒 ′

𝑏𝜎 𝑒 →𝑘 𝑏𝜎 𝑒 ′

W-OpGet

𝑏𝜎 𝐸 [get] →𝑘 𝑏𝜎 𝐸 [𝜎]
W-OpSet

𝜎 ′ = 𝑐

𝑏𝜎 𝐸 [set 𝑐] →𝑘 𝑏𝜎′ 𝐸 [()]
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A.1.4 Sending Calls and Signals.

W-Call1

(𝑛𝐴 : 𝑓 ) ∈ A 𝑖 fresh

𝑏 𝐸 [call 𝑛𝐴 (𝑐)] →𝑑 𝑏 𝐸 [𝑃𝑖 ] + 𝑖 .𝑛𝐴 (𝑐, 𝑑)

W-Call3

𝑘 = (𝑛𝐸, 𝑐𝑘 ) (𝑛𝐸 .𝑜 : 𝑓 ) ∈ A 𝑖 fresh

𝑏 𝐸 [call 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐)] →𝑑 𝑏 𝐸 [𝑃𝑖 ] + 𝑘.(𝑑, 𝑜, 𝑐, 𝑖)

W-Sig1

𝑘 = (𝑛𝐸, 𝑐𝑘 ) (𝑛𝐸 .𝑜 : 𝑓 ) ∈ A
𝑏 𝐸 [signal 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐)] →𝑑 𝑏 𝐸 [()] + 𝑘.(𝑑, 𝑜, 𝑐)

W-Sig2

𝑘 ′ = (𝑛𝐸, 𝑐𝑘 )
𝑏𝜎 𝐸 [signal 𝑛𝐸 .𝑜 (𝑐𝑘 , 𝑐)] →𝑘 𝑏𝜎 𝐸 [()] + 𝑘 ′.(𝑘, 𝑜, 𝑐)

A.1.5 Receiving Responses.

W-OrchResp

𝑑.(𝑐/𝑖) + 𝑏 𝑒 →𝑑 𝑏 𝑒 [done 𝑐/𝑃𝑖 ]

B PROOFS
B.1 Proof of Thm. 5.3
What we have to show is that assuming S ∼ C0 and S 𝑤

==⇒ S′
, we can find a transition sequence

C0

𝑤1

==⇒ C1 . . .
𝑤𝑛

===⇒ C𝑛 (where 𝑛 ≥ 0) such that 𝑤 = hide(commit,w1 . . .wn) and S′ ∼ C𝑛 . Where

we define hide(commit,w) to be the subsequence of𝑤 obtained by removing all in(commit) labels.
We can simulate the transitions (S-StartNew-Fresh) and (S-StartNew-Conflict) directly:

• (S-StartNew-Fresh) By S ∼ C0 and 𝑑 ∉ keys(S) we know that O𝑑 ∉ C0, so we can use

(StartNew-Fresh) to get C0 + startnew(𝑑, 𝑛𝑂 , 𝑐)𝑖 ⇒ C1 + ok𝑖 where C1 = C0 O𝑑 (busy (𝑓 𝑐)).
This satisfies the conditions.

• (S-StartNew-Conflict) Analogously, by S ∼ C0 and 𝑑 ∈ keys(S) we know that O𝑑 ∈ C0, so

we can use (StartNew-Conflict) to simulate.

To simulate the big-step transition (S-Commit), we proceed indirectly. First, we introduce the

five new small-step transitions below.

S-In

𝑔 + 𝑥 →𝜅 𝑥 ′

S 𝜅⟨𝑔 𝑔, 𝑥⟩ ⇒ S 𝜅⟨𝑔, 𝑥 ′⟩
S-Step

𝑥 →𝜅 𝑥 ′

S 𝜅⟨𝑔, 𝑥⟩ ⇒ S 𝜅⟨𝑔, 𝑥 ′⟩

S-Out

𝑥1 →𝜅1 𝑥
′
1
+ 𝑔 𝑔 = 𝜅2._

S 𝜅1⟨𝑔1, 𝑥1⟩ 𝜅2⟨𝑔2, 𝑥2⟩ ⇒ S 𝜅1⟨𝑔1, 𝑥 ′
1
⟩ 𝜅2⟨𝑔 𝑔2, 𝑥2⟩

S-Out-New

𝑥1 →𝜅1 𝑥
′
1
+ 𝑔 𝑔 = 𝜅2._ 𝜅2 ∉ keys(S)

S 𝜅1⟨𝑔1, 𝑥1⟩ ⇒ S 𝜅1⟨𝑔1, 𝑥 ′
1
⟩ 𝜅2⟨𝑔,⊥⟩

S-Out-Self

𝑥1 →𝜅 𝑥 ′ + 𝑔 𝑔 = 𝜅._

S 𝜅⟨𝑔, 𝑥⟩ ⇒ S 𝜅⟨𝑔 𝑔, 𝑥 ′⟩
By definitions 5.2 and 5.1, each (S-Commit) transition can be broken down into a sequence of

these small-step transitions. Thus, we can prove that (S-Commit) can be simulated by proving that

each of these small-step transitions can be simulated. We now prove the latter by making a case

distinction on the inference rule used for the → on the top.
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B.1.1 Simulate (S-Step). We need to show that we can simulate (W-DoneSignal), (W-ActStep), (W-

OrcStep), (W-EntStep), (W-Cont), (W-OpSet), and (W-OpGet). For the entity transitions, simulation

is easy:

• (S-Step)/(W-DoneSignal). Then S ∼ C0 implies E𝑘 (busy𝜎 ) ∈ C0. Thus we can use (Ent-

EndSignal) for C0 ⇒ C1, which satisfies the requirements.

• (S-Step)/(W-EntStep). Analogously use (EntLocal).

• (S-Step)/(W-OpGet). Analogously use (Ent-Get).

• (S-Step)/(W-OpSet). Analogously use (Ent-Set).

But for activity transitions and orchestration transitions, the situation is trickier because S ∼ C0

does not directly relate the two execution states, but only after applying the effects in the queue.

We therefore do an induction over the length of the queue 𝑔. If it is empty, we can reason just like

before

• (S-Step)/(W-ActStep) can be simulated by (Act-Local)

• (S-Step)/(W-OrcStep) can be simulated by (Orch-Local)

• (S-Step)/(W-Cont) can be simulated by (Orch-Continue)

If the queue is not empty, then we use a "delay" tactic where we swap the transition with the next

input from the queue, which preserves the simulation relation and allows us to use the induction

assumption. This works if the transition in question is "delayable":

Definition B.1. An inference rule (xyz) for 𝑥 →𝜅 𝑥 ′
is called "delayable" if it can be delayed past

a simultaneously enabled input transition; that is: if 𝑔1 + 𝑥 →𝜅 𝑥1, then we can derive 𝑥1 →𝜅 𝑥 ′
1

such that 𝑔1 + 𝑥 ′ →𝜅 𝑥 ′
1
.

Lemma B.2. The inference rules (W-OrcStep), (W-ActStep) and (W-Cont) are delayable.

Proof. We need not worry about 𝑔 = 𝑑.𝑛𝑂 (𝑐) or 𝑔 = 𝑖 .𝑛𝐴 (𝑐, 𝑑) because these are only enabled if

𝑥 = ⊥, in which case none of (W-OrcStep), (W-ActStep) or (W-Cont) is enabled. The only remaining

case is 𝑔 = 𝑑.(𝜌/𝑖), which, when applied to 𝑥 , replaces all occurrences of the placeholder 𝑃𝑖 . In that

case, (W-OrcStep) can clearly be delayed past 𝑔 since it replaces the state with busy (𝑓 𝑐) which
cannot contain a placeholder. For (W-OrcStep) and (W-ActStep), we break this down further based

on the inference rules used for 𝑒 → 𝑒 ′:

• (Eval-App) The syntactic replacements [𝜌/𝑖] and [𝑣/𝑥] commute:

((𝜆𝑥.𝑒) 𝑣) [𝜌/𝑖] = ((𝜆𝑥.𝑒 [𝜌/𝑖]) 𝑣 [𝜌/𝑖]) = 𝑒 [𝜌/𝑖] [𝑣 [𝜌/𝑖]/𝑥] = (𝑒 [𝑣/𝑥]) [𝜌/𝑖] .
The effect on the execution context 𝐸 [.] also commutes.

• (Eval-Await) The replacement [𝜌/𝑖] does not affect the expressions await done 𝑐 or 𝑐 . Its

effect on the execution context 𝐸 [.] commutes.

• (Eval-Error) The replacement [𝜌/𝑖] does not affect the expression error. Its effect on the

execution context 𝐸 [.] commutes.

□

B.1.2 Simulate (S-In). For entity transitions, we can straightforwardly simulate by the correspond-

ing rules in the high-level model:

• (S-In)/(W-StartOp1). Can be simulated by (Ent-Take-Call).

• (S-In)/(W-StartOp2). Can be simulated by (Ent-Take-Signal).

• (S-In)/(W-AutoStart) can be simulated by (AutoStart) followed by (Ent-Take-Call) or (Ent-

Take-Signal).

For orchestrations and entities, the simulation follows directly from how we defined it in the

first place:
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• if 𝑑 ⟨𝑔𝑛 . . . 𝑔1, 𝑥⟩ ∼ O𝑑 (𝑥𝑛) and S 𝑑 ⟨𝑔𝑛 . . . 𝑔1, 𝑥⟩ ⇒ S 𝑑 ⟨𝑔𝑛 . . . 𝑔2, 𝑥1⟩ by (S-In), then this

implies that 𝑑 ⟨𝑔𝑛 . . . 𝑔2, 𝑥1⟩ ∼ O𝑑 (𝑥𝑛), so we can simulate using zero steps.

• if 𝑖⟨𝑔𝑛 . . . 𝑔1, 𝑥⟩ ∼ A𝑖 (𝑥𝑛) and S 𝑖⟨𝑔𝑛 . . . 𝑔1, 𝑥⟩ ⇒ S 𝑖⟨𝑔𝑛 . . . 𝑔2, 𝑥1⟩ by (S-In), then this implies

that 𝑖⟨𝑔𝑛 . . . 𝑔2, 𝑥1⟩ ∼ A𝑖 (𝑥𝑛), so we can simulate using zero steps.

B.1.3 Simulate (S-Out), (S-Out-New), and (S-Out-Self). First, for the entity cases

• (S-Out)/(W-DoneCall) Simulate with (Ent-EndCall), and using the ability of the simulation

relation to implicitly apply the effect on the parent orchestration.

• (S-Out-New)/(W-DoneCall) Impossible by Lemma B.5 and S ∼ C0.

• (S-Out)/(W-Sig2) Simulate with (Ent-Signal-Ent).

• (S-Out-New)/(W-Sig2) Simulate with (AutoStart) followed by (Ent-Signal-Ent).

• (S-Out-Self)/(W-Sig2) Simulate with (Ent-Signal-Self).

For orchestrations and entities, we use the same induction over the queue size as in §B.1.1. For

empty queues,

• (S-Out)/(W-DoneAct) Simulate with (Act-Done), using Lemma B.5 and S ∼ C0.

• (S-Out-New)/(W-DoneAct) Impossible by Lemma B.5 and S ∼ C0.

• (S-Out)/(W-Call1) Impossible by freshness condition.

• (S-Out-New)/(W-Call1) Simulate with (Ent-EndCall), using Lemma B.5 and S ∼ C0.

• (S-Out)/(W-Call3) Simulate with (Orch-Call-Ent).

• (S-Out-New)/(W-Call3) Simulate with (AutoStart) followed by (Orch-Call-Ent).

• (S-Out)/(W-Sig1) Simulate with (Orch-Signal-Ent).

• (S-Out-New)/(W-Sig1) Simulate with (AutoStart) followed by (Orch-Signal-Ent).

And then for the induction step, we use the delay tactic as in §B.1.1.

Definition B.3. An inference rule (xyz) for 𝑥 →𝜅 𝑥 ′+𝑔 is called "delayable" if it can be delayed past
a simultaneously enabled input transition; that is: if 𝑔1 + 𝑥 →𝜅 𝑥1, then we can derive 𝑥1 →𝜅 𝑥 ′

1
+𝑔

such that 𝑔1 + 𝑥 ′ →𝜅 𝑥 ′
1
.

Lemma B.4. The inference rules (W-DoneAct), (W-Call1), (W-Call3) and (W-Sig1) are delayable.

Proof. We need not worry about 𝑔 = 𝑑.𝑛𝑂 (𝑐) or 𝑔 = 𝑖 .𝑛𝐴 (𝑐, 𝑑) because these are only enabled if

𝑥 = ⊥, in which case none of (W-DoneAct), (W-Call1), (W-Call3) or (W-Sig1) are enabled. The only

remaining case is 𝑔 = 𝑑.(𝜌/𝑖), which, when applied to 𝑥 , replaces all occurrences of the placeholder

𝑃𝑖 .

• (W-DoneAct) can be delayed past 𝑔 because 𝜌 cannot contain 𝑃𝑖 .

• (W-Call1) can be delayed past 𝑔 because only the execution context can contain 𝑃𝑖 , and that

effect commutes. Freshness guarantees that the new placeholder is distinct from 𝑃𝑖 .

• (W-Call3) can be delayed past 𝑔 because only the execution context can contain 𝑃𝑖 , and that

effect commutes. Freshness guarantees that the new placeholder is distinct from 𝑃𝑖 .

• (W-Sig1) can be delayed past 𝑔 because only the execution context can contain 𝑃𝑖 , and that

effect commutes.

□

Lemma B.5. For any reachable state C of the high-level model,
(1) If C = C′ A𝑖 (busy𝑑 𝑒), then C = C′′ O𝑑 (𝑥).
(2) If C = C′ E𝑘 (busy𝜎,𝑑,𝑖 𝑒), then C = C′′ O𝑑 (𝑥).
Proof. By induction over the transitions in the execution. Basically, the intuition is that when an

activity or entity is called, a parent orchestration exists at that point, and orchestrations components

never disappear. □
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B.2 Proof of Lemma 6.7
We define the following simulation relation ∼ between the states of the non-recording and the

recording transition system: 𝑔in | 𝑥 | 𝑔out ∼ 𝑔in | 𝑥 | 𝑔out | ℎout. Then ∼ is a bisimulation:

• (RIn) easily simulated by (WIn).

• (ROut) implies (RIn) does not match right side, thus (WIn) does not match left side, thus

easily simulated by (WOut).

• (RStep) implies (RIn) does not match right side, thus (WIn) does not match left side, thus

easily simulated by (WStep).

• (RStep-Cont) like (RStep), but also have to use (W-Cont) (§A.1.2) to get 𝑥 →𝜅 𝑥 ′
.

• (RStep-DoneSignal), but also have to use (W-DoneSignal) (§A.1.2) to get 𝑥 →𝜅 𝑥 ′
.

• (RStep-DoneCall), but also have to use (W-DoneCall) (§A.1.2) to get 𝑥 →𝜅 𝑥 ′
.

• (WIn) easily simulated by (RIn).

• (WOut) implies (WIn) does not match the left side and thus (RIn) does not match the right

side. Thus easily simulated by (ROut).

• (WStep) implies (WIn) does not match the left side and thus (RIn) does not match the right

side. If the right side also does not match any (RStep-_), then we can simulate easily with

(RStep). Otherwise, if the right hand side matches

– (RStep-DoneSignal): can directly simulate (WStep) with (RStep-DoneSignal).

– (RStep-DoneCall): can directly simulate (WStep) with (RStep-DoneCall).

– (RStep-Cont): In that case, 𝑥 →𝜅 𝑥 ′
must have been derived by (W-Cont) (§A.1.2), because

it is the only rule matching busy 𝐸 [continue 𝑛𝑂 (𝑐)] for 𝑥 . This implies (𝑛𝑂 : 𝑓 ) ∈ A, and

thus we can use (WStep-Cont) to simulate.

Both claims of the lemma follow as the bisimulation provides the correspondence of the executions.

B.3 Proof of Lemma 6.5
The determinism of the big-step replay relation follows easily from the determinism of the small-step

relation:

( ℎ | 𝑥 ⊲→𝜅 ℎ1 | 𝑥1 ∧ ℎ | 𝑥 ⊲→𝜅 ℎ2 | 𝑥2 ) ⇒ (𝑥1 = 𝑥2) ∧ (ℎ1 = ℎ2)
To prove the latter, consider the relevant rules. Only one of (YIn), (YOut), and (YStep) can match

a given ℎ | 𝑥 , because (YStep) or (YOut) apply only if (YIn) does not, and (YOut) and (YStep) are

mutually exclusive by Lemma B.9. We can thus prove determinism for each of (YIn), (YOut), and

(YStep) separately, using the respective determinism lemma (B.6, B.7, B.8) below.

Lemma B.6. If 𝑥 + 𝑔 → 𝑥1 and 𝑥 + 𝑔 → 𝑥2, then 𝑥1 = 𝑥2

Proof. By examination of the relevant rule. Only one rule can match a given 𝑥 + 𝑔.
• (W-StartAct), (W-StartOrc1), (W-StartOrc2), (W-StartOp1), (W-StartOp2): are deterministic,

because the application defines a unique 𝑓 for each name.

• (W-AutoStart) deterministic because of the previous statement, and entity typing and default

value are deterministic.

• (W-OrchResp) syntactic replacement is deterministic.

□

Lemma B.7. If 𝑥 → 𝑥1 and 𝑥 → 𝑥2, then 𝑥1 = 𝑥2

Proof. By Lemma B.9, the same rule must be used for both, and by Lemma B.12, the contexts

must target the same redex. We now just look at each rule individually.

• (W-DoneSignal) is deterministic.
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• (W-ContAsNew) is deterministic, because the application defines a unique 𝑓 for 𝑛𝑂 .

• (W-OpGet) and (W-OpSet) are likewise deterministic.

• (W-ActStep),(W-OrcStep), and (W-EntStep) are deterministic by Lemma B.13.

□

Lemma B.8. If 𝑥 → 𝑥1 + 𝑔 and 𝑥 → 𝑥2 + 𝑔, then 𝑥1 = 𝑥2

Proof. By Lemma B.9, the same rule must be used for both, and by Lemma B.12, the contexts

must target the same redex. We now just look at each rule individually.

• (W-DoneSubOrch), (W-DoneCall) are deterministic.

• (W-Call1), (W-Call2), (W-Call3), (W-Sig1), (W-Sig2) are deterministic.

□

Lemma B.9. Given 𝑥 , only one inference rule can derive (𝑥 →𝜅 𝑥 ′) or (𝑥 →𝜅 𝑥 ′ + 𝑔).
Proof. The following context matchings for 𝑥 are distinct and each match a unique rule. The

claim thus follows from the unique redex matching (lemma B.12).

• 𝑏 𝐸 [call 𝑋 ] matches (𝑊 −𝐶𝑎𝑙𝑙∗) rules, each distinguished by X

• 𝑏 𝐸 [signal 𝑋 ] matches (𝑊 − 𝑆𝑖𝑔∗) rules, each distinguished by X

• 𝑏 𝜌 matches (𝑊 − 𝐷𝑜𝑛𝑒∗) rules, distinguished by the subscripts on busy and by 𝜅.

• 𝑏 𝐸 [continue 𝑛𝑂 (𝑐)] matches (W-ContAsNew).

• 𝑏 𝐸 [get] matches (W-OpGet).

• 𝑏 𝐸 [set ] matches (W-OpSet).

• 𝑏 𝐸 [𝑓 𝑣], 𝑏 𝐸 [await done 𝑐], 𝑏 𝐸 [error] matches one of (W-ActStep), (W-OrcStep), or (W-

EntStep) (by producing their 𝑒 → 𝑒 ′ premise via (Eval-App), (Eval-Await), or (Eval-Error)),

which are distinguished by 𝜅.

□

Lemma B.10. If 𝑣 = 𝐸 [𝑒], then 𝐸 = ◦ and 𝑣 = 𝑒 .

Proof. By examining all cases in the definition of execution contexts. □

Definition B.11. A redex is an expression of the form:

(𝜆𝑥.𝑒) 𝑣 | await done 𝑐 | error | get | set 𝑐 |
call 𝑛𝐴 (𝑐) | call 𝑛𝐸 .𝑜 (𝑐, 𝑐) | signal 𝑛𝐸 .𝑜 (𝑐, 𝑐) | continue 𝑛𝑂 (𝑐)

Lemma B.12 (Deterministic Redex Matching). If 𝐸 [𝑒] = 𝐸 ′[𝑒 ′] and 𝑒, 𝑒 ′ are redexes, then
𝐸 = 𝐸 ′ and 𝑒 = 𝑒 ′.

Proof. By structural induction over the context.

• 𝐸 = ◦ (base case). Then 𝐸 [𝑒] = 𝑒 = 𝐸 ′[𝑒 ′]. If 𝐸 ′ = ◦, we are done. Otherwise, the potential
matches for 𝑒 = 𝐸 ′[𝑒 ′] where 𝑒 is a redex are as follows: for each of them, we use Lemma B.10

to prove the claim.

– (𝜆𝑥.𝑒) 𝑣 = 𝐸1 [𝑒1] 𝑒2.
– (𝜆𝑥.𝑒) 𝑣 = 𝑓 𝐸1 [𝑒1].
– await done 𝑐 = await 𝐸1 [𝑒1].
– set 𝑐 = set 𝐸1 [𝑒1].
– call 𝑛𝐴 (𝑐) = call 𝑛𝐴 (𝐸1 [𝑒1]).
– call 𝑛𝐸 .𝑜 (𝑐, 𝑐) = call 𝑛𝐸 .𝑜 (𝐸1 [𝑒1], 𝑐).
– call 𝑛𝐸 .𝑜 (𝑐, 𝑐) = call 𝑛𝐸 .𝑜 (𝑐, 𝐸1 [𝑒1]).
– signal 𝑛𝐸 .𝑜 (𝑐, 𝑐) = signal 𝑛𝐸 .𝑜 (𝐸1 [𝑒1], 𝑐).
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– signal 𝑛𝐸 .𝑜 (𝑐, 𝑐) = signal 𝑛𝐸 .𝑜 (𝑐, 𝐸1 [𝑒1]).
– continue 𝑛𝑂 (𝑐) = continue 𝑛𝑂 (𝐸1 [𝑒1]).

• 𝐸 [𝑒] = 𝐸1 [𝑒] 𝑒1. Then candidates for 𝐸 ′
include

– 𝐸 ′[𝑒 ′] = 𝐸2 [𝑒 ′] 𝑒1. Then we can apply the induction hypothesis.

– 𝐸 ′[𝑒 ′] = 𝑓 𝐸2 [𝑒 ′]. Then by Lemma B.10, 𝑒 = 𝑓 which contradicts 𝑒 being a redex.

• 𝐸 [𝑒] = 𝑓 𝐸1 [𝑒]. Then candidates for 𝐸 ′
include

– 𝐸 ′[𝑒 ′] = 𝐸2 [𝑒 ′] 𝑒1. Then by Lemma B.10, 𝑒 ′ = 𝑓 which contradicts 𝑒 ′ being a redex.

– 𝐸 ′[𝑒 ′] = 𝑓 𝐸2 [𝑒 ′]. Then we can apply the induction hypothesis.

• 𝐸 [𝑒] = await 𝐸1 [𝑒]. Then the only candidate for 𝐸 ′
is 𝐸 ′[𝑒 ′] = await 𝐸2 [𝑒 ′], so we can apply

the induction hypothesis.

• 𝐸 [𝑒] = set 𝐸1 [𝑒]. Then the only candidate for 𝐸 ′
is 𝐸 ′[𝑒 ′] = set 𝐸2 [𝑒 ′], so we can apply the

induction hypothesis.

• The remaining cases are analogous, using for each potential match either the induction

hypothesis or a contradiction via Lemma B.10.

□

Lemma B.13 (Deterministic Local Evaluation). If 𝑒 → 𝑒1 and 𝑒 → 𝑒2, then 𝑒1 = 𝑒2

Proof. The three rules Eval-App, Eval-Await and Eval-Error all match 𝑒 using a context 𝐸 [𝑒𝑟 ]
where 𝑒𝑟 is a respective redex. By Lemma B.12, this match is deterministic. As the right-hand side

is fully determined by what is matched on the left, evaluation is deterministic. □

B.4 Proof of Lemma 6.6
We first consider the easy cases of entities and activities; those are simple because all recording

executions end in final states (idle or completed). We then tackle the more interesting case of

orchestrations, where intermediate execution states are possible.

B.4.1 Entities. By the lemma below, any non-empty final configuration of a recording execution

for entities has an idle execution state and history with a single entry, that replays to that idle state.

This proves the claim.

Lemma B.14. For any entity 𝑘 and any recording execution 𝑔in | 𝑥 | ℎin ◦↠𝑘 𝑥 ′ | 𝑔out | ℎout, there
exists a 𝜎 such that 𝑥 ′ = idle𝜎 and ℎout = in(𝑘.𝜎).

Proof. By definition 6.1 𝑥 ′
must match some non-reducible state, and the only possible match for

entities is idle𝜎 . The step that produced this state must be (RStep-DoneSignal) or (RStep-DoneCall),

since those are the only ones that produce an idle entity state (note that (W-DoneCall) and (W-

DoneSignal) are effectively overriden). Those steps set the recorded history to a single entry

in(𝑘.𝜎). □

B.4.2 Activities. By the lemma below, any non-empty final configuration of a recording execution

for activities has an completed execution state and history with two entries, that replays to that

completed state. This proves the claim.

Lemma B.15. For any activity 𝑖 and any recording execution 𝑔in | 𝑥 | ℎin ◦↠𝑖 𝑥 ′ | 𝑔out | ℎout, there
exist 𝑐 , 𝑑 , 𝜌 such that 𝑥 ′ = completed 𝜌 and ℎout = in(𝑖 .𝑛𝐴 (𝑐, 𝑑))out(𝑑.[𝜌/𝑖]).

Proof. By definition 6.1 𝑥 ′
must match some non-reducible state, and the only possible match

for activities is completed 𝜌 . As there are only three execution rules for activities, we can see, by

looking at the execution states, that they must appear in an order matching the regular expression

(W-StartAct)(W-ActStep)
+
(W-DoneAct). This then implies the claimed shape of the history. □
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B.4.3 Orchestrations. To tackle this case, we first define a non-deterministic version □→ of the

replay relation ⊲→. It is essentially the same, but without the restriction that input rule (YIn) takes

precedence over the other two:

NYIn

𝑔 + 𝑥 →𝑑 𝑥 ′

in(𝑔) ℎin | 𝑥 □→𝑑 ℎin | 𝑥 ′ NYOut

𝑥 →𝑑 𝑥 ′ + 𝑔
out(𝑔) ℎin | 𝑥 □→𝑑 ℎin | 𝑥 ′

NYStep

𝑥 →𝑑 𝑥 ′

ℎin | 𝑥 □→𝑑 ℎin | 𝑥 ′

And analogously, the big-step version ℎ □↠𝑑 𝑥 represents a sequence ℎ | ⊥ □→∗
𝑑
𝜖 | 𝑥 ′

where

the final execution state 𝑥 ′
is of the form (completed 𝜌), (𝑏 𝐸 (𝑝)), or (idle𝜎 ).

Now, the following two lemmas, taken together, complete the proof.

Lemma B.16. Given 𝑔in | 𝑥 | ℎin ◦↠𝑑 𝑥 ′ | 𝑔out | ℎout such that ℎin □↠𝑑 𝑥 , then ℎout □↠𝑑 𝑥 ′.

Lemma B.17. ℎ □↠𝑑 𝑥 ⇔ ℎ ⊲↠𝑑 𝑥 .

Proof of Lemma B.16. By induction over the number of steps in 𝑔in | 𝑥 | ℎin ◦↠𝑑 𝑥 ′ | 𝑔out | ℎout.
For zero steps the claim is immediate. Otherwise, do a case distinction on the last step.

• (RIn) By induction assumption, we have ℎout □↠𝑑 𝑥 , and thus an execution ℎout | ⊥ □→𝑑

. . . □→𝑑 𝜖 | 𝑥 . Appending (NYIn) at the end, and adding in(𝑔), we can transform this to

ℎout in(𝑔) | ⊥ □→𝑑 . . . □→𝑑 in(𝑔) | 𝑥 □→𝑑 𝜖 | 𝑥 ′
which establishes the claim. Note that

this part would not work for the deterministic replay relation ⊲→𝑑 , since that one can force

us to consume in(𝑔) earlier in the execution.

• (ROut) By induction assumption, we have ℎout □↠𝑑 𝑥 , and thus an execution ℎout | ⊥ □→𝑑

. . . □→𝑑 𝜖 | 𝑥 . Appending (NYOut) at the end, and adding out(𝑔), we can transform this to

ℎout out(𝑔) | ⊥ □→𝑑 . . . □→𝑑 out(𝑔) | 𝑥 □→𝑑 𝜖 | 𝑥 ′
which establishes the claim.

• (RStep-Cont) The claim follows from in(𝑑.𝑛𝑂 (𝑐)) | ⊥ □→𝑑 𝜖 | busy (𝑓 𝑐), and because 𝑥 ′
is

already of the form (completed 𝜌), (𝑏 𝐸 (𝑝)), or (idle𝜎 ).
□

Proof of Lemma B.17. (ℎ □↠𝑑 𝑥) ⇐ (ℎ ⊲↠𝑑 𝑥) is immediate since the nondeterministic

rules are strictly more permissive. For (ℎ □↠𝑑 𝑥) ⇒ (ℎ ⊲↠𝑑 𝑥), proceed indirectly, choosing a

counterexample ℎ | ⊥ □→𝑑 . . . □→𝑑 𝜖 | 𝑥 ′
such that the number of steps after the first violating

step (i.e. the first step in (□→𝑑 \ ⊲→𝑑 )) is minimal. A violating step ℎ | 𝑥 □→𝑑 ℎ′ | 𝑥 ′
must be an

application of (NYStep) or (NYOut) while (NYIn) is enabled. But if (NYStep) or (NYOut) is enabled,

then 𝑥 ≠ ⊥, thus the only option for (NYIn) is receiving a response (W-OrchResp). Now, we simply

swap the order: (W-OrchResp) commutes with any step on its left, because all it does is replace

placeholders with results, which cannot disable a transition, nor change its effect. The interesting

situation is (Eval-App), in which case we may replace fewer instances, but to the same effect. □
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